JP5122607B2 - Flat sliding mechanism - Google Patents

Flat sliding mechanism Download PDF

Info

Publication number
JP5122607B2
JP5122607B2 JP2010138575A JP2010138575A JP5122607B2 JP 5122607 B2 JP5122607 B2 JP 5122607B2 JP 2010138575 A JP2010138575 A JP 2010138575A JP 2010138575 A JP2010138575 A JP 2010138575A JP 5122607 B2 JP5122607 B2 JP 5122607B2
Authority
JP
Japan
Prior art keywords
groove
fluid introduction
sliding
plane
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010138575A
Other languages
Japanese (ja)
Other versions
JP2012002295A (en
Inventor
博司 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2010138575A priority Critical patent/JP5122607B2/en
Publication of JP2012002295A publication Critical patent/JP2012002295A/en
Application granted granted Critical
Publication of JP5122607B2 publication Critical patent/JP5122607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、平面摺動機構に関する。   The present invention relates to a planar sliding mechanism.

相対する平面間で摺動を行う平面摺動機構は、例えば高圧流体機器の軸封部に適用されるシール装置等として利用されている。   A plane sliding mechanism that slides between opposing planes is used as, for example, a sealing device applied to a shaft seal portion of a high-pressure fluid device.

非接触形のメカニカルシールとして、被軸封機器の回転部材と、回転部材と同時回転する回転密封環と、回転不能に保持され、かつスプリングにより回転密封環側に常時付勢される静止密封環とを備えたものがある(特許文献1)。特許文献1には、回転密封環のシール面に、円周方向に等間隔で径方向にのびる幅狭深底の流体導入溝を複数形成し、これら流体導入溝のそれぞれに連通し、かつ円周方向の一方にのびる幅広浅底の動圧発生グルーブが形成されている。回転密封環が回転すると、高圧側の流体が流体導入溝から動圧発生グルーブに流入して静止密封環のシール面との間に動圧を発生させ、例えば5〜20μm程度の狭いシール隙間を形成し、低圧側と高圧側とを非接触状態でシールするように構成されている。   As a non-contact type mechanical seal, a rotating member of a shaft-sealed device, a rotating sealing ring that rotates simultaneously with the rotating member, and a stationary sealing ring that is held unrotatable and is always biased to the rotating sealing ring side by a spring. (Patent Document 1). In Patent Document 1, a plurality of narrow and deep bottom fluid introduction grooves extending in the radial direction at equal intervals in the circumferential direction are formed on the seal surface of the rotary seal ring, communicated with each of these fluid introduction grooves, and circular A wide and shallow dynamic pressure generating groove extending in one of the circumferential directions is formed. When the rotating seal ring rotates, the fluid on the high pressure side flows into the dynamic pressure generating groove from the fluid introduction groove and generates a dynamic pressure between the seal surface of the stationary seal ring, for example, a narrow seal gap of about 5 to 20 μm. It is configured to seal the low pressure side and the high pressure side in a non-contact state.

特許文献1のものは、シール面の径外側から動圧発生グルーブの径方向の内側までの寸法と上記シール面の径方向の幅寸法との比と、静止密封環を構成するカーボン材の密度及びヤング率とを所定の値に設定することによりシール隙間の自己整合機能を持たせるようにしている。   In Patent Document 1, the ratio of the dimension from the radially outer side of the seal surface to the radially inner side of the dynamic pressure generating groove and the radial width of the seal surface, and the density of the carbon material constituting the stationary seal ring In addition, the self-alignment function of the seal gap is provided by setting the Young's modulus to a predetermined value.

特開平5−60247号公報JP-A-5-60247

特許文献1のものは、材料の機械特性を制限するものであるため、材質が限定的となる。また、摺動する相手部材の荷重が大きい場合やすべり速度が遅い場合など、十分な厚みの油膜が形成し難い状況では油膜切れが生じ、焼付きを起こしやすい。また、十分な厚みの油膜が形成されている場合でも、速度変動や荷重変動により油膜の厚みが変動し易く十分な油膜剛性が得られない。このように、摺動条件により油膜厚さの変動が大きいため、流体の漏洩や焼付きを生じる場合がある。   Since the thing of patent document 1 restrict | limits the mechanical characteristic of material, a material becomes limited. In addition, when it is difficult to form an oil film having a sufficient thickness, such as when the load of the mating member is large or when the sliding speed is low, the oil film is cut off and seizure is likely to occur. Further, even when an oil film having a sufficient thickness is formed, the oil film thickness is likely to vary due to speed fluctuations and load fluctuations, and sufficient oil film rigidity cannot be obtained. As described above, since the oil film thickness varies greatly depending on the sliding conditions, fluid leakage or seizure may occur.

本発明は、上記事情に鑑み、薄い油膜を安定して得ることができてシール性の高い平面摺動機構を提供する。   In view of the above circumstances, the present invention provides a flat sliding mechanism that can stably obtain a thin oil film and has high sealing performance.

本発明は、相対する平面間で潤滑流体の膜を介して相対回転摺動を行って、内径側と外径側とをシールする平面摺動機構であって、前記何れか一方の平面に、内径側又は外径側の一方に開口し、かつその開口部と径方向逆方向の端部が平面内に存在して、開口側からの潤滑流体を前記相対する平面間のリング状の摺動部位に導入する流体導入溝と、前記流体導入溝よりも浅く、前記流体導入溝に連通するとともに、相対する前記他方の平面の摺動方向に対して平行または90°未満の傾斜角で傾斜する向きに周期性を有する複数の浅溝とを備え、前記1つの流体導入溝と、これに連通する複数の浅溝とで溝構成体を構成し、この溝構成体を、半径方向軸を対称軸とする線対称に配置し、前記複数の浅溝は、10μm以下のピッチで形成され、かつ、1μm以下の深さに形成されているものである。 The present invention is a plane sliding mechanism that performs relative rotational sliding between opposing planes through a film of lubricating fluid, and seals the inner diameter side and the outer diameter side. A ring-shaped slide between the opposing planes that opens to one of the inner diameter side or the outer diameter side and has an end in the opposite radial direction to the opening in the plane. A fluid introduction groove to be introduced into the region, and shallower than the fluid introduction groove, communicated with the fluid introduction groove, and inclined in parallel with the sliding direction of the other flat surface or at an inclination angle of less than 90 °. A plurality of shallow grooves having periodicity in the direction, and the one fluid introduction groove and the plurality of shallow grooves communicating with the one fluid groove constitute a groove structure, and the groove structure is symmetrical with respect to the radial axis. The plurality of shallow grooves are arranged symmetrically with respect to the axis, and are formed at a pitch of 10 μm or less. In addition, it is formed to a depth of 1 μm or less .

本発明は、平面上に設けられた溝の深さ寸法と潤滑流体膜の厚み寸法との関係に着目してなされたもので、相互に溝深さの異なる流体導入溝と浅溝とが交わるように配置すると共に、相対的に浅い側の溝を所定の態様に配列することにより、すべり速度や負荷の大きさに関らず安定した油膜の形成を実現可能としたものである。すなわち、相対摺動する平面のうち一方の平面に設けた複数の浅溝を周期性をもって配置し、かつこれら並列配置された複数の浅溝を何れも流体導入溝と交わるように配置することで、平面間に形成される潤滑流体膜の厚みの変動幅が小さくなり、数μm以下の薄い膜厚が安定して得られることで摩擦係数の変動幅も小さくなる。これは、以下の作用に起因するものと考えられる。つまり、1本の流体導入溝に対して複数本の浅溝を上記のように交差させて配置することにより、潤滑流体が、側方漏れをほとんど起こすことなく流体導入溝から複数の浅溝を介して平面(浅溝非形成部)に供給される。このとき、浅溝形成部と浅溝非形成部との境界で油圧が立ち上がることで荷重負荷能力が発現する。このとき、膜厚が比較的大きい場合には、浅溝に起因する油圧の立ち上がり(動圧効果)はほとんど生じず、浅溝の存在が流体導入溝に起因する動圧効果を低減させるため、膜厚を低減する向きに作用する。また、膜厚が比較的小さい場合、主に浅溝の長手方向に沿って潤滑流体の流れ込みが生じ、反流体導入溝側の端部で大きな動圧効果が生じる。動圧効果は、溝深さが油膜厚さに近いほど大きく、同程度の場合に最大となるため、油膜厚みの小さい場合、浅溝により剛性の高い流体膜を形成することができる。その結果、潤滑流体の膜厚の変動幅が小さくなるものと考えられる。
また、複数の浅溝は、10μm以下のピッチで形成されていているので、潤滑流体の側方漏れを一層生じ難くして、動圧の発生効果をさらに高めることができる。その結果、側方での圧力降下を少なくして、ローリング誤差を小さくすることができる。
さらに、浅溝は、1μm以下の深さに形成されている。すなわち、一般的な動圧溝のオーダー(数μmから数十μm)よりも小さいサイズに浅溝を形成することで、動圧発生時の浮上量の変動を減少でき、剛性を向上させることができ、特に膜厚が1μm以下となる摺動域において優れた動圧効果を発揮して高剛性の流体膜を形成することができる。
The present invention has been made paying attention to the relationship between the depth dimension of the groove provided on the plane and the thickness dimension of the lubricating fluid film, and the fluid introduction groove and the shallow groove having different groove depths intersect each other. In addition, by arranging the relatively shallow grooves in a predetermined manner, a stable oil film can be formed regardless of the sliding speed and the load. That is, by arranging a plurality of shallow grooves provided in one of the planes that slide relative to each other with periodicity, and arranging the plurality of shallow grooves arranged in parallel so as to intersect with the fluid introduction grooves. The fluctuation range of the thickness of the lubricating fluid film formed between the planes is reduced, and the fluctuation range of the friction coefficient is reduced by stably obtaining a thin film thickness of several μm or less. This is considered due to the following actions. That is, by arranging a plurality of shallow grooves so as to intersect with one fluid introduction groove as described above, the lubricating fluid causes the plurality of shallow grooves from the fluid introduction groove to hardly cause side leakage. To the flat surface (the shallow groove non-forming portion). At this time, the load capacity is developed by the hydraulic pressure rising at the boundary between the shallow groove forming portion and the shallow groove non-forming portion. At this time, when the film thickness is relatively large, the rise of hydraulic pressure due to the shallow groove (dynamic pressure effect) hardly occurs, and the presence of the shallow groove reduces the dynamic pressure effect due to the fluid introduction groove. It acts in the direction of reducing the film thickness. Further, when the film thickness is relatively small, the lubricating fluid flows mainly along the longitudinal direction of the shallow groove, and a large dynamic pressure effect is generated at the end portion on the anti-fluid introduction groove side. The dynamic pressure effect is greater when the groove depth is closer to the oil film thickness, and is maximized when the groove depth is the same. Therefore, when the oil film thickness is small, a highly rigid fluid film can be formed by the shallow groove. As a result, it is considered that the fluctuation range of the film thickness of the lubricating fluid becomes small.
Further, since the plurality of shallow grooves are formed with a pitch of 10 μm or less, it is possible to further prevent the side leakage of the lubricating fluid and further increase the effect of generating the dynamic pressure. As a result, the pressure drop on the side can be reduced and the rolling error can be reduced.
Furthermore, the shallow groove is formed to a depth of 1 μm or less. That is, by forming the shallow groove in a size smaller than the order of a general dynamic pressure groove (several μm to several tens μm), it is possible to reduce the fluctuation of the flying height when the dynamic pressure is generated and to improve the rigidity. In particular, a highly rigid fluid film can be formed by exhibiting an excellent dynamic pressure effect in a sliding region where the film thickness is 1 μm or less.

前記複数の浅溝は円周方向又は回転方向の接線方向に配置することができる。これにより、流体導入溝から浅溝に効率よく潤滑流体を取り込むことができ、負荷能力を高めることができる。   The plurality of shallow grooves may be arranged in a circumferential direction or a tangential direction of the rotation direction. Thereby, the lubricating fluid can be efficiently taken into the shallow groove from the fluid introduction groove, and the load capacity can be increased.

以上の構成に係る平面摺動機構に関し、例えば複数の浅溝は、加工閾値近傍の照射強度で直線偏光のレーザを一方の平面に照射し、照射部分をオーバーラップさせながら走査することで自己組織的に形成されたものであってもよい。詳細は特許掲載公報第4054330号に譲るが、この種のいわゆるレーザを用いた自己組織的な並列溝の形成方法によれば、機械加工では困難な1μm以下のオーダーのピッチと溝深さを併せ持つ浅溝群を容易に形成できる。   Regarding the planar sliding mechanism according to the above configuration, for example, the plurality of shallow grooves irradiate one plane with a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold, and perform scanning while overlapping the irradiated portions. It may be formed automatically. Details are given in Japanese Patent Publication No. 4054330. According to this type of so-called laser-based self-organized parallel groove forming method, both pitch and groove depth of the order of 1 μm or less, which are difficult to machine, are obtained. The shallow groove group can be easily formed.

以上のように、本発明によれば、すべり速度や荷重の大きさ、材質に関らず、薄い油膜を安定して得ることができ、しかも油膜厚みの変動が小さく油膜剛性に優れた平面摺動機構を提供することができる。これにより、内径側と外径側との間で高いシール性を得ることができる。   As described above, according to the present invention, a thin oil film can be stably obtained regardless of the sliding speed, the magnitude of the load, and the material, and the oil film thickness variation is small and the oil film rigidity is excellent. A moving mechanism can be provided. Thereby, a high sealing performance can be obtained between the inner diameter side and the outer diameter side.

