JPS5917018A - Fluid bearing device utilizing dynamic pressure type lubricating oil - Google Patents

Fluid bearing device utilizing dynamic pressure type lubricating oil

Info

Publication number
JPS5917018A
JPS5917018A JP57124077A JP12407782A JPS5917018A JP S5917018 A JPS5917018 A JP S5917018A JP 57124077 A JP57124077 A JP 57124077A JP 12407782 A JP12407782 A JP 12407782A JP S5917018 A JPS5917018 A JP S5917018A
Authority
JP
Japan
Prior art keywords
lubricating oil
shaft
bearing
sleeve
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57124077A
Other languages
Japanese (ja)
Inventor
Takafumi Asada
隆文 浅田
Kunio Nakada
中田 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57124077A priority Critical patent/JPS5917018A/en
Publication of JPS5917018A publication Critical patent/JPS5917018A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Abstract

PURPOSE:To obtain a bearing, whose rigidity and frictional moment are almost not changed even at low and high temperatures, by providing an oil reservoir groove to a part, where the maximum pressure is generated at rotation of a shaft, of the parts forming grooves. CONSTITUTION:A ring shaped oil reservoir groove 36 is provided in at least either one of the periphery of a shaft 22 or the internal periphery of a sleeve 23 to the central part of a herringbone groove, that is, to a part, where the maximum pressure is generated at rotation of the shaft, and lubricating oil is held by surface tension or the like in said groove 36. At high temperature, though a bearing clearance C3 is increased by thermal expansion of a metallic material such as the shaft 22 and the sleeve 23 or the like, volumetric expansion of lubricating oil larger than the thermal expansion of the metallic material causes the lubricating oil to be filled in an overall width of the grooved part, and sufficient rigidity is obtained. Further, because the viscosity of the lubricating oil is decreased, the frictional momentcan be reduced.

Description

【発明の詳細な説明】 本発明は動圧型潤滑油式流体軸受装置に係り、特に温度
!1+J性に優れ、低温でも高温でも軸受の剛性と軸受
If擦モーメントがほとんと変化しない動圧型口滑油式
流体軸受装置を得ることを目的とするO ビデオ79ングーに用いられた従来の流体軸受装置を第
1〜3図に示す。同定/リンダ−1には鉄系月利からな
る/ナフト2が月二人きれ、シャフト2には回転トラム
とヘッド6が取付けられた銅系月利から成るスリーブ3
が同転自在に取り+jけられている。ンヤフト2の一ト
端にd2、スラスト軸受6が固定され、スラスト軸受6
を覆うようにスラスト受け8がスリーブ3にネジ止めさ
れる。スラスト受け8のト端中央には、第2図に示すパ
ターン状の深き4〜10ミクロンの単列のスパイラルグ
ループ(以降グループと呼ぶ。)が、またスラスト軸受
60ト端而には第3図に示す複列のスバイラルグループ
がそれぞれ設けC9れ、スラスi・軸受を構成している
。シャフト2にも同様に上部に、ヘリングボーン型グル
ープ2aと下部のモーター11111に同様のグループ
2bの計2ケ所設けられで、ラジアル軸受を構成してい
る。また」二記4ケ所のグループ部には、オイル又はグ
リース等の潤滑油9が充填されている。またスリーブ3
にモーター13のローター10を数句け、固定/リング
=1にモーター13のステータ11を取付け、モーター
13に通電することにより、スリーブ3.1す1転ドラ
ム4、ヘッド5、スラスト受け8から成る回転部は、回
転を始める。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dynamic pressure type lubricating oil type hydrodynamic bearing device, and particularly relates to a hydrodynamic bearing device with a high temperature. A conventional hydrodynamic bearing used in the O-Video 79 Ngu, which aims to obtain a hydrodynamic fluid bearing device with excellent 1+J properties and in which the bearing rigidity and bearing If friction moment hardly change even at low or high temperatures. The apparatus is shown in Figures 1-3. Identification / The cylinder 1 is made of iron-based metal / Sleeve 3 is made of copper-based metal, on which two nafts 2 are attached, and the rotating tram and head 6 are attached to the shaft 2.
is taken and turned off at the same time. A thrust bearing 6 is fixed to one end of the shaft 2.
A thrust receiver 8 is screwed to the sleeve 3 so as to cover the sleeve 3. At the center of the end of the thrust bearing 8, there is a single-row spiral group (hereinafter referred to as group) with a depth of 4 to 10 microns in the pattern shown in FIG. A double-row spiral group shown in C9 is provided, respectively, and constitutes a thrust bearing. Similarly, the shaft 2 is provided with a herringbone type group 2a at the upper part and a similar group 2b at the lower part of the motor 11111, forming a radial bearing. Furthermore, the four group portions mentioned in "2" are filled with lubricating oil 9 such as oil or grease. Also sleeve 3
The rotor 10 of the motor 13 is fixed several times, the stator 11 of the motor 13 is attached to the fixing/ring=1, and the motor 13 is energized. The rotating part starts rotating.

しかしなから、従来のこの種の流体軸受では、第9〜1
o図の線図Aに示すように潤滑油(オイル捷たはグリー
ス)の温度粘度特性の悪さにより、低温で6潤滑油の粘
度が著しく高くなるため、低温では第9図のAに示す通
り軸受支持力が必要以−1−に大きくなり過剰品質にな
ってしまうと共に軸受摩擦モーメントが第101a#に
示すように非常に大きくなり、とくにポータプル用VT
Rに流体軸受装置を使用した場合には、比較的容重の小
さなバッテリーでVTRを駆動しなけれ一゛ならないた
め、バッテリー1本当りの使用1J能時間が短かくなる
という欠点かあ、た。
However, in conventional hydrodynamic bearings of this type, the 9th to 1st
As shown in diagram A in Figure 9, the viscosity of 6 lubricating oil increases significantly at low temperatures due to poor temperature viscosity characteristics of lubricating oil (oil or grease). The bearing support force becomes larger than necessary, resulting in excessive quality, and the bearing friction moment becomes extremely large as shown in No. 101a#, especially when using a VT for porta-pull.
If a hydrodynamic bearing device is used in R, the VTR must be driven by a battery with a relatively small capacity, so the disadvantage is that the operating time of 1J per battery is shortened.

この問題を解決するために従来から取り組まれ/ζ第1
の方法として潤滑油自身の温度粘度ノ持性を改善する方
法がある。例えば潤滑油として温度粘1m ’t4+性
の良い/リコンオイル1qを使用する方法−Cあるが、
こI′Iとで完全には低温での軸受モーメンl−を改善
できるものではなく、しかもノリコンオイルV」1、オ
イル自身の接触角が小さく、従ってぬtL ヤt イだ
めVζグループ部から自然ににじみ出して行くという重
大な欠点があり、これを完全に防11−するのは困難て
あったe fjYE来から取り組まれた低温における軸受摩擦モー
メントの増加を防ぐ第2の方法は軸受部の拐イ」の線膨
張係数の差を利用する方法がある。これに1、シャフト
2と、スラスト軸受6を黄銅やアルミニウムやプラスチ
ックス等の線膨張係数の犬なる月別を使い、スリーブ3
に鉄系の線膨張係数の小さな月別を用いることにより、
第1図に示す各部の軸受すき−jc1 、C2、C3を
高温では小さくし、低温では大きくなるように設定して
流体軸受装置の軸受摩擦トルクの温度特性を改善する方
法であるが、この方法として実際の設計に当ってはシャ
フト2とスラスト軸受6に表面硬度が高くて弾性係数の
大きい材料を−F記線膨張係数の大きい材料の中から選
定することが困難であり、もし7ヤフト2−やスラスト
軸受6に黄銅等を選定すると組立過程におい−て傷が生
じやすく壕だ、ンヤフト2、においてはたわみが多くな
り、構造体の剛性が劣ること等の重大な欠点を有してい
た。
Previous efforts have been made to solve this problem/ζ1
One method is to improve the temperature viscosity retention of the lubricating oil itself. For example, there is a method-C that uses 1q/recon oil with good temperature viscosity 1m't4+ properties as a lubricating oil.
This I'I cannot completely improve the bearing moment l- at low temperatures, and moreover, the contact angle of the oil itself is small, and therefore the contact angle of the oil itself is small. It has the serious drawback that it oozes out naturally, and it is difficult to completely prevent this. There is a method that makes use of the difference in linear expansion coefficients between the two. 1. Use the shaft 2 and the thrust bearing 6 made of brass, aluminum, plastic, etc. with a linear expansion coefficient, and use the sleeve 3.
By using the monthly coefficient of iron-based linear expansion,
This method improves the temperature characteristics of the bearing friction torque of a hydrodynamic bearing device by setting the bearing clearances - jc1, C2, and C3 of each part shown in Figure 1 to be small at high temperatures and large at low temperatures. In actual design, it is difficult to select a material with high surface hardness and a large elastic modulus for the shaft 2 and thrust bearing 6 from among materials with a large coefficient of linear expansion marked -F. If brass or the like is selected for the shaft bearing 6 or the thrust bearing 6, it tends to be damaged during the assembly process, and the shaft 2 has serious drawbacks such as increased deflection and inferior structural rigidity. .

本発明ハ」二記従来の欠点を解決するもので、以−Fに
その実施例を第4〜10図にもとすいて説明する。
The present invention is intended to solve the drawbacks of the prior art described in C. and B. Examples thereof will be described below with reference to FIGS. 4 to 10.

第4図は本発明動圧型潤滑油式流体軸受装置をVTR用
ン1.′ンダーに使用した実施例である。下部ンリンダ
ー21の中央部には固定ll+l1122が圧入固定さ
れ、同定側ユニソ)20を構成し固定軸22にt」スリ
 ブ23が回転自在に挿入され、スリーブ23の11部
にはスラスト受け28、ト部/リンダ−24、磁気ヘッ
ト25が取すイ−1けられ、N他側ユニット27を構成
する。ま/こスリ ブ23のF部にi、j If、IJ
転他側ロータリートランス32取イ;1けられ、それに
対向してT部ノリンダー21には固定flai10−タ
リートランス34が取イ:1けらiする。捷たスリーブ
23には、さらに周χ・J同型ダイレクト駆動子 ター
のアマチャ−マグネット35と、カップ型−マグネット
ケース30が数句けられ、その内711+1 i/こは
1ti定イ1111モーターコア33が取イ;Jけられ
、30.33.35で、周対向型ダイレクト駆動モータ
ー31を構成しでいる。
FIG. 4 shows the dynamic pressure type lubricant type hydrodynamic bearing device of the present invention for use in a VTR. This is an example used in a 'under. A fixing ll+l 1122 is press-fitted into the center of the lower cylinder 21, and a t'' sleeve 23 is rotatably inserted into the fixed shaft 22 constituting the identification side unibody 20, and a thrust receiver 28, The first part/cylinder 24 and the magnetic head 25 are attached to form the other side unit 27. i, j If, IJ on the F part of the ma/ko sleeve 23
A rotary transformer 32 on the other side is installed, and a fixed flai 10-tally transformer 34 is installed on the T-section norinder 21 opposite to it. In addition, several armature magnets 35 with circumferences χ and J of the same type direct drive element and a cup-shaped magnet case 30 are cut into the sleeve 23 which has been cut out. 30.33.35 constitutes a circumferential direct drive motor 31.

同定IIqb 22の上部とF部の2ケ所VこVよエツ
チング加LV(より、深さ5〜20ミクロンメータのへ
リングボーン型グループ22A 、22Bが加工され、
スリーブ23の内径との半径すきまを6〜10ミクロン
メータに管理してここに約20〜100センチポアズの
潤滑油29またはもう少し7粘度の高いグリースを通計
tt油することにより、ラジアル方向流体軸受を構成す
る。寸だ固定111+ 220先端面は、平坦、かつ直
角に精度よく加工されており、−ぞの1.にフランジ状
のスラスト軸受26が設けられスリーブ23にネジ止め
され、スラスト受は部28下面のスラスト軸受26との
対向面には第7図に示す、単列のスパイラルグループが
、まだスラスト軸受26の下面でスリーブ23の端面と
の対向面には第8図に示す複列のスパイラルグループが
エツチング等により加工され、各グループ部に適量注油
することによりスラスト方向流体軸受4oを構成し、前
記回転ユニット27を浮上させる。尚、第7図に示すス
パイラルグループの形状V」1、第8図に示すような複
列の形状のものでもよく、丑たこのスパイラルグループ
はスラスト軸受の−1−面に加工されても同じことであ
る。1だ、スラスト軸受26の上面中央丑たはスラスト
受は部28のド面中央のいずれが一方には油保蓄溝37
が、寸だスラスト軸′受下面またはそれに対応するスリ
−ブ23端而のいずれが一方にも油保蓄溝38が設けら
れている。
Identification IIqb 22 is etched at two places on the top and F part of the V-V (by which, herringbone-shaped groups 22A and 22B with a depth of 5 to 20 micrometers are processed,
By controlling the radial clearance to the inner diameter of the sleeve 23 to 6 to 10 microns and applying lubricating oil 29 of approximately 20 to 100 centipoise or a slightly higher viscosity grease thereto, the radial fluid bearing can be installed. Configure. Dimension fixing 111+ 220 The tip surface is precisely machined to be flat and at right angles. A flange-shaped thrust bearing 26 is provided on the sleeve 23 and is screwed to the sleeve 23, and the thrust bearing has a single row spiral group as shown in FIG. A double-row spiral group shown in FIG. 8 is etched on the lower surface of the sleeve 23 facing the end surface of the sleeve 23, and by applying an appropriate amount of oil to each group, a thrust direction fluid bearing 4o is formed. The unit 27 is levitated. Note that the shape of the spiral group shown in Figure 7 may be V''1, or it may be a double-row shape as shown in Figure 8, and the spiral group of this type may be machined on the -1-face of the thrust bearing. That's true. 1, either the center of the upper surface of the thrust bearing 26 or the center of the upper surface of the thrust bearing 28 has an oil storage groove 37 on one side.
However, an oil storage groove 38 is provided on either the lower surface of the thrust shaft bearing or the corresponding end of the sleeve 23.

第5〜6図に示すのは、ヘリングボーン型ラジアル方向
軸受の詳細図である。ヘリツクボーン型グループの中央
部、即し回転時に最も11力が高くなる部分には、/ヤ
フト22の外周ま/Cは、スリーブ23の内径の少なく
ともいずれかの一方にリング状の油保蓄みそ36,3e
lか設られ、そこに表向張力等に潤滑油が保持されでい
る6第5図(イ)は高温(例えば6o’Cの状態の図で
あり、この場合/ヤフト22、スリーブ23等、金属4
;1才Iの熱膨張しこより軸受すき間C3は大きくなる
場合があるが、潤滑油の体積膨張はられら金属月利のそ
11よりはるかに大きいため、潤滑油dグループ部の幅
W全体に満さにるようになり、スリ ブ23又は/ギフ
ト22のいずれか一方が回転すると!゛ループボンピン
グ作用により充分な111il受剛性が?()られる・
・シかも高温では潤滑油の粘度が低くなる( ため第9図Bに示すように軸受の摩擦モーノ/1・は小
さく、駆動モ ターにとって欠し、 (、:tj4大な
負荷にならない。尚、第6図(ロ)、第6図(ロ)は流
体用力分イIJである。略E角形状の而litがl1l
r受の支持力に相当するものである。
5-6 are detailed views of a herringbone radial bearing. At the center of the helical bone type group, that is, at the part where the force is highest during rotation, a ring-shaped oil reservoir 36 is attached to the outer periphery of the shaft 22 or to at least one of the inner diameters of the sleeve 23. ,3e
Figure 5 (a) shows a state of high temperature (for example, 6o'C), in which the lubricating oil is held by surface tension, etc. In this case, the shaft 22, sleeve 23, etc. metal 4
Although the bearing clearance C3 may be larger than the thermal expansion scale of 1 year old I, the volume expansion of the lubricating oil is much larger than that of the metal monthly rate, so the entire width W of the lubricating oil d group part is When it becomes full and either the sleeve 23 or the gift 22 rotates! Sufficient 111il stiffness due to loop bombing action? () will be
・At high temperatures, the viscosity of the lubricating oil becomes low (As shown in Figure 9B, the friction of the bearing is small, which is essential for the drive motor, and does not result in a large load. , Fig. 6(b) and Fig. 6(b) show the fluid force component IJ.It has an approximately E-angular shape, and lit is l1l.
This corresponds to the supporting force of an r-bearing.

第6図(イ)は低温(例えば−20’C)の状態図であ
りこんどは金属材料の収縮により、軸受すきまC3が多
少、小さくなる場合があるが、潤滑油の方がそれより多
く収縮し、一部のグループは潤滑油で1ttA kされ
ない状態になる。この状態で回転を始めるとグループの
ポンピング作用により潤滑油は第6図のように次第にヘ
リングボーン型グリープの1一度中火部の線Gとσの間
に集められ、有効幅WLの流体軸受となり規定の回転数
に致達すると充分な剛性が得られる。低温においては、
潤滑油の粘度が高くなる/ヒめ、有効幅WLが小さくて
も高温時とほぼ同し剛性が得られ、軸受摩擦モーメント
も高温時と比べほとんど変化がなく、第9〜10図の線
図Bに示すように軸受摩擦モーメン!・と軸受支持力(
軸受剛性)の点において温度特性に優れ/ζ動圧型潤潤
滑式流体軸受が得られる。
Figure 6 (a) is a state diagram at low temperatures (for example -20'C), and the bearing clearance C3 may become slightly smaller due to contraction of the metal material, but the lubricating oil contracts more than that. However, some groups will not be lubricated with lubricating oil. When rotation starts in this state, the lubricating oil is gradually collected between the line G and σ of the middle heat part of the herringbone type grip as shown in Figure 6 due to the pumping action of the group, forming a hydrodynamic bearing with an effective width WL. Sufficient rigidity is obtained when the specified number of rotations is reached. At low temperatures,
Even if the viscosity of the lubricating oil increases/the effective width WL is small, almost the same rigidity as at high temperatures can be obtained, and the bearing friction moment hardly changes compared to at high temperatures, as shown in the diagrams in Figures 9 and 10. Bearing friction moment as shown in B!・And bearing support force (
A hydrodynamic bearing with excellent temperature characteristics in terms of bearing rigidity and ζ dynamic pressure type lubrication can be obtained.

第6図(ロ)に示すのは、流体の圧力分布であり、その
略王角形状面積が第6図(ロ)のそれと同じことから両
者が同じ軸受剛性を持つことがわかる。
What is shown in FIG. 6(B) is the pressure distribution of the fluid, and since its substantially king-shaped area is the same as that in FIG. 6(B), it can be seen that both have the same bearing rigidity.

さて、ここで潤滑油保蓄みぞを設ける理由は潤滑油の晴
を一定着まで多くしておかないとび1滑油の体積変化が
充分イ(すらないからであり、このリング状の油保蓄み
その体積Vよ流体1111受の使用in!1度範囲、潤
滑油の体積膨張係数、シャフト22スリーブ23の線膨
張係数の差等、必背なりループの幅等を考廓して旧算に
より求める。
Now, the reason why the lubricating oil storage groove is provided here is that unless the lubricating oil level is increased to a certain level, the volume change of the lubricating oil will not be sufficient. Based on the old calculations, taking into consideration the volume V of the miso, the usage in!1 degree range of the fluid 1111, the volumetric expansion coefficient of the lubricating oil, the difference in the linear expansion coefficient of the shaft 22 and the sleeve 23, the width of the required loop, etc. demand.

lY’、’1m油の注油に際しては一定温度条件で市確
な旧m器によって言1吊して注油を行なうが、別の方法
として、やや条目に/1:油をしておき、−11,温度
を1−げてr・分な潤滑油を第5図(イ)に示す隙間の
広い部分E、Dにあふれ出させてし寸う方法もnJ能で
ある凸 潤滑油保蓄みぞをグループの最も11−力の高い部分に
設ける理由は、回転時に潤滑油が最も圧/Jの高い部分
に強制的に集められるボンピング作用があるからである
lY','When lubricating 1m oil, lubricate by hanging with a reliable old m-meter under constant temperature conditions, but as an alternative method, apply /1: oil in a slight line and -11 , a method in which the temperature is increased by 1-r and the lubricating oil overflows into the wide gap parts E and D shown in Fig. 5 (a) is also possible by forming a convex lubricating oil storage groove which is capable of nJ. The reason why it is provided in the part of the group where the force is highest is that there is a pumping effect in which the lubricating oil is forcibly collected in the part where the pressure/J is the highest during rotation.

寸だグループ部は第6図(イ)に示す矢印り、Eの部分
に比べて隙間が5〜10ミクロンメータと非常に狭いた
め潤MW油はそれ自身の表面張力Vこより外部に流出す
ることなく、グループ部に保持される。
In the small group part, as shown by the arrow in Figure 6 (a), the gap is very narrow, 5 to 10 microns, compared to the part marked E, so the lubricant MW oil flows out due to its own surface tension V. It is not stored in the group section.

以上はラジアル軸受について述べだが、スラスト軸受に
ついての次のように温度特性を改善することができる。
The above description has been about radial bearings, but the temperature characteristics of thrust bearings can be improved as follows.

第7図(イ)に示すのけ、スラスト受は部280下面に
設けられた単列のスパイラルグループである。
As shown in FIG. 7(a), the thrust receiver is a single-row spiral group provided on the lower surface of part 280.

グループの中央にd、適切な容積を有する盲孔状の油保
蓄溝37が設けられている。高温においては潤滑油は膨
張してグルーブ一杯に矢印H,H’の新井で広がり、一
方低温においては潤滑油は収縮して全面には広がらなく
なる。そして回転すると図中点線りに示す領域壕で広が
る。このようにして前記ラジアル方向軸受と同様に低温
に低温においてグループの有効径が小さくなるため低温
でも高温でも、軸受摩擦モーメントの変わらない動圧型
流体軸受が得られる。第7図(ロ)に示すのは圧力分布
でありこれにより低温でも高温でも軸受支持力がほぼ同
じであることがわかる。
In the center of the group, a blind hole-shaped oil storage groove 37 having an appropriate volume is provided. At high temperatures, the lubricating oil expands and spreads throughout the groove as indicated by arrows H and H', while at low temperatures, the lubricating oil contracts and does not spread over the entire surface. Then, when it rotates, it expands in the area indicated by the dotted line in the figure. In this way, as with the radial direction bearing, the effective diameter of the group becomes smaller at low temperatures, so a hydrodynamic bearing with a bearing friction moment that does not change at low temperatures or high temperatures can be obtained. FIG. 7(b) shows the pressure distribution, which shows that the bearing supporting force is almost the same at both low and high temperatures.

第8図(イ)に示すのはスラスト軸受26の下面に設け
られた複数のスパイラルグループであるが、回転時に最
もIL力の高くなる部分K IJング状の荷38が設け
られ、4“l)j m油が保蓄キJ′じ℃いるーこの場
合も、高温でt、J、佃1受すきまは大きくなる場合が
あっても、潤l;1油の膨張がはるか大きいため潤滑油
はグルーブ一杯にH、H”のところまで広がる。
What is shown in FIG. 8(A) is a plurality of spiral groups provided on the lower surface of the thrust bearing 26. A load 38 in the form of a ring is provided at the part where the IL force is highest during rotation, and the load 38 is 4"l. ) j m oil is stored at J'ji ℃ - In this case as well, even though the t, J, and Tsukuda 1 clearances may increase at high temperatures, the lubricating oil 1; extends throughout the groove to H, H”.

一方低温においてはL 、 L’点線円に小すところま
で収縮するため低温でも高温でもほとんど変ら軸受摩擦
モ メントになり、低温−Cモーターの過大な負荷にな
ることはない。このようにスラスト軸受にも改善を加え
ることにより、より一層温度特性を改善できる。
On the other hand, at low temperatures, L and L' contract to a point smaller than the dotted circle, so the bearing friction moment hardly changes at low or high temperatures, and there is no excessive load on the low-temperature-C motor. By making improvements to the thrust bearing in this way, the temperature characteristics can be further improved.

尚、第7〜8図に示ず保蓄溝はグループと対向する・V
而、即ちスラスト軸受26の上面およびスリーブ23の
スラスト軸受23の対向面にあっても同じである2、 以上、本発明によるとラジアル、およびスラスト方向の
流体軸受においてグループの圧力が最も高くなるところ
に油保蓄溝を設けることにより、温度特性が優iまた動
圧型潤滑油式流体軸受が得られる。
Note that, although not shown in Figures 7 and 8, the storage groove is located opposite the group.
In other words, the same applies to the upper surface of the thrust bearing 26 and the opposing surface of the thrust bearing 23 of the sleeve 23.2 According to the present invention, the pressure of the group is highest in the radial and thrust direction hydrodynamic bearings. By providing an oil storage groove in the bearing, a dynamic pressure lubricating oil type fluid bearing with excellent temperature characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流体軸受装置の断面図、第2〜3図は同
装置におけるグループ形状図、第4図は本発明の一実施
例における流体軸受装置の断面図、第6図(イ)は同ラ
ジアル軸受部の要部断面図、第5図(rIlは同軸受部
の流体圧力分布図、第6図(イ)は低温時の同軸受部の
要部断面図、第6図(ロ)は同軸受部の流体圧力分布図
、第7図(イ)は同スラスト軸受部の平面図、第7図(
ロ)は同軸受部の流体圧力分布図、第8図(イlf−を
複数のスパイラルグループを有す22・・・・固定軸、
23・・・・・・スリーブ、26・・・・・スラスト軸
受、28・・・・・・スラスト受は部、29・・・・飼
滑油、36.36’、37.38・・・・・・油保蓄溝
。 代理人の氏名 弁理士 中 尾 敏 男 ζ1か1名第
1図 第2図 第4図 第5図 (4λ 3 第6図 (わ 第7図 第9図 →傷痕(1り 第10図 一漫崖(・。。
Fig. 1 is a sectional view of a conventional hydrodynamic bearing device, Figs. 2 and 3 are group shape diagrams in the same device, Fig. 4 is a sectional view of a hydrodynamic bearing device according to an embodiment of the present invention, and Fig. 6 (A). is a cross-sectional view of the main part of the same radial bearing, FIG. 5 (rIl is a fluid pressure distribution diagram of the same bearing, FIG. ) is a fluid pressure distribution diagram of the same bearing, FIG. 7(a) is a plan view of the thrust bearing, and FIG.
b) is a fluid pressure distribution diagram of the same bearing part, Fig.
23... Sleeve, 26... Thrust bearing, 28... Thrust bearing part, 29... Feed oil, 36.36', 37.38... ...Oil storage ditch. Name of agent Patent attorney Toshi Nakao ζ1 or 1 person Figure 1 Figure 2 Figure 4 Figure 5 (4λ 3 Figure 6 Figure 7 Figure 9 → Scar (Figure 10) cliff(·..

Claims (3)

【特許請求の範囲】[Claims] (1)回転d」能な回転部およびこの回転部を回転可能
に支持する固定部を設け、前記回転部と固定部との対向
する側のいずれか一方にグループを形成し、かつ、(ロ
)軸部と固定部との間に1V2I屑油を設けて動圧型流
体軸受を構成し、回転時において、最も用力の高くなる
部分の前記固定部または回転部のいずれか一方に油保蓄
溝を設けた動圧型潤滑油式流体軸受装置。
(1) A rotating part capable of rotating and a fixed part rotatably supporting the rotating part are provided, a group is formed on either side of the rotating part and the fixed part facing each other, and ) 1V2I waste oil is provided between the shaft part and the fixed part to constitute a dynamic pressure type fluid bearing, and an oil storage groove is provided in either the fixed part or the rotating part of the part where the utility is highest during rotation. Dynamic pressure type lubricant type hydrodynamic bearing device.
(2)前記固定部と前記回転部は、軸およびこの軸の外
周にPJ佃1上に回転自在に設けられたスリーブてあり
、この軸またはスリーブのいずれか一方にヘリングボー
ン型グループを形成した特許請求の範囲第1項記載の動
圧型潤滑油式流体軸受装置。
(2) The fixed part and the rotating part are a shaft and a sleeve rotatably provided on the PJ Tsukuda 1 on the outer periphery of this shaft, and a herringbone type group is formed on either the shaft or the sleeve. A dynamic pressure type lubricant type hydrodynamic bearing device according to claim 1.
(3)  前記固定部と前記回転部は、軸端面とスラス
ト受は部であり、この軸端面またはスラスト受は部のい
ずれか一方にスパイラルグループを形成しだ’持N’+
請求の範囲第1項記載の動圧型45′j〆)1油式流体
軸受装置jfr
(3) The fixed part and the rotating part have a shaft end face and a thrust bearing, and the shaft end face or the thrust bearing forms a spiral group on either one of the parts.
Dynamic pressure type 45'j〆)1 Hydraulic fluid bearing device jfr according to claim 1
JP57124077A 1982-07-15 1982-07-15 Fluid bearing device utilizing dynamic pressure type lubricating oil Pending JPS5917018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57124077A JPS5917018A (en) 1982-07-15 1982-07-15 Fluid bearing device utilizing dynamic pressure type lubricating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57124077A JPS5917018A (en) 1982-07-15 1982-07-15 Fluid bearing device utilizing dynamic pressure type lubricating oil

Publications (1)

Publication Number Publication Date
JPS5917018A true JPS5917018A (en) 1984-01-28

Family

ID=14876357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57124077A Pending JPS5917018A (en) 1982-07-15 1982-07-15 Fluid bearing device utilizing dynamic pressure type lubricating oil

Country Status (1)

Country Link
JP (1) JPS5917018A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150207A (en) * 1984-08-18 1986-03-12 Matsushita Electric Ind Co Ltd Cylinder device for fluid bearing
EP0378274A2 (en) * 1989-01-12 1990-07-18 Philips Patentverwaltung GmbH Rotary anode X-ray tube with at least two spirally grooved bearings
JPH0357711U (en) * 1989-09-29 1991-06-04
EP1437727A2 (en) * 2002-12-30 2004-07-14 Samsung Electronics Co., Ltd. Tape deck
DE102007014845A1 (en) * 2007-03-28 2008-10-09 Minebea Co., Ltd. Fluid dynamic bearing e.g. axial bearing for bi-directional rotary electric motor, has groove structure divided into set of sections, which are separated from each other by ducts that are inserted into bearing surface of bearing components
US7625123B2 (en) * 2005-10-14 2009-12-01 Panasonic Corporation Hydrodynamic bearing device and spindle motor that makes use of same
CN113027908A (en) * 2021-03-18 2021-06-25 南通通途机电制造有限公司 Wear-resisting shaft sleeve with self-lubricating function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622215A (en) * 1979-07-31 1981-03-02 Matsushita Electric Ind Co Ltd Rotary head assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622215A (en) * 1979-07-31 1981-03-02 Matsushita Electric Ind Co Ltd Rotary head assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150207A (en) * 1984-08-18 1986-03-12 Matsushita Electric Ind Co Ltd Cylinder device for fluid bearing
EP0378274A2 (en) * 1989-01-12 1990-07-18 Philips Patentverwaltung GmbH Rotary anode X-ray tube with at least two spirally grooved bearings
JPH0357711U (en) * 1989-09-29 1991-06-04
EP1437727A2 (en) * 2002-12-30 2004-07-14 Samsung Electronics Co., Ltd. Tape deck
EP1437727A3 (en) * 2002-12-30 2007-08-15 Samsung Electronics Co., Ltd. Tape deck
US7625123B2 (en) * 2005-10-14 2009-12-01 Panasonic Corporation Hydrodynamic bearing device and spindle motor that makes use of same
DE102007014845A1 (en) * 2007-03-28 2008-10-09 Minebea Co., Ltd. Fluid dynamic bearing e.g. axial bearing for bi-directional rotary electric motor, has groove structure divided into set of sections, which are separated from each other by ducts that are inserted into bearing surface of bearing components
DE102007014845B4 (en) 2007-03-28 2019-05-16 Minebea Mitsumi Inc. Fluid dynamic bearing
CN113027908A (en) * 2021-03-18 2021-06-25 南通通途机电制造有限公司 Wear-resisting shaft sleeve with self-lubricating function

Similar Documents

Publication Publication Date Title
Neale Bearings: a tribology handbook
JPS612914A (en) Bearing device
US20100247012A1 (en) Bearing Apparatus Featuring Electrorheological Fluid Lubrication
US20010014188A1 (en) Fluid bearing equipment
US3806209A (en) Bearing structure
JPS5917018A (en) Fluid bearing device utilizing dynamic pressure type lubricating oil
JPH02271106A (en) Sliding bearing device
US3256049A (en) Sliding surface bearing
US2710236A (en) Deformable plain bearings and bearing assemblies
JPS61165021A (en) Roller bearing
JPS58207524A (en) Method of lengthening life of conical roller bearing lubricated by oil and reducing its friction
JP3637632B2 (en) Electric motor
US5447376A (en) Package bearing system
JP2795306B2 (en) Bearing device
JPS612915A (en) Rotary device
US20070206891A1 (en) Composite-film bearings
US3815964A (en) Bearings
JPS60121308A (en) Dynamic pressure type composite bearing device
JP2604329Y2 (en) Bearing device
JPS5958219A (en) Oleo-journal bearing
JPS6044620A (en) Dynamic pressure bearing device
JPH11303858A (en) Porous hydrodynamic bearing
JPH02493Y2 (en)
JPH0721087Y2 (en) Radial bearings for high temperature submerged motors
JP3845972B2 (en) Hydrodynamic bearing device