JPH0660690B2 - Dynamic pressure non-contact mechanical seal - Google Patents

Dynamic pressure non-contact mechanical seal

Info

Publication number
JPH0660690B2
JPH0660690B2 JP16046990A JP16046990A JPH0660690B2 JP H0660690 B2 JPH0660690 B2 JP H0660690B2 JP 16046990 A JP16046990 A JP 16046990A JP 16046990 A JP16046990 A JP 16046990A JP H0660690 B2 JPH0660690 B2 JP H0660690B2
Authority
JP
Japan
Prior art keywords
seal
dynamic pressure
rotary
seal ring
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16046990A
Other languages
Japanese (ja)
Other versions
JPH0450559A (en
Inventor
忠之 清水
敏彦 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP16046990A priority Critical patent/JPH0660690B2/en
Publication of JPH0450559A publication Critical patent/JPH0450559A/en
Publication of JPH0660690B2 publication Critical patent/JPH0660690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばガスタービン、ブロアーおよびエアコ
ンプレッサなどの高圧流体用回転機器の軸封部に適用さ
れる動圧非接触形メカニカルシールに関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a dynamic pressure non-contact mechanical seal applied to a shaft sealing portion of a rotary device for high pressure fluid such as a gas turbine, a blower and an air compressor. Is.

[従来の技術] 従来より、例えばガスタービン、ブロアーおよびエアコ
ンプレッサなどの高圧流体用回転機器の軸封部に適用さ
れるシール装置として、日本機械学会論文集(C編)5
3巻491号、論文No.86−0778Aの第1487
〜1493頁に掲載された「リバースステップ付きレイ
リーステップ端面シール」が知られている。
[Prior Art] Conventionally, as a seal device applied to a shaft sealing portion of a rotary device for high-pressure fluid such as a gas turbine, a blower, and an air compressor, the Japan Society of Mechanical Engineers (C edition) 5
Volume 3 No. 491, Paper No. 86-0778A No. 1487
The "Rayleigh step end face seal with reverse step" published on pages 1493 is known.

上記文献に記載されたシール装置は、第1図に示すよう
に、被軸封機器の回転部材1(図示例では回転軸1Aと
同時回転する回転スリーブ1B)と一体に回転する回転
密封環2Aを設けた回転側シール要素2と、被軸封機器
のケーシング3側に固定されたスプリングリテーナ3A
に、周方向に等間隔で配置した回り止めピン3Bを介し
て回転不能に保持され、かつスプリング3cにより回転
密封環2A側に常時移動付勢される静止密封環4Aを設
けた固定側シール要素4とを有し、上記回転密封環2A
のシール面2aに、第4図に示すように、円周方向に等
間拡で径方向にのびる幅狭深底の流体導入溝5を複数形
成し、これら流体導入溝5のそれぞれに連通し、かつ円
周方向の一方、例えば矢印aで示す回転方向の反対側に
のびる浅底の動圧発生グルーブ6を、径方向に一段で発
生動圧を大きくするために径方向に可能な限り幅広に形
成してなる動圧非接触形メカニカルシールである。
As shown in FIG. 1, the sealing device described in the above document has a rotary seal ring 2A that rotates integrally with a rotary member 1 (a rotary sleeve 1B that rotates simultaneously with the rotary shaft 1A in the illustrated example) of a device to be sealed. The rotary side sealing element 2 and the spring retainer 3A fixed to the casing 3 side of the device to be sealed.
In addition, a stationary side seal element provided with a stationary seal ring 4A which is non-rotatably held via detent pins 3B arranged at equal intervals in the circumferential direction and which is constantly urged to move toward the rotary seal ring 2A by a spring 3c. 4 and the rotary seal ring 2A
As shown in FIG. 4, a plurality of narrow and deep fluid introduction grooves 5 extending in the circumferential direction and extending in the radial direction are formed on the sealing surface 2a of the above, and communicated with each of these fluid introduction grooves 5. In addition, in order to increase the dynamic pressure generated in one step in the radial direction, the dynamic pressure generating groove 6 having a shallow bottom extending to one side in the circumferential direction, for example, the side opposite to the rotational direction indicated by the arrow a, is made as wide as possible in the radial direction. It is a dynamic pressure non-contact type mechanical seal formed in.

上記構成の動圧非接触形メカニカルシールでは、被軸封
機器の回転部材1の回転にともない回転密封環2Aが回
転する。この回転により高圧側Yの流体が流体導入溝5
から動圧発生グルーブ6に流入して、上記回転密封環2
Aのシール面2aと、静止密封環4Aのシール面4aと
の間に動圧が発生されて、シール面4aをシール面2a
から離す方向の付勢力が作用し、この付勢力とシール面
4aをシール面2aに当接させる方向に移動付勢力して
いるスプリング3Cのばね力とのバランス点の圧力によ
って、両シール面2a,4a間に例えば5〜20μm程
度の狭いシール間隙を形成して低圧側Xと高圧側Yとを
非接触状態でシールするものである。
In the dynamic pressure non-contact type mechanical seal configured as described above, the rotary seal ring 2A rotates as the rotary member 1 of the shaft-sealed device rotates. This rotation causes the fluid on the high-pressure side Y to move into the fluid introduction groove 5
Flows into the dynamic pressure generating groove 6 from the
A dynamic pressure is generated between the seal surface 2a of A and the seal surface 4a of the stationary seal ring 4A, and the seal surface 4a is sealed by the seal surface 2a.
The urging force in the direction of separating from the sealing surface 2a acts on the both sealing surfaces 2a by the pressure at the balance point between this urging force and the spring force of the spring 3C that urges the sealing surface 4a to move in the direction of abutting the sealing surface 2a. , 4a to form a narrow seal gap of, for example, about 5 to 20 μm to seal the low pressure side X and the high pressure side Y in a non-contact state.

[発明が解決しようとする課題] 上記構成の従来の動圧非接触形メカニカルシールでは、
回転密封環2Aのシール面2aに、流体導入溝5に連通
させて径方向に幅広の一段の動圧発生グルーブ6が形成
されているだけであるから、両シール面2a,4aが平
行に対面している正常な状態では、第5図(a)に示す
ように、発生動圧を十分に大きくし、かつ隙間剛性も高
くできる反面、回転密封環2Aに径方向に不均等で高い
圧力が付加されることに起因して、この回転密封環2A
が歪ることなどによってシール面2a,4aが相対的に
傾いたとき、両シール面2a,4aの平行性がくずれて
発生動圧が対面シール間隙の大きい側から逃げるため
に、第5図(b)に示すように、急激な圧力低下を呈す
る。これによって、シール面2a,4aを開けようとす
る力がスプリング3Cのばね力を含む静止密封環4Aの
背面側からのシール面2a,4aを閉じるようとする力
に対して著しく弱まり、また、シール面2a,4aを平
行な対面姿勢に戻す作用も働かない。その結果、シール
面2a,4a同士が接触してシール破壊やシール面2
a,4aの損傷などのトラブルを生じ易い問題があっ
た。なお、第5図中の実線は、動圧発生グルーブ6で発
生する平均圧力分布を示している。
[Problems to be Solved by the Invention] In the conventional dynamic pressure non-contact type mechanical seal having the above configuration,
Since only a one-step dynamic pressure generating groove 6 that is wide in the radial direction is formed on the sealing surface 2a of the rotary seal ring 2A so as to communicate with the fluid introduction groove 5, both sealing surfaces 2a and 4a face each other in parallel. In a normal state, as shown in FIG. 5 (a), the generated dynamic pressure can be made sufficiently large and the rigidity of the gap can be made high, but on the other hand, the rotary seal ring 2A is not evenly and radially high in the radial direction. Due to being added, this rotary seal ring 2A
When the seal surfaces 2a and 4a are relatively inclined due to distortion of the seal surface, the parallelism between the seal surfaces 2a and 4a is broken, and the generated dynamic pressure escapes from the side with a large facing seal gap. As shown in b), it exhibits a sharp pressure drop. As a result, the force for opening the seal surfaces 2a, 4a is significantly weakened against the force for closing the seal surfaces 2a, 4a from the back side of the stationary seal ring 4A including the spring force of the spring 3C, and The action of returning the seal surfaces 2a and 4a to the parallel facing posture does not work either. As a result, the seal surfaces 2a and 4a come into contact with each other and the seal is broken or the seal surface 2
There is a problem that troubles such as damage of a and 4a are likely to occur. The solid line in FIG. 5 indicates the average pressure distribution generated in the dynamic pressure generating groove 6.

本発明は上記のような実情に鑑みてなされたもので、シ
ール面が傾いたときの動圧の低下を抑制するとともに、
シール面の平行対面姿勢への復元力を働かせて、シール
間隙の確保およびシール面同士の接触トラブルの回避を
確実なものにできる動圧非接触形メカニカルシールを提
供することを目的としている。
The present invention has been made in view of the above circumstances, and suppresses a decrease in dynamic pressure when the sealing surface is inclined,
It is an object of the present invention to provide a dynamic pressure non-contact type mechanical seal that can ensure a seal gap and avoid contact trouble between seal faces by exerting a restoring force of the seal faces to a parallel facing posture.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る動圧非接触形
メカニカルシールは、回転密封環のシール面に円周方向
に等間隔で外端が径外側に開口しかつ内端がシール面内
に存在するように径方向にのびる流体導入溝が複数形成
され、これら流体導入溝にそれぞれ連通しかつ円周方向
の少なくとも一方にのびる動圧発生グルーブが形成さ
れ、これら動圧発生グルーブはそれぞれ径方向に独立し
て複数個に分割されたものである。
[Means for Solving the Problems] In order to achieve the above object, a dynamic pressure non-contact mechanical seal according to the present invention has an outer end radially outward on the seal face of a rotary seal ring at equal intervals in the circumferential direction. A plurality of fluid introduction grooves that are open and extend in the radial direction are formed so that the inner end is present in the sealing surface, and a dynamic pressure generating groove that communicates with each of the fluid introduction grooves and extends in at least one of the circumferential directions is formed. The dynamic pressure generating grooves are individually divided into a plurality of pieces in the radial direction.

[作用] 上記構成の本発明によれば、回転密封環の回転により、
流体導入溝に連通する動圧発生グルーブに径外側(高圧
側)から流体が侵入して動圧を発生し、この動圧によっ
て所定のシール隙間を形成して非接触状態で所定どおり
のシールを行なわせる。
[Operation] According to the present invention having the above-described configuration, by the rotation of the rotary seal ring,
Fluid enters the dynamic pressure generation groove that communicates with the fluid introduction groove from the radially outer side (high pressure side) to generate dynamic pressure, and this dynamic pressure forms a predetermined seal gap to achieve a predetermined seal in a non-contact state. Let me do it.

このとき、例えば回転密封環に歪が生じるなどしてシー
ル面が傾き、シール隙間が径方向で不均一になった場
合、そのシール隙間の広い側の動圧発生グルーブでの発
生動圧は著しく低下するものの、シール隙間の狭い側の
動圧発生グルーブでの発生動圧の低下はそのグルーブの
幅が狭いゆえに抑制され、したがって、全体としてシー
ル面同士が接触しないだけの動圧を確保できるととも
に、径方向での動圧の差によってシール面を平行な対面
姿勢に戻すに十分なモーメントが働き、所定のシール性
能を確保することができる。
At this time, for example, when the seal surface is tilted due to distortion of the rotary seal ring and the seal gap becomes non-uniform in the radial direction, the dynamic pressure generated in the dynamic pressure generation groove on the wide side of the seal gap is remarkable. Although it decreases, the decrease in the dynamic pressure generated in the dynamic pressure generation groove on the narrow side of the seal gap is suppressed due to the narrow width of the groove, and as a whole, it is possible to secure sufficient dynamic pressure so that the sealing surfaces do not contact each other. A sufficient moment acts to return the seal surface to the parallel facing posture due to the difference in the dynamic pressure in the radial direction, and a predetermined sealing performance can be secured.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は動圧非接触形メカニカルシールの全体構成を示
す縦断側面図、第2図は本発明の回転密封環の正面図で
あり、本発明では、回転密封環のシール面に形成される
動圧発生グルーブを径方向で複数個に分割した点が従来
例と相違するだけで、この点を除く他の部材および構成
は従来例と同一であるため、第1図は本発明の実施例と
従来例とを共用するものとし、また、第2図において、
第4図に相当する部分には、それぞれ同一の符号を付し
て、それらの詳しい説明を省略する。
FIG. 1 is a vertical sectional side view showing the overall structure of a dynamic pressure non-contact type mechanical seal, and FIG. 2 is a front view of a rotary seal ring of the present invention. In the present invention, it is formed on the seal surface of the rotary seal ring. FIG. 1 shows an embodiment of the present invention, except that the dynamic pressure generating groove is divided into a plurality of parts in the radial direction, which is the same as the conventional example except for this point, and other members and configurations are the same. And the conventional example, and in FIG.
The parts corresponding to those in FIG. 4 are designated by the same reference numerals, and detailed description thereof will be omitted.

第2図において、回転密封環2Aのシール面2aには、
円周方向に等間隔で外端がシール面2aの径外側(高圧
側Y)に開口し、内端がシール面2a内に存在するよう
に径方向にのびる流体導入溝5が複数(例えば12)形
成されている。
In FIG. 2, on the sealing surface 2a of the rotary seal ring 2A,
A plurality of (for example, 12) fluid introduction grooves 5 are formed at equal intervals in the circumferential direction so that the outer ends open radially outward (high-pressure side Y) of the seal surface 2a and the inner ends extend inside the seal surface 2a. ) Is formed.

この流体導入溝5はシール面2aの外端から径方向にの
び、その深さは5μm〜1mmに設定されている。
The fluid introduction groove 5 extends radially from the outer end of the seal surface 2a, and its depth is set to 5 μm to 1 mm.

また、上記各流体導入溝5のそれぞれに連通させて、円
周方向の一方(反時計方向)にのび、深さ2〜20μm
に設定された動圧発生グルーブ6が形成されている。こ
れら動圧発生グルーブ6は、回転密封環2Aのシール面
2aでその径方向に等間隔を隔てて各々独立的に分割形
成された複数個(図示例では3個で示すが、4個以上で
あってもよい)の狭幅グルーブ6A,6B,6Cから構
成され、それらのグルーブの幅の和は、シール面2aの
面幅W(径方向の寸法)に対して、30〜70%の割合
(図示例では約59%)に設定されている。
Further, the fluid introduction groove 5 is communicated with each of the fluid introduction grooves 5, extends to one side (counterclockwise direction) in the circumferential direction, and has a depth of 2 to 20 μm.
The dynamic pressure generating groove 6 set to 1 is formed. A plurality of these dynamic pressure generating grooves 6 are formed independently at the seal surface 2a of the rotary seal ring 2A at equal intervals in the radial direction (three in the illustrated example, but four or more). It may be) narrow width grooves 6A, 6B, 6C, and the sum of the widths of these grooves is 30 to 70% of the surface width W (diametrical dimension) of the sealing surface 2a. (About 59% in the illustrated example).

上記のような構成であれば、回転密封環2Aを矢印a方
向に回転させることによって、流体導入溝5から高圧側
Yの流体が動圧発生グルーブ6の各分割狭幅グルーブ6
A,6B,6Cに流入して、回転密封環2Aのシール面
2a、静圧密封環4Aのシール面4aとの間に動圧を発
生させ、その動圧によりシール面2aをシール面4aか
ら離す方向に付勢して、この付勢力とスプリング3Cの
ばね力とのバランス点の圧力によって、シール面2a,
4a間に例えば5〜20μm程度の狭いシール隙間を形
成して、低圧側Xと高圧側Yとを非接触状態でシールす
る。
In the case of the above-mentioned configuration, by rotating the rotary seal ring 2A in the direction of the arrow a, the fluid on the high-pressure side Y from the fluid introduction groove 5 divides the dynamic pressure generating groove 6 into the respective narrow narrow grooves 6
A, 6B, and 6C flow in to generate a dynamic pressure between the seal surface 2a of the rotary seal ring 2A and the seal surface 4a of the static pressure seal ring 4A, and the dynamic pressure causes the seal surface 2a to move from the seal surface 4a. The seal surface 2a is urged in the separating direction, and by the pressure at the balance point between this urging force and the spring force of the spring 3C,
A narrow seal gap of, for example, about 5 to 20 μm is formed between 4a to seal the low pressure side X and the high pressure side Y in a non-contact state.

ここで、例えば回転密封環2Aが既述のような理由によ
り歪を生じるなどして、対面するシール面2a,4aが
第3図のように、相対的に傾いた場合、シール隙間の広
い側、つまり、径方向内方側の分割狭幅グルーブ6B,
6Cでの発生動圧は低下するものの、径方向外方側の分
割狭幅グルーブ6Aでの発生動圧の低下は抑制され、両
シール面2a,4a同士を接触させないだけの十分な動
圧を発生させることができるとともに、両シール面2
a,4aを互いに平行な対面姿勢に復元させようとする
モーメントMが発生されるので、所定のシール隙間が確
保されてシール破壊やシール面2a,4aの損傷を確実
に防止することができる。
Here, when the sealing faces 2a and 4a facing each other are relatively inclined as shown in FIG. 3 due to, for example, distortion of the rotary seal ring 2A due to the reason as described above, the side where the seal gap is wide. , That is, the divided narrow groove 6B on the radially inner side,
Although the dynamic pressure generated in 6C is reduced, the dynamic pressure generated in the divided narrow groove 6A on the outer side in the radial direction is suppressed, and sufficient dynamic pressure is ensured so that both seal surfaces 2a, 4a are not brought into contact with each other. Can be generated and both sealing surfaces 2
Since the moment M that tries to restore the a and 4a to face-to-face parallel to each other is generated, a predetermined seal gap is secured, and it is possible to surely prevent the seal breakage and the seal faces 2a and 4a from being damaged.

[発明の効果] 以上のように、本発明によれば、動圧発生グルーブを径
方向で複数個の独立したものに分割することにより、シ
ール面が傾いたときでも、シール隙間の狭い側の幅狭グ
ルーブで発生する動圧の低下を抑制して、シール面同士
の接触トラブルを確実に回避させることができるととも
に、シール面同士を平行な対面姿勢に復元させようとす
るモーメントを発生させて所定のシール隙間に戻すこと
ができる。したがって、簡単な構成改良を施すだけで、
シール破壊およびシール面の損傷を防止し、長期に亘っ
て信頼性および安全性の高いシール性能を確保すること
ができる。
[Effects of the Invention] As described above, according to the present invention, by dividing the dynamic pressure generating groove into a plurality of independent pieces in the radial direction, even if the sealing surface is inclined, it is possible to reduce By suppressing the decrease in dynamic pressure that occurs in the narrow groove, it is possible to reliably avoid contact trouble between the sealing surfaces and generate a moment to restore the sealing surfaces to a parallel facing posture. It can be returned to a predetermined seal gap. Therefore, just by making a simple configuration improvement,
It is possible to prevent breakage of the seal and damage to the seal surface, and ensure highly reliable and safe sealing performance for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明および従来例を共用して示す全体構成の
縦断側面図、第2図は本発明の回転密封環の拡大正面
図、第3図は本発明のシール面が傾いた場合の圧力分布
特性図、第4図は従来の回転密封環の拡大正面図、第5
図(a),(b)は従来例の圧力分布特性図で、(a)
は正常な作動状態における圧力分布特性図、(b)はシ
ール面が傾いた場合の圧力分布特性図である。また、第
3図、第5図において、2点鎖線はシール面に対応する
連続的な圧力分布であり、実線はシール面をグルーブ領
域とその他の領域に分割した場合の平均圧力分布であ
る。 1……回転部材、2……回転側シール要素、2A……回
転密封環、2a……シール面、3C…スプリング、4…
…固定側シール要素、4A……静止密封環、5……流体
導入溝、6……動圧発生グルーブ、6A,6B,6C…
…分割狭幅グルーブ。
FIG. 1 is a vertical sectional side view of the entire structure showing the present invention and a conventional example in common, FIG. 2 is an enlarged front view of a rotary seal ring of the present invention, and FIG. 3 is a case where a sealing surface of the present invention is inclined. FIG. 4 is a pressure distribution characteristic diagram, FIG. 4 is an enlarged front view of a conventional rotary seal ring, and FIG.
Figures (a) and (b) are pressure distribution characteristics of the conventional example.
Is a pressure distribution characteristic diagram in a normal operating state, and (b) is a pressure distribution characteristic diagram when the sealing surface is inclined. Further, in FIGS. 3 and 5, the chain double-dashed line is a continuous pressure distribution corresponding to the sealing surface, and the solid line is an average pressure distribution when the sealing surface is divided into a groove area and other areas. 1 ... Rotating member, 2 ... Rotating side sealing element, 2A ... Rotating sealing ring, 2a ... Sealing surface, 3C ... Spring, 4 ...
... Fixed-side sealing element, 4A ... stationary sealing ring, 5 ... fluid introduction groove, 6 ... dynamic pressure generating groove, 6A, 6B, 6C ...
… Divided narrow groove.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被軸封機器の回転部材と一体回転する回転
密封環を設けた回転側シール要素と、被軸封機器のケー
シング側に回転不能に保持され、かつスプリングにより
上記回転密封環側に常時、移動付勢される静止密封環を
設けた固定側シール要素とを有するメカニカルシールに
おいて、上記回転密封環のシール面に円周方向に等間隔
で外端が径外側に開口しかつ内端がシール面内に存在す
るように径方向にのびる流体導入溝が複数形成され、こ
れら流体導入溝にそれぞれ連通しかつ円周方向の少なく
とも一方にのびる動圧発生グルーブが形成され、これら
動圧発生グルーブはそれぞれ径方向に独立して複数個に
分割されていることを特徴とする動圧非接触形メカニカ
ルシール。
1. A rotary side sealing element provided with a rotary seal ring that rotates integrally with a rotary member of a shaft-sealed device, and a non-rotatable member on the casing side of the shaft-sealed device, and a spring side of the rotary seal ring. In a mechanical seal having a stationary side seal element provided with a stationary seal ring that is constantly urged to move, an outer end of the rotary seal ring is opened radially outward at equal intervals in the circumferential direction on the seal surface of the rotary seal ring. A plurality of fluid introduction grooves extending in the radial direction are formed so that the ends are in the sealing surface, and a dynamic pressure generating groove communicating with each of the fluid introduction grooves and extending in at least one of the circumferential directions is formed. A dynamic pressure non-contact mechanical seal characterized in that each of the generated grooves is divided into a plurality of grooves independently in the radial direction.
JP16046990A 1990-06-18 1990-06-18 Dynamic pressure non-contact mechanical seal Expired - Lifetime JPH0660690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16046990A JPH0660690B2 (en) 1990-06-18 1990-06-18 Dynamic pressure non-contact mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16046990A JPH0660690B2 (en) 1990-06-18 1990-06-18 Dynamic pressure non-contact mechanical seal

Publications (2)

Publication Number Publication Date
JPH0450559A JPH0450559A (en) 1992-02-19
JPH0660690B2 true JPH0660690B2 (en) 1994-08-10

Family

ID=15715625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16046990A Expired - Lifetime JPH0660690B2 (en) 1990-06-18 1990-06-18 Dynamic pressure non-contact mechanical seal

Country Status (1)

Country Link
JP (1) JPH0660690B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398943A (en) * 1992-11-12 1995-03-21 Nippon Pillar Packing Co., Ltd. Seal device of the non-contact type
US5501470A (en) * 1992-12-11 1996-03-26 Nippon Pillar Packing Co., Ltd. Non-contacting shaft sealing device with grooved face pattern
JP2563081B2 (en) * 1994-03-22 1996-12-11 日本ピラー工業株式会社 Non-contact type shaft sealing device
CN2460801Y (en) * 2001-01-18 2001-11-21 王玉明 Sealing device for spiral flute end capable of bidirectional rotation
JP5122607B2 (en) * 2010-06-17 2013-01-16 キヤノンマシナリー株式会社 Flat sliding mechanism
CN104379975B (en) * 2012-10-18 2017-05-31 伊格尔工业股份有限公司 Slide unit
EP2977655B1 (en) * 2013-03-17 2018-07-18 Eagle Industry Co., Ltd. Sliding part
WO2015031474A1 (en) 2013-08-27 2015-03-05 Eaton Corporation Seal ring composite for improved hydrodynamic seal performance
US9714712B2 (en) 2014-08-15 2017-07-25 Eaton Corporation Hydrodynamic mating ring with integrated groove inlet pressure control
US11125334B2 (en) 2016-12-21 2021-09-21 Eaton Intelligent Power Limited Hydrodynamic sealing component and assembly
EP3680519A4 (en) 2017-09-05 2021-05-12 Eagle Industry Co., Ltd. Sliding component
JP7179430B2 (en) 2018-01-12 2022-11-29 イーグル工業株式会社 sliding parts
JP7139077B2 (en) 2018-02-01 2022-09-20 イーグル工業株式会社 sliding parts
CN109058156A (en) * 2018-08-17 2018-12-21 浙江工业大学 One kind is like the combined mechanical seal end surface structure of comb dynamic and static pressure
CN113330224A (en) * 2019-02-04 2021-08-31 伊格尔工业股份有限公司 Sliding component
US11852241B2 (en) * 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component
US11767916B2 (en) 2019-02-14 2023-09-26 Eagle Industry Co., Ltd. Sliding components
US11821461B2 (en) 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components
FR3116876A1 (en) 2019-12-19 2022-06-03 Eaton Intelligent Power Limited Self-correcting hydrodynamic seal
CN115715352A (en) 2020-07-06 2023-02-24 伊格尔工业股份有限公司 Sliding component
KR20230025880A (en) 2020-07-06 2023-02-23 이구루코교 가부시기가이샤 sliding parts

Also Published As

Publication number Publication date
JPH0450559A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
JPH0660690B2 (en) Dynamic pressure non-contact mechanical seal
US8162324B2 (en) Compliant plate seal with an annular ring for turbomachinery and methods of assembling the same
US5308088A (en) Brush seal with flexible backing plate
EP0684413B1 (en) Non-contact shaft sealing device
US8919781B2 (en) Self-adjusting non-contact seal
US6308957B1 (en) Brush seal
EP2665897B1 (en) Seal with stacked sealing elements
US6315301B1 (en) Seal apparatus for rotary machines
US8002285B2 (en) Non-contact seal for a gas turbine engine
US7182345B2 (en) Hydrodynamic brush seal
US8172232B2 (en) Non-contact seal for a gas turbine engine
US6145840A (en) Radial flow seals for rotating shafts which deliberately induce turbulent flow along the seal gap
EP0894947B1 (en) Gas turbine interstage seal
EP2318738B1 (en) Leaf seal
JP2000154877A (en) Seal assembly and rotating machine comprising its seal assembly
JPH07504485A (en) Retractable segment packing ring for fluid turbines with gravity springs to eliminate packing segment weight loads
US8167313B2 (en) Seal member, assembly and method
US20080272553A1 (en) Compliant Plate Seals for Turbomachinery
JP2008261498A (en) Sealing device
JPH0560247A (en) Noncontact type mechanical seal
JPH04337165A (en) Non-contact type mechanical seal device
JPH05322050A (en) Noncontact mechanical seal
JPH0769021B2 (en) Non-contact type shaft seal device
JPH0646071B2 (en) Non-contact mechanical seal
JPH07117165B2 (en) Non-contact type sealing device