JPH10113832A - Manufacture of dynamic pressure fluid beaking - Google Patents

Manufacture of dynamic pressure fluid beaking

Info

Publication number
JPH10113832A
JPH10113832A JP8287394A JP28739496A JPH10113832A JP H10113832 A JPH10113832 A JP H10113832A JP 8287394 A JP8287394 A JP 8287394A JP 28739496 A JP28739496 A JP 28739496A JP H10113832 A JPH10113832 A JP H10113832A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
cutting tool
pressure generating
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8287394A
Other languages
Japanese (ja)
Inventor
Masahisa Tsuchiya
昌久 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP8287394A priority Critical patent/JPH10113832A/en
Publication of JPH10113832A publication Critical patent/JPH10113832A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/60Shaping by removing material, e.g. machining

Abstract

PROBLEM TO BE SOLVED: To very easily form dynamic pressure generating grooves and set the number of grooves and their inclination angle at will. SOLUTION: A spiral dynamic pressure generating groove 5 can be formed in the internal peripheral face of a bearing 4 by inserting a cutting tool 1 while rotating along the internal peripheral face of the bearing 4 by means of the groove forming edges 2 arranged in the external periphery of this cutting tool 1. In this constitution, the number and shape of dynamic pressure generating grooves 5 can be set at will by changing the rotation speed of the cutting tool 1 and the shape and number of the groove forming edges 2. It can be not the cutting tool but the bearing that is rotated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コンパクトディスク駆
動装置やCD−ROM駆動装置等のディスク駆動源とし
て使用されるスピンドルモータのシャフトを回転自在に
支持してなる動圧流体軸受の製造方法に係り、さらに詳
しくは簡単な方法による動圧発生溝の加工方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a hydrodynamic bearing which rotatably supports a shaft of a spindle motor used as a disk drive source of a compact disk drive, a CD-ROM drive, or the like. More particularly, the present invention relates to a method for machining a dynamic pressure generating groove by a simple method.

【0002】[0002]

【従来の技術】従来から、コンパクトディスク駆動装置
やCD−ROM駆動装置等のディスク駆動源として使用
されるスピンドルモータのシャフトを、金属体あるいは
焼結体からなる軸受により回転自在に支持しており、ま
た最近では、側圧機能を設けずにシャフトの振れを抑え
ようとして所謂動圧流体軸受なるものが種々提案されて
おり、例えば、実公昭47−36739号公報や特開平
3−107612号公報に開示されたものがある。
2. Description of the Related Art Conventionally, a shaft of a spindle motor used as a disk drive source of a compact disk drive or a CD-ROM drive has been rotatably supported by a bearing made of a metal body or a sintered body. In recent years, various types of so-called hydrodynamic bearings have been proposed in order to suppress shaft runout without providing a lateral pressure function. For example, Japanese Patent Application Laid-Open No. 47-36639 and Japanese Patent Application Laid-Open No. 3-107612 disclose various methods. Some have been disclosed.

【0003】上記のものは、通常の焼結含油軸受の製造
において、シャフトと軸受とが軸方向に関して帯状接触
あるいは線接触をなすように、加圧成形時に最終製品形
状に近いある程度の軸受形状に形成したものを焼結し、
その後サイジング処理を施すことによって軸方向に形成
された帯状あるいは線状の軸受内壁面を押圧して密なる
壁面を形成し、この壁面とシャフトとの間で潤滑に必要
な油膜が形成されることになり、その動圧軸受としての
機能を果たしていた。
[0003] In the production of ordinary sintered oil-impregnated bearings, the above-mentioned bearings are formed into a certain degree of bearing shape close to the shape of the final product at the time of pressure molding so that the shaft and the bearing make a band-like contact or a linear contact in the axial direction. Sinter the formed one,
After that, the sizing process is applied to press the belt-shaped or linear bearing inner wall surface formed in the axial direction to form a dense wall surface, and an oil film necessary for lubrication is formed between this wall surface and the shaft And fulfilled its function as a dynamic pressure bearing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では、成形時において最終製品形状に近いあ
る程度の軸受内周面が得られるように、予め成形型をそ
の製品形状に合わせて加工しておかなければならず、形
状が複雑になることからその加工のために費用も時間も
かかってしまう。また、サイジング処理を行うためには
動圧発生溝を軸方向に形成しておく必要があり、このよ
うな動圧発生溝ではシャフトの外周面に均一な油膜を形
成することができず、シャフトを良好な状態で支持する
ことができない。
However, in the above configuration, the molding die is preliminarily worked in accordance with the product shape so that a certain degree of bearing inner peripheral surface close to the final product shape is obtained at the time of molding. Since the shape is complicated, the processing is costly and time-consuming. In addition, in order to perform the sizing process, it is necessary to form a dynamic pressure generating groove in the axial direction, and such a dynamic pressure generating groove cannot form a uniform oil film on the outer peripheral surface of the shaft. Cannot be supported in good condition.

【0005】そこで、本発明では、上記したような問題
を解決して、極めて簡単に動圧発生溝を形成させること
ができ、しかも動圧発生溝の本数並びに傾斜角度を任意
に設定することのできる動圧流体軸受の製造方法を提供
することにある。
Therefore, the present invention solves the above-mentioned problems and makes it possible to extremely easily form the dynamic pressure generating grooves, and to arbitrarily set the number and the inclination angle of the dynamic pressure generating grooves. It is an object of the present invention to provide a method for manufacturing a hydrodynamic bearing that can be used.

【0006】[0006]

【課題を解決するための手段】本発明は、軸受の内周面
に沿って切削工具を回転させながら挿入させ、この切削
工具の外周に設けられた溝加工用刃で軸受の内周面に螺
旋状の動圧発生溝を形成することができ、このようにす
れば、切削工具の回転速度、溝加工用刃の形状並びに本
数を変更することで、動圧発生溝を任意に設定すること
ができる。また、回転させるのは切削工具でなく軸受で
あっても差し支えない。
SUMMARY OF THE INVENTION According to the present invention, a cutting tool is inserted while being rotated along the inner peripheral surface of the bearing, and the groove is provided on the outer peripheral surface of the cutting tool. A spiral dynamic pressure generation groove can be formed, and in this case, the dynamic pressure generation groove can be arbitrarily set by changing the rotation speed of the cutting tool, the shape and the number of the groove processing blades. Can be. In addition, a bearing may be rotated instead of a cutting tool.

【0007】[0007]

【発明の実施の形態】本発明は、シャフトを回転自在に
支持し、前記シャフトとの摺動面に動圧発生溝を形成し
てなる動圧流体軸受の製造方法において、溝加工用刃を
有する切削工具が軸受との相対的な回転関係を伴ってそ
の軸孔内を移動することにより、前記動圧発生溝を形成
してなることを特徴とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a hydrodynamic bearing in which a shaft is rotatably supported and a dynamic pressure generating groove is formed on a sliding surface with the shaft. The dynamic pressure generating groove is formed by moving a cutting tool having a relative rotational relationship with a bearing in a shaft hole thereof.

【0008】また、前記切削工具もしくは前記軸受のい
ずれかを所定方向に回転させて軸孔内の所定位置まで移
動させる工程と、該方向とは逆方向に回転させて軸孔内
の未加工部分を移動させる工程とにより、前記軸受の内
周面にV字状の動圧発生溝を形成させると効果的であ
る。また、前記軸受は焼結含油軸受からなり、該軸受の
両端部には前記切削工具により動圧発生溝が形成され、
中央部には未加工部分を有するように形成しておくとよ
い。
A step of rotating either the cutting tool or the bearing in a predetermined direction to move it to a predetermined position in a shaft hole; and rotating the cutting tool or the bearing in a direction opposite to the direction to rotate an unprocessed portion in the shaft hole. It is effective to form a V-shaped dynamic pressure generating groove on the inner peripheral surface of the bearing by the step of moving the bearing. Further, the bearing is formed of a sintered oil-impregnated bearing, and a dynamic pressure generating groove is formed at both ends of the bearing by the cutting tool,
It is preferable to form an unprocessed portion in the center.

【0009】[0009]

【第1の実施例】図1は、本発明の第1の実施例におけ
る動圧流体軸受の製造方法を示す説明図であり、図2
は、図1における切削工具を示した図である。図1にお
いて、1は切削工具であり、この切削工具1はその一端
に4条の溝加工用刃2を有している。この溝加工用刃2
は4条である必要はなくその本数については任意に設定
可能である。
FIG. 1 is an explanatory view showing a method of manufacturing a hydrodynamic bearing according to a first embodiment of the present invention.
FIG. 2 is a diagram showing the cutting tool in FIG. 1. In FIG. 1, reference numeral 1 denotes a cutting tool, and this cutting tool 1 has four grooves 2 at one end thereof. This grooving blade 2
Does not need to be four, and the number thereof can be set arbitrarily.

【0010】また、図2に示すように溝加工用刃2の形
成された側にガイド部3を形成しておけば、軸受4の軸
孔内に挿入するときにその位置決め機能を果たすことが
でき、容易に溝加工用刃2を軸孔内に挿入させることが
できる。また、溝加工用刃2の形状は、図3(a)乃至
(c)に示すように容易に変更できるので、動圧発生溝
5の形状も溝加工用刃2にあわせてさまざまな形状に設
定することができる。
If the guide portion 3 is formed on the side where the groove 2 is formed as shown in FIG. 2, the positioning function can be achieved when the guide portion 3 is inserted into the shaft hole of the bearing 4. The groove processing blade 2 can be easily inserted into the shaft hole. Further, since the shape of the groove processing blade 2 can be easily changed as shown in FIGS. 3A to 3C, the shape of the dynamic pressure generating groove 5 can be changed to various shapes according to the groove processing blade 2. Can be set.

【0011】このような切削工具1を用いることによ
り、まず、軸受4を治具等に固定しておき、その軸孔内
に切削工具1を回転させながら挿入させていく。する
と、溝加工用刃2によって軸受4の内周面には螺旋状の
動圧発生溝5が形成されることになる。ここで、切削工
具1の回転速度を任意に設定すれば動圧発生溝5の傾斜
角度を容易に調整することができるし、溝加工用刃の形
状並びに本数を変更することにより、簡単に動圧発生溝
の溝形状あるいはその間隔を切り替えることができる。
By using such a cutting tool 1, the bearing 4 is first fixed to a jig or the like, and the cutting tool 1 is inserted into the shaft hole while rotating. Then, a spiral dynamic pressure generating groove 5 is formed on the inner peripheral surface of the bearing 4 by the groove processing blade 2. Here, if the rotation speed of the cutting tool 1 is arbitrarily set, the inclination angle of the dynamic pressure generating groove 5 can be easily adjusted, and the dynamic force can be easily adjusted by changing the shape and number of the groove processing blades. The groove shape of the pressure generating groove or the interval thereof can be switched.

【0012】また、切削工具1を固定状態にしておき、
軸受4を回転させるようにしても差し支えなく、切削工
具1と軸受4との挿入に関して言えば、切削工具1を往
復動させるかあるいは軸受4を往復動させるかもしくは
その組み合わせであっても全く問題ない。
Also, the cutting tool 1 is kept in a fixed state,
There is no problem if the bearing 4 is rotated. Regarding the insertion of the cutting tool 1 and the bearing 4, even if the cutting tool 1 is reciprocated, the bearing 4 is reciprocated, or a combination thereof, there is no problem. Absent.

【0013】[0013]

【第2の実施例】図4は、本発明の第2の実施例におけ
る動圧流体軸受の製造方法を示す説明図であり、図5
は、本発明による動圧発生溝の加工例を示した図であ
る。まず、図4(a)において、前述した実施例と同様
に軸受4の内周面に動圧発生溝5を形成していき、所定
の位置、例えば軸受長さの中心まで掘り進んできたとこ
ろで、今度は図4(b)に示すように切削工具1を同図
(a)とは逆方向に回転させて更に掘り進めていく。
Second Embodiment FIG. 4 is an explanatory view showing a method of manufacturing a hydrodynamic bearing according to a second embodiment of the present invention.
FIG. 3 is a view showing a working example of a dynamic pressure generating groove according to the present invention. First, in FIG. 4 (a), a dynamic pressure generating groove 5 is formed on the inner peripheral surface of the bearing 4 in the same manner as in the above-described embodiment, and when it is dug to a predetermined position, for example, the center of the bearing length. Then, as shown in FIG. 4B, the cutting tool 1 is rotated in a direction opposite to that of FIG.

【0014】このようにすると、軸受4の内周面にはV
字状の動圧発生溝15を形成させることができ、より安
定してオイルを保持させることでシャフトの外周面には
均一な油膜を形成することができる。なお、動圧発生溝
15の形状等について及び動圧発生溝を形成する際の回
転対象を切削工具1あるいは軸受4とするかについて
は、上記第1の実施例と同様に実施可能であることは言
うまでもない。
Thus, the inner peripheral surface of the bearing 4 has V
It is possible to form the dynamic pressure generating groove 15 in the shape of a letter, and it is possible to form a uniform oil film on the outer peripheral surface of the shaft by holding oil more stably. Note that the shape of the dynamic pressure generating groove 15 and the like and whether to rotate the cutting tool 1 or the bearing 4 when forming the dynamic pressure generating groove can be implemented in the same manner as in the first embodiment. Needless to say.

【0015】そして、このような動圧流体軸受の製造方
法によれば、図5に示すようなさまざまな形状の動圧流
体軸受を提供することが可能となる。例えば、図5
(a)においては、上記実施例にて説明したようにV字
状の動圧発生溝15が形成できるのは無論のこと、同図
(b)に示すように、軸受4の両端開口部から切削工具
1を挿入させることによって、その長さ方向の中心部に
動圧発生溝の未加工部分を残して動圧発生溝25を形成
することも可能である。
According to such a method of manufacturing a hydrodynamic bearing, it is possible to provide hydrodynamic bearings having various shapes as shown in FIG. For example, FIG.
In (a), it goes without saying that the V-shaped dynamic pressure generating groove 15 can be formed as described in the above embodiment, and as shown in FIG. By inserting the cutting tool 1, it is also possible to form the dynamic pressure generating groove 25 while leaving the unprocessed portion of the dynamic pressure generating groove at the center in the length direction.

【0016】このようにすれば、同図(c)に示すよう
に、軸受4がその軸孔内に段差を有する場合であって
も、同図(b)と同様にして動圧発生溝35を形成させ
ることができ、例えば、軸受が焼結含油軸受であれば、
低速時には通常の焼結含油軸受として潤滑作用し、高速
時には両端部に形成された動圧発生溝によって動圧流体
軸受として作用する。
In this way, as shown in FIG. 3C, even when the bearing 4 has a step in its shaft hole, the dynamic pressure generating groove 35 is formed in the same manner as in FIG. Can be formed, for example, if the bearing is a sintered oil-impregnated bearing,
At low speeds, it acts as a normal oil-impregnated sintered bearing. At high speeds, it acts as a hydrodynamic bearing by means of hydrodynamic grooves formed at both ends.

【0017】なお、本発明は上記各実施例に限らず、そ
の主旨を逸脱しない範囲において種々変更して実施可能
である。例えば、図4では軸受を固定しておきその軸孔
内を切削工具が回転しながら移動し、所定位置で逆回転
させてV字状の動圧発生溝を形成させるようにしたもの
であるが、これとは別に、切削工具を所定方向の回転に
より軸孔内の所定位置まで移動させたところで一旦切削
工具を抜き、軸受を反転させて、今度は切削工具を逆回
転させることによってV字状の動圧発生溝を形成しても
全く差し支えない。
The present invention is not limited to the above embodiments, but can be implemented with various modifications without departing from the scope of the invention. For example, in FIG. 4, the bearing is fixed, and the cutting tool moves while rotating in the shaft hole, and reversely rotates at a predetermined position to form a V-shaped dynamic pressure generating groove. Separately, when the cutting tool is moved to a predetermined position in the shaft hole by rotating in a predetermined direction, the cutting tool is once pulled out, the bearing is inverted, and then the cutting tool is rotated in the reverse direction to form a V-shape. Even if the dynamic pressure generating groove is formed, there is no problem at all.

【0018】[0018]

【発明の効果】以上述べたように本発明によれば、外周
に溝加工用刃を有する切削工具が軸受との相対的な回転
関係を伴ってその軸孔内を移動することにより、動圧発
生溝を形成するよう構成したので、切削部材の回転速
度、溝加工用刃の形状並びに本数を変更することで、さ
まざまな動圧発生溝を簡単な方法で形成することができ
る。
As described above, according to the present invention, the dynamic pressure can be increased by moving the cutting tool having the groove machining blade on the outer periphery in the shaft hole with the relative rotational relationship with the bearing. Since the configuration is such that the generation grooves are formed, various dynamic pressure generation grooves can be formed by a simple method by changing the rotational speed of the cutting member, the shape and number of the groove processing blades.

【0019】また、切削工具もしくは動圧流体軸受のい
ずれかを所定方向に回転させた後、該方向とは反対に回
転させることにより、簡単な方法で動圧流体軸受の内周
面にV字状の動圧発生溝を形成させることができ、より
安定したオイル保持によりシャフトの外周面には均一な
油膜を形成することができる。
Further, after rotating either the cutting tool or the hydrodynamic bearing in a predetermined direction, by rotating the cutting tool or the hydrodynamic bearing in the opposite direction, the V-shape is formed on the inner peripheral surface of the hydrodynamic bearing in a simple manner. A dynamic oil pressure generating groove can be formed, and a uniform oil film can be formed on the outer peripheral surface of the shaft by more stable oil holding.

【0020】また、焼結含油軸受からなる動圧流体軸受
の両端から切削部材を挿入し、中央部に未加工部分を有
するように形成すれば、高速から低速に至るまで安定し
たシャフト保持を実現できる。
Also, if a cutting member is inserted from both ends of a hydrodynamic bearing composed of a sintered oil-impregnated bearing and is formed so as to have an unprocessed portion at the center, stable shaft holding from high speed to low speed can be realized. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における動圧流体軸受の
製造方法を示す説明図である。
FIG. 1 is an explanatory view showing a method for manufacturing a hydrodynamic bearing according to a first embodiment of the present invention.

【図2】図1における切削工具を示した図である。FIG. 2 is a view showing the cutting tool in FIG. 1;

【図3】図1あるいは図2における切削工具の溝加工用
刃の形状を示した図である。
FIG. 3 is a view showing a shape of a groove machining blade of the cutting tool in FIG. 1 or FIG. 2;

【図4】本発明の第2の実施例における動圧流体軸受の
製造方法を示す説明図である。
FIG. 4 is an explanatory view showing a method of manufacturing a hydrodynamic bearing according to a second embodiment of the present invention.

【図5】本発明による動圧発生溝の加工例を示した図で
ある。
FIG. 5 is a diagram showing a working example of a dynamic pressure generating groove according to the present invention.

【符号の説明】[Explanation of symbols]

1‥‥切削工具 2‥‥溝加工用刃 4‥‥軸受 5‥‥動圧発生溝 1) Cutting tool 2) Groove cutting blade 4) Bearing 5) Dynamic pressure generating groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シャフトを回転自在に支持し、前記シャ
フトとの摺動面に動圧発生溝を形成してなる動圧流体軸
受の製造方法において、溝加工用刃を有する切削工具が
軸受との相対的な回転関係を伴ってその軸孔内を移動す
ることにより、前記動圧発生溝を形成してなることを特
徴とする動圧流体軸受の製造方法。
1. A method of manufacturing a hydrodynamic bearing in which a shaft is rotatably supported and a dynamic pressure generating groove is formed on a sliding surface with the shaft, wherein a cutting tool having a groove processing blade is provided with a bearing. Wherein the dynamic pressure generating groove is formed by moving in the shaft hole with the relative rotational relationship of (1).
【請求項2】 前記切削工具もしくは前記軸受のいずれ
かを所定方向に回転させて軸孔内の所定位置まで移動さ
せる工程と、該方向とは逆方向に回転させて軸孔内の未
加工部分を移動させる工程とにより、前記軸受の内周面
にV字状の動圧発生溝を形成してなる請求項1記載の動
圧流体軸受の製造方法。
2. A step of rotating either the cutting tool or the bearing in a predetermined direction to move it to a predetermined position in a shaft hole, and rotating the cutting tool or the bearing in a direction opposite to the direction to rotate the unprocessed portion in the shaft hole. 2. The method of manufacturing a hydrodynamic bearing according to claim 1, wherein the step of moving the groove forms a V-shaped dynamic pressure generating groove on the inner peripheral surface of the bearing.
【請求項3】 前記軸受は焼結含油軸受からなり、該軸
受の両端部には前記切削工具により動圧発生溝が形成さ
れ、中央部には未加工部分を有するようにした請求項1
記載の動圧流体軸受の製造方法。
3. The bearing comprises a sintered oil-impregnated bearing, wherein a dynamic pressure generating groove is formed at both ends of the bearing by the cutting tool, and a central portion has an unprocessed portion.
A manufacturing method of the hydrodynamic bearing according to the above.
JP8287394A 1996-10-09 1996-10-09 Manufacture of dynamic pressure fluid beaking Pending JPH10113832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8287394A JPH10113832A (en) 1996-10-09 1996-10-09 Manufacture of dynamic pressure fluid beaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8287394A JPH10113832A (en) 1996-10-09 1996-10-09 Manufacture of dynamic pressure fluid beaking

Publications (1)

Publication Number Publication Date
JPH10113832A true JPH10113832A (en) 1998-05-06

Family

ID=17716787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8287394A Pending JPH10113832A (en) 1996-10-09 1996-10-09 Manufacture of dynamic pressure fluid beaking

Country Status (1)

Country Link
JP (1) JPH10113832A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6647189B2 (en) 2000-04-27 2003-11-11 Hitachi Koki Co., Ltd. Image forming apparatus having an optical fiber array
US7059052B2 (en) 1997-03-06 2006-06-13 Ntn Corporation Hydrodynamic type porous oil-impregnated bearing
CN100363123C (en) * 2004-12-10 2008-01-23 鸿富锦精密工业(深圳)有限公司 Tool for manufacturing fluid bearing
CN102200169A (en) * 2010-03-24 2011-09-28 发那科株式会社 Fluid bearing structure and method for forming bearing concaves of fluid bearing structure
US8277123B2 (en) 2009-02-04 2012-10-02 Fanuc Ltd Fluid bearing structure and method of forming bearing concaves in fluid bearing structure
JP2016105005A (en) * 2014-12-01 2016-06-09 日本電産株式会社 Fluid bearing device, spindle motor, and disc drive unit
EP3396186A4 (en) * 2015-12-25 2019-07-24 Mitsubishi Materials Corporation Sintered oil-retaining bearing and process for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7059052B2 (en) 1997-03-06 2006-06-13 Ntn Corporation Hydrodynamic type porous oil-impregnated bearing
US6647189B2 (en) 2000-04-27 2003-11-11 Hitachi Koki Co., Ltd. Image forming apparatus having an optical fiber array
CN100363123C (en) * 2004-12-10 2008-01-23 鸿富锦精密工业(深圳)有限公司 Tool for manufacturing fluid bearing
US8277123B2 (en) 2009-02-04 2012-10-02 Fanuc Ltd Fluid bearing structure and method of forming bearing concaves in fluid bearing structure
CN102200169A (en) * 2010-03-24 2011-09-28 发那科株式会社 Fluid bearing structure and method for forming bearing concaves of fluid bearing structure
JP2016105005A (en) * 2014-12-01 2016-06-09 日本電産株式会社 Fluid bearing device, spindle motor, and disc drive unit
EP3396186A4 (en) * 2015-12-25 2019-07-24 Mitsubishi Materials Corporation Sintered oil-retaining bearing and process for producing the same
US10570959B2 (en) 2015-12-25 2020-02-25 Mitsubishi Materials Corporation Oil-retaining sintered bearing and method of producing the same

Similar Documents

Publication Publication Date Title
JPH03107612A (en) Oil-impregnated sintered bearing
JPH10113832A (en) Manufacture of dynamic pressure fluid beaking
JPH07299524A (en) Device for manufacturing fluid bearing
JPH1046212A (en) Sintered oilless bearing and its manufacture
JPH10306827A (en) Dynamic pressure type oil-impregnated sintered bearing and manufacture thereof
US6543139B2 (en) Machining tool for manufacturing radial bearings, and manufacturing apparatus and manufacturing method using the same
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP2003035310A (en) Structure of dynamic pressure sleeve bearing
KR100524431B1 (en) Dynamic pressure bearing apparatus
US5924798A (en) Hydrodynamic bearing apparatus and method for manufacturing thereof
US7789565B2 (en) Fluid dynamic bearing apparatus
JP3519569B2 (en) Method of manufacturing rotary bearing having dynamic pressure generating groove for small motor
JP3602330B2 (en) Dynamic pressure type sliding bearing and method of manufacturing the same
JPS6017537Y2 (en) Split type hydrodynamic bearing sleeve
JP3572796B2 (en) Hydrodynamic bearing
JPH07110028A (en) Dynamic pressure type fluid bearing
JP3985490B2 (en) Thrust dynamic pressure bearing, thrust dynamic pressure bearing manufacturing method, and thrust dynamic pressure bearing press mold manufacturing method
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JPH09317770A (en) Oilles bearing with dynamic pressure generating mechanism and manufacture and using method for oleo-bearing
JP2001263343A (en) Fluid bearing device
JPS63245316A (en) Bearing race way forming method
JPS5973137A (en) Manufacture of spiral grooved bearing housing
JP2006125461A (en) Dynamic pressure bearing manufacturing method
JP3311258B2 (en) Dynamic pressure bearing device and method of manufacturing the same
JPH0457888B2 (en)