本発明の一実施形態に係る平面摺動機構の一方の平面を示す平面図である。It is a top view which shows one plane of the plane sliding mechanism which concerns on one Embodiment of this invention. 図1に示す平面摺動機構のA−A断面図であって、油膜厚さが比較的大きい場合の摺動状態を概念的に示す断面図である。It is AA sectional drawing of the plane sliding mechanism shown in FIG. 1, Comprising: It is sectional drawing which shows notionally the sliding state in case an oil film thickness is comparatively large. 図1に示す平面摺動機構のA−A断面図であって、油膜厚さが比較的小さい場合の摺動状態を概念的に示す断面図である。It is AA sectional drawing of the plane sliding mechanism shown in FIG. 1, Comprising: It is sectional drawing which shows notionally the sliding state in case an oil film thickness is comparatively small. 本発明の他の実施形態に係る平面摺動機構の一方の平面を示す要部平面図である。It is a principal part top view which shows one plane of the plane sliding mechanism which concerns on other embodiment of this invention. 本発明の他の実施形態に係る平面摺動機構の一方の平面を示す要部平面図である。It is a principal part top view which shows one plane of the plane sliding mechanism which concerns on other embodiment of this invention. 本発明の他の実施形態に係る平面摺動機構の一方の平面を示す要部平面図である。It is a principal part top view which shows one plane of the plane sliding mechanism which concerns on other embodiment of this invention. 本発明の他の実施形態に係る平面摺動機構の一方の平面を示す要部平面図である。It is a principal part top view which shows one plane of the plane sliding mechanism which concerns on other embodiment of this invention. 本発明の他の実施形態に係る平面摺動機構の一方の平面を示す平面図である。It is a top view which shows one plane of the plane sliding mechanism which concerns on other embodiment of this invention. 本発明の他の実施形態に係る平面摺動機構の一方の平面を示す平面図である。It is a top view which shows one plane of the plane sliding mechanism which concerns on other embodiment of this invention. 摺動実験の結果を示す図であって、比較例に係る平面摺動機構のすべり速度と動摩擦係数との関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the sliding speed and dynamic friction coefficient of the plane sliding mechanism which concerns on a comparative example. 摺動実験の結果を示す図であって、実施例に係る平面摺動機構のすべり速度と動摩擦係数との関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the sliding speed and dynamic friction coefficient of the plane sliding mechanism which concerns on an Example. 摺動実験の結果を示す図であって、実施例に係る平面摺動機構の荷重を異ならせた場合におけるすべり速度と動摩擦係数との関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the sliding speed and the dynamic friction coefficient when the load of the plane sliding mechanism which concerns on an Example is varied. 摺動実験の結果を示す図であって、実施例に係る平面摺動機構の荷重を異ならせた場合におけるすべり速度と油膜厚さとの関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the sliding speed and oil film thickness when the load of the plane sliding mechanism which concerns on an Example is varied.

以下、本発明に係る平面摺動機構の実施形態を図1〜図9に基づき説明する。   Hereinafter, an embodiment of a plane sliding mechanism according to the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る平面摺動機構の要部平面図を示している。第1部材1の平面(第1摺動面)1aと第2部材2の平面(第2摺動面)2aとが潤滑流体を介して相対的に回転摺動するものであって、例えば、オイルシールに使用することができる。この場合、図1に示すように、第1部材1はリング体としており、第2部材2は円盤体としている。そして、リング体の外径側は潤滑流体が存在する高圧側となり、内径側に気体が存在する低圧側となっており、内径側と外径側とをシールするものである。なお、潤滑流体とは、水、油、液体金属等の種々の液体を選択でき、この摺動面構造が用いられる用途に応じて種々変更することができる。   FIG. 1: has shown the principal part top view of the plane sliding mechanism which concerns on one Embodiment of this invention. The plane (first sliding surface) 1a of the first member 1 and the plane (second sliding surface) 2a of the second member 2 are relatively rotated and slid through the lubricating fluid, for example, Can be used for oil seals. In this case, as shown in FIG. 1, the first member 1 is a ring body, and the second member 2 is a disk body. The outer diameter side of the ring body is the high pressure side where the lubricating fluid is present, and the inner diameter side is the low pressure side where the gas is present, and seals the inner diameter side and the outer diameter side. In addition, various fluids, such as water, oil, and a liquid metal, can be selected as a lubricating fluid, and can be variously changed according to the use for which this sliding surface structure is used.

図1に示すように、平面摺動機構を構成する第1摺動面1aには、その周方向に沿って所定の間隔おき(本実施形態では、90°)に、後述する流体導入溝3および複数の浅溝4とで構成される溝構成体5が4つ形成されている。この溝構成体5は、第1摺動面1aの半径方向軸を対称軸Sとする線対称となっている。   As shown in FIG. 1, a fluid introduction groove 3 to be described later is formed on the first sliding surface 1a constituting the flat sliding mechanism at predetermined intervals along the circumferential direction (90 ° in the present embodiment). And four groove structure bodies 5 constituted by a plurality of shallow grooves 4 are formed. The groove structure 5 is line-symmetric with the radial axis of the first sliding surface 1a as the symmetry axis S.

流体導入溝3は、相対する平面1a、2a間に潤滑流体(ここでは例えば潤滑油)を供給するための溝である。流体導入溝3は、本実施形態では半径方向に延びる直線状のものとなっており、相対する他方の平面2a(を有する相手部材2)の摺動方向に直交する向きに配置されている。流体導入溝3の一端は平面1aの外径縁6に開口し、他端は平面内に存在している。故に、流体導入溝3内部は外気とは連通しない状態におかれている。   The fluid introduction groove 3 is a groove for supplying a lubricating fluid (for example, lubricating oil here) between the opposing flat surfaces 1a and 2a. In this embodiment, the fluid introduction groove 3 has a linear shape extending in the radial direction, and is arranged in a direction perpendicular to the sliding direction of the other opposing flat surface 2a (having the mating member 2). One end of the fluid introduction groove 3 opens to the outer diameter edge 6 of the plane 1a, and the other end exists in the plane. Therefore, the inside of the fluid introduction groove 3 is not in communication with the outside air.

浅溝4,4…は、図1に示すように、平面視においてその幅が流体導入溝3よりも狭いものであり、1つの流体導入溝3に対して複数形成されている。これら複数の浅溝4,4…は周期性をもって並列に形成されたグレーティング構造となっており、何れの浅溝4も流体導入溝3と連通する。この浅溝4が形成される領域では、浅溝4の凹部と凸部で摺動面間のすきまに差が生じ、すきまの小さくなる凸部では大きな流体圧力が生じる。この流体圧力により荷重が支持されるため、摩擦係数の低い流体潤滑状態を実現できる。この実施形態では、複数の浅溝4が何れも流体導入溝3と所定の角度で交わる向きに配置されると共に、各浅溝4がその端部で流体導入溝3の一方の縁とつながっている(図2を参照)。   As shown in FIG. 1, the shallow grooves 4, 4... Are narrower than the fluid introduction groove 3 in a plan view, and a plurality of the shallow grooves 4 are formed with respect to one fluid introduction groove 3. The plurality of shallow grooves 4, 4... Have a grating structure formed in parallel with periodicity, and any of the shallow grooves 4 communicates with the fluid introduction groove 3. In the region where the shallow groove 4 is formed, there is a difference in the clearance between the sliding surfaces between the concave portion and the convex portion of the shallow groove 4, and a large fluid pressure is generated at the convex portion where the clearance is small. Since the load is supported by this fluid pressure, a fluid lubrication state with a low friction coefficient can be realized. In this embodiment, each of the plurality of shallow grooves 4 is arranged in a direction intersecting with the fluid introduction groove 3 at a predetermined angle, and each shallow groove 4 is connected to one edge of the fluid introduction groove 3 at its end. (See FIG. 2).

複数の浅溝4,4…は、この実施形態では直線形状をなし、接線方向に配置されている。浅溝4の溝深さWbは、油膜厚さが小さい場合に浅溝4による高剛性の油膜形成を図る観点から、1μm以下としている。さらに好ましくは浅溝4の溝深さWbを500nm以下に設定するのがよい。また、何れの浅溝4,4…も流体導入溝3と直交する向き、ここでは結果的に他方の平面2a(相手部材2)の摺動方向(回転方向)の接線方向に配置されている。また、上記のように配置された流体導入溝3の双方の側に配置された全ての浅溝4,4…は同じ長手寸法に形成されている。 In this embodiment, the plurality of shallow grooves 4, 4... Have a linear shape and are arranged in the tangential direction. Groove depth of the shallow groove 4 Wb is viewpoint et achieving oil film formation of a highly rigid due to shallow grooves 4 when the oil film thickness is small, and a 1μm or less. More preferably, the groove depth Wb of the shallow groove 4 is set to 500 nm or less. Each of the shallow grooves 4, 4... Is arranged in a direction perpendicular to the fluid introduction groove 3, and as a result, in the tangential direction of the sliding direction (rotation direction) of the other flat surface 2 a (the mating member 2). . Moreover, all the shallow grooves 4, 4 ... arrange | positioned at the both sides of the fluid introduction groove | channel 3 arrange | positioned as mentioned above are formed in the same longitudinal dimension.

流体導入溝3と浅溝4の寸法関係について見ると、流体導入溝3の溝深さWaは、相対する双方の平面1a、2a間に潤滑油を供給できる限りにおいて特に制限されないが、5μm以上とするのが好ましい。また、図2に示すように流体導入溝3の溝深さWaと浅溝4の溝深さWbとの関係についてはWa>Wbが常に成立つように設定される。具体的には、浅溝4溝深さWbに対する流体導入溝3の溝深さWaの比が5以上200以下となるように、より好ましくは10以上100以下となるように、さらに好ましくは20以上50以下となるように設定される。また、一方の平面1aのうち少なくとも流体導入溝3の形成されていない領域と、この領域と対向する他方の平面2aとの間に油膜形成に足る潤滑油の動圧効果を生じ得るように流体導入溝3の寸法を定めることも可能であり、例えば相手部材2の重量(支持荷重)やすべり速度を考慮して定めるのがよい。なお、浅溝4の寸法、特に溝深さWbに関しては、浅溝4,4…が形成される一方の平面1aの面粗さないし平面度との関係で規定することもでき、例えば平面1aの表面粗さRaないし平面度が溝深さWbの値を上回ることのないように平面1aの面精度および浅溝4の溝深さWbを設定することもできる。油膜の確保のためである。   Looking at the dimensional relationship between the fluid introduction groove 3 and the shallow groove 4, the groove depth Wa of the fluid introduction groove 3 is not particularly limited as long as lubricating oil can be supplied between the two opposing flat surfaces 1a and 2a. Is preferable. Further, as shown in FIG. 2, the relationship between the groove depth Wa of the fluid introduction groove 3 and the groove depth Wb of the shallow groove 4 is set such that Wa> Wb is always established. Specifically, the ratio of the groove depth Wa of the fluid introduction groove 3 to the shallow groove 4 groove depth Wb is 5 or more and 200 or less, more preferably 10 or more and 100 or less, and still more preferably 20 It is set to be 50 or less. Further, a fluid is generated so that a dynamic pressure effect of the lubricating oil sufficient to form an oil film can be generated between at least the region where the fluid introduction groove 3 is not formed in one plane 1a and the other plane 2a facing this region. It is also possible to determine the dimension of the introduction groove 3, and for example, it is preferable to determine in consideration of the weight (support load) of the mating member 2 and the sliding speed. Note that the dimensions of the shallow groove 4, especially the groove depth Wb, can be defined in relation to the roughness or flatness of one flat surface 1a on which the shallow grooves 4, 4,... Are formed. It is also possible to set the surface accuracy of the flat surface 1a and the groove depth Wb of the shallow groove 4 so that the surface roughness Ra or flatness thereof does not exceed the value of the groove depth Wb. This is to secure an oil film.

上記流体導入溝3は公知の溝形成手段を採用することができる。また、上記複数の浅溝4,4…についてもその形成手段は特に問わないが、上述のように1μm以下の溝深さを有するものを形成する場合には、例えば加工閾値近傍の照射強度で直線偏光のレーザを一方の平面に照射し、照射部分をオーバーラップさせながら走査することで自己組織的に形成する手段が有効である。この手段によれば、照射するレーザに含まれる入射光の波長以下の周期(ピッチ)および深さで複数の浅溝4,4…を形成することができる。   A known groove forming means can be employed for the fluid introducing groove 3. Further, the means for forming the plurality of shallow grooves 4, 4... Is not particularly limited. However, when forming a groove having a groove depth of 1 μm or less as described above, the irradiation intensity is, for example, near the processing threshold. Effective is a means of forming a self-organized structure by irradiating a linearly polarized laser beam on one plane and scanning while overlapping the irradiated portions. According to this means, it is possible to form a plurality of shallow grooves 4, 4... With a period (pitch) and a depth equal to or less than the wavelength of incident light contained in the laser to be irradiated.

次に、上記構成の平面摺動機構の動作について説明する。まず、図2に示すように、相対する他方の平面2a(相手部材2)のすべり速度が大きい場合、あるいは相手部材2からの荷重が小さい場合には、主に流体導入溝3からの潤滑油の供給により、相対する双方の平面1a、2a間に比較的膜厚の大きい油膜が形成される。溝深さWa,Wbとの関係で言えば、浅溝4の溝深さWbよりも流体導入溝3の溝深さWaに比較的近い大きさの油膜厚みWcを有する油膜が形成される。この場合、流体導入溝3の摺動方向前方側の縁の部分(図2中左側の縁の部分)で油圧の立ち上がりが生じる。また、この場合には、流体導入溝3とその摺動方向前方側でつながる浅溝4,4…の存在が流体導入溝3の摺動方向前方側の縁の部分と平面2aの間隔を広げることになるため、流体導入溝3の動圧効果を低下させ、油膜厚みの急激な増加を抑制する向きに作用する。   Next, the operation of the plane sliding mechanism having the above configuration will be described. First, as shown in FIG. 2, when the sliding speed of the other opposing flat surface 2a (the mating member 2) is large, or when the load from the mating member 2 is small, the lubricating oil mainly from the fluid introduction groove 3 is used. As a result, an oil film having a relatively large film thickness is formed between the opposing flat surfaces 1a and 2a. In terms of the relationship with the groove depths Wa and Wb, an oil film having an oil film thickness Wc that is relatively closer to the groove depth Wa of the fluid introduction groove 3 than the groove depth Wb of the shallow groove 4 is formed. In this case, the hydraulic pressure rises at the edge portion on the front side in the sliding direction of the fluid introduction groove 3 (left edge portion in FIG. 2). In this case, the presence of the shallow grooves 4, 4... Connected to the fluid introduction groove 3 on the front side in the sliding direction widens the gap between the edge portion on the front side in the sliding direction of the fluid introduction groove 3 and the flat surface 2a. Therefore, the effect of reducing the dynamic pressure effect of the fluid introduction groove 3 is suppressed and the rapid increase of the oil film thickness is suppressed.

また、図3に示すように、他方の平面2aのすべり速度が小さい場合、あるいは相手部材2からの荷重が大きい場合には、流体導入溝3から浅溝4への潤滑油の流れ込みにより、浅溝4の、流体導入溝3とは離れた側の端部で流体導入溝3の動圧効果を上回る大きな動圧効果を生じる。この主に浅溝4の動圧効果によって、相対する双方の平面1a、2a間に比較的膜厚の小さい高剛性な油膜が形成される。溝深さWa,Wbとの関係で言えば、流体導入溝3の溝深さWaよりも浅溝4の溝深さWbに比較的近い大きさの油膜厚みWcを有する油膜が形成される。   In addition, as shown in FIG. 3, when the sliding speed of the other plane 2a is low, or when the load from the mating member 2 is large, the flow of lubricating oil from the fluid introduction groove 3 to the shallow groove 4 causes a shallow flow. A large dynamic pressure effect exceeding the dynamic pressure effect of the fluid introduction groove 3 is generated at the end of the groove 4 on the side away from the fluid introduction groove 3. Due to the dynamic pressure effect of the shallow groove 4 mainly, a highly rigid oil film having a relatively small film thickness is formed between the opposing flat surfaces 1a and 2a. In terms of the relationship with the groove depths Wa and Wb, an oil film having an oil film thickness Wc that is relatively closer to the groove depth Wb of the shallow groove 4 than the groove depth Wa of the fluid introduction groove 3 is formed.

また、流体導入溝3および複数の浅溝4,4…による動圧効果が効果的に生じるように、流体導入溝3および複数の浅溝4,4…の形状(寸法)やその配置態様を設定するようにすることで、油膜が比較的厚い場合には油膜厚みの変動を抑えて、言い換えると相手部材2の浮上量の変動を抑えて他方の平面2aとの間で高い位置精度(平行度など)を発揮することができる。また、油膜が比較的薄い場合には他方の平面2aとの間で所要の位置精度を保ちつつも高い油膜剛性を発揮することができる。   Further, the shape (dimensions) of the fluid introduction groove 3 and the plurality of shallow grooves 4, 4... And the arrangement mode thereof are arranged so that the dynamic pressure effect by the fluid introduction groove 3 and the plurality of shallow grooves 4, 4. By setting, when the oil film is relatively thick, the fluctuation of the oil film thickness is suppressed, in other words, the fluctuation of the flying height of the counterpart member 2 is suppressed, and high positional accuracy (parallel) is achieved with respect to the other plane 2a. Degree). In addition, when the oil film is relatively thin, high oil film rigidity can be exhibited while maintaining a required positional accuracy with respect to the other flat surface 2a.

以上、本発明の一実施形態を説明したが、本発明は上記例示の形態に限定されるものではなく、本発明の範囲内において任意の形態を採り得ることはもちろんである。   As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to the above exemplary form, and it is needless to say that any form can be adopted within the scope of the present invention.

例えば、上記実施形態では、流体導入溝3と所定の角度で交わる複数の浅溝4,4…を、その長手方向が他方の平面2aの回転方向の接線方向となる向きに配置した場合を説明したが、もちろんこれ以外の向きに配置することも可能である。図4はその一例を示したものであって、流体導入溝3とこの流体導入溝3に連通する複数の浅溝4,4…を、平面1aの円周方向に配置した場合を図示している。すなわち、浅溝4は円周方向に延びる緩やかな円弧状となっている。このように、浅溝4は摺動方向に対して平行または90°未満の傾斜角で傾斜する限りにおいて、言い換えると、摺動方向に直交しない限りにおいて任意の角度を採ることができる。また、流体導入溝3とつながる全ての浅溝4,4…が同一の向きに揃っている必要はなく、流体導入溝3の一方の側と他方の側とで浅溝4の傾斜角が異なっていてもよく、隣接する浅溝4,4間で傾斜角が異なっていても構わない。   For example, in the above embodiment, a case where a plurality of shallow grooves 4, 4... Intersecting with the fluid introduction groove 3 at a predetermined angle are arranged in a direction in which the longitudinal direction is a tangential direction of the rotation direction of the other plane 2a is described. However, it is of course possible to arrange them in other directions. FIG. 4 shows an example thereof, and shows a case where the fluid introduction groove 3 and a plurality of shallow grooves 4, 4... Communicating with the fluid introduction groove 3 are arranged in the circumferential direction of the plane 1a. Yes. That is, the shallow groove 4 has a gentle arc shape extending in the circumferential direction. Thus, the shallow groove 4 can take any angle as long as it is parallel to the sliding direction or inclined at an inclination angle of less than 90 °, in other words, as long as it is not orthogonal to the sliding direction. Further, it is not necessary that all the shallow grooves 4, 4... Connected to the fluid introduction groove 3 are aligned in the same direction, and the inclination angle of the shallow groove 4 is different between one side and the other side of the fluid introduction groove 3. The inclination angle may be different between the adjacent shallow grooves 4 and 4.

また、浅溝4の長手寸法についても、必ずしも全ての浅溝4,4…の長手寸法が同一である必要はなく、配置態様に応じて適宜長手寸法を異ならせたものであってもよい。   Also, the longitudinal dimensions of the shallow grooves 4 do not necessarily have to be the same for all the shallow grooves 4, 4..., And may be appropriately varied according to the arrangement mode.

流体導入溝3の形状についても例示の態様に限定される必要はなく、例えば図5に示すように、流体導入溝3を、外径縁6から内径側に向かって幅が大きくなる台形状とすることができる。すなわち、流体導入溝3は、半径方向軸が対称軸Sとなるような等脚台形となる。なお、外径縁6から内径側に向かって幅が小さくなるような等脚台形であってもよい。また、図6に示すように、外径縁6から内径側に向かって幅が小さくなるV字状としてもよい。   The shape of the fluid introduction groove 3 is not necessarily limited to the illustrated embodiment. For example, as shown in FIG. 5, the fluid introduction groove 3 is formed in a trapezoidal shape whose width increases from the outer diameter edge 6 toward the inner diameter side. can do. That is, the fluid introduction groove 3 has an isosceles trapezoidal shape whose radial axis is the symmetry axis S. Note that it may be an isosceles trapezoid whose width decreases from the outer diameter edge 6 toward the inner diameter side. Moreover, as shown in FIG. 6, it is good also as a V-shape from which the width | variety becomes small toward the inner diameter side from the outer diameter edge 6. FIG.

また、流体導入溝3や浅溝4を1以上の直線ないし曲線の任意の組合せにより形成するようにしても構わない。   The fluid introduction groove 3 and the shallow groove 4 may be formed by any combination of one or more straight lines or curves.

図7に示すように、一対の流体導入溝3a、3bが、半径方向軸を対称軸Sとして線対称となるように配置されている。また、一方の流体導入溝3aに連通される浅溝4aと、他方の流体導入溝3bに連通される浅溝4bとが、対称軸Sに対して線対象となるように配置されている。このようにして、一対の流体導入溝3a、3b、及び一対の浅溝4a、4bとで溝構成体5が形成されている。   As shown in FIG. 7, the pair of fluid introduction grooves 3 a and 3 b are arranged so as to be line symmetric with respect to the radial axis as the symmetry axis S. In addition, the shallow groove 4a that communicates with one fluid introduction groove 3a and the shallow groove 4b that communicates with the other fluid introduction groove 3b are arranged to be a line object with respect to the symmetry axis S. In this way, the groove constituting body 5 is formed by the pair of fluid introduction grooves 3a and 3b and the pair of shallow grooves 4a and 4b.

リング体の内径側が高圧側、外径側が低圧側である場合は、図8に示すように、流体導入溝3の一端は平面2の内径縁7に開口し、他端は平面内に存在している。また、図9に示すように、一端が外径縁6に開口し、他端は平面内に存在する第1流体導入溝3aと、これに連通される第1浅溝4aとで外径側溝構成体5aが形成されている。また、一端が内径縁7に開口し、他端は平面内に存在する第2流体導入溝3bと、これに連通される第2浅溝4とで内径側溝構成体5bが形成されている。このように、外径側溝構成体5aと内径側溝構成体5bとを備えたものであってもよい。   When the inner diameter side of the ring body is the high pressure side and the outer diameter side is the low pressure side, one end of the fluid introduction groove 3 opens to the inner diameter edge 7 of the plane 2 and the other end exists in the plane as shown in FIG. ing. Further, as shown in FIG. 9, the outer diameter side groove is formed by a first fluid introduction groove 3a having one end opened to the outer diameter edge 6 and the other end existing in a plane, and a first shallow groove 4a communicating with the first fluid introduction groove 3a. A structure 5a is formed. Also, an inner diameter side groove constituting body 5b is formed by the second fluid introduction groove 3b having one end opened to the inner diameter edge 7 and the other end existing in a plane and the second shallow groove 4 communicating with the second fluid introduction groove 3b. Thus, what provided the outer diameter side groove structure 5a and the inner diameter side groove structure 5b may be sufficient.

また、上記以外の事項についても、本発明の技術的意義を没却しない限りにおいて他の具体的形態を採り得ることはもちろんである。   Of course, other specific forms can be adopted for matters other than the above as long as the technical significance of the present invention is not lost.

以下、本発明に係る平面摺動機構の有効性を検証するための実験について述べる。   Hereinafter, an experiment for verifying the effectiveness of the planar sliding mechanism according to the present invention will be described.

本実験は、試験片の傾斜による潤滑特性の変化を防止するため、平行すべりを容易に実現できるリングオンディスク試験装置を用いて行った。回転側のリング状試験片にはSUS440Cの焼入れ材を使用した。固定側のディスク状試験片にはSiCを使用した。何れの試験片の摺動平面についても表面粗さRa0.02μm以下、平面度0.1μm以下とした。ディスク状試験片の摺動平面は全て鏡面とした。リング状試験片(外径:16mm、内径:10mm)については、摺動平面が(1)流体導入溝のみ、(2)流体導入溝と浅溝との組合せ、の2種類を用意した。(1)が比較例、(2)が実施例である。流体導入溝はリング状平面の半径方向に伸びる向きに、言い換えると相手部材(ディスク)の摺動方向に直交する向きに配置した。これら流体導入溝は円周方向等間隔に8本配置した。流体導入溝の幅寸法200μm、溝深さ6μmとした。浅溝は流体導入溝の両側縁に約700nmのピッチで格子状に並列配置した。流体導入溝を中央として1mm幅の領域内に浅溝が配置されるよう長手寸法を設定した(約400μm)。浅溝の溝深さは200nm、配置方向は流体導入溝と直交する向きとした。これら複数の浅溝は、直線偏光で波長800nmのフェムト秒レーザを加工閾値近傍の照射強度で試験片の摺動平面に照射し、その照射部をオーバーラップさせながら走査することで、自己組織的に形成した。潤滑油(粘度グレード:VG32)を予め摺動平面上に400mg供給しておき、実験中は無給油とした。   This experiment was conducted using a ring-on-disk test apparatus that can easily realize parallel sliding in order to prevent changes in lubrication characteristics due to the inclination of the test piece. A hardened material of SUS440C was used for the ring-shaped test piece on the rotating side. SiC was used for the disk-shaped test piece on the fixed side. The sliding plane of any test piece was set to have a surface roughness Ra of 0.02 μm or less and a flatness of 0.1 μm or less. All sliding planes of the disk-shaped test piece were mirror surfaces. For the ring-shaped test pieces (outer diameter: 16 mm, inner diameter: 10 mm), two types of sliding planes were prepared: (1) only the fluid introduction groove, and (2) the combination of the fluid introduction groove and the shallow groove. (1) is a comparative example, and (2) is an example. The fluid introduction groove is arranged in a direction extending in the radial direction of the ring-shaped plane, in other words, in a direction perpendicular to the sliding direction of the mating member (disk). Eight of these fluid introduction grooves are arranged at equal intervals in the circumferential direction. The width dimension of the fluid introduction groove was 200 μm, and the groove depth was 6 μm. The shallow grooves were arranged in parallel in a grid pattern at a pitch of about 700 nm on both side edges of the fluid introduction groove. The longitudinal dimension was set (about 400 μm) so that the shallow groove was disposed in a 1 mm wide region with the fluid introduction groove as the center. The depth of the shallow groove was 200 nm, and the arrangement direction was perpendicular to the fluid introduction groove. The plurality of shallow grooves are irradiated with a femtosecond laser having a wavelength of 800 nm and linearly polarized light on the sliding plane of the test piece with an irradiation intensity in the vicinity of the processing threshold, and scanning is performed while overlapping the irradiated portions. Formed. 400 mg of lubricating oil (viscosity grade: VG32) was previously supplied onto the sliding plane, and no oil was supplied during the experiment.

リングオンディスク試験は、荷重を所定の値に固定し、静止状態からすべり速度1.2m/sで起動させた後、5分ごとにすべり速度を0.14m/sまで段階的に低下させていき、各段階における摺動トルクを測定した。すべり速度は、リング状試験片の平均直径(13mm)での値とした。そして測定した摺動トルクから動摩擦係数を算出した。荷重は9.0N、30.0N、50.5Nの3段階に設定した。上記試験は、(1)流体導入溝のみ、(2)流体導入溝と浅溝との組合せ、の2種類の試験片に対して実施した。   In the ring-on-disk test, the load is fixed at a predetermined value, and after starting from a stationary state at a sliding speed of 1.2 m / s, the sliding speed is gradually reduced to 0.14 m / s every 5 minutes. The sliding torque at each stage was measured. The sliding speed was a value at the average diameter (13 mm) of the ring-shaped test piece. The dynamic friction coefficient was calculated from the measured sliding torque. The load was set in three stages of 9.0N, 30.0N, and 50.5N. The above test was performed on two types of test pieces: (1) only the fluid introduction groove, and (2) a combination of the fluid introduction groove and the shallow groove.

以下、実験結果について述べる。図10は、摺動平面を流体導入溝のみで構成した場合(比較例)の摺動実験の結果を示すもので、横軸はすべり時間[min]、左側の縦軸は動摩擦係数、右側の縦軸はすべり速度[m/s]をそれぞれ示している。図中の破線で示す部分はすべり速度を示しており、実線で示す部分は動摩擦係数を示している。また、図11は、摺動平面を流体導入溝と浅溝との組合せとした場合(実施例)の摺動実験の結果を示している。横軸と両縦軸の項目、および図中の各種線で示す項目は図10と同じである。まず、図10に示す実験結果から、(1)流体導入溝のみでは所定のすべり速度(0.35m/s)を境に動摩擦係数の急激な上昇が見られ、焼付きが生じた。これに対して、図11に示すように、(2)流体導入溝と浅溝との組み合わせの場合、測定した全てのすべり速度段階を通じて動摩擦係数が低い状態が見られた。これは、すべり速度の大きさに関わらず流体潤滑状態にあったものと考えられる。(2)流体導入溝と浅溝との組み合わせの場合、図12に示すように、荷重を30.0N、50.5Nと増加させても流体潤滑を維持し、荷重の増加にともない動摩擦係数が低下した。   The experimental results are described below. FIG. 10 shows the result of a sliding experiment in which the sliding plane is composed of only the fluid introduction groove (comparative example). The horizontal axis represents the sliding time [min], the left vertical axis represents the dynamic friction coefficient, and the right side The vertical axis represents the sliding speed [m / s]. A portion indicated by a broken line in the figure indicates a sliding speed, and a portion indicated by a solid line indicates a dynamic friction coefficient. FIG. 11 shows the result of a sliding experiment when the sliding plane is a combination of a fluid introduction groove and a shallow groove (Example). Items on the horizontal and vertical axes, and items indicated by various lines in the figure are the same as those in FIG. First, from the experimental results shown in FIG. 10, (1) only in the fluid introduction groove, a rapid increase in the coefficient of dynamic friction was observed at a predetermined sliding speed (0.35 m / s), and seizure occurred. On the other hand, as shown in FIG. 11, in the case of (2) the combination of the fluid introduction groove and the shallow groove, a state in which the dynamic friction coefficient was low was observed through all the measured sliding speed steps. This is considered to have been in a fluid lubrication state regardless of the sliding speed. (2) In the case of the combination of the fluid introduction groove and the shallow groove, as shown in FIG. 12, the fluid lubrication is maintained even when the load is increased to 30.0N and 50.5N, and the dynamic friction coefficient is increased as the load is increased. Declined.

図13は図12に示す実験結果から得たもので、流体導入溝と浅溝との組合せ(実施例)の場合のすべり速度の変動に伴う油膜厚さの変化を示している。ここで、図13の縦軸は油膜厚さ[μm]、横軸はすべり速度[m/s]をそれぞれ示している。油膜厚さは、先の摺動実験で得た動摩擦係数と、使用した潤滑油の粘度(今回は、常温における粘度の値を使用した)とから算出した。図13に示す実験結果から、油膜厚さは荷重変動に対してそれほど大きな変動は認められない。特に低速時には油膜厚さがサブミクロンとなり非常に剛性が高くなるため、荷重変動に対してほとんど油膜厚さの変化が生じていないことがわかる。油膜厚さが数μm以下で良好なシール性が保たれることから、(2)流体導入溝と浅溝との組み合わせの場合、良好なシール性と低摩擦となる流体潤滑状態の両立が実現されていることがわかる。   FIG. 13 is obtained from the experimental results shown in FIG. 12, and shows the change in the oil film thickness accompanying the change in the sliding speed in the case of the combination of the fluid introduction groove and the shallow groove (Example). Here, the vertical axis in FIG. 13 indicates the oil film thickness [μm], and the horizontal axis indicates the sliding speed [m / s]. The oil film thickness was calculated from the dynamic friction coefficient obtained in the previous sliding experiment and the viscosity of the used lubricating oil (this time, the viscosity value at room temperature was used). From the experimental results shown in FIG. 13, the oil film thickness does not vary so much with respect to the load variation. In particular, at low speed, the oil film thickness becomes submicron and the rigidity becomes very high, so that it can be seen that there is almost no change in the oil film thickness with respect to the load fluctuation. Good sealing performance is maintained when the oil film thickness is several μm or less. (2) When the fluid introduction groove and shallow groove are combined, both good sealing performance and fluid lubrication with low friction are achieved. You can see that

1a、2a 平面
3 流体導入溝
4 浅溝
5 溝構成体
Wa 溝深さ(流体導入溝)
Wb 溝深さ(浅溝)
Wc 油膜厚み
S 対称軸
1a, 2a Plane 3 Fluid introduction groove 4 Shallow groove 5 Groove structure Wa Groove depth (fluid introduction groove)
Wb groove depth (shallow groove)
Wc Oil film thickness S Axis of symmetry

Claims (3)

相対する平面間で潤滑流体の膜を介して相対回転摺動を行って、内径側と外径側とをシールする平面摺動機構であって、
前記何れか一方の平面に、内径側又は外径側の一方に開口し、かつその開口部と径方向逆方向の端部が平面内に存在して、開口側からの潤滑流体を前記相対する平面間のリング状の摺動部位に導入する流体導入溝と、
前記流体導入溝よりも浅く、前記流体導入溝に連通するとともに、相対する前記他方の平面の摺動方向に対して平行または90°未満の傾斜角で傾斜する向きに周期性を有する複数の浅溝とを備え
前記1つの流体導入溝と、これに連通する複数の浅溝とで溝構成体を構成し、この溝構成体を、半径方向軸を対称軸とする線対称に配置し、
前記複数の浅溝は、10μm以下のピッチで形成され、かつ、1μm以下の深さに形成されている平面摺動機構。
A plane sliding mechanism that performs relative rotational sliding between opposing planes through a film of lubricating fluid and seals the inner diameter side and the outer diameter side,
One of the planes opens to one of the inner diameter side or the outer diameter side, and an end portion in the direction opposite to the radial direction of the opening exists in the plane, and the lubricating fluid from the opening side faces the surface. A fluid introduction groove to be introduced into a ring-shaped sliding portion between planes;
A plurality of shallow grooves that are shallower than the fluid introduction groove, communicate with the fluid introduction groove, and have a periodicity in a direction parallel to the sliding direction of the other flat surface or inclined at an inclination angle of less than 90 °. With grooves ,
The one fluid introduction groove and a plurality of shallow grooves communicating with the one fluid groove constitute a groove structure, and the groove structure is arranged in line symmetry with the radial axis as a symmetry axis.
The planar sliding mechanism in which the plurality of shallow grooves are formed at a pitch of 10 μm or less and are formed to a depth of 1 μm or less .
前記複数の浅溝は円周方向又は回転方向の接線方向に配置されている請求項1に記載の平面摺動機構。 The planar sliding mechanism according to claim 1, wherein the plurality of shallow grooves are arranged in a circumferential direction or a tangential direction of a rotation direction . 前記複数の浅溝は、加工閾値近傍の照射強度で直線偏光のレーザを前記一方の平面に照射し、該照射部分をオーバーラップさせながら走査することで自己組織的に形成されたものである請求項1又は2に記載の平面摺動機構。 The plurality of shallow grooves are formed in a self-organized manner by irradiating the one plane with a linearly polarized laser beam with an irradiation intensity in the vicinity of a processing threshold, and scanning while overlapping the irradiated portions. Item 3. A planar sliding mechanism according to item 1 or 2 .
JP2010138575A 2010-06-17 2010-06-17 Flat sliding mechanism Expired - Fee Related JP5122607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138575A JP5122607B2 (en) 2010-06-17 2010-06-17 Flat sliding mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138575A JP5122607B2 (en) 2010-06-17 2010-06-17 Flat sliding mechanism

Publications (2)

Publication Number Publication Date
JP2012002295A JP2012002295A (en) 2012-01-05
JP5122607B2 true JP5122607B2 (en) 2013-01-16

Family

ID=45534508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138575A Expired - Fee Related JP5122607B2 (en) 2010-06-17 2010-06-17 Flat sliding mechanism

Country Status (1)

Country Link
JP (1) JP5122607B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024742A1 (en) * 2012-08-04 2014-02-13 イーグル工業株式会社 Sliding component
US10612666B2 (en) 2012-09-11 2020-04-07 Eagle Industry Co., Ltd. Sliding component
JP6279474B2 (en) * 2012-09-11 2018-02-14 イーグル工業株式会社 Sliding parts
JP6479023B2 (en) * 2014-09-04 2019-03-06 イーグル工業株式会社 mechanical seal
US10208862B2 (en) * 2015-01-13 2019-02-19 General Electric Company Seal ring for hydrogen cooled generator
CN109563934A (en) 2016-08-15 2019-04-02 伊格尔工业股份有限公司 Slide unit
WO2019049847A1 (en) 2017-09-05 2019-03-14 イーグル工業株式会社 Sliding component
US11603934B2 (en) 2018-01-12 2023-03-14 Eagle Industry Co., Ltd. Sliding component
JP7139077B2 (en) * 2018-02-01 2022-09-20 イーグル工業株式会社 sliding parts
CN112088268B (en) 2018-05-17 2023-06-23 伊格尔工业股份有限公司 Sealing ring
CN112105851B (en) 2018-05-17 2023-02-28 伊格尔工业股份有限公司 Sealing ring
CN112088266B (en) 2018-05-17 2022-12-06 伊格尔工业股份有限公司 Sealing ring
US11530749B2 (en) 2018-05-17 2022-12-20 Eagle Industry Co., Ltd. Seal ring
US11608897B2 (en) 2018-08-01 2023-03-21 Eagle Industry Co., Ltd. Slide component
CN109058156A (en) * 2018-08-17 2018-12-21 浙江工业大学 One kind is like the combined mechanical seal end surface structure of comb dynamic and static pressure
KR102629500B1 (en) 2018-08-24 2024-01-25 이구루코교 가부시기가이샤 sliding member
EP3889474A4 (en) 2018-11-30 2022-08-10 Eagle Industry Co., Ltd. Sliding component
US11821521B2 (en) 2018-12-21 2023-11-21 Eagle Industry Co., Ltd. Sliding component
KR102627903B1 (en) * 2019-02-04 2024-01-23 이구루코교 가부시기가이샤 sliding parts
CN113330224A (en) * 2019-02-04 2021-08-31 伊格尔工业股份有限公司 Sliding component
CN113330225B (en) * 2019-02-04 2023-08-22 伊格尔工业股份有限公司 Sliding member
US20220099188A1 (en) * 2019-02-04 2022-03-31 Eagle Industry Co., Ltd. Sliding component
US11852244B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component and method of manufacturing sliding member
US20220099189A1 (en) * 2019-02-04 2022-03-31 Eagle Industry Co., Ltd. Sliding component
US11767916B2 (en) 2019-02-14 2023-09-26 Eagle Industry Co., Ltd. Sliding components
JP7370681B2 (en) * 2019-02-14 2023-10-30 イーグル工業株式会社 sliding parts
US11821461B2 (en) 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components
JP7419346B2 (en) * 2019-03-22 2024-01-22 イーグル工業株式会社 sliding parts
EP4006368A4 (en) 2019-07-26 2023-08-16 Eagle Industry Co., Ltd. Sliding component
KR20230022986A (en) 2020-07-06 2023-02-16 이구루코교 가부시기가이샤 sliding parts
CN115803548A (en) 2020-07-06 2023-03-14 伊格尔工业股份有限公司 Sliding component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660690B2 (en) * 1990-06-18 1994-08-10 日本ピラー工業株式会社 Dynamic pressure non-contact mechanical seal
JPH0560247A (en) * 1991-08-26 1993-03-09 Nippon Pillar Packing Co Ltd Noncontact type mechanical seal
JPH09329247A (en) * 1996-06-11 1997-12-22 Ebara Corp Non-contact end surface seal
WO2004035255A1 (en) * 2002-09-27 2004-04-29 Nec Machinery Corporation Cyclic structure formation method and surface treatment method
EP2230425B1 (en) * 2008-01-11 2014-04-02 Eagle Industry Co., Ltd. Mechanical seal sliding member, and mechanical seal

Also Published As

Publication number Publication date
JP2012002295A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5122607B2 (en) Flat sliding mechanism
JP5758378B2 (en) Sliding member
JP5278970B2 (en) Mechanical seal sliding material and mechanical seal
JP5960145B2 (en) Sliding parts and manufacturing method thereof
JP5881716B2 (en) Sliding parts
EP3270016B1 (en) Method of processing a sliding component
JP6076971B2 (en) Sliding parts
JP7214722B2 (en) Seal ring
US10132411B2 (en) Sliding component
JP5465109B2 (en) Sliding surface structure
JP2018087641A (en) Seal ring
JP5995967B2 (en) Sliding parts
KR20130140209A (en) Mechanical seal
CN105358884A (en) Sliding component
JPWO2019221231A1 (en) Seal ring
JPWO2016148043A1 (en) Seal ring
JP5259455B2 (en) Flat sliding mechanism
JP5496575B2 (en) Sliding surface
JP6653104B2 (en) bearing
JP5152717B2 (en) Structural member and manufacturing method thereof
TWI443272B (en) Fluid bearing structure and method of forming bearing concaves in fluid bearing structure
JP2019098605A (en) Scribing wheel
KR101198056B1 (en) Fluid bearing structure and method of forming bearing concaves in fluid bearing structure
KR20150088808A (en) Method and device for producing a friction bearing or a part thereof, and friction bearing or part thereof
CN102200169A (en) Fluid bearing structure and method for forming bearing concaves of fluid bearing structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5122607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees