JPS6017537Y2 - Split type hydrodynamic bearing sleeve - Google Patents

Split type hydrodynamic bearing sleeve

Info

Publication number
JPS6017537Y2
JPS6017537Y2 JP9210480U JP9210480U JPS6017537Y2 JP S6017537 Y2 JPS6017537 Y2 JP S6017537Y2 JP 9210480 U JP9210480 U JP 9210480U JP 9210480 U JP9210480 U JP 9210480U JP S6017537 Y2 JPS6017537 Y2 JP S6017537Y2
Authority
JP
Japan
Prior art keywords
sleeve
bearing sleeve
split type
pressure generating
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9210480U
Other languages
Japanese (ja)
Other versions
JPS5716625U (en
Inventor
恭三郎 古村
克彦 田中
博美 杉
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP9210480U priority Critical patent/JPS6017537Y2/en
Publication of JPS5716625U publication Critical patent/JPS5716625U/ja
Application granted granted Critical
Publication of JPS6017537Y2 publication Critical patent/JPS6017537Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【考案の詳細な説明】 この考案は主として高速回転で低騒音、高精度を要求さ
れる機器に用いられる動圧型のみぞつき流体軸受の改良
に関するものである。
[Detailed Description of the Invention] This invention relates to the improvement of a hydrodynamic grooved hydrodynamic bearing mainly used in equipment that requires high speed rotation, low noise, and high precision.

従来マイクロモーターの軸受部や音響機器のスピンドル
などにひろく用いられている動圧型のみぞつき流体軸受
は、例へば第1図に示すように、円筒形状の孔の内周面
の軸心に直角な同一平面上で傾斜方向の反転する屈曲し
たみぞの形態をもつ複数の圧力発生用みぞ(ヘリングボ
ーンみぞ)2a、2a・・・・・・を有するスリーブ1
aの内周面3aに軸4aをはめ合はせ、該軸4aと内周
面3aとの間に潤滑剤を介在させ、軸4aの回転により
潤滑剤に圧力を発生させて軸を支持する構造であるが、
前記スリーブの内周面3aに設けた屈曲した圧力発生み
ぞ2a、2a・・・・・・の成形方法には、通常プラス
ティックや可塑性合金などからなるこの種の部品の成形
に用いられる射出成形法や圧縮成形法などのように、成
形工具を用いてみぞを溶解固化せしめるか、塑性的に成
形する方法が考えられるが、両方法ともに成形後には屈
曲した溝形前の干渉によって、成形の際に使用し、みぞ
に密着した工具を該みぞから抜取ることが出来ないため
に利用出来ず、やむを得ず現在は電気化学的方法を組み
合はせて被加工物のみぞを溶解せしめて成形する1フオ
トエツチング法ヨを用いて圧力発生みぞ2a、2a・・
・・・・を成形しているが、この方法は内容が複雑で工
程数が多く、合理化が困難なために大量生産には全く不
向きであり、この形式の流体軸受は優れた性能をもちな
がら原価高のため、あまり一般に普及しにくい欠点をも
っている。
For example, as shown in Figure 1, dynamic pressure type grooved hydrodynamic bearings, which have been widely used in the bearings of micro motors and the spindles of audio equipment, have a cylindrical hole that is perpendicular to the axis of the inner peripheral surface. Sleeve 1 with multiple pressure generation (Hilling Bone Mizo) 2a, 2a ... with multiple pressure occurrence (Hilling Bone Mizo), which has a bending form of a tilt direction on the same plane
A shaft 4a is fitted onto the inner circumferential surface 3a of a, a lubricant is interposed between the shaft 4a and the inner circumferential surface 3a, and pressure is generated in the lubricant by rotation of the shaft 4a to support the shaft. Although the structure is
The curved pressure generating grooves 2a, 2a provided on the inner circumferential surface 3a of the sleeve are formed by injection molding, which is normally used for molding this type of parts made of plastic or plastic alloys. Methods of melting and solidifying the grooves using a forming tool, such as compression molding and compression molding, or forming them plastically can be considered, but in both methods, after forming, interference between the bent grooves causes problems during forming. This method is currently used in combination with electrochemical methods to melt the grooves of the workpiece and form it.1 Pressure generation grooves 2a, 2a... are formed using the photoetching method.
However, this method is completely unsuitable for mass production because it is complicated, requires a large number of steps, and is difficult to rationalize. Although this type of hydrodynamic bearing has excellent performance, Due to its high cost, it has the drawback of not being widely popular.

この考案は従来品のもつ前述のごとき欠点を補い、安価
でかつ均一な品質をもったみぞつき流体軸受のスリーブ
を提供するものである。
This invention compensates for the above-mentioned drawbacks of conventional products and provides a grooved hydrodynamic bearing sleeve that is inexpensive and of uniform quality.

次にこの考案の流体軸受用スリーブを第2図および第3
図に示した代表的な実施例について説明すると、第2図
および第3図はそれぞれこの考案による流体軸受スリー
ブの第1実施例および第2実施例の要部の断面図であり
、図中符号1および2はそれぞれスリーブ形成部材11
,11・・・・・・および21,21・・・・・・は圧
力発生みぞ、3および4はそれぞれスリーブ1および2
の内周面、5および6はそれぞれスリーブ1および2の
組合はせの接合面である。
Next, the hydrodynamic bearing sleeve of this invention is shown in Figures 2 and 3.
To explain the typical embodiment shown in the figure, FIGS. 2 and 3 are sectional views of the main parts of the first embodiment and the second embodiment of the fluid bearing sleeve according to this invention, respectively, and the reference numeral in the figure 1 and 2 are sleeve forming members 11, respectively.
, 11... and 21, 21... are pressure generation grooves, 3 and 4 are sleeves 1 and 2, respectively.
The inner peripheral surfaces 5 and 6 are joint surfaces of the combined sleeves 1 and 2, respectively.

先ず第2図に示したこの考案の第1実施例について説明
すると、スリーブ形成部材1および2はそれぞれ別体に
形成された円筒型スリーブであり、内周面3および4に
は圧力発生みぞ11,11・・・・・・および21.2
1・・・・・・が形成されているが、前記スリーブ形成
部材1および2の該みぞの形状は、スリーブ形成部材1
および2のについて、全く正反対の捻れ方向をもったリ
ードの一定なスパイラルな形状の溝がスリーブ1および
2ともに末端を切り通して形成されており、成形の際に
は専用工具を用いてみぞの成形を行い、成形後に工具を
一方向に回転させることによって該工具をスリーブ1お
よび2の成形した溝から抜取る事が出来るようになって
おり、かつスリーブ1および2のみぞ11,11・・・
・・・と21,21・・・・・・とは全く正反対な捻れ
方向であるが、その他の諸元は等しく出来ている。
First, the first embodiment of this invention shown in FIG. 2 will be described. The sleeve forming members 1 and 2 are separately formed cylindrical sleeves, and the inner peripheral surfaces 3 and 4 are provided with pressure generating grooves 11. , 11... and 21.2
1... is formed, but the shape of the grooves of the sleeve forming members 1 and 2 is different from that of the sleeve forming member 1.
Regarding 2 and 2, a constant spiral-shaped groove of the lead with completely opposite twisting directions is formed by cutting through the ends of both sleeves 1 and 2, and during molding, a special tool is used to form the groove. By rotating the tool in one direction after forming, the tool can be removed from the grooves formed in the sleeves 1 and 2, and the grooves 11, 11, . . .
... and 21, 21... have completely opposite twisting directions, but other specifications are the same.

このように専用工具によって成形されたスリーブ形成部
材1および2は、内周面3および4が同心になるように
平面5および6で接合の上、圧力発生みぞ11,11お
よび21,21が末端部の位置が相互に一致するように
組合はせて、2個のスリーブ形成部材1および2が完全
に一体として固定されてからは、複数の屈曲したみぞ形
態を有する1個のスリーブとして完威し、軸をはめ合は
せて流体軸受として使用される。
Sleeve forming members 1 and 2 formed by a special tool in this way are joined at flat surfaces 5 and 6 so that inner circumferential surfaces 3 and 4 are concentric, and pressure generating grooves 11, 11 and 21, 21 are located at the ends. After the two sleeve forming members 1 and 2 are assembled so that the positions of the parts match each other and are completely fixed as one body, they can be completely used as one sleeve having a plurality of bent grooves. The shafts are then fitted together and used as a hydrodynamic bearing.

第3図はこの考案の第2実施例を示したもので2個のス
リーブ形成部材のみぞ11,11および21.21は第
1実施例同様に一定のリードをもった逆方向のスパイラ
ルで成形の際に用いた専用工具を互に相反する方向へ回
転させることによって、成形されたみぞから該工具を抜
取ることが出来るようなみそ形状をなしており、2個の
スリーブ形成部材1および2は平面5および6で一体に
接合固定されるが、第1実施例と異って、圧力発生みぞ
11,11・・・・・・と21,21・・・・・・とは
平面5および6を基準とした成形の際のみぞの位相が第
1実施例の場合とは異っているので、2個のスリーブ形
成部材1および2は接合固定して一体化し、1個のスリ
ーブとした後でも、圧力発生みぞ11.11・・・・・
・および21,21・・・・・・は相互に末端部の位置
に喰い違いが生じていて、完全に2本の屈曲した形態の
圧力発生みぞになっていない。
Figure 3 shows a second embodiment of this invention, in which the grooves 11, 11 and 21.21 of the two sleeve forming members are formed by spirals in opposite directions with a constant lead, similar to the first embodiment. The sleeve-forming members 1 and 2 have a groove shape that allows the tool to be removed from the formed groove by rotating the special tool used in the process in opposite directions. are joined and fixed together at the planes 5 and 6, but unlike the first embodiment, the pressure generation grooves 11, 11... and 21, 21... are connected to the planes 5 and 6. Since the phase of the groove during molding based on 6 is different from that in the first embodiment, the two sleeve forming members 1 and 2 are joined and fixed to form one sleeve. Even after the pressure generation groove 11.11...
. . , 21, 21, . . . , there is a difference in the position of the end portions, and the grooves do not completely form two curved pressure generating grooves.

前述のごとくこの考案は、第1実施例および第2実施例
ともに、圧力発生みぞは専用成形工具を回転させること
によって、スリーブの成形されたみぞから抜きとること
が出来るような形状をもっているので、個々のスリーブ
形成部材のみぞ加エフは従来の1フオトエツチング法ヨ
にくらべて非常に能率的であり原価も安くなる。
As mentioned above, in both the first and second embodiments of this invention, the pressure generating groove has a shape that can be extracted from the molded groove of the sleeve by rotating a special molding tool. Grooving of individual sleeve forming members is much more efficient and less costly than the conventional one-photoetching method.

又同−の工具によって連続的に成形を行うので、みぞの
形状精度は均一となって従来にくらべて品質のバラツキ
が減少する。
Furthermore, since the same tool is used to continuously form the grooves, the shape accuracy of the grooves becomes uniform and the variation in quality is reduced compared to the conventional method.

又第2実施例に示したごとく、圧力発生みぞの末端部の
位置が相互に喰い違いをもったスリーブ1およびスリー
ブ2を接合固定して一体化したものも、第1実施例に示
したごとく2個のスリーブのみぞの末端部の位置が互に
一致したスリーブとくらべて、性能上殆んど差のないこ
とが実験的に確認されているので、2個のスリーブ1お
よび2を組み合はせて、1個のスリーブを形成する際に
は第1実施例に示したように、屈曲する圧力発生みぞの
位相を完全に一致させる事は多少面倒な点が多いために
、第2実施例のごとく末端部が不一致であっても、性能
には殆んど差がないので、この第2実施例の方が組合せ
が容易であり、第1実施例よりも更に大きな原価の引下
げが可能である。
Further, as shown in the second embodiment, sleeves 1 and 2, which have mutually offset positions of the end portions of the pressure generating grooves, are joined and fixed to be integrated, as shown in the first embodiment. It has been experimentally confirmed that there is almost no difference in performance compared to a sleeve in which the positions of the ends of the grooves of the two sleeves match each other. Furthermore, when forming one sleeve, as shown in the first embodiment, it is somewhat troublesome to completely align the phases of the curved pressure-generating grooves, so the second embodiment As usual, even if the end parts do not match, there is almost no difference in performance, so the second embodiment is easier to combine, and the cost can be reduced even more than the first embodiment. It is.

なお第1実施例および第2実施例ともに、スリーブ1お
よび2の内周面3および4の接合部にはなんら特殊な成
形を行っていないが、接合部のパリや若干の径差を避け
るために、内周面3および4の接合部に大きく面取を行
って実施することもある。
Note that in both the first and second embodiments, no special molding is performed on the joints between the inner circumferential surfaces 3 and 4 of the sleeves 1 and 2, but in order to avoid cracks at the joints and slight diameter differences. In some cases, the joining portion of the inner circumferential surfaces 3 and 4 is chamfered to a large extent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来使用されている動圧みぞっき流体軸受の要
部の断面図、第2図および第3図はそれぞれこの考案に
よる流体軸受スリーブの実施例の要部の断面図である。 実施例の図中符号1および2はスリーブ形成部材、3お
よび4はそれぞれスリーブ1および2の内周面、5およ
び6はそれぞれスリーブ1および2の接合された平面、
11および21はそれぞれスリーブ1および2の圧力発
生用みぞである。
FIG. 1 is a sectional view of a main part of a conventional hydrodynamic grooved fluid bearing, and FIGS. 2 and 3 are sectional views of main parts of an embodiment of a hydrodynamic bearing sleeve according to this invention. In the drawings of the embodiment, numerals 1 and 2 are sleeve forming members, 3 and 4 are the inner peripheral surfaces of the sleeves 1 and 2, respectively, 5 and 6 are the joined planes of the sleeves 1 and 2, respectively;
11 and 21 are pressure generating grooves in sleeves 1 and 2, respectively.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)ハウジングに保持されたスリーブの円筒孔の内周
面に、該内周面の軸心に直角な同一平面上で傾斜方向の
反転する複数の圧力発生みそを有し、前記内周面とはめ
合う軸との間に潤滑剤を介在させ、軸又はハウジングの
回転によって圧力を発生させる構造の動圧型みぞつき流
体軸受スリーブにおいて、前記スリーブは、それぞれの
内周面に捻れ方向が互に反対でリードが一定のスパイラ
ル状の圧力発生みぞを有する中空円筒状の複数のスリー
ブ形成部材を、端面同志を当接せしめて一体的に結合さ
せて形成したことを特徴とする分割型流体軸受スリーブ
(1) The inner peripheral surface of the cylindrical hole of the sleeve held in the housing has a plurality of pressure generating grooves whose inclination directions are reversed on the same plane perpendicular to the axis of the inner peripheral surface, and the inner peripheral surface A hydrodynamic grooved fluid bearing sleeve has a structure in which a lubricant is interposed between the mating shaft and the shaft or the housing rotates, and pressure is generated by rotation of the shaft or the housing. A split type fluid bearing sleeve characterized in that it is formed by integrally joining a plurality of hollow cylindrical sleeve forming members each having a spiral pressure generating groove with a constant lead and having their end surfaces abutted against each other. .
(2)圧力発生みその末端の位置が、スリーブ形成部材
の当接面において一致した実用新案登録請求の範囲第1
項記載の分割型流体軸受スリーブ。
(2) Utility model registration claim 1 in which the position of the end of the pressure generating member coincides with the contact surface of the sleeve forming member
Split type hydrodynamic bearing sleeve as described in .
(3) 圧力発生みその末端の位置が、スリーブ形成
部材の当接面において不一致である実用新案登録請求の
範囲第1項記載のの分割型流体軸受スリーブ。
(3) The split type fluid bearing sleeve according to claim 1, wherein the positions of the ends of the pressure generating members do not match on the contact surface of the sleeve forming member.
JP9210480U 1980-07-02 1980-07-02 Split type hydrodynamic bearing sleeve Expired JPS6017537Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9210480U JPS6017537Y2 (en) 1980-07-02 1980-07-02 Split type hydrodynamic bearing sleeve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9210480U JPS6017537Y2 (en) 1980-07-02 1980-07-02 Split type hydrodynamic bearing sleeve

Publications (2)

Publication Number Publication Date
JPS5716625U JPS5716625U (en) 1982-01-28
JPS6017537Y2 true JPS6017537Y2 (en) 1985-05-29

Family

ID=29454062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9210480U Expired JPS6017537Y2 (en) 1980-07-02 1980-07-02 Split type hydrodynamic bearing sleeve

Country Status (1)

Country Link
JP (1) JPS6017537Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089444Y2 (en) * 1988-01-28 1996-03-21 株式会社三協精機製作所 Radial hydrodynamic bearing
CN100389270C (en) * 2004-12-11 2008-05-21 鸿富锦精密工业(深圳)有限公司 Method of mfg. fluid bearing

Also Published As

Publication number Publication date
JPS5716625U (en) 1982-01-28

Similar Documents

Publication Publication Date Title
US4339873A (en) Method of making rotor of rotary machines
US5129740A (en) Bearing device for miniature motors and method of making same
JPH04357325A (en) Manufacture of bearing ring of divided bearing
JPS6017537Y2 (en) Split type hydrodynamic bearing sleeve
US6543139B2 (en) Machining tool for manufacturing radial bearings, and manufacturing apparatus and manufacturing method using the same
JP2002257149A (en) Coupling method and cam shaft
JP2001315059A5 (en)
JPH0233884B2 (en)
US4116500A (en) Elongated machine element spherical end
KR0175501B1 (en) Spindle unit and method of assembling the spindle unit
US6246139B1 (en) Spindle motor and method of formation
JPS5825723B2 (en) Manufacturing method of sintered bonded camshaft
JP2595677Y2 (en) Hydrodynamic bearing
JPH0214891Y2 (en)
JP2005155655A (en) Sliding bearing manufacturing method
JP4382958B2 (en) Thrust dynamic pressure bearing device manufacturing method, thrust dynamic pressure bearing device, and spindle motor equipped with thrust dynamic pressure bearing device
JP3625637B2 (en) Manufacturing method of hydrodynamic bearing
JPS6338698Y2 (en)
JPS5973137A (en) Manufacture of spiral grooved bearing housing
JPS5834684B2 (en) Multi-arc sliding bearing device
JPS58207527A (en) Fixture for bearing
JPH0735132A (en) Dynamic pressure bearing unit and manufacture thereof
JP2001003939A (en) Dynamic pressure bearing and manufacture thereof
JP3311258B2 (en) Dynamic pressure bearing device and method of manufacturing the same
JPS6023913B2 (en) Laura