JP2011033156A - Sintered metal bearing and method of manufacturing the same - Google Patents

Sintered metal bearing and method of manufacturing the same Download PDF

Info

Publication number
JP2011033156A
JP2011033156A JP2009181575A JP2009181575A JP2011033156A JP 2011033156 A JP2011033156 A JP 2011033156A JP 2009181575 A JP2009181575 A JP 2009181575A JP 2009181575 A JP2009181575 A JP 2009181575A JP 2011033156 A JP2011033156 A JP 2011033156A
Authority
JP
Japan
Prior art keywords
sintered metal
powder
bearing
metal bearing
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009181575A
Other languages
Japanese (ja)
Other versions
JP5558041B2 (en
Inventor
Fuyuki Ito
冬木 伊藤
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009181575A priority Critical patent/JP5558041B2/en
Priority to PCT/JP2010/053320 priority patent/WO2010106909A1/en
Priority to CN201080012437.7A priority patent/CN102356249B/en
Priority to KR1020117023658A priority patent/KR101615147B1/en
Priority to US13/255,058 priority patent/US8992658B2/en
Publication of JP2011033156A publication Critical patent/JP2011033156A/en
Application granted granted Critical
Publication of JP5558041B2 publication Critical patent/JP5558041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered metal bearing capable of achieving high resistance to wear and excellent sliding performance while reducing manufacturing cost. <P>SOLUTION: This sintered metal bearing is manufactured by using a material prepared by dispersing Cu system into Fe system and contains the Fe system ten times or more the Cu system by weight ratio, and the Cu system remains as a granular system. This sintered metal bearing is manufactured by compressing and molding raw material powders containing at least, for example, Cu powders and Fe powders ten times or more the Cu powders by weight ratio and then sintering this compressed and molded product at temperature of less than melting point of Cu. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属粉末を圧縮成形した後、焼結して得られる焼結金属製軸受、および、その製造方法に関する。   The present invention relates to a sintered metal bearing obtained by compressing and then sintering metal powder, and a method for manufacturing the same.

焼結金属製軸受は、例えば内部気孔に潤滑油等を含浸させた焼結含油軸受として好適に使用されるものであり、自動車用軸受部品や情報機器用のモータスピンドル等、優れた軸受性能や耐久性が要求される箇所に使用されている。   Sintered metal bearings, for example, are suitably used as sintered oil-impregnated bearings in which internal pores are impregnated with lubricating oil or the like, and have excellent bearing performance such as automotive bearing parts and motor spindles for information equipment. Used in places where durability is required.

通常、この種の軸受は、例えば下記特許文献1に開示のように、Cu粉末又はFe粉末、あるいはその両者を主成分とする金属粉末を所定の形状(多くは円筒状)に圧縮成形した後、焼結して得られた多孔質体に、潤滑油又は潤滑グリース等の流体を含浸させることで形成される。   Usually, this type of bearing is, for example, as disclosed in Patent Document 1 below, after compression molding a metal powder mainly composed of Cu powder or Fe powder or both into a predetermined shape (mostly cylindrical). The porous body obtained by sintering is impregnated with a fluid such as lubricating oil or lubricating grease.

また、下記特許文献2には、Fe系を主成分とする焼結金属製軸受の一例が開示されている。具体的には、Cu系合金粉末とCu粉末と炭素粉末とFe粉末とからなるFe系焼結摺動部材であって、Cu成分15〜25wt%、Si成分1〜5wt%、Sn成分1〜5wt%、炭素成分3〜10wt%、残部Fe成分(55〜80wt%)からなるFe系焼結摺動部材が提案されている。また、この焼結摺動部材を、上記重量比となるように配合した混合粉末を圧粉成形し、この圧粉体を1100〜1150℃で焼結することにより製造する旨が開示されている。   Patent Document 2 below discloses an example of a sintered metal bearing mainly composed of Fe. Specifically, it is an Fe-based sintered sliding member made of Cu-based alloy powder, Cu powder, carbon powder, and Fe powder, and includes a Cu component of 15 to 25 wt%, an Si component of 1 to 5 wt%, and an Sn component of 1 to 1. An Fe-based sintered sliding member composed of 5 wt%, a carbon component of 3 to 10 wt%, and a balance Fe component (55 to 80 wt%) has been proposed. Further, it is disclosed that the sintered sliding member is manufactured by compacting a mixed powder blended so as to have the above weight ratio, and sintering the compact at 1100 to 1150 ° C. .

特開平11−182551号公報Japanese Patent Laid-Open No. 11-182551 特開2001−123253号公報JP 2001-123253 A

ところで、最近では、例えばHDDの高容量化に代表されるように、各種情報機器用モータにおいては、情報処理量の増大を目的としてスピンドルの高速回転化あるいは情報記憶媒体を含むスピンドルの重量が増加する傾向にある。そのため、この種の情報機器用モータに組み込んで使用される上記焼結金属製軸受にはこれまで以上に優れた耐摩耗性が要求されている。その一方で、コストダウンの要請に応じるべく、上記軸受の原料粉末に関し、比較的高価なCu粉末から比較的安価なFe粉末への置換が検討されている。   By the way, recently, as represented by an increase in the capacity of HDDs, for example, in various information equipment motors, the spindle including the information storage medium is increased in weight for the purpose of increasing the amount of information processing. Tend to. Therefore, the above-mentioned sintered metal bearing used by being incorporated in this type of motor for information equipment is required to have higher wear resistance than ever before. On the other hand, in order to meet the demand for cost reduction, replacement of a relatively expensive Cu powder with a relatively inexpensive Fe powder has been investigated for the raw material powder for the bearing.

しかしながら、Fe粉末の割合を高めていくにつれて、以下の弊害が生じるおそれがある。すなわち、軸との間で良好な摺動性を得るためにはCu成分が不可欠であるところ、Fe成分の割合を高めることで相対的にCu成分の割合が減少し、所期の摺動性を確保することが難しい。また、良好な摺動性を得るためには相手材との摺動面(軸受面)にも高い面精度が必要となるが、Fe成分が軸受の大部分を占めるようになると、Cu成分のもつ加工性の良さが反映されず、所定の面精度を得ることができないおそれがある。   However, as the proportion of Fe powder is increased, the following adverse effects may occur. That is, in order to obtain good slidability with the shaft, the Cu component is indispensable. However, by increasing the proportion of the Fe component, the proportion of the Cu component is relatively reduced, and the desired slidability is achieved. It is difficult to ensure. Moreover, in order to obtain good slidability, high surface accuracy is also required for the sliding surface (bearing surface) with the counterpart material, but when the Fe component occupies most of the bearing, There is a possibility that the predetermined surface accuracy cannot be obtained because the good workability is not reflected.

また、上記特許文献2にも記載されているように、通常、Fe系の焼結金属製軸受においては、主成分となるFeの融点に比較的近い温度(1100℃〜1150℃)を焼結温度に設定するため、Cuの融点を超えた温度で焼結することになる。これでは、Cu粉末は溶けて内部気孔へ入り込んでしまい、Fe成分と同等に軸受面を構成することは難しい。よって、この場合には、Cu成分のもつ摺動性や加工性が反映され難い。   In addition, as described in the above-mentioned Patent Document 2, in an Fe-based sintered metal bearing, a temperature relatively close to the melting point of Fe as a main component (1100 ° C. to 1150 ° C.) is usually sintered. Since the temperature is set, sintering is performed at a temperature exceeding the melting point of Cu. In this case, the Cu powder melts and enters the internal pores, and it is difficult to form a bearing surface equivalent to the Fe component. Therefore, in this case, it is difficult to reflect the slidability and workability of the Cu component.

以上の事情に鑑み、低コストに製造可能としつつも、高い耐摩耗性および摺動性を発揮することのできる焼結金属製軸受を提供することを解決すべき技術的課題とする。   In view of the above circumstances, it is a technical problem to be solved to provide a sintered metal bearing capable of exhibiting high wear resistance and slidability while being able to be manufactured at low cost.

本発明は、前記課題の解決を図るためになされたものである。すなわち、本発明に係る焼結金属製軸受は、Fe系組織中にCu組織が分散した焼結金属製軸受であって、Fe系組織が重量比でCu組織の10倍以上含まれると共に、Cu組織が粒状組織として残っている点をもって特徴づけられる。ここで、「Fe系組織」には、Feのみからなる組織が含まれる他、例えばSUSなどFeを主成分とする組成をなすものも含まれる。また、Cu組織に関し、全てのCu組織が粒状をなしている必要はなく、その一部が焼結により非粒状の形状を有するものであっても構わない。   The present invention has been made to solve the above problems. That is, the sintered metal bearing according to the present invention is a sintered metal bearing in which a Cu structure is dispersed in an Fe-based structure, and the Fe-based structure is contained in a weight ratio of 10 times or more of the Cu structure. It is characterized by the fact that the texture remains as a granular texture. Here, the “Fe-based structure” includes not only a structure composed only of Fe, but also a structure having Fe as a main component, such as SUS. Further, regarding the Cu structure, it is not necessary that all the Cu structures are granular, and a part thereof may have a non-granular shape by sintering.

このように、Fe系組織の割合をCu組織に比べて大幅に高めることで、耐摩耗性の向上と共に製造コストの低減化が図られる。加えて、Cu組織を粒状組織として残すことで、Cu組織がFe系組織と共に摺動面を含む軸受表面を構成することになるので、相手材(軸など)との間で良好な摺動性を得ることができる。また、Fe成分の割合を高めつつも摺動面の加工性を確保して摺動面の面精度を維持することができる。また、上記Fe系組織とCu組織との含有割合(10倍)としたのは、当該割合でFe系組織とCu組織とを含有させることで、耐摩耗性、摺動性、コスト面の上記3特性全てを満足する、との本発明者らの知見に基づく。   Thus, by significantly increasing the proportion of the Fe-based structure as compared with the Cu structure, it is possible to improve the wear resistance and reduce the manufacturing cost. In addition, by leaving the Cu structure as a granular structure, the Cu structure constitutes a bearing surface including a sliding surface together with the Fe-based structure. Can be obtained. Further, it is possible to maintain the surface accuracy of the sliding surface by securing the workability of the sliding surface while increasing the ratio of the Fe component. In addition, the content ratio (10 times) of the Fe-based structure and the Cu structure is the above-mentioned in terms of wear resistance, slidability, and cost by including the Fe-based structure and the Cu structure in this ratio. Based on the inventors' knowledge that all three characteristics are satisfied.

ここで、具体的には、Fe系組織の含有割合は重量比で90%以上とすることができる。また、この場合、Fe系組織の含有割合は重量比で最大98%まで高めることが可能である。Fe系組織の含有割合が上記範囲内にある焼結金属製軸受であれば、耐摩耗性と摺動性とを実施レベルで満足しつつも、低コスト化の実効を図ることが可能となる。   Here, specifically, the content ratio of the Fe-based structure can be 90% or more by weight ratio. In this case, the content ratio of the Fe-based structure can be increased up to 98% by weight. If it is a sintered metal bearing in which the content ratio of the Fe-based structure is within the above range, it is possible to achieve cost reduction while satisfying the wear resistance and the slidability at the implementation level. .

また、Fe系組織は、例えばFe組織とSUS組織の一方又は双方で構成されるものであってもよい。この場合、強度あるいはコスト面を重視するのであればFe組織が好ましく、耐食性を重視するのであればSUS組織が好ましい。   Further, the Fe-based structure may be composed of one or both of an Fe structure and a SUS structure, for example. In this case, an Fe structure is preferable if strength or cost is important, and an SUS structure is preferable if corrosion resistance is important.

また、上記構成に係る焼結金属製軸受は、回転支持すべき軸との間に流体の動圧作用を生じさせるための動圧発生部を設けたものであってもよい。具体的には、軸受面となる内周面や軸方向端面に動圧発生部を設けたものであってもよい。本発明に係る軸受はCu組織を粒状組織として残す構成を採っていることから、軸受面を有する軸受表層部にもCu組織が存在しており、例えば動圧溝等の凹凸形状も精度良く成形することができる。   Further, the sintered metal bearing according to the above configuration may be provided with a dynamic pressure generating portion for generating a dynamic pressure action of fluid between the shaft to be rotated and supported. Specifically, a dynamic pressure generating portion may be provided on an inner peripheral surface serving as a bearing surface or an axial end surface. Since the bearing according to the present invention adopts a structure in which the Cu structure is left as a granular structure, the Cu structure is also present in the bearing surface layer portion having the bearing surface. For example, uneven shapes such as dynamic pressure grooves are accurately formed. can do.

以上の構成に係る焼結金属製軸受は、上述の如く、耐摩耗性や摺動性に優れていることから、この軸受を備えた流体動圧軸受装置として好適に使用できる。   Since the sintered metal bearing according to the above configuration is excellent in wear resistance and slidability as described above, it can be suitably used as a fluid dynamic bearing device including this bearing.

また、前記課題の解決は、Fe系組織中にCu組織が分散した焼結金属製軸受を製造する方法であって、Cu粉末と、重量比でCu粉末の10倍以上のFe系粉末とを少なくとも含む原料粉末を圧縮成形し、然る後、この圧縮成形体をCuの融点未満の温度で焼結することを特徴とする焼結金属製軸受の製造方法によっても達成される。   Further, the solution of the above-mentioned problem is a method of manufacturing a sintered metal bearing in which a Cu structure is dispersed in an Fe-based structure, and a Cu powder and an Fe-based powder that is 10 times or more of the Cu powder by weight ratio. It is also achieved by a method for manufacturing a sintered metal bearing, characterized in that at least the raw material powder contained is compression molded, and then the compression molded body is sintered at a temperature lower than the melting point of Cu.

この方法によれば、圧縮成形体中のCu粉末が全て溶けることなく粒状のままで残るため、上記と同様、摺動性(相手材とのなじみ性)や加工性を高レベルで確保することができる。また、焼結時に溶けずに済むため、新たな内部気孔が形成されるのを防ぐことができ、あるいは、隣接する内部気孔の拡大を防ぐことができる。何れにしても、後述する潤滑油の流通が可能な程度の大きさを有する内部気孔の増加を防ぐことができる。   According to this method, all of the Cu powder in the compression-molded body remains in a granular state without melting, so that the slidability (compatibility with the counterpart material) and workability are ensured at a high level as described above. Can do. Moreover, since it does not need to melt | dissolve at the time of sintering, it can prevent that a new internal pore is formed, or can prevent the expansion of an adjacent internal pore. In any case, it is possible to prevent an increase in the number of internal pores having such a size that allows the lubricating oil to flow as will be described later.

Fe系粉末としては、Fe粉末や、SUS粉末などのFe系合金粉末が使用可能である。また、Fe系粉末とCu粉末との相互の分散性を高めるために、Fe系粉末とCu粉末とを、部分的な合金化により一体化した状態で原料粉末に供給するようにしてもよい。このようにすれば、原則、何れのFe系粉末もCu粉末と一体的に原料粉末に供給されるため、Fe系粉末あるいはCu粉末が偏析する事態を防いで、均質な焼結体を得ることができる。   As the Fe-based powder, Fe-based alloy powder such as Fe powder and SUS powder can be used. Further, in order to enhance the mutual dispersibility of the Fe-based powder and the Cu powder, the Fe-based powder and the Cu powder may be supplied to the raw material powder in an integrated state by partial alloying. In this way, in principle, any Fe-based powder is supplied to the raw material powder integrally with the Cu powder, so that the Fe-based powder or Cu powder is prevented from segregating and a homogeneous sintered body is obtained. Can do.

また、上記原料粉末の一として使用されるCu粉末が、Fe系粉末に比べて微細な粒径を有するものであってもよい。ここで、「Cu粉末がFe系粉末に比べて微細な粒径を有する」か否かは、双方の粉末の最大粒径、平均粒径、粒径中央値の何れで比較評価しても構わない。あるいは、これらの値のうち2つ以上の評価基準で示された数値の大小関係をもって、双方の粉末粒径の大小関係を定めるようにしても構わない。このようにFe系粉末に比べて微細なCu粉を使用することで、例えばFe系粉末と同等の粒径を有するCu粉末と比べてFe系粉末との接触面積(あるいは接触箇所)が増える。そのため、Fe粉末の配合割合を大幅に高めても(90wt%以上にしても)軸受の強度を確保することができる。また、粉末が微細になるにつれて流動性の低下が懸念されるところ、本発明であれば、Fe系粉末の配合割合に比べてCu粉末の配合割合が低く抑えられているので、この種の問題が懸念される心配もない。   In addition, the Cu powder used as one of the raw material powders may have a fine particle size as compared with the Fe-based powder. Here, whether or not “Cu powder has a finer particle size than Fe-based powder” may be evaluated by any of the maximum particle size, average particle size, and median particle size of both powders. Absent. Or you may make it determine the magnitude relationship of both powder particle sizes by the magnitude relationship of the numerical value shown by the 2 or more evaluation criteria among these values. Thus, by using fine Cu powder compared with Fe type powder, the contact area (or contact location) with Fe type powder increases compared with Cu powder which has a particle size equivalent to Fe type powder, for example. Therefore, the strength of the bearing can be ensured even if the proportion of Fe powder is significantly increased (90 wt% or more). In addition, there is a concern about a decrease in fluidity as the powder becomes finer. In the present invention, since the mixing ratio of Cu powder is kept lower than the mixing ratio of Fe-based powder, this kind of problem There is no worry of concern.

以上のように、本発明によれば、高い耐摩耗性および摺動性を発揮することのできる焼結金属製軸受を低コストに製造することができる。   As described above, according to the present invention, a sintered metal bearing capable of exhibiting high wear resistance and slidability can be manufactured at low cost.

本発明の一実施形態に係る焼結金属製軸受を組み込んだ流体動圧軸受装置、およびこの流体動圧軸受装置を備えたスピンドルモータの断面図である。1 is a sectional view of a fluid dynamic pressure bearing device incorporating a sintered metal bearing according to an embodiment of the present invention, and a spindle motor equipped with the fluid dynamic pressure bearing device. 流体動圧軸受装置の断面図である。It is sectional drawing of a fluid dynamic pressure bearing apparatus. 本発明に係る焼結金属製軸受の断面図である。It is sectional drawing of the sintered metal bearing which concerns on this invention. 焼結金属製軸受の一平面図である。It is one top view of a sintered metal bearing. 他の形態に係る流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus which concerns on another form. 他の形態に係る流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus which concerns on another form. 一実施形態に係る焼結金属製軸受の断面写真である。It is a cross-sectional photograph of the sintered metal bearing which concerns on one Embodiment. 他の実施形態に係る焼結金属製軸受の断面写真である。It is a cross-sectional photograph of the sintered metal bearing which concerns on other embodiment. 他の実施形態に係る焼結金属製軸受の断面写真である。It is a cross-sectional photograph of the sintered metal bearing which concerns on other embodiment. 摩耗試験の測定結果を示すグラフである。It is a graph which shows the measurement result of an abrasion test. 圧環試験の測定結果を示すグラフである。It is a graph which shows the measurement result of a pressure ring test. 透過油量の測定結果を示すグラフである。It is a graph which shows the measurement result of permeated oil amount.

本発明に係る焼結金属製軸受は、Fe系組織と、Fe系組織中に分散したCu組織とで、あるいはこれらの組織を主として構成される。ここで、Fe系組織が全体に占める割合は、重量比でCu組織の10倍以上であり、例えば、Fe系組織が90wt%以上含まれる場合、Cu組織が9wt%以下含まれるように軸受中におけるFe系組織とCu組織それぞれの含有割合が設定される。ここでは、例えば、SEMとして(株)日立ハイテクノロジーズ製のX3000、および、EDSとして株式会社堀場製作所製のEMAX7021Hを使用し、元素分析によりFeおよびCuの定量分析を行い、質量濃度の比率で判断した。   The sintered metal bearing according to the present invention is composed mainly of an Fe-based structure and a Cu structure dispersed in the Fe-based structure. Here, the ratio of the Fe-based structure to the whole is 10 times or more of the Cu structure in weight ratio. For example, when the Fe-based structure is included in 90 wt% or more, the bearing is arranged so that the Cu structure is included in 9 wt% or less. The content ratio of each of the Fe-based structure and the Cu structure is set. Here, for example, X3000 manufactured by Hitachi High-Technologies Corporation as SEM and EMAX7021H manufactured by HORIBA, Ltd. as EDS are used, and quantitative analysis of Fe and Cu is performed by elemental analysis. did.

Fe系組織は、Fe組織あるいはSUS等のFe系合金組織の何れであってもよく、また、両者を共に含むものであってもよい。また、上述の如く、Fe系組織の全体に占める割合を大幅に高める場合(例えば90wt%以上とする場合)には、SUS等に比べて比較的融点の低いFeでFe系組織を構成するのがよい。焼結時、原料粉末間(例えばFe粉末とCu粉末との間)で十分な焼結作用を得ることができ、焼結強度を確保し易いためである。   The Fe-based structure may be either an Fe structure or an Fe-based alloy structure such as SUS, or may include both. In addition, as described above, when the proportion of the entire Fe-based structure is significantly increased (for example, 90 wt% or more), the Fe-based structure is composed of Fe having a relatively low melting point compared to SUS or the like. Is good. This is because a sufficient sintering action can be obtained between the raw material powders (for example, between the Fe powder and the Cu powder) during sintering, and it is easy to ensure the sintering strength.

Fe系組織と共に焼結金属組織を構成するCu組織は主に粒状をなしている。ここで、個々のCu組織のサイズ(粒状組織の長寸幅あるいは面積など)はFe系組織のそれと比べて全体的に小さいものであってもよい。かかる組織は、例えばFe系粉末に比べて微細な粒径を有するCu粉末を原料粉末の一に使用することで得ることができる。このようにFe系組織に比べて微細なCu組織が含まれることで、Fe系組織との接触面積(あるいは接触箇所)が増える。そのため、Fe粉末の配合割合を大幅に高めても(90wt%以上にしても)軸受の強度を確保することができる。また、Fe系組織と同サイズのCu組織を有するものと比べて、軸受面など軸受表面に露出するCu組織の割合(面積あるいは露出箇所)も増大するため、同組織の割合が少なくても摺動性を確保し易い。   The Cu structure constituting the sintered metal structure together with the Fe-based structure is mainly granular. Here, the size of each Cu structure (such as the long width or area of the granular structure) may be generally smaller than that of the Fe structure. Such a structure can be obtained, for example, by using a Cu powder having a finer particle size than that of an Fe-based powder as one of the raw material powders. As described above, since the fine Cu structure is included as compared with the Fe-based structure, the contact area (or contact location) with the Fe-based structure increases. Therefore, the strength of the bearing can be ensured even if the proportion of Fe powder is significantly increased (90 wt% or more). In addition, since the ratio (area or exposed portion) of the Cu structure exposed on the bearing surface such as the bearing surface is increased as compared with that having a Cu structure of the same size as the Fe-based structure, even if the ratio of the structure is small Easy to ensure mobility.

また、軸受面の摺動性を高め、又は、焼結体の加工性を確保する観点からは、Cu組織の全体に占める割合はなるべく高いに越したことはないが、上述の如く、Cu組織がFe系組織に比べて小サイズである場合には、比較的小さめに設定することも可能である。具体的には、Cu組織の全体に占める割合を、1.0wt%以上9.0wt%以下に設定することも可能である。Cu組織の含有割合が1.0wt%未満だと、軸受面上にCu組織を露出させることが難しく、また、たとえ露出したとしても相手材との間で良好な摺動性(なじみ性)を十分に発揮することは難しいためである。また、9.0wt%を超えてCu組織を含有させた場合には、Fe系組織の全体に占める割合をCu組織の10倍(90wt%)以上に維持することが難しい。通常、この種の軸受には、後述のように、主となるFe系組織やCu組織以外にもSn組織や黒鉛など、他の組織が所定量含まれることになるためである。   Further, from the viewpoint of enhancing the slidability of the bearing surface or ensuring the workability of the sintered body, the proportion of the entire Cu structure has never been as high as possible. Can be set relatively small when the size is smaller than that of the Fe-based structure. Specifically, the ratio of the Cu structure to the whole can be set to 1.0 wt% or more and 9.0 wt% or less. When the content of the Cu structure is less than 1.0 wt%, it is difficult to expose the Cu structure on the bearing surface, and even if exposed, good slidability (compatibility) with the counterpart material is obtained. This is because it is difficult to fully demonstrate. In addition, when the Cu structure is included exceeding 9.0 wt%, it is difficult to maintain the ratio of the Fe-based structure in the entire structure to 10 times (90 wt%) or more of the Cu structure. This is because this type of bearing usually contains a predetermined amount of other structures such as Sn structure and graphite in addition to the main Fe-based structure and Cu structure as described later.

また、以上の組織に加えて、他の組織が含まれてもよく、例えばCu組織よりもさらに融点の低い金属組織(例えばSnなどの低融点金属からなる組織)が含まれていてもよい。すなわち、上記焼結金属製軸受は、Fe系組織とCu組織、および低融点金属組織とからなるものであってもよい。このような金属組織は、焼結時には溶融(液相化)し、Fe系粉末間、あるいは、Cu粉末とFe系粉末の間のバインダとして作用する。そのため、Fe系粉末間の焼結作用が不十分な場合であっても当該粉末間の結合力を補強して、焼結体(焼結金属製軸受)の強度を向上させることができる。低融点金属としては、所定の焼結温度(ここでは、Cuの融点未満の温度)で溶融する金属であればよく、例えばSn、Zn、Al、P等の金属、あるいはこれらを2種以上含む合金が使用可能である。   In addition to the above structure, other structures may be included, for example, a metal structure having a melting point lower than that of the Cu structure (for example, a structure made of a low melting point metal such as Sn) may be included. That is, the sintered metal bearing may be composed of an Fe-based structure, a Cu structure, and a low melting point metal structure. Such a metal structure is melted (liquid phase) at the time of sintering, and acts as a binder between Fe-based powders or between Cu powder and Fe-based powders. Therefore, even when the sintering action between the Fe-based powders is insufficient, the bonding force between the powders can be reinforced and the strength of the sintered body (sintered metal bearing) can be improved. The low melting point metal may be any metal that melts at a predetermined sintering temperature (here, a temperature lower than the melting point of Cu), and includes, for example, metals such as Sn, Zn, Al, and P, or two or more thereof. Alloys can be used.

また、圧縮成形時の成形性や離型性、あるいは完成品の摺動特性を改善する目的で、上記金属組織に、さらに黒鉛(グラファイト)組織が含まれていてもよい。この場合、上記焼結金属製軸受は、Fe系組織とCu組織と低融点金属組織、および黒鉛組織とで構成される。   Further, for the purpose of improving the moldability and mold release property during compression molding or the sliding characteristics of the finished product, the metal structure may further contain a graphite (graphite) structure. In this case, the sintered metal bearing is composed of an Fe-based structure, a Cu structure, a low-melting-point metal structure, and a graphite structure.

上記構成の組織からなる焼結金属製軸受の体積率(100−気孔率[%])は、実際の用途に合わせて設定するのがよく、例えば75%以上95%以下(気孔率で言えば、5%以上25%以下)の範囲で設定される。例えば、後述する流体動圧軸受装置に組み込んで使用する場合のように、内部気孔に潤滑油を含浸させて使用する場合には、軸受面(軸受すき間)への潤滑油の供給が滞りなく行えるように、また、温度変化に伴い油量が減少した場合にも軸受すき間に潤滑油が供給できる程度の量の潤滑油を内部気孔に保持できるように、比較的大きめ(例えば15%以上25%以下)に設定するのがよい。なお、ここで、「気孔率」とは、焼結金属製軸受の単位体積当たりに占める各内部空孔の容積の総和の割合をいい、具体的には以下の式によって算出される。
気孔率[%]=100−密度比[%]=[1−(ρ1/ρ0)]×100
ρ1:焼結金属製軸受の密度(測定方法は、JIS Z 2501 乾燥密度の欄を参照)
ρ0:焼結金属製軸受と同一組成の物質の真の密度
気孔率は密度比の増加に伴いほぼ線形的に低下することが分かっており、従って、密度比を求めることで気孔率を得ることができる。
The volume ratio (100-porosity [%]) of the sintered metal bearing having the above-described structure is preferably set according to the actual application, for example, 75% to 95% (in terms of porosity). 5% or more and 25% or less). For example, when the internal pore is impregnated with lubricating oil as used in a fluid dynamic pressure bearing device described later, the lubricating oil can be supplied to the bearing surface (bearing gap) without any delay. In addition, even when the amount of oil decreases as the temperature changes, a relatively large amount (for example, 15% to 25%) can be retained in the internal pores so that the amount of lubricating oil can be supplied to the bearing gap. The following should be set. Here, the “porosity” refers to the ratio of the total volume of the internal pores per unit volume of the sintered metal bearing, and is specifically calculated by the following equation.
Porosity [%] = 100−Density ratio [%] = [1− (ρ1 / ρ0)] × 100
ρ1: Density of sintered metal bearing (refer to the column of JIS Z 2501 dry density for the measurement method)
ρ0: True density of materials with the same composition as sintered metal bearings Porosity has been found to decrease almost linearly with increasing density ratio, thus obtaining porosity by determining density ratio Can do.

表面開孔率に関しても、実際の用途に合わせて設定すればよく、例えば流体動圧軸受装置用途の場合であれば、2%以上15%以下に設定するのがよい。特に、後述するように、焼結金属製軸受の内周面等に、潤滑油の動圧作用を発生させるための動圧発生部(図3では動圧溝8a1,8a2の配列領域)を設ける場合には、油圧の逃げを防ぐ目的で、当該内周面の表面開孔率は比較的小さめ(例えば2%以上10%以下)に設定するのがよい。ここで、「表面開孔」とは、多孔質組織である焼結金属製軸受中に含まれる気孔が外表面に開口した部分をいう。また、「表面開孔率」とは、外表面の単位面積に占める表面開孔の面積割合をいい、以下の条件で測定、評価されるものをいう。
[測定器具]
金属顕微鏡:Nikon ECLIPSS ME600
デジタルカメラ:Nikon DXM1200
写真撮影ソフト:Nikon ACT−1 ver.1
画像処理ソフト:イノテック製 QUICK GRAIN
[測定条件]
写真撮影:シャッタースピード0.5秒
2値化しきい値:235
The surface open area ratio may be set according to the actual application. For example, in the case of the fluid dynamic bearing device application, it is preferable to set it to 2% or more and 15% or less. In particular, as will be described later, a dynamic pressure generating portion (an arrangement region of the dynamic pressure grooves 8a1 and 8a2 in FIG. 3) for generating a dynamic pressure action of the lubricating oil is provided on the inner peripheral surface of the sintered metal bearing. In this case, it is preferable to set the surface area ratio of the inner peripheral surface to be relatively small (for example, 2% or more and 10% or less) for the purpose of preventing escape of hydraulic pressure. Here, “surface opening” refers to a portion where pores contained in a sintered metal bearing having a porous structure are opened on the outer surface. “Surface open area ratio” refers to the area ratio of surface open area to the unit area of the outer surface, and is measured and evaluated under the following conditions.
[measurement tool]
Metallic microscope: Nikon ECLIPSS ME600
Digital camera: Nikon DXM1200
Photography software: Nikon ACT-1 ver. 1
Image processing software: QUICK GRAIN made by Innotek
[Measurement condition]
Photo shooting: Shutter speed 0.5 seconds Binary threshold: 235

以上の組織形態に係る焼結金属製軸受は、例えば以下に示す方法で製造される。すなわち、Fe系粉末とCu粉末とを含む原料粉末を所定の形状に圧縮成形する工程(a)、圧粉成形体を焼結する工程(b)、焼結体に対してサイジングを施す工程(c)の少なくとも3工程を経て製造される。   The sintered metal bearing according to the above structure is manufactured by, for example, the following method. That is, a step (a) of compressing a raw material powder containing Fe-based powder and Cu powder into a predetermined shape (a), a step (b) of sintering a green compact, and a step of sizing the sintered body ( It is manufactured through at least three steps of c).

まず、圧粉成形工程(a)に関し、V型混合器等でFe系粉末(例えばFe粉末)にCu粉末を混合した原料粉末を作成する。ここでは、例えばFe粉末として平均粒径150μm以下のものが、Cu粉末として平均粒径75μm以下のものがそれぞれ使用される。また、上記粉末混合に際し、各粉末の混合比率は、上述した完成品における各組織の含有割合に準じて設定される。例えば、Fe系粉末(複数種類のFe系粉末が混合される場合にはそれらの総量)が重量比でCu粉末の10倍以上となるように、各粉末を混合する。もちろん、必要に応じてSn粉末や黒鉛粉末など他種の粉末を上記金属粉末にさらに混合したものを原料粉末として使用しても構わない。   First, regarding the compacting step (a), a raw material powder in which Cu powder is mixed with Fe-based powder (for example, Fe powder) with a V-type mixer or the like is prepared. Here, for example, an Fe powder having an average particle size of 150 μm or less is used, and a Cu powder having an average particle size of 75 μm or less is used. Further, when mixing the powder, the mixing ratio of each powder is set according to the content ratio of each structure in the finished product. For example, the respective powders are mixed so that the Fe-based powder (the total amount when a plurality of types of Fe-based powders are mixed) is 10 times or more of the Cu powder by weight ratio. Of course, if necessary, a powder obtained by further mixing other types of powder such as Sn powder and graphite powder with the above metal powder may be used as the raw material powder.

なお、この際、Cu粉末の分散性を高めるため、予め、Fe粉末の表面にCu粉末を部分的に当接させ、この当接部分を合金化したもの(Fe粉末とCu粉末との一部合金体)を原料粉末として使用することも可能である。かかる手法は、特に分散性に乏しい微細Cu粉(例えば上記例示の粒径を有するCu粉末)を使用する場合に有効である。   At this time, in order to enhance the dispersibility of the Cu powder, the Cu powder is partially brought into contact with the surface of the Fe powder in advance, and the contact portion is alloyed (part of Fe powder and Cu powder). It is also possible to use an alloy body) as a raw material powder. Such a technique is particularly effective when fine Cu powder having poor dispersibility (for example, Cu powder having the above exemplified particle diameter) is used.

次に、完成品に準じた形状(例えば円筒形状)の粉末充填空間を有する成形用金型を用意し、この金型内の充填空間に上記原料粉末を供給し、所定圧力でプレスすることで、上記金型に対応する形状の圧粉成形体を得る。この際、圧粉成形体の密度が例えば6.0g/cm3以上6.8g/cm3以下となるように、プレス条件が設定される。 Next, a molding die having a powder filling space having a shape (for example, a cylindrical shape) according to the finished product is prepared, and the raw material powder is supplied to the filling space in the die and pressed at a predetermined pressure. Then, a green compact having a shape corresponding to the mold is obtained. At this time, the pressing conditions are set so that the density of the green compact is, for example, 6.0 g / cm 3 or more and 6.8 g / cm 3 or less.

次に、上記圧粉成形体を、Cuの融点(1083℃)未満の温度で所定時間加熱する。これにより、少なくともCu粉末とFe系粉末とが相互に焼結され、これにより、Fe系組織とCu組織とを有する焼結金属組織からなる焼結体を得ることができる(焼結工程(b))。ここで、焼結温度に関し、あまりにCuの融点に近い温度で焼結を行うと、実際には溶融するCu粉末の割合が増え、完成品においてCuの粒状組織を維持することが難しくなる。また、あまりにCuの融点から離れた(低い)温度で焼結を行うと、そもそも十分な焼結作用が期待できない。かかる観点から、焼結温度は例えば850℃以上1050℃以下の範囲内に設定するのがよい。   Next, the green compact is heated for a predetermined time at a temperature lower than the melting point of Cu (1083 ° C.). As a result, at least the Cu powder and the Fe-based powder are sintered with each other, whereby a sintered body made of a sintered metal structure having an Fe-based structure and a Cu structure can be obtained (sintering step (b )). Here, regarding the sintering temperature, if sintering is performed at a temperature that is too close to the melting point of Cu, the proportion of the Cu powder that is actually melted increases, making it difficult to maintain the granular structure of Cu in the finished product. Further, if sintering is performed at a temperature that is too far (low) from the melting point of Cu, sufficient sintering action cannot be expected in the first place. From this viewpoint, the sintering temperature is preferably set within a range of 850 ° C. or higher and 1050 ° C. or lower, for example.

このようにして得られた焼結体の寸法ないし形状を矯正する目的で焼結体に対してサイジングを実施することで(サイジング工程(c))、焼結金属製軸受が完成する。このサイジングにより、焼結体が完成品に準じた寸法ないし形状に整形されると共に、軸受表面の表面開孔率が所定の大きさに調整される。なお、さらに内周面における表面開孔の個数や個々の開口面積を小さくする目的で、上記サイジングと併せて、あるいは上記サイジングに代えて回転サイジングを施すことも可能である。このサイジングによれば、内周面の表面開孔率がさらに小さく(例えば10%以下に)調整される。そのため、後述する流体動圧軸受装置に組み込んで使用する場合であっても、軸受面上に所定膜厚の油膜を形成することが可能となる。   By carrying out sizing on the sintered body for the purpose of correcting the size or shape of the sintered body thus obtained (sizing step (c)), a sintered metal bearing is completed. By this sizing, the sintered body is shaped to a size or shape according to the finished product, and the surface area ratio of the bearing surface is adjusted to a predetermined size. In addition, for the purpose of reducing the number of surface apertures and individual opening areas on the inner peripheral surface, it is possible to perform rotational sizing together with or in place of the sizing. According to this sizing, the surface area ratio of the inner peripheral surface is adjusted to be even smaller (for example, 10% or less). For this reason, an oil film having a predetermined film thickness can be formed on the bearing surface even when it is incorporated into a fluid dynamic pressure bearing device described later.

ここで、図7〜図9は、本発明の一例に係る焼結金属製軸受の断面写真である。これらの断面写真は何れも、株式会社キーエンス製のVE9800を用いて撮影した。観察倍率は200倍とした。また、上記焼結金属製軸受を軸方向に切断し、切断面にラップ仕上げを行ったものを撮影対象として観察した。図7が、Fe組織:70wt%の場合、図8が、Fe組織:80wt%の場合、そして図9が、Fe組織:90wt%の場合の断面写真をそれぞれ示している。各図中、最も明るい灰色が「Cu組織」を表しており、中程度の灰色が「Fe組織」を、そして、最も暗い灰色(黒に近い色)が「内部気孔」をそれぞれ表している。これらの図(写真)から、Fe組織:70wt%の場合には、それほど明確ではないものの、Fe組織:90wt%の場合には、Cu組織が粒状組織として適度に分散して残っている様子が見て取れる。また、何れの図からも、各金属組織に比べて微細な気孔が比較的多く存在していることが見て取れる。   Here, FIGS. 7 to 9 are cross-sectional photographs of sintered metal bearings according to an example of the present invention. All of these cross-sectional photographs were taken using a VE9800 manufactured by Keyence Corporation. The observation magnification was 200 times. In addition, the sintered metal bearing was cut in the axial direction and the cut surface was lapped, and the object to be photographed was observed. FIG. 7 shows cross-sectional photographs in the case of Fe structure: 70 wt%, FIG. 8 in the case of Fe structure: 80 wt%, and FIG. 9 in the case of Fe structure: 90 wt%. In each figure, the lightest gray represents the “Cu structure”, the medium gray represents the “Fe structure”, and the darkest gray (color close to black) represents the “internal pores”. From these figures (photographs), when the Fe structure is 70 wt%, it is not so clear, but when the Fe structure is 90 wt%, the Cu structure remains appropriately dispersed as a granular structure. I can see it. Also, it can be seen from each figure that relatively many fine pores exist compared to each metal structure.

以上の説明に係る焼結金属製軸受は、耐摩耗性や摺動性に優れていることから、例えば、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるスピンドルモータ用の軸受装置として、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用される。   Since the sintered metal bearing according to the above description is excellent in wear resistance and slidability, for example, magnetic disk devices such as HDD, CD-ROM, CD-R / RW, DVD-ROM / RAM As a bearing device for a spindle motor in a magneto-optical disk device such as an optical disk device such as MD or MO, or a motor bearing device such as a polygon scanner motor of a laser beam printer (LBP), a color wheel motor of a projector, or a fan motor Is preferably used.

図1は、上記用途の一例を示すもので、本発明に係る焼結金属製軸受8を組み込んだ流体動圧軸受装置1の断面図、さらにはこの流体動圧軸受装置1を備えたHDDのディスク駆動用モータの要部断面図を示す。このモータは、ハブ3を取り付けた軸部材2を回転支持する流体動圧軸受装置1と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6に固定され、ロータマグネット5はハブ3に固定される。流体動圧軸受装置1のハウジング7は、ブラケット6の内周に固定される。また、同図に示すように、ハブ3には1又は複数枚のディスクD(図1では2枚)が保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、これに伴って、ハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 shows an example of the above-mentioned application, and is a cross-sectional view of a fluid dynamic bearing device 1 incorporating a sintered metal bearing 8 according to the present invention, and further of an HDD equipped with this fluid dynamic bearing device 1. The principal part sectional drawing of the motor for a disk drive is shown. This motor includes a fluid dynamic bearing device 1 that rotatably supports a shaft member 2 to which a hub 3 is attached, a stator coil 4 and a rotor magnet 5 that are opposed to each other via a gap in the radial direction, and a bracket 6. . The stator coil 4 is fixed to the bracket 6, and the rotor magnet 5 is fixed to the hub 3. The housing 7 of the fluid dynamic bearing device 1 is fixed to the inner periphery of the bracket 6. As shown in the figure, the hub 3 holds one or a plurality of disks D (two in FIG. 1). In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the exciting force generated between the stator coil 4 and the rotor magnet 5, and accordingly, is held by the hub 3. The disk D rotates together with the shaft member 2.

図2は、流体動圧軸受装置1の縦断面図を示している。この流体動圧軸受装置1は、軸部材2と、ハウジング7と、ハウジング7に固定され、内周に軸部材2を配設した焼結金属製軸受8と、ハウジング7の一端を閉塞する蓋部材9と、ハウジングの他端開口側に配設されるシール部材10とを備える。   FIG. 2 shows a longitudinal sectional view of the fluid dynamic bearing device 1. The fluid dynamic bearing device 1 includes a shaft member 2, a housing 7, a sintered metal bearing 8 that is fixed to the housing 7 and has the shaft member 2 disposed on the inner periphery, and a lid that closes one end of the housing 7. A member 9 and a seal member 10 disposed on the other end opening side of the housing are provided.

軸部材2は、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとで構成される。軸部2aの外周には、後述する焼結金属製軸受8の内周面8aに設けられた動圧溝8a1,8a2配列領域とラジアル方向に対向するラジアル軸受面2a1が形成される。この実施形態では、ラジアル軸受面2a1は軸方向に離隔して2ヶ所に設けられており、軸部2aを焼結金属製軸受8の内周に挿通した状態では、ラジアル軸受面2a1,2a1と内周面8aとの間に後述するラジアル軸受部R1,R2のラジアル軸受隙間を形成する(図2を参照)。上記構造の軸部材2は、種々の金属材料で形成可能であり、例えば、強度や剛性、耐摩耗性等を考慮してステンレス鋼などの鉄鋼材料で形成される。   The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. A radial bearing surface 2a1 is formed on the outer periphery of the shaft portion 2a so as to oppose the dynamic pressure grooves 8a1 and 8a2 arranged in the inner peripheral surface 8a of the sintered metal bearing 8 to be described later in the radial direction. In this embodiment, the radial bearing surfaces 2a1 are provided at two locations apart in the axial direction. When the shaft portion 2a is inserted into the inner periphery of the sintered metal bearing 8, the radial bearing surfaces 2a1, 2a1 and Radial bearing gaps of radial bearing portions R1 and R2 described later are formed between the inner peripheral surface 8a (see FIG. 2). The shaft member 2 having the above structure can be formed of various metal materials, for example, formed of a steel material such as stainless steel in consideration of strength, rigidity, wear resistance, and the like.

ハウジング7は、例えば真ちゅう等の金属材料や樹脂材料で略筒状に形成され、その軸方向両端を開口した形態をなす。ハウジング7の内周面7aには、焼結金属製軸受8の外周面8dが、例えば接着(ルーズ接着や圧入接着を含む)、圧入、溶着(超音波溶着やレーザ溶着を含む)など適宜の手段で固定される。また、内周面7aの下端側には、内周面7aよりも大径であって、後述する蓋部材9を固定するための固定面7bが形成される。なお、樹脂材料でハウジング7を形成する場合、熱可塑性樹脂と熱硬化性樹脂の何れもが使用可能であり、例えば熱可塑性樹脂であれば、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアセタール(POM)、ポリアミド(PA)等に代表される結晶性樹脂や、ポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)等に代表される非晶性樹脂が使用可能である。これら樹脂材料は単独で、あるいは2種以上を混合した状態でも使用可能である。   The housing 7 is formed in a substantially cylindrical shape with a metal material such as brass or a resin material, for example, and has a shape in which both axial ends thereof are opened. The outer peripheral surface 8d of the sintered metal bearing 8 is appropriately connected to the inner peripheral surface 7a of the housing 7 by, for example, bonding (including loose bonding and press-fitting bonding), press-fitting, welding (including ultrasonic welding and laser welding). Fixed by means. In addition, a fixing surface 7b that is larger in diameter than the inner peripheral surface 7a and that fixes a lid member 9 to be described later is formed on the lower end side of the inner peripheral surface 7a. When the housing 7 is formed of a resin material, both a thermoplastic resin and a thermosetting resin can be used. For example, a liquid crystal polymer (LCP), polyphenylene sulfide (PPS), Crystalline resins represented by ether ether ketone (PEEK), polyacetal (POM), polyamide (PA), etc., polyphenylsulfone (PPSU), polyethersulfone (PES), polyetherimide (PEI), polyamide Amorphous resins such as imide (PAI) can be used. These resin materials can be used alone or in a mixture of two or more.

また、上記樹脂材料には、必要に応じて、ガラス繊維や炭素繊維などの繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンブラック、黒鉛、金属粉末、有機粉末等の粉末状充填材などを1種又は複数種混合して充填(添加)することもできる。もちろん、ハウジング7の材質は樹脂に限るものではなく、例えば銅系合金などをはじめとする金属や他の材質を採用することができる。また、その形成方法も特に問わず、例えば切削加工の他、鍛造やプレス等の塑性加工、あるいはMIM等の金属射出成形を採用することができる。   In addition, the above resin materials include, as necessary, fibrous fillers such as glass fibers and carbon fibers, whisker-like fillers such as potassium titanate, scaly fillers such as mica, carbon black, graphite, and metal powder. It is also possible to fill (add) one or more kinds of powdery fillers such as organic powders. Of course, the material of the housing 7 is not limited to the resin, and for example, a metal such as a copper alloy or other materials can be adopted. The forming method is not particularly limited, and for example, plastic working such as forging or pressing, or metal injection molding such as MIM can be adopted in addition to cutting.

焼結金属製軸受8は、この実施形態では多孔質構造を有する円筒形状をなし、その内周面8aの全面又は一部には、ラジアル動圧発生部として複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図3に示すように、互いに傾斜角の異なる複数の動圧溝8a1,8a2をヘリングボーン形状に配列した領域が、軸方向に離隔して2ヶ所に形成される。また、この実施形態では、軸受内部における潤滑油の循環を意図的に作り出す目的で、一方側(ここでは上側)の動圧溝8a1,8a2配列領域を軸方向非対称に形成している。図3に例示の形態で説明すると、軸方向に隣接する動圧溝8a1,8a2間の領域(いわゆる帯部8a3)の軸方向中心mより上側(シール部材10の側)の動圧溝8a1配列領域の軸方向寸法X1が、下側の動圧溝8a2配列領域の軸方向寸法X2よりも大きくなるように形成されている。なお、内周面8aの下側(後述するスラスト軸受隙間に近い側)に位置する動圧溝8a1,8a2配列領域は、軸方向中央の帯部8a3を境に軸方向対称に形成されている。 The sintered metal bearing 8 has a cylindrical shape having a porous structure in this embodiment, and a region in which a plurality of dynamic pressure grooves are arranged as a radial dynamic pressure generating portion on the whole or a part of the inner peripheral surface 8a. Is formed. In this embodiment, for example, as shown in FIG. 3, regions where a plurality of dynamic pressure grooves 8a1 and 8a2 having different inclination angles are arranged in a herringbone shape are formed at two locations separated in the axial direction. In this embodiment, the dynamic pressure grooves 8a1 and 8a2 are arranged asymmetrically in the axial direction in order to intentionally create a circulation of lubricating oil inside the bearing. Explaining in the form illustrated in FIG. 3, the arrangement of the dynamic pressure grooves 8 a 1 above the axial center m (the seal member 10 side) of the region (so-called band portion 8 a 3) between the dynamic pressure grooves 8 a 1 and 8 a 2 adjacent in the axial direction. the axial dimension X 1 region is formed to be larger than the axial dimension X 2 of the lower dynamic pressure grooves 8a2 sequence region. The dynamic pressure groove 8a1, 8a2 arrangement region located below the inner peripheral surface 8a (the side close to a thrust bearing gap described later) is formed symmetrically in the axial direction with the strip 8a3 at the axial center. .

焼結金属製軸受8の下端面8bの全面または一部の領域には、図4に示すように、スラスト動圧発生部として、複数の動圧溝8b1をスパイラル形状に配列した領域が形成される。この動圧溝8b1配列領域は、完成品の状態ではフランジ部2bの上端面2b1と対向し、軸部材2の回転時、上端面2b1との間に後述する第1スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。   As shown in FIG. 4, a region where a plurality of dynamic pressure grooves 8b1 are arranged in a spiral shape is formed as a thrust dynamic pressure generating portion on the entire surface or a partial region of the lower end surface 8b of the sintered metal bearing 8. The This dynamic pressure groove 8b1 arrangement region faces the upper end surface 2b1 of the flange portion 2b in the finished product state, and a thrust bearing of the first thrust bearing portion T1 described later between the upper end surface 2b1 when the shaft member 2 rotates. A gap is formed (see FIG. 2).

焼結金属製軸受8の上端面8cの半径方向中央位置には、図3に示すように、断面楔状の環状溝8c1が形成される。また、上端面8cの環状溝8c1より内周側には、環状溝8c1と内周面8aとをつなぐ半径方向溝8c2が円周方向複数箇所に形成される。これら環状溝8c1や半径方向溝8c2は後述の軸方向溝8d1と相まって軸受内部空間における潤滑油の循環路を形成し、これにより円滑な潤滑油の供給状態が確保される。   As shown in FIG. 3, an annular groove 8 c 1 having a wedge-shaped cross section is formed at the center position in the radial direction of the upper end surface 8 c of the sintered metal bearing 8. Further, radial grooves 8c2 that connect the annular groove 8c1 and the inner peripheral surface 8a are formed at a plurality of locations in the circumferential direction on the inner peripheral side of the upper end surface 8c from the annular groove 8c1. The annular groove 8c1 and the radial groove 8c2 together with an axial groove 8d1 described later form a lubricating oil circulation path in the bearing internal space, thereby ensuring a smooth lubricating oil supply state.

焼結金属製軸受8の外周面8dには、軸方向に伸びる複数本(例えば3本)の軸方向溝8d1が形成される。これら軸方向溝8d1は、相互に円周方向で等間隔だけ離れた位置に形成されている。   A plurality of (for example, three) axial grooves 8 d 1 extending in the axial direction are formed on the outer peripheral surface 8 d of the sintered metal bearing 8. These axial grooves 8d1 are formed at positions spaced apart from each other at equal intervals in the circumferential direction.

このように、内周面8aの動圧溝8a1,8a2配列領域は、既述のサイジング工程(c)にて寸法サイジング、回転サイジングに続いて、溝サイジング加工を施すことにより焼結体(焼結金属製軸受8)の内周面8aに成形される。具体的には、円筒状の焼結体を径方向に圧迫して、その内周面に、動圧溝8a1,8a2に対応する複数の凸部を有する成形型(成形ロッド)の外周面を押し当てて内周面を当該型に倣って塑性変形させることにより、動圧溝8a1,8a2が転写成形される。この場合、焼結体の内周面にはCuの粒状組織が多数残っていることから、溝サイジング加工の成形性も良好であり、上記動圧溝8a1,8a2あるいはこの動圧溝8a1,8a2配列領域を高精度に成形することができる。特に、図3に示す形状の動圧溝8a1,8a2配列領域は、サイジング前の焼結体の内周面のうち、円周方向に沿って配列される動圧溝8a1,8a1間の領域と、軸方向に配列される動圧溝8a1,8a2間の領域である帯部8a3(何れも図3中クロスハッチングで示す領域)を周囲に対して相対的に盛り上がらせることで動圧溝8a1,8a2を成形するものである。そのため、焼結体の内周面にCuの粒状組織が残っている構造は、動圧溝8a1,8a2の成形性あるいは成形精度に対して有効に作用する。なお、同様の方法で、下端面8bの動圧溝8b1配列領域も、上記溝サイジング加工時に、あるいは、寸法サイジング時に成形可能である。   As described above, the dynamic pressure grooves 8a1 and 8a2 arrangement region of the inner peripheral surface 8a is subjected to the sizing process (c) in the above-described sizing process and the rotational sizing, and then subjected to the groove sizing process to obtain a sintered body (fired body). It is formed on the inner peripheral surface 8a of the metal bearing 8). Specifically, the outer peripheral surface of a molding die (molding rod) having a plurality of convex portions corresponding to the dynamic pressure grooves 8a1 and 8a2 is pressed on the inner peripheral surface of the cylindrical sintered body in the radial direction. The dynamic pressure grooves 8a1 and 8a2 are transferred and molded by pressing and plastically deforming the inner peripheral surface following the mold. In this case, since many granular structures of Cu remain on the inner peripheral surface of the sintered body, the moldability of the groove sizing process is also good, and the dynamic pressure grooves 8a1, 8a2 or the dynamic pressure grooves 8a1, 8a2 The array region can be formed with high accuracy. In particular, the dynamic pressure groove 8a1, 8a2 arrangement region of the shape shown in FIG. 3 is a region between the dynamic pressure grooves 8a1, 8a1 arranged along the circumferential direction on the inner peripheral surface of the sintered body before sizing. The belt 8a3 which is a region between the dynamic pressure grooves 8a1 and 8a2 arranged in the axial direction (both regions shown by cross hatching in FIG. 3) is raised relative to the surroundings to thereby increase the dynamic pressure grooves 8a1 and 8a1. 8a2 is formed. Therefore, the structure in which the granular structure of Cu remains on the inner peripheral surface of the sintered body effectively acts on the moldability or molding accuracy of the dynamic pressure grooves 8a1 and 8a2. In the same way, the dynamic pressure groove 8b1 arrangement region of the lower end surface 8b can also be formed at the time of the groove sizing process or dimension sizing.

ハウジング7の下端側を閉塞する蓋部材9は、例えば金属材料あるいは樹脂材料で形成され、ハウジング7の内周下端に設けられた固定面7bに固定される。この際、蓋部材9の固定には、接着、圧入、溶着、溶接など既知の固定手段を用いることができる。   The lid member 9 that closes the lower end side of the housing 7 is formed of, for example, a metal material or a resin material, and is fixed to a fixing surface 7 b provided at the inner peripheral lower end of the housing 7. At this time, a known fixing means such as adhesion, press-fitting, welding, or welding can be used for fixing the lid member 9.

蓋部材9の上端面9aの全面又は一部の領域には、例えば図4と同様の配列態様(スパイラルの方向は逆)をなす動圧溝配列領域が形成される。この動圧溝配列領域、完成品の状態ではフランジ部2bの下端面2b2と対向し、軸部材2の回転時、下端面2b2との間に後述する第2スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   For example, a dynamic pressure groove array region having an array mode similar to that in FIG. 4 (the direction of the spiral is reversed) is formed on the entire upper surface 9a of the lid member 9 or a partial region thereof. In the dynamic pressure groove arrangement region, the finished product state, it faces the lower end surface 2b2 of the flange portion 2b, and a thrust bearing gap of the second thrust bearing portion T2 described later is formed between the lower end surface 2b2 and the shaft member 2 when rotating. Form (see FIG. 2).

シール手段としてのシール部材10は、この実施形態ではハウジング7と別体に形成され、ハウジング7の上端内周に圧入、接着、溶着、溶接等任意の手段で固定される。ここでは、シール部材10の下端面を焼結金属製軸受8の上端面8cに当接させた状態でハウジング7に固定される。なお、シール部材10の材質は特に問わず、多孔質材のように油漏れが生じるおそれのある材料でない限り、種々の金属材料もしくは樹脂材料等を使用することができる。あるいは、多孔質材であっても、外気と接触する表面をコーティング等により封孔しておくことで、シール部材10として使用することができる。もちろん、シール部材10および蓋部材9の何れか一方をハウジング7と同材料で一体に形成することも可能である。   In this embodiment, the sealing member 10 as a sealing means is formed separately from the housing 7, and is fixed to the inner periphery of the upper end of the housing 7 by any means such as press-fitting, bonding, welding, and welding. Here, the seal member 10 is fixed to the housing 7 in a state where the lower end surface thereof is in contact with the upper end surface 8 c of the sintered metal bearing 8. The material of the seal member 10 is not particularly limited, and various metal materials or resin materials can be used as long as the material is not likely to cause oil leakage such as a porous material. Or even if it is a porous material, it can be used as the sealing member 10 by sealing the surface which contacts external air by coating etc. Of course, any one of the seal member 10 and the lid member 9 can be integrally formed of the same material as the housing 7.

シール部材10の内周にはテーパ形状をなすシール面10aが形成されており、このシール面10aと、軸部2aの上部外周面との間にシール空間Sが形成される。潤滑油を流体動圧軸受装置1の内部に充填した状態では、潤滑油の油面は常にシール空間Sの内部に維持される。   A tapered seal surface 10a is formed on the inner periphery of the seal member 10, and a seal space S is formed between the seal surface 10a and the upper outer peripheral surface of the shaft portion 2a. In a state where the lubricating oil is filled in the fluid dynamic pressure bearing device 1, the oil level of the lubricating oil is always maintained in the seal space S.

上述の構成部品を、所定の手順および図2に準じる形態に組立てた後、軸受内部空間(図2中、散点模様で示す領域)に潤滑油を充填することで焼結金属製軸受8の内部気孔に潤滑油が含浸されると共に、その他の空間(ラジアル軸受隙間など)に潤滑油が満たされる。これにより、完成品としての流体動圧軸受装置1を得る。流体動圧軸受装置1の内部に充満される潤滑油としては、種々の油が使用可能であるが、HDD等のディスク駆動装置用の流体動圧軸受装置1に提供される潤滑油には、その使用時あるいは輸送時における温度変化を考慮して、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が好適に使用可能である。   After assembling the above-described components into a form conforming to a predetermined procedure and FIG. 2, the bearing internal space (the region indicated by the dotted pattern in FIG. 2) is filled with lubricating oil, whereby the sintered metal bearing 8 The internal pores are impregnated with the lubricating oil, and other spaces (such as radial bearing gaps) are filled with the lubricating oil. Thereby, the fluid dynamic bearing device 1 as a finished product is obtained. As the lubricating oil filled in the fluid dynamic bearing device 1, various oils can be used. However, the lubricating oil provided to the fluid dynamic bearing device 1 for a disk drive device such as an HDD includes Considering temperature changes during use or transportation, ester-based lubricants with excellent low evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl azelate (DOZ), etc., can be suitably used. is there.

上記構成の流体動圧軸受装置1において、軸部材2の回転時、焼結金属製軸受8の双方の動圧溝8a1,8a2配列領域は、軸部2aのラジアル軸受面2a1,2a1とラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上下何れの動圧溝8a1,8a2配列領域においても潤滑油が動圧溝8a1,8a2の軸方向中心に向けて押し込まれ、その圧力が上昇する。このような動圧溝8a1,8a2の動圧作用によって、軸部材2を回転自在にラジアル方向に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とがそれぞれ軸方向に離隔して2ヶ所に構成される(何れも図2を参照)。   In the fluid dynamic pressure bearing device 1 configured as described above, when the shaft member 2 rotates, the dynamic pressure grooves 8a1 and 8a2 of the sintered metal bearing 8 are arranged in the radial bearing surfaces 2a1 and 2a1 of the shaft portion 2a and the radial bearing. Opposing through a gap. As the shaft member 2 rotates, the lubricating oil is pushed toward the axial center of the dynamic pressure grooves 8a1 and 8a2 in any of the upper and lower dynamic pressure grooves 8a1 and 8a2 arrangement regions, and the pressure rises. Due to the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2, the first radial bearing portion R1 and the second radial bearing portion R2 that rotatably support the shaft member 2 in the radial direction are separated from each other in the axial direction. Are configured in two places (see FIG. 2 for both).

また、焼結金属製軸受8の下端面8bに設けた動圧溝8b1配列領域とこれに対向するフランジ部2bの上端面2b1との間のスラスト軸受隙間、および、蓋部材9の上端面9aに設けた動圧溝配列領域とこれに対向するフランジ部2bの下端面2b2との間のスラスト軸受隙間に、動圧溝の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、軸部材2をスラスト方向に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とがそれぞれ構成される(何れも図2を参照)。   Further, the thrust bearing gap between the dynamic pressure groove 8b1 arrangement region provided on the lower end surface 8b of the sintered metal bearing 8 and the upper end surface 2b1 of the flange portion 2b opposed to this, and the upper end surface 9a of the lid member 9 An oil film of lubricating oil is formed in the thrust bearing gap between the dynamic pressure groove arrangement region provided on the lower end surface 2b2 of the flange portion 2b facing the dynamic pressure groove arrangement region by the dynamic pressure action of the dynamic pressure groove. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the shaft member 2 in the thrust direction in a non-contact manner are configured by the pressure of these oil films (see FIG. 2 for both).

この場合、焼結金属製軸受8は、Fe系組織を非常に多く含む組織構造を有するため、ラジアル軸受面となる内周面8aの硬度が高められる。そのため、例えばSUS製の軸部材2の回転開始直後、あるいは回転停止直前に、軸部2aの外周面2a1とこれに対向する焼結金属製軸受8の内周面8aとの間で接触摺動が生じた場合でも、両面2a1、8a間の硬度差は小さくて済み、焼結金属製軸受8と軸部2aとの間の摩耗を抑制することができる。特に、この実施形態のように、軸部材2の上部にハブ3および複数枚のディスクDを装着した状態では、軸部材2を含む回転体の重心が上側に移動し、かつモーメント荷重も大きくなるため、軸部材2と焼結金属製軸受8とが軸受上部で接触摺動し易いが、上述のように両部材2a、8の硬度差(両摺動面2a1、8aの硬度差)を小さくすることで、かかる摺動摩耗を極力小さく抑えることができる。   In this case, since the sintered metal bearing 8 has a structure including an extremely large Fe-based structure, the hardness of the inner peripheral surface 8a serving as the radial bearing surface is increased. Therefore, for example, immediately after the rotation of the shaft member 2 made of SUS or immediately before the rotation is stopped, contact sliding between the outer peripheral surface 2a1 of the shaft portion 2a and the inner peripheral surface 8a of the sintered metal bearing 8 opposed thereto. Even if this occurs, the difference in hardness between the two surfaces 2a1 and 8a can be small, and wear between the sintered metal bearing 8 and the shaft portion 2a can be suppressed. In particular, when the hub 3 and the plurality of discs D are mounted on the top of the shaft member 2 as in this embodiment, the center of gravity of the rotating body including the shaft member 2 moves upward, and the moment load increases. Therefore, the shaft member 2 and the sintered metal bearing 8 are easy to contact and slide at the upper part of the bearing. However, as described above, the hardness difference between both the members 2a and 8 (the hardness difference between both sliding surfaces 2a1 and 8a) is reduced. By doing so, such sliding wear can be minimized.

また、焼結金属製軸受8の内周面8aに設けた上側の動圧溝8a1,8a2配列領域は、その帯部8a3の軸方向中心に対して軸方向非対称に形成されており、軸方向中心より上側領域の軸方向寸法X1は下側領域の軸方向寸法X2よりも大きい。そのため、軸部材2の回転時、上側領域における潤滑油の引き込み力(ポンピング力)は下側領域におけるそれに比べて相対的に大きくなる。そして、この引き込み力の差によって、ラジアル軸受隙間からその下方に向けて流出した潤滑油は、第1スラスト軸受部T1のスラスト軸受隙間からその外径側に位置する焼結金属製軸受8の軸方向溝8d1、そして、上端面8cとシール部材10の下端面との軸方向隙間から環状溝8c1および半径方向溝8c2という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   The upper dynamic pressure grooves 8a1 and 8a2 arranged in the inner peripheral surface 8a of the sintered metal bearing 8 are formed axially asymmetric with respect to the axial center of the band portion 8a3. The axial dimension X1 in the upper area from the center is larger than the axial dimension X2 in the lower area. Therefore, when the shaft member 2 rotates, the lubricating oil pull-in force (pumping force) in the upper region is relatively larger than that in the lower region. The lubricating oil that has flowed downward from the radial bearing gap due to the difference in the pulling force causes the shaft of the sintered metal bearing 8 located on the outer diameter side from the thrust bearing gap of the first thrust bearing portion T1. The circular groove 8c1 and the radial groove 8c2 are circulated from the axial groove between the directional groove 8d1 and the upper end surface 8c and the lower end surface of the seal member 10, and drawn into the radial bearing gap of the first radial bearing portion R1 again. It is.

このように、潤滑油がラジアル軸受隙間を含む軸受内部空間を流動循環するように構成することで、当該内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや軸受性能の劣化、振動の発生等の問題を解消することができる。また、何らかの理由で潤滑油中に気泡が混入した場合、気泡が潤滑油に伴って上記循環経路内を循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出されるので、気泡による悪影響が効果的に防止される。   In this way, by configuring the lubricating oil to flow and circulate in the bearing internal space including the radial bearing gap, a phenomenon in which the pressure of the lubricating oil in the internal space becomes a negative pressure locally is prevented. Problems such as generation of bubbles accompanying generation of pressure, leakage of lubricating oil due to generation of bubbles, deterioration of bearing performance, generation of vibration, and the like can be solved. Further, when bubbles are mixed in the lubricating oil for some reason, the bubbles are discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal space S to the outside air when circulating in the circulation path along with the lubricating oil. Therefore, the bad influence by the bubble is effectively prevented.

以上、本発明に係る焼結金属製軸受の一用途例につき説明したが、この軸受を適用可能な流体動圧軸受装置1がこの例のみに限定されないことはもちろんである。   As described above, one application example of the sintered metal bearing according to the present invention has been described, but it is needless to say that the fluid dynamic bearing device 1 to which this bearing can be applied is not limited to this example.

例えば、焼結金属製軸受8を備えた流体動圧軸受装置として、上記用途例では、軸部2aの一端に設けたフランジ部2bの両端面2b1,2b2側にスラスト軸受部T1,T2を形成した形態を有する場合を説明したが、これらスラスト軸受部T1,T2の軸方向離間距離を異ならせることも可能である。図5はその一例を示すもので、同図に係る流体動圧軸受装置11は、主に、ハウジング17の両端に2つのシール空間S1,S2を配置した点、およびスラスト軸受部T1,T2を焼結金属製軸受18の両端に形成した点で図2に示す流体動圧軸受装置1と異なる形態を有する。   For example, as a fluid dynamic pressure bearing device including a sintered metal bearing 8, in the above application example, the thrust bearing portions T1 and T2 are formed on both end surfaces 2b1 and 2b2 of the flange portion 2b provided at one end of the shaft portion 2a. Although the case where it has the form demonstrated was demonstrated, it is also possible to vary the axial direction separation distance of these thrust bearing parts T1 and T2. FIG. 5 shows an example thereof. The fluid dynamic bearing device 11 according to FIG. 5 mainly includes a point that two seal spaces S1 and S2 are disposed at both ends of the housing 17, and thrust bearing portions T1 and T2. It has a form different from the fluid dynamic bearing device 1 shown in FIG. 2 in that it is formed at both ends of the sintered metal bearing 18.

この図示例では、本発明に係る焼結金属製軸受18は、その下端面18bだけでなく上端面18cにも図4に示す形状の動圧溝配列領域(スパイラルの向きは図3と逆)を有する。そのため、第1スラスト軸受部T1は、第1シール部材19の下端面19aと焼結金属製軸受18の上端面18cとの間に設けられ、第2スラスト軸受部T2は、第2シール部材20の上端面20aと焼結金属製軸受18の下端面18bとの間に設けられる。また、第1シール空間S1は、軸部材12に固定された第1シール部材19の外周面19bとこの面に向かい合うハウジング17上端の内周面17aとの間に形成されると共に、第2シール空間S2は、第2シール部材20の外周面20bとこの面に向かい合うハウジング17下端の内周面17aとの間に形成される。なお、ラジアル軸受部R1,R2が、図3に例示のラジアル動圧発生部を設けた内周面18aと、内周面18aと対向する軸部材12の外周面12aとの間にそれぞれ形成される点は、図2に示す流体動圧軸受装置1の場合と同様である。   In this illustrated example, the sintered metal bearing 18 according to the present invention has not only the lower end surface 18b but also the upper end surface 18c on the dynamic pressure groove arrangement region having the shape shown in FIG. 4 (the direction of the spiral is opposite to that in FIG. 3). Have Therefore, the first thrust bearing portion T1 is provided between the lower end surface 19a of the first seal member 19 and the upper end surface 18c of the sintered metal bearing 18, and the second thrust bearing portion T2 is the second seal member 20. Is provided between the upper end surface 20a of the metal plate and the lower end surface 18b of the sintered metal bearing 18. The first seal space S1 is formed between the outer peripheral surface 19b of the first seal member 19 fixed to the shaft member 12 and the inner peripheral surface 17a at the upper end of the housing 17 facing the surface. The space S2 is formed between the outer peripheral surface 20b of the second seal member 20 and the inner peripheral surface 17a at the lower end of the housing 17 facing the surface. The radial bearing portions R1 and R2 are respectively formed between the inner peripheral surface 18a provided with the radial dynamic pressure generating portion illustrated in FIG. 3 and the outer peripheral surface 12a of the shaft member 12 facing the inner peripheral surface 18a. This is the same as in the case of the fluid dynamic bearing device 1 shown in FIG.

本形態に係る流体動圧軸受装置11は、図2に示す流体動圧軸受装置1と比べ、両スラスト軸受部T1,T2間の離間距離が大きくなっているため、軸受全体としてのモーメント荷重に対する負荷能力を向上させることができる。そのため、HDDをはじめとする情報機器の高容量化に伴い、ディスク枚数の増加など回転体重量が増加した場合であっても、軸部材2との接触による焼結金属製軸受18の摺動摩耗を低減(抑制)することができる。   In the fluid dynamic pressure bearing device 11 according to this embodiment, the separation distance between the thrust bearing portions T1 and T2 is larger than that of the fluid dynamic pressure bearing device 1 shown in FIG. The load capacity can be improved. Therefore, the sliding wear of the sintered metal bearing 18 due to contact with the shaft member 2 even when the weight of the rotating body is increased, such as an increase in the number of disks, as the capacity of information devices such as HDDs increases. Can be reduced (suppressed).

図6は、さらに他の形態に係る流体動圧軸受装置21の断面図を示す。同図に係る流体動圧軸受装置21では、焼結金属製軸受8を軸方向に2個重ねて配設しており、これら焼結金属製軸受8,8が、筒部27aと底部27bとからなる有底筒状のハウジング27の内周面27a1に固定される。軸方向に重ねて配設された2個の焼結金属製軸受8のうち、上側の焼結金属製軸受8には、シール部材10の側のみに図3で例示の非対称動圧溝8a1,8a2配列領域が設けられ、下側の焼結金属製軸受8には、フランジ部2bの側のみに図3で例示の対称な動圧溝8a1,8a2配列領域が設けられる。そのため、双方の焼結金属製軸受8,8間で最も軸方向に離隔した位置でラジアル軸受部R1,R2が形成される。   FIG. 6 shows a sectional view of a fluid dynamic bearing device 21 according to still another embodiment. In the fluid dynamic pressure bearing device 21 according to the figure, two sintered metal bearings 8 are arranged in an axial direction, and these sintered metal bearings 8 and 8 are formed by a cylindrical portion 27a, a bottom portion 27b, It is fixed to the inner peripheral surface 27a1 of the bottomed cylindrical housing 27. Of the two sintered metal bearings 8 arranged so as to overlap in the axial direction, the upper sintered metal bearing 8 has an asymmetric dynamic pressure groove 8a1, illustrated in FIG. 8a2 is provided, and the lower sintered metal bearing 8 is provided with the symmetrical dynamic pressure grooves 8a1, 8a2 exemplified in FIG. 3 only on the flange portion 2b side. For this reason, the radial bearing portions R1 and R2 are formed at positions that are the most axially separated between the sintered metal bearings 8 and 8.

このように、図6に係る流体動圧軸受装置21は、図2や図5に示す流体動圧軸受装置1,11に比べてラジアル軸受部R1,R2間の離間距離を大きくすることで、軸受全体としてのモーメント荷重に対する負荷能力を向上させている。そのため、回転体重量の増加や、回転速度の増加に対しても、焼結金属製軸受8,8の摺動摩耗を低減して、長期にわたって優れた軸受性能を発揮することができる。   As described above, the fluid dynamic bearing device 21 according to FIG. 6 has a larger distance between the radial bearing portions R1 and R2 than the fluid dynamic bearing devices 1 and 11 shown in FIG. 2 and FIG. The load capacity for the moment load of the entire bearing is improved. Therefore, the sliding wear of the sintered metal bearings 8 and 8 can be reduced and the excellent bearing performance can be exhibited over a long period of time even when the rotating body weight is increased or the rotational speed is increased.

また、以上の説明では、ラジアル軸受部R1,R2およびスラスト軸受部T1,T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、本発明を適用可能な構成はこれに限定されるものではない。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. The configuration to which the present invention can be applied is not limited to this.

例えば、ラジアル軸受部R1,R2として、図示は省略するが、軸方向の溝を円周方向の複数箇所に形成した、いわゆるステップ状の動圧発生部、あるいは、円周方向に複数の円弧面を配列し、対向する軸部材2,12の外周面2a1,12aとの間に、くさび状の半径方向隙間(軸受隙間)を形成した、いわゆる多円弧軸受を採用してもよい。   For example, as the radial bearing portions R1 and R2, although not shown, a so-called step-like dynamic pressure generating portion in which axial grooves are formed at a plurality of locations in the circumferential direction, or a plurality of circular arc surfaces in the circumferential direction. A so-called multi-arc bearing in which wedge-shaped radial gaps (bearing gaps) are formed between the outer peripheral surfaces 2a1 and 12a of the opposing shaft members 2 and 12 may be employed.

あるいは、ラジアル軸受面となる焼結金属製軸受8,18の内周面8a,18aを、動圧発生部としての動圧溝や円弧面等を設けない真円状内周面とし、この内周面と対向する真円状の外周面とで、いわゆる真円軸受を構成することができる。   Alternatively, the inner peripheral surfaces 8a and 18a of the sintered metal bearings 8 and 18 serving as radial bearing surfaces are made into a perfect circular inner peripheral surface without a dynamic pressure groove or an arc surface as a dynamic pressure generating portion. A so-called perfect circle bearing can be constituted by a perfect outer peripheral surface facing the peripheral surface.

また、スラスト軸受部T1,T2の一方又は双方は、同じく図示は省略するが、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(端面が調和波形などの波型になったもの)等で構成することもできる。   One or both of the thrust bearing portions T1 and T2 are also not shown in the figure, but a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. It can also be configured by a step bearing or a corrugated bearing (having a corrugated waveform such as an end face).

また、以上の実施形態では、動圧発生部を何れも固定側(ハウジング27や焼結金属製軸受8、蓋部材9など)に設けた場合を説明したが、その一部あるいは全てを回転側(軸部材2,12やフランジ部2b、シール部材19,20など)に設けることも可能である。具体的には、軸部材2,12の外周面2a1,12aやフランジ部2bの両端面2b1,2b2、あるいはシール部材19,20の下端面19aや上端面20aのうち、1ヶ所以上に既述の動圧発生部を設けることが可能である。   In the above embodiment, the case where all the dynamic pressure generating portions are provided on the fixed side (the housing 27, the sintered metal bearing 8, the lid member 9, etc.) has been described. (The shaft members 2 and 12, the flange portion 2b, the seal members 19 and 20, etc.) may be provided. Specifically, the outer peripheral surfaces 2a1 and 12a of the shaft members 2 and 12, the both end surfaces 2b1 and 2b2 of the flange portion 2b, or the lower end surface 19a and the upper end surface 20a of the seal members 19 and 20 are described in one or more places. It is possible to provide a dynamic pressure generator.

また、以上の実施形態では、軸部材2,12が回転して、それを焼結金属製軸受8,18で支持する構成を説明したが、これとは逆に、焼結金属製軸受8,18の側が回転して、それを軸部材2,12の側で支持する構成に対しても本発明を適用することが可能である。この場合、図示は省略するが、焼結金属製軸受8,18はその外側に配設される部材に接着固定され、当該外側部材と一体に回転し、固定側の軸部によって支持される。   In the above embodiment, the shaft members 2 and 12 are rotated and supported by the sintered metal bearings 8 and 18, but conversely, the sintered metal bearings 8 and 18 are supported. The present invention can also be applied to a configuration in which the 18 side rotates and is supported on the shaft members 2 and 12 side. In this case, although not shown, the sintered metal bearings 8 and 18 are bonded and fixed to members disposed on the outer side thereof, rotate integrally with the outer member, and are supported by the shaft portion on the fixed side.

また、以上の実施形態では、流体動圧軸受装置1,11,21の内部に充満し、ラジアル軸受隙間やスラスト軸受隙間に流体膜を形成するための流体として潤滑油を例示したが、これ以外にも流体膜を形成可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。もちろん、本発明に係る焼結金属製軸受は、耐摩耗性に優れたものであることから、何らの潤滑流体を使用することなく通常の滑り軸受として使用することも可能である。   Further, in the above embodiment, the lubricating oil is exemplified as the fluid for filling the fluid dynamic pressure bearing devices 1, 11 and 21 and forming a fluid film in the radial bearing gap and the thrust bearing gap. In addition, a fluid capable of forming a fluid film, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used. Of course, since the sintered metal bearing according to the present invention is excellent in wear resistance, it can be used as a normal sliding bearing without using any lubricating fluid.

本発明の効果を実証するため、Fe系粉末とCu粉末とを所定の割合で含む原料粉末で形成された焼結金属製軸受(実施例)と、従来組成の原料粉末で形成された焼結金属製軸受(比較例)とについて、それぞれ摩耗試験、圧環試験、および透過油量測定試験を行い、各特性につき比較評価を行った。   In order to demonstrate the effect of the present invention, a sintered metal bearing (Example) formed of a raw material powder containing Fe-based powder and Cu powder in a predetermined ratio and a sintered material formed of a raw material powder of a conventional composition The metal bearing (comparative example) was subjected to a wear test, a crushing test, and a permeated oil amount measurement test, respectively, and a comparative evaluation was performed for each characteristic.

ここで、試験材料には、Fe粉末としてヘガネス(株)製のNC100.24を、Cu粉末として福田金属箔粉工業(株)製のCE−15を、また、SUS粉末として大同特殊鋼(株)製のDAP410Lをそれぞれ用いた。また、この実験では、低融点金属としてのSn粉末および黒鉛粉末を原料粉末に使用し、Sn粉末には福田金属箔粉工業(株)製のSn-At-W350を、黒鉛粉末には日本黒鉛工業(株)製のECB−250をそれぞれ用いた。圧粉成形体の密度が6.5〜6.9[g/cm3]となるように成形条件を設定した。実施例の焼結温度は1050℃、比較例の焼結温度は870℃とした。比較例と実施例、各々の原料粉末の組成は表1に示す通りである。また、各粉末の粒度分布は表2〜表6に示す通りである。
完成品としての試験片の完成品寸法は、後述する摩耗試験の場合、実施例、比較例共にφ(外径)7.5mm×t(軸方向幅)10mmとした。また、圧環試験および透過油量の測定試験の場合、実施例、比較例共にφ(外径)7.5mm×φ(内径)4mm×t(軸方向幅)10mmとした。また、試験片の数は各実施例、比較例共に5とした。
Here, NC100.24 manufactured by Heganes Co., Ltd. as Fe powder, CE-15 manufactured by Fukuda Metal Foil Co., Ltd. as Cu powder, and Daido Special Steel Co., Ltd. as SUS powder are used as test materials. ) DAP410L manufactured by) was used. In this experiment, Sn powder and graphite powder as a low melting point metal were used as raw material powder, Sn-At-W350 manufactured by Fukuda Metal Foil Co., Ltd. was used for Sn powder, and Japanese graphite was used for graphite powder. ECB-250 manufactured by Kogyo Co., Ltd. was used. Molding conditions were set so that the density of the green compact was 6.5 to 6.9 [g / cm 3 ]. The sintering temperature of the example was 1050 ° C., and the sintering temperature of the comparative example was 870 ° C. Table 1 shows the compositions of the comparative example, the example, and the raw material powders. The particle size distribution of each powder is as shown in Tables 2-6.
The finished product dimensions of the test piece as a finished product were set to φ (outer diameter) 7.5 mm × t (axial width) 10 mm in both the examples and the comparative examples in the case of a wear test described later. In the pressure ring test and the measurement test of the permeated oil amount, φ (outer diameter) 7.5 mm × φ (inner diameter) 4 mm × t (axial width) 10 mm in both the examples and the comparative examples. Moreover, the number of test pieces was set to 5 in each of the examples and comparative examples.

ここで、摩耗試験は、上記試験片を用いて以下の試験条件で行った。
相手試験片
材質 :SUS420J2
寸法 :φ(外径)40mm×t(軸方向幅)4mm
周速 :50m/min
面圧 :1.3MPa
潤滑油 :エステル油(粘度:12mm2/s)
試験時間:3hrs
Here, the abrasion test was performed using the above test piece under the following test conditions.
Opposite test piece Material: SUS420J2
Dimensions: φ (outer diameter) 40 mm x t (axial width) 4 mm
Peripheral speed: 50 m / min
Surface pressure: 1.3 MPa
Lubricating oil: Ester oil (viscosity: 12mm 2 / s)
Test time: 3hrs

圧環強度の測定試験は、上記試験片を用いて実施例、比較例共にJIS Z 2507に準拠して行った。   The measurement test of the crushing strength was carried out in accordance with JIS Z 2507 in both Examples and Comparative Examples using the above test pieces.

透過油量の測定試験は、潤滑油を含浸させていない状態の試験片(焼結金属製軸受)の内周にタンクから潤滑油を供給すると共に、試験片の内周に適当なエア圧を所定時間付与して(4気圧、10分間)、試験片の外周面から外部に漏れ出した潤滑油の量を測定することで行った。また、潤滑油にはエステル系油(12mm2/s)を使用した。 In the permeated oil measurement test, lubricating oil is supplied from the tank to the inner periphery of the test piece (sintered metal bearing) that is not impregnated with lubricating oil, and an appropriate air pressure is applied to the inner periphery of the test piece. It was performed by applying a predetermined time (4 atm, 10 minutes) and measuring the amount of lubricating oil leaked to the outside from the outer peripheral surface of the test piece. The lubricating oil used was ester oil (12 mm 2 / s).

図10に摩耗試験の測定結果を、図11に圧環試験の測定結果を、図12に透過油量の測定結果をそれぞれ示す。図10に示すように、Fe系組織が全体に占める割合を、重量比でCu組織の10倍以上とした場合(実施例)、従前の組成(比較例)と比べて摩耗量の大幅な減少効果が見られた。また、図11に示す結果から、Fe系組織の割合をCu組織のそれに比べて大幅に増加した場合(実施例)であっても、従前の組成(比較例)と同等レベルの圧環強度を示すことがわかる。さらに、図12に示す結果から、上記のように耐摩耗性、圧環強度に優れた組成(実施例)でありながら、透過油量(潤滑油の透過性)についても、従前の組成(比較例)と同等レベルの性能を発揮することがわかる。 FIG. 10 shows the measurement result of the wear test, FIG. 11 shows the measurement result of the pressure ring test, and FIG. 12 shows the measurement result of the permeated oil amount. As shown in FIG. 10, when the ratio of the Fe-based structure to the whole is 10 times or more of the Cu structure by weight (Example), the amount of wear is greatly reduced compared to the previous composition (Comparative Example). The effect was seen. Further, from the results shown in FIG. 11, even when the proportion of the Fe-based structure is significantly increased compared to that of the Cu structure (Example), the crushing strength at the same level as the previous composition (Comparative Example) is shown. I understand that. Furthermore, from the results shown in FIG. 12, the composition (Example) having excellent wear resistance and crushing strength as described above, but also the amount of permeated oil (lubricant permeability) was compared with the previous composition (Comparative Example). It can be seen that the same level of performance is exhibited.

1,11,21 流体動圧軸受装置
2,12 軸部材
2a 軸部
2b フランジ部
3 ハブ
4 ステータコイル
5 ロータマグネット
6 ブラケット
7,17,27 ハウジング
8,18 焼結金属製軸受
8a,18a 内周面
8a1,8a2 動圧溝
8b,18b 下端面
8b1 動圧溝
8c,18c 上端面
8d 外周面
8d1 軸方向溝
9 蓋部材
10,19,20 シール部材
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S1,S2 シール空間
DESCRIPTION OF SYMBOLS 1,11,21 Fluid dynamic pressure bearing apparatus 2,12 Shaft member 2a Shaft part 2b Flange part 3 Hub 4 Stator coil 5 Rotor magnet 6 Bracket 7, 17, 27 Housing 8, 18 Sintered metal bearing 8a, 18a Inner circumference Surfaces 8a1, 8a2 Dynamic pressure grooves 8b, 18b Lower end surface 8b1 Dynamic pressure grooves 8c, 18c Upper end surface 8d Outer peripheral surface 8d1 Axial groove 9 Lid member 10, 19, 20 Seal member R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S1, S2 seal space

Claims (9)

Fe系組織中にCu組織が分散した焼結金属製軸受であって、Fe系組織が重量比でCu組織の10倍以上含まれると共に、Cu組織が粒状組織として残っていることを特徴とする焼結金属製軸受。   A sintered metal bearing in which a Cu structure is dispersed in an Fe-based structure, wherein the Fe-based structure is contained in a weight ratio of 10 times or more of the Cu structure, and the Cu structure remains as a granular structure. Sintered metal bearing. Fe系組織の含有割合が重量比で90%以上である請求項1に記載の焼結金属製軸受。   The sintered metal bearing according to claim 1, wherein the content ratio of the Fe-based structure is 90% or more by weight. Fe系組織の含有割合が重量比で98%以下である請求項2に記載の焼結金属製軸受。   The sintered metal bearing according to claim 2, wherein the content ratio of the Fe-based structure is 98% or less by weight. Fe系組織が、Fe組織とSUS組織の一方又は双方で構成される請求項1に記載の焼結金属製軸受。   The sintered metal bearing according to claim 1, wherein the Fe-based structure is composed of one or both of an Fe structure and a SUS structure. 回転支持すべき軸との間に流体の動圧作用を生じさせるための動圧発生部を設けた請求項1に記載の焼結金属製軸受。   The sintered metal bearing according to claim 1, wherein a dynamic pressure generating portion for generating a dynamic pressure action of fluid is provided between the shaft to be rotatably supported. 請求項1〜5の何れかに記載の焼結金属製軸受を備えた流体動圧軸受装置。   A fluid dynamic bearing device comprising the sintered metal bearing according to claim 1. Fe系組織中にCu組織が分散した焼結金属製軸受を製造する方法であって、
Cu粉末と、重量比でCu粉末の10倍以上のFe系粉末とを少なくとも含む原料粉末を圧縮成形し、然る後、この圧縮成形体をCuの融点未満の温度で焼結することを特徴とする焼結金属製軸受の製造方法。
A method of manufacturing a sintered metal bearing in which a Cu structure is dispersed in an Fe-based structure,
A raw material powder containing at least a Cu powder and an Fe-based powder at least 10 times the weight of the Cu powder in a weight ratio is compression-molded, and then the compact is sintered at a temperature lower than the melting point of Cu. A method for manufacturing a sintered metal bearing.
Fe系粉末とCu粉末とを、部分的な合金化により一体化した状態で原料粉末に使用する請求項7に記載の焼結金属製軸受の製造方法。   The manufacturing method of the sintered metal bearing according to claim 7, wherein the Fe-based powder and the Cu powder are used as the raw material powder in an integrated state by partial alloying. Cu粉末がFe系粉末に比べて微細な粒径を有する請求項7に記載の焼結金属製軸受の製造方法。   The method for manufacturing a sintered metal bearing according to claim 7, wherein the Cu powder has a finer particle diameter than that of the Fe-based powder.
JP2009181575A 2009-03-19 2009-08-04 Fe-based sintered metal bearing and manufacturing method thereof Expired - Fee Related JP5558041B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009181575A JP5558041B2 (en) 2009-08-04 2009-08-04 Fe-based sintered metal bearing and manufacturing method thereof
PCT/JP2010/053320 WO2010106909A1 (en) 2009-03-19 2010-03-02 Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
CN201080012437.7A CN102356249B (en) 2009-03-19 2010-03-02 Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
KR1020117023658A KR101615147B1 (en) 2009-03-19 2010-03-02 Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
US13/255,058 US8992658B2 (en) 2009-03-19 2010-03-02 Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181575A JP5558041B2 (en) 2009-08-04 2009-08-04 Fe-based sintered metal bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011033156A true JP2011033156A (en) 2011-02-17
JP5558041B2 JP5558041B2 (en) 2014-07-23

Family

ID=43762420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181575A Expired - Fee Related JP5558041B2 (en) 2009-03-19 2009-08-04 Fe-based sintered metal bearing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5558041B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241728A (en) * 2011-05-16 2012-12-10 Ntn Corp Sintered bearing and fluid dynamic pressure bearing device including the same
JP2015055312A (en) * 2013-09-12 2015-03-23 Ntn株式会社 Fluid dynamic pressure bearing device, and inner member manufacturing method
WO2016114065A1 (en) * 2015-01-14 2016-07-21 Ntn株式会社 Bearing base material and method for manufacturing same, and slide bearing
JP2021001686A (en) * 2020-09-02 2021-01-07 Ntn株式会社 Sintered bearing

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242903A (en) * 1994-01-12 1995-09-19 Daido Steel Co Ltd Stainless steel powder for sintering
JPH0841607A (en) * 1994-08-03 1996-02-13 Nippon Funmatsu Gokin Kk Heat resistant and wear resistant sintered stainless steel
JPH0892604A (en) * 1994-09-21 1996-04-09 Dowa Iron Powder Co Ltd Production of iron-base copper composite powder for powder metallurgy
JP2004204298A (en) * 2002-12-25 2004-07-22 Fuji Heavy Ind Ltd Iron-base sintered compact superior in cast-in property by light metal alloy, and manufacturing method therefor
JP2006016680A (en) * 2004-07-05 2006-01-19 Tokai Carbon Co Ltd Copper-based sintered friction material
JP2006189081A (en) * 2005-01-05 2006-07-20 Ntn Corp Fluid bearing device
JP2006214003A (en) * 2005-01-06 2006-08-17 Ntn Corp Sintered metallic material and sintered oil-retaining bearing constituted of the metallic material
JP2008069384A (en) * 2006-09-12 2008-03-27 Ntn Corp Fe-BASED SINTERED METAL BEARING AND ITS MANUFACTURING METHOD
JP2008169460A (en) * 2006-02-15 2008-07-24 Jfe Steel Kk Iron-based powder mixture, and methods for producing compact of iron-based powder and sintered compact of iron-based powder
JP2010106306A (en) * 2008-10-29 2010-05-13 Ntn Corp Sintered bearing
JP2010223246A (en) * 2009-03-19 2010-10-07 Ntn Corp Sintered metal bearing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242903A (en) * 1994-01-12 1995-09-19 Daido Steel Co Ltd Stainless steel powder for sintering
JPH0841607A (en) * 1994-08-03 1996-02-13 Nippon Funmatsu Gokin Kk Heat resistant and wear resistant sintered stainless steel
JPH0892604A (en) * 1994-09-21 1996-04-09 Dowa Iron Powder Co Ltd Production of iron-base copper composite powder for powder metallurgy
JP2004204298A (en) * 2002-12-25 2004-07-22 Fuji Heavy Ind Ltd Iron-base sintered compact superior in cast-in property by light metal alloy, and manufacturing method therefor
JP2006016680A (en) * 2004-07-05 2006-01-19 Tokai Carbon Co Ltd Copper-based sintered friction material
JP2006189081A (en) * 2005-01-05 2006-07-20 Ntn Corp Fluid bearing device
JP2006214003A (en) * 2005-01-06 2006-08-17 Ntn Corp Sintered metallic material and sintered oil-retaining bearing constituted of the metallic material
JP2008169460A (en) * 2006-02-15 2008-07-24 Jfe Steel Kk Iron-based powder mixture, and methods for producing compact of iron-based powder and sintered compact of iron-based powder
JP2008069384A (en) * 2006-09-12 2008-03-27 Ntn Corp Fe-BASED SINTERED METAL BEARING AND ITS MANUFACTURING METHOD
JP2010106306A (en) * 2008-10-29 2010-05-13 Ntn Corp Sintered bearing
JP2010223246A (en) * 2009-03-19 2010-10-07 Ntn Corp Sintered metal bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241728A (en) * 2011-05-16 2012-12-10 Ntn Corp Sintered bearing and fluid dynamic pressure bearing device including the same
JP2015055312A (en) * 2013-09-12 2015-03-23 Ntn株式会社 Fluid dynamic pressure bearing device, and inner member manufacturing method
WO2016114065A1 (en) * 2015-01-14 2016-07-21 Ntn株式会社 Bearing base material and method for manufacturing same, and slide bearing
JP2021001686A (en) * 2020-09-02 2021-01-07 Ntn株式会社 Sintered bearing

Also Published As

Publication number Publication date
JP5558041B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2010106909A1 (en) Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
JP5318619B2 (en) Sintered metal bearing
JP5384014B2 (en) Sintered bearing
JP5085035B2 (en) Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor
JP6100046B2 (en) Fluid dynamic bearing device and motor including the same
US20090142010A1 (en) Sintered metal material, sintered oil-impregnated bearing formed of the metal material, and fluid lubrication bearing device
CN103119313B (en) Sintered bearing
JP6816079B2 (en) Vibration motor
WO2013141205A1 (en) Sintered metal bearing
JP5558041B2 (en) Fe-based sintered metal bearing and manufacturing method thereof
JP4954478B2 (en) Hydrodynamic bearing device
JP5881975B2 (en) Manufacturing method of sintered bearing
JP5384079B2 (en) Sintered bearing
JP6812113B2 (en) Sintered oil-impregnated bearing and its manufacturing method
JP5323620B2 (en) Sintered metal bearing for fluid dynamic bearing device, and fluid dynamic bearing device provided with the bearing
JP6026123B2 (en) Sintered metal bearing
JP5214555B2 (en) Sintered oil-impregnated bearing
JP2008039104A (en) Fluid bearing device
JP2009092197A (en) Dynamic pressure bearing device and its manufacturing method
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2007250095A (en) Dynamic pressure bearing arrangement
JP2017078183A (en) Sintered shaft bearing
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP2021001629A (en) Bearing member and fluid dynamic pressure bearing device including the same
JP2018179018A (en) Porous dynamic pressure bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5558041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees