JPS60121308A - Dynamic pressure type composite bearing device - Google Patents

Dynamic pressure type composite bearing device

Info

Publication number
JPS60121308A
JPS60121308A JP17251784A JP17251784A JPS60121308A JP S60121308 A JPS60121308 A JP S60121308A JP 17251784 A JP17251784 A JP 17251784A JP 17251784 A JP17251784 A JP 17251784A JP S60121308 A JPS60121308 A JP S60121308A
Authority
JP
Japan
Prior art keywords
radial
bearing
thrust
dynamic pressure
bearing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17251784A
Other languages
Japanese (ja)
Other versions
JPS624565B2 (en
Inventor
Masaru Tamaki
玉木 勝
Ikunori Sakatani
郁紀 坂谷
Katsuhiko Tanaka
克彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP17251784A priority Critical patent/JPS60121308A/en
Publication of JPS60121308A publication Critical patent/JPS60121308A/en
Publication of JPS624565B2 publication Critical patent/JPS624565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/105Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one bearing surface providing angular contact, e.g. conical or spherical bearing surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To maintain a thrust load capacity and simultaneously reduce torque of a radial bearing portion, by sealing a lubricant having viscosity lower than that of a lubricant for a thrust bearing portion in the radial bearing portion. CONSTITUTION:An outer sleeve 1 has a circular hole 11 where a shaft member 2 is inserted, and also has radial inner surface 111 and 112 forming a radial bearing portion between the circular hole 11 and an outer circumferential surface of the shaft member 2. There is retained at an end of the circular hole 11 a thrust receiving member 12 having a semispherically recessed thrust receiving surface 121. The shaft member 2 is provided with radial outer surfaces 22 and 23 having dynamic pressure generating grooves 21, and with a thrust receiving surface 24 at an end thereof. A lubricant having viscosity lower than that of a lubricant for the thrust bearing portion is sealed in the ratial bearing portion for purpose of reduction in torque.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、外筒と軸体よりなり、かつ、そのいずれか
、一方が回転する動圧形の複合軸受装置に関し、特に振
動や回転むらの少ない、しかも、トルクの小さいことが
要求される、例えば、マイクロモータや音響機器などの
ように、高精度な回転の伝達を必要とする回転体の支持
に有効な動圧形の複合軸受装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a dynamic pressure type compound bearing device consisting of an outer cylinder and a shaft body, one of which rotates. A dynamic pressure type composite bearing device that is effective for supporting rotating bodies that require high-precision rotation transmission, such as micro motors and audio equipment, which require low torque and low torque. It is related to.

〔従来の技術〕[Conventional technology]

従来より知られているこの種の回転装置にあって、回転
体を支持する軸受部にラジアル軸受とスラスト軸受とを
一体的に備えた複合形の動圧軸受を採用した回転装置は
周知である。−例としては、例えば、特開昭55−54
718号公報に開示されているように、円柱状の軸体な
挿入する円形孔の内周面にラジアル軸受部を形成するた
めのラジアル内面を有し、かつ、前記円形孔の一端側に
スラスト軸受部を形成するための一方のスラスト受面を
形成するスラスト受部材を備えた外筒と、前記ラジアル
内面と対向する位置の外周面をラジアル外面とし、かつ
、軸端に前記外筒のスラスト受面と対向する他力のスラ
スト受面を備え、しかも、前記両軸受部に、油、グリー
スなどの潤消剤を有する構造となっている。
Among conventionally known rotating devices of this type, a rotating device that employs a composite hydrodynamic bearing that integrally includes a radial bearing and a thrust bearing in the bearing portion that supports the rotating body is well known. . -For example, JP-A-55-54
As disclosed in Japanese Patent No. 718, a cylindrical shaft body has a radial inner surface for forming a radial bearing portion on the inner peripheral surface of a circular hole into which it is inserted, and a thrust member is provided at one end side of the circular hole. an outer cylinder provided with a thrust bearing member forming one thrust bearing surface for forming a bearing portion; an outer peripheral surface at a position facing the radial inner surface being a radial outer surface; and a thrust bearing member of the outer cylinder at the shaft end; It has a structure in which a thrust receiving surface for external force is provided opposite to the receiving surface, and a lubricant such as oil or grease is provided in both the bearing parts.

しかしながら、上記従来の軸受装置におけるラジアル軸
受部およびスラスト軸受部には、粘度の等しい潤渭剤が
別人使用されているためスラスト軸受部に比ベラシアル
軸受部のトルクが大きく、またラジアル負荷容量も太き
い。
However, in the above-mentioned conventional bearing device, different lubricants with the same viscosity are used in the radial bearing part and the thrust bearing part, so the torque of the radial bearing part is large compared to that of the thrust bearing part, and the radial load capacity is also large. Hey.

従っ゛C1上記従来の軸受構成にあって、例えば、これ
を縦型で使用した場合、回転体の軸受部に重に比べ非常
に小さい。
Therefore, in the above-mentioned conventional bearing structure, when this is used in a vertical type, for example, the weight is very small compared to the weight of the bearing portion of the rotating body.

このように、スラスト荷重に比ベラシアル荷重が非常に
小さい使用条件下における回転体の軸受装置としては、
必要なスラスト負荷容量のみ確保すねは、前記ラジアル
負荷容量は小さくて良く、むしろ、回転体としては、ラ
ジアル負荷容量を犠牲にしても軸受全体のトルクを小さ
くすることが重要な課覇となる。
In this way, as a bearing device for a rotating body under usage conditions where the vertical load is very small relative to the thrust load,
The radial load capacity of the shank that ensures only the necessary thrust load capacity may be small, but rather, as a rotating body, it is an important challenge to reduce the torque of the entire bearing even if it sacrifices the radial load capacity.

一般にラジアル軸受部とスラスト軸受部に同一粘度の潤
渭剤を使用した軸受装置にあっては、全体に占めるラジ
アル軸受部のR撓トルクは、例えば、後述する本願発明
の第2図に示す第2実施例の場合約90%にもなる。従
って、スラスト負荷容量を減少させることなしにラジア
ル軸受部のトルクを低減させるとと:+ −”−−’ 
+ 7−m が望ましい。
In general, in a bearing device in which a lubricant of the same viscosity is used in the radial bearing part and the thrust bearing part, the R bending torque of the radial bearing part in the whole is, for example, as shown in FIG. 2 of the present invention described later. In the case of the second embodiment, it is about 90%. Therefore, if the torque of the radial bearing section is reduced without reducing the thrust load capacity: + -"--'
+7-m is desirable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、前述のようなラジアル軸受部とスラスト軸
受部の両方を備えた動圧形の複合軸受にあって、スラス
ト負荷容量を犠牲にすることなしにラジアル軸受部の負
荷容量の犠牲のもとに、該ラジアル軸受部のトルクを低
減させ、もって、低トルク、高速性能の軸受装置を得る
とどKある。
The present invention relates to a hydrodynamic type composite bearing having both a radial bearing section and a thrust bearing section as described above, which can reduce the load capacity of the radial bearing section without sacrificing the thrust load capacity. In particular, it is possible to reduce the torque of the radial bearing portion and thereby obtain a bearing device with low torque and high-speed performance.

〔間間点を解決するための手段〕[Means for resolving gaps]

すなわち、この発明は、回転体を支持する前述のような
動圧形の複合軸受装置にあって、前記両軸受部に封入さ
れている潤消剤のうち、特にラジアル軸受部には、スラ
スト軸受部の潤溺剤よりも粘度の低い、トルクの低減に
有効な潤渭剤を封入した構成としたものである。
That is, the present invention provides a hydrodynamic type composite bearing device as described above for supporting a rotating body, in which a lubricant is included in the radial bearing part, especially in the thrust bearing part, among the lubricants sealed in both the bearing parts. The structure includes a lubricant that is effective in reducing torque and has a lower viscosity than other lubricants.

〔作 用〕[For production]

かくして、この発明の軸受装置にあっては、前記潤渭剤
の粘度との関係から、スラスト負荷容量を犠牲にするこ
となく、必要なスラスト負荷容量を維持しつつラジアル
軸受部のトルクが低減でき、軸受装置全体の低トルク化
が達成できる。
Thus, in the bearing device of the present invention, the torque of the radial bearing portion can be reduced while maintaining the necessary thrust load capacity without sacrificing the thrust load capacity due to the relationship with the viscosity of the lubricant. , low torque of the entire bearing device can be achieved.

〔実施例〕〔Example〕

次にこの発明を第1図ないし第4図の代表的な実施例に
ついて説明すると、lは外筒、2は軸体、3は軸体2の
回転駆動機構、4は外筒に保持されたステータ、5はロ
ータ6を保持した胴体、14はスラスト受部材12を弾
性的に支持すると〜もに相手部材との間を密封している
弾性0リングである。
Next, this invention will be explained with reference to the typical embodiments shown in FIGS. 1 to 4. 1 is an outer cylinder, 2 is a shaft body, 3 is a rotational drive mechanism for the shaft body 2, and 4 is a mechanism held by the outer cylinder. The stator 5 is a body that holds the rotor 6, and 14 is an elastic O-ring that elastically supports the thrust receiving member 12 and seals between it and the other member.

はじめに第1図に示す周対向形モータの回転部における
複合軸受装置の第1実施例において、外筒lは、その軸
心位置に軸体2の挿入される円形孔11を有し、その両
端側には、後述する軸体の外局面との間にラジアル軸受
部を形成するラジアル内面111および112を有し、
前記円形孔11の一力の端部(図面から見て下側)には
、半球状に凹んだ凹形のスラスト受面121を有するス
ラスト受部材12が押え板13を介して保持されている
。そして、前記外筒lのもつ円形孔のうち、特にラジア
ル内面111とラジアル内面112との間の半径方向す
きまbは、前記両ラジアル内面間の内径を大きくするこ
とによって前記ラジアル軸受部のすきまtzよりも大き
く形成されている。
Introduction In the first embodiment of the composite bearing device for the rotating part of a circumferentially opposed type motor shown in FIG. The side has radial inner surfaces 111 and 112 that form a radial bearing part between it and the outer surface of the shaft body, which will be described later.
A thrust receiving member 12 having a hemispherically concave thrust receiving surface 121 is held at one end of the circular hole 11 (lower side when viewed from the drawing) via a presser plate 13. . The radial clearance b between the radial inner surface 111 and the radial inner surface 112 in the circular hole of the outer cylinder l can be changed by increasing the inner diameter between the two radial inner surfaces to the clearance tz of the radial bearing part. It is formed larger than.

また前記すきまtlをもったラジアル内面ill、11
2の軸方向長さは、そのいずれも後述する軸体の外筒面
に形成されている動圧発生みぞ21の軸方向長さよりも
長くなっている。
Also, the radial inner surface ill, 11 with the clearance tl.
Both of the axial lengths of 2 are longer than the axial lengths of dynamic pressure generating grooves 21 formed on the outer cylindrical surface of the shaft body, which will be described later.

軸体2は、前記外筒のラジアル内面と対向する2個所の
外筒面にヘリングボーン形の複数本の動圧発生みぞ21
を有するラジアル外面22、乙を備え、一方の軸端側(
スラスト受部材側)K複数本のスパイラル状溝241を
有する半球状の凸形受面をもった凸形受部(スラスト受
面)24をもって形成されている。
The shaft body 2 has a plurality of herringbone-shaped dynamic pressure generating grooves 21 on two outer cylinder surfaces facing the radial inner surface of the outer cylinder.
A radial outer surface 22 having a
Thrust receiving member side) K is formed with a convex receiving part (thrust receiving surface) 24 having a hemispherical convex receiving surface having a plurality of spiral grooves 241.

そして、上記のラジアル軸受部およびスラスト軸受部に
は、圧力流体層を形成するに必要な潤渭剤が封入されて
いるが、特にこの発明にあっては、ラジアル軸受部には
、該ラジアル軸受部の低トルク化を計るためスラスト軸
受部よりも粘度の低い潤渭剤が封入されている。
The radial bearing portion and the thrust bearing portion are filled with a lubricant necessary for forming a pressure fluid layer. In order to reduce the torque of the thrust bearing, a lubricant with a lower viscosity than that of the thrust bearing is included.

なお上記実施例にあっては、b)tzの関係を作るにあ
たり、ラジアル内面Illと112間の外筒内径を大径
として形成したが、軸体のラジアル外面22.5間の軸
径を小径としてH)t+の関係を作り実施することもあ
る。
In the above embodiment, in creating the relationship b) tz, the inner diameter of the outer cylinder between the radial inner surface Ill and 112 was formed as a large diameter, but the shaft diameter between the radial outer surface 22.5 of the shaft body was formed as a small diameter. In some cases, a relationship of H)t+ is created and implemented.

第2図は、第2実施例を示したもので、特にこの実施例
にあっては、軸体2と共働する外筒lの円形孔11を外
筒に直接穿設形成することなく、これとは別個に形成さ
れたスリーブ15を介して形成し、また外筒の反スラス
ト受部材側の端部に潤渭剤のもれを防止するためのシー
ル体、例えば磁性流体シールSを増付け、またスラスト
軸受部には、前記第1実施例に示した球面形のスラスト
軸受部に代り、軸体の端面24aと、これと対向するス
ラスト受部材12aの上面L21aとの間に平面形のス
ラスト軸受部を形成した例を示したもので、その他の構
造は前記第1実施例のものと同じである特に上記第2実
施例におけるスラスト軸受部は、スラスト受部材12a
の上面L21a (軸端面24aと対向する面)に動圧
発生用の複数本のスパイラル例では、スラスト受部材の
中央部に、起動時や停止時におけるトルクをより小さく
するためにボール122が埋め込まれ、それによって凸
部を形成しその頂部と軸体側のスラスト受面24aとが
接する構造となっているが、前記凸部の形成は必ずしも
必要ではない。この実施例の場合当然のことであるが、
スピンドルの回転数が一定の領域に達するとスラスト受
面24aと凸部との接触はな(なり完全な動圧形スラス
ト軸受として作動する。
FIG. 2 shows a second embodiment. In particular, in this embodiment, the circular hole 11 of the outer cylinder l that cooperates with the shaft body 2 is not directly formed in the outer cylinder. Separately from this, a seal body, for example, a magnetic fluid seal S, is added to the end of the outer cylinder on the side opposite to the thrust receiving member to prevent leakage of the lubricant, which is formed through a sleeve 15 formed separately. In addition, instead of the spherical thrust bearing shown in the first embodiment, the thrust bearing has a planar shape between the end surface 24a of the shaft body and the upper surface L21a of the thrust bearing member 12a facing thereto. This shows an example in which a thrust bearing part is formed, and the other structure is the same as that of the first embodiment. In particular, the thrust bearing part in the second embodiment is
In the example of multiple spirals for generating dynamic pressure on the upper surface L21a (the surface facing the shaft end surface 24a), a ball 122 is embedded in the center of the thrust receiving member in order to further reduce the torque at the time of starting and stopping. The structure is such that a convex portion is formed and the top of the convex portion contacts the thrust receiving surface 24a on the shaft body side, but the formation of the convex portion is not necessarily necessary. Naturally, in this example,
When the rotational speed of the spindle reaches a certain range, the thrust bearing surface 24a and the convex portion no longer come into contact with each other (and the bearing operates as a complete hydrodynamic thrust bearing).

なお上記第2実施例の如くスリーブ15を用いる場合は
、前記スリーブに油を含浸させた金属、プラスチックな
どの含油多孔質部材を用いて実施することもある。
When the sleeve 15 is used as in the second embodiment, the sleeve may be made of an oil-impregnated porous member such as metal or plastic impregnated with oil.

第3図は、第3実施例であって、特にこの実施例にあっ
ては、前記第1実施例におけるスラスト軸受部側のラジ
アル軸受部を省略してラジアル軸受部を1個とし、かつ
スラスト受部の上部にシール体、例えば磁性流体シール
を装着した例を示したものである。
FIG. 3 shows a third embodiment, in particular, in this embodiment, the radial bearing part on the thrust bearing part side in the first embodiment is omitted, and there is only one radial bearing part, and the thrust This figure shows an example in which a sealing body, such as a magnetic fluid seal, is attached to the upper part of the receiving part.

3つの部材151. 152,153によって形成する
とともにラジアル軸受部間に、軸受内部と外部とに連通
した空気抜き穴16を設けたもので、特に前記空気抜穴
16によって、外筒と軸体との間の空気が使用ふん囲気
の温度変化によって膨張することによる潤消剤のもれを
防止することに役立つ。
Three members 151. 152 and 153, and an air vent hole 16 is provided between the radial bearing portions, which communicates with the inside and outside of the bearing.In particular, the air vent hole 16 allows the air between the outer cylinder and the shaft body to be used. This helps prevent the lubricant from leaking due to expansion due to temperature changes in the surrounding air.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明の動圧形の複合軸受装置にあ
っては、外筒と軸体との間に形成されるラジアル軸受部
およびスラスト軸受部に封入される媒体としての潤渭剤
を同一の粘度をもった潤消剤とせず、スラスト軸受部を
基準とし、ラジアル軸受部には、前記スラスト軸受部よ
りも粘度の低い潤渭剤を使用したので、従来品と同一の
仕様下にあっては、スラスト負荷容量を低下させること
なしにラジアル軸受部のトルクが低減でき、その結果、
軸受装置全体として低トルク化が達成でき著しい性能向
上を計ることができることは勿論、例えば、ラジアル荷
重としてモータ・ロータ部のアンバランス荷重しか負荷
されないような同対向形モータで駆動される回転体とか
、あるいは軸方向に大きな吸引力の働く平面対向形モー
タで駆動される回転体の軸受装置として特に有効である
As described above, in the dynamic pressure type composite bearing device of the present invention, a lubricant as a medium is sealed in the radial bearing portion and the thrust bearing portion formed between the outer cylinder and the shaft body. Rather than using a lubricant with the same viscosity, we used the thrust bearing as a reference, and the radial bearing used a lubricant with a lower viscosity than that of the thrust bearing, so it can be used under the same specifications as conventional products. If so, the torque of the radial bearing can be reduced without reducing the thrust load capacity, and as a result,
Of course, it is possible to reduce the torque of the bearing device as a whole and achieve a significant performance improvement. Alternatively, it is particularly effective as a bearing device for a rotating body driven by a planar opposed motor that exerts a large suction force in the axial direction.

また実施例に示したように、外筒の円形孔の内周面と軸
体の外周面との間の半径方向すきまのうち、ラジアル軸
受部を除く同面間、例えば、ラジアル軸受部とラジアル
軸受との間(第1実施例)、ラジアル軸受部とスラスト
軸受部との間(第3実施例)の半径方向すきまtlをラ
ジアル軸受部の半径方向すきまt2よりも大きくした場
合には、回転中における潤渭剤の粘性抵抗が著しく減少
し、軸受装置全体としての摩擦トルクを更に減少させに
なくするためには、すきま11部分に潤消剤がまわらな
いようにシールし、また軸受部に表面張力の大きい油な
どの潤消剤を入れるようにすれば有効である。特にシー
ル体を用いない場合には、表面張力の高い油を用いて軸
受部での油の保持性を高めることが望ましい。
Furthermore, as shown in the examples, among the radial clearances between the inner circumferential surface of the circular hole of the outer cylinder and the outer circumferential surface of the shaft body, between the same surfaces excluding the radial bearing portion, for example, between the radial bearing portion and the radial If the radial clearance tl between the bearing (first embodiment) and between the radial bearing part and the thrust bearing part (third embodiment) is made larger than the radial clearance t2 of the radial bearing part, the rotation In order to significantly reduce the viscous resistance of the lubricant inside and further reduce or eliminate the frictional torque of the bearing device as a whole, the lubricant should be sealed to prevent it from getting around the gap 11, and the bearing should be sealed. It is effective to add a lubricant such as oil with high surface tension. Particularly when a seal body is not used, it is desirable to use oil with high surface tension to improve oil retention in the bearing.

また実施例では、動圧発生みぞな主として軸体側に設け
た例について説明したが、外筒側に設げることもあり、
また両方に設けることもある。
In addition, in the embodiment, an example was explained in which the hydrodynamic pressure generating groove was mainly provided on the shaft body side, but it may also be provided on the outer cylinder side.
It may also be provided on both sides.

更には、各軸受部の細部構造、軸受形式、動圧発生みぞ
の形状、軸受部の設計諸元、シール体の有無、空気抜き
穴の有無、使用する場合の位置、使用する潤渭剤なども
請求の範囲内で適宜変更して実施するものであり実施例
に限定されないことは勿論である。
Furthermore, the detailed structure of each bearing, the bearing type, the shape of the dynamic pressure generation groove, the design specifications of the bearing, the presence or absence of a seal, the presence or absence of an air vent hole, the position where it will be used, the lubricant to be used, etc. It goes without saying that the present invention is not limited to the examples, and may be implemented with appropriate modifications within the scope of the claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は、この発明の動圧形の複合軸受装
置を示す縦断面図であって、第1図は、第1実施例、第
2図は、第2実施例、第3図は1.22、乙はラジアル
外面、Uは円形孔の内周面と軸体の外周面のうち、ラジ
アル軸受部でない部分の半径方向すきま、t2はラジア
ル軸受部の半径方向すきま、Sは磁性流体シールである
。 特許出願人 日本精工株式会社 竿3 回
1 to 4 are longitudinal sectional views showing a hydrodynamic type composite bearing device of the present invention, in which FIG. 1 shows the first embodiment, FIG. 2 shows the second embodiment, and the third embodiment. The figure is 1.22, O is the radial outer surface, U is the radial clearance between the inner circumferential surface of the circular hole and the outer circumferential surface of the shaft that is not the radial bearing part, t2 is the radial clearance of the radial bearing part, and S is the radial clearance of the radial bearing part. It is a magnetic fluid seal. Patent applicant: NSK Ltd. 3 times

Claims (1)

【特許請求の範囲】 (1) 軸体を挿入する円形孔を有し、該円形孔の内周
面にラジアル軸受部を形成するラジアル内面を有し、か
つ前記円形孔の一端側にスラスト軸受部を形成する一方
のスラスト受面を有するスラスト受部材を備えた外筒と
、前記ラジアル内面と微少すきまをもって対向する位置
の外局面にラジアル外面を有し、かつ軸端に前記外筒の
スラスト受面と対向する他方のスラスト受面を有する軸
体な備え、かつ前記互に対向する各受面の一力または両
方に動圧発生みぞな備え、しかも軸受部に潤?1剤を有
する動圧形の複合軸受装置において、前記ラジアル軸受
部が、前記スラスト軸受部よりも粘度の低い潤渭剤で潤
消されていることを%徴とした動圧形の複合軸受装置。 (2、特許請求の範囲第1項において、スラスト軸受部
が、動圧発生みぞを有する平面軸受または球面軸受であ
る動圧形の複合軸受装置。 (3)I¥j許請求の範囲第1項または第2項において
、外筒の内周面と軸体の外局面との間の半径方向すきま
のうち、ラジアル軸受部を除イ他の部分の半径方向すき
まtlが、前記ラジアル軸受部のすきまtlよりも大き
くなっている動圧形の複合軸受装置。 (4)特許請求の範囲第3項において、ラジアル軸受部
の半径方向すきまtlよりも大きい半径方向すきまt−
の部分が、外筒に設けられた空気抜き穴によって外部と
連通している動圧形の複合軸受装置(5)特許請求の範
囲第3項または第4項において、すきまtlを形成して
いる円筒孔のラジアル内面が軸体のラジアル外面に設け
た動圧発生みぞの軸方向長さよりも長くなっている動圧
形の複合軸受装置。
[Scope of Claims] (1) It has a circular hole into which the shaft body is inserted, and has a radial inner surface forming a radial bearing portion on the inner peripheral surface of the circular hole, and a thrust bearing at one end side of the circular hole. an outer cylinder having a thrust receiving member having one thrust receiving surface forming a part, and a radial outer surface on an outer surface facing the radial inner surface with a slight clearance, and a thrust bearing member of the outer cylinder at the shaft end. The shaft body has a thrust bearing surface facing the bearing surface, and a dynamic pressure generating groove is provided in one or both of the mutually facing bearing surfaces, and the bearing part is provided with moisture. A dynamic pressure type composite bearing device having a lubricating agent, wherein the radial bearing portion is lubricated with a lubricant having a lower viscosity than the thrust bearing portion. . (2. Claim 1, wherein the thrust bearing portion is a flat bearing or spherical bearing having a hydrodynamic groove. (3) Claim 1. In item 1 or 2, the radial clearance tl in the radial clearance between the inner circumferential surface of the outer cylinder and the outer circumferential surface of the shaft body, excluding the radial bearing part, is equal to A dynamic pressure type composite bearing device in which the clearance is larger than the clearance tl. (4) In claim 3, the radial clearance t- is larger than the radial clearance tl of the radial bearing portion.
A dynamic pressure type composite bearing device (5) in which the portion communicates with the outside through an air vent hole provided in the outer cylinder. A dynamic pressure type composite bearing device in which the radial inner surface of the hole is longer than the axial length of the dynamic pressure generation groove provided on the radial outer surface of the shaft body.
JP17251784A 1984-08-21 1984-08-21 Dynamic pressure type composite bearing device Granted JPS60121308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17251784A JPS60121308A (en) 1984-08-21 1984-08-21 Dynamic pressure type composite bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17251784A JPS60121308A (en) 1984-08-21 1984-08-21 Dynamic pressure type composite bearing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9329780A Division JPS5718812A (en) 1980-07-10 1980-07-10 Dynamic pressure type spindle

Publications (2)

Publication Number Publication Date
JPS60121308A true JPS60121308A (en) 1985-06-28
JPS624565B2 JPS624565B2 (en) 1987-01-30

Family

ID=15943419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17251784A Granted JPS60121308A (en) 1984-08-21 1984-08-21 Dynamic pressure type composite bearing device

Country Status (1)

Country Link
JP (1) JPS60121308A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312014U (en) * 1989-06-14 1991-02-07
JPH03221140A (en) * 1989-11-20 1991-09-30 Nikki Universal Co Ltd Adsorption treatment agent
JPH0448414U (en) * 1990-08-27 1992-04-24
JPH06346896A (en) * 1993-06-10 1994-12-20 Daikin Ind Ltd Bearing device for turbo rotating machine
EP0697534A3 (en) * 1994-07-22 1996-09-25 Quantum Corp A self-replenishing hydrodynamic bearing
JP2002070842A (en) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd Fluid bearing apparatus
WO2007111218A1 (en) * 2006-03-24 2007-10-04 Ntn Corporation Fluid bearing device
JP2018093768A (en) * 2016-12-09 2018-06-21 株式会社シマノ Reciprocation mechanism of fishing reel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312014U (en) * 1989-06-14 1991-02-07
JPH03221140A (en) * 1989-11-20 1991-09-30 Nikki Universal Co Ltd Adsorption treatment agent
JPH0448414U (en) * 1990-08-27 1992-04-24
JPH06346896A (en) * 1993-06-10 1994-12-20 Daikin Ind Ltd Bearing device for turbo rotating machine
EP0697534A3 (en) * 1994-07-22 1996-09-25 Quantum Corp A self-replenishing hydrodynamic bearing
JP2002070842A (en) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd Fluid bearing apparatus
WO2007111218A1 (en) * 2006-03-24 2007-10-04 Ntn Corporation Fluid bearing device
US8215843B2 (en) 2006-03-24 2012-07-10 Ntn Corporation Fluid dynamic bearing device
US8562219B2 (en) 2006-03-24 2013-10-22 Ntn Corporation Fluid dynamic bearing device
JP2018093768A (en) * 2016-12-09 2018-06-21 株式会社シマノ Reciprocation mechanism of fishing reel

Also Published As

Publication number Publication date
JPS624565B2 (en) 1987-01-30

Similar Documents

Publication Publication Date Title
JP2605981Y2 (en) Dynamic pressure bearing device
JPH03149410A (en) Dynamic pressure bearing device
JPS60121308A (en) Dynamic pressure type composite bearing device
Ochoński Sliding bearings lubricated with magnetic fluids
JP4017818B2 (en) Ball bearing
US7249893B2 (en) Rolling bearing and rod end bearing
JPS612915A (en) Rotary device
JPH033805B2 (en)
RU2208723C2 (en) Hydrostatic bearing
JPS6133287Y2 (en)
JPS6216767Y2 (en)
JPH03260415A (en) Dynamic pressure fluid bearing device
JP3892995B2 (en) Hydrodynamic bearing unit
JPS6319620Y2 (en)
JPS5817219A (en) Dynamic-pressure radial bearing device
CN108679088A (en) A kind of modified rolling bearing
JPS6350564B2 (en)
JPS60143223A (en) Spindle unit
JPH11108053A (en) Motor bearing structure
JP3845972B2 (en) Hydrodynamic bearing device
JPS6165905A (en) Dynamic pressure bearing system
JPS6319622Y2 (en)
JPH10176716A (en) Magnetic fluid retaining bearing unit
JPS6152414A (en) Dynamic-pressure type fluid bearing unit
JPS6311384Y2 (en)