JP5085035B2 - Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor - Google Patents

Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor Download PDF

Info

Publication number
JP5085035B2
JP5085035B2 JP2005368338A JP2005368338A JP5085035B2 JP 5085035 B2 JP5085035 B2 JP 5085035B2 JP 2005368338 A JP2005368338 A JP 2005368338A JP 2005368338 A JP2005368338 A JP 2005368338A JP 5085035 B2 JP5085035 B2 JP 5085035B2
Authority
JP
Japan
Prior art keywords
powder
bearing
sintered
dynamic pressure
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005368338A
Other languages
Japanese (ja)
Other versions
JP2006214003A (en
Inventor
冬木 伊藤
一男 岡村
敏彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005368338A priority Critical patent/JP5085035B2/en
Priority to US11/719,809 priority patent/US20090142010A1/en
Priority to CN201210052284.XA priority patent/CN102588428B/en
Priority to KR1020077012362A priority patent/KR101339745B1/en
Priority to CN2005800442241A priority patent/CN101087669B/en
Priority to PCT/JP2005/023897 priority patent/WO2006073090A1/en
Publication of JP2006214003A publication Critical patent/JP2006214003A/en
Application granted granted Critical
Publication of JP5085035B2 publication Critical patent/JP5085035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属粉末を圧縮成形した後、焼結して得られる焼結金属材、この金属材で形成された焼結含油軸受、この軸受を有する流体軸受装置、及びこの軸受装置を備えたモータに関する。 The present invention can be obtained by compression molding a metal powder, sintering to sintered metal material obtained comprises oil-impregnated sintered bearing which is formed of a metal material this, a fluid bearing device having the bearing, and the bearing device Related to the motor .

焼結金属材は上記焼結含油軸受をはじめ、その他多くの分野に用いられている。その中でも、焼結含油軸受は、支持すべき軸との相対回転に伴い、内部に含浸された潤滑流体が軸との摺動部に滲み出して潤滑膜を形成し、この油膜を介して軸を回転支持するものであり、自動車用軸受部品や情報機器用のモータスピンドル等、特に高い軸受性能や耐久性が要求される箇所に好ましく利用されている。   Sintered metal materials are used in many other fields including the above-mentioned sintered oil-impregnated bearings. Among them, in the sintered oil-impregnated bearing, along with the relative rotation with the shaft to be supported, the lubricating fluid impregnated inside exudes to the sliding portion with the shaft to form a lubricating film, and through this oil film the shaft And is preferably used in places where particularly high bearing performance and durability are required, such as automobile bearing parts and motor spindles for information equipment.

通常、この種の焼結含油軸受は、Cu粉末又はFe粉末、あるいはその両者を主成分とする金属粉末を所定の形状(多くは円筒状)に圧縮成形した後、焼結して得られた多孔質体に、潤滑油又は潤滑グリース等の流体を含浸させることで形成される(例えば、特許文献1を参照)。   Usually, this kind of sintered oil-impregnated bearing was obtained by compression molding a metal powder mainly composed of Cu powder or Fe powder or both into a predetermined shape (mostly cylindrical) and then sintering. It is formed by impregnating a porous body with a fluid such as lubricating oil or lubricating grease (see, for example, Patent Document 1).

その一方で、回転支持される軸は、軸方向の圧縮荷重作用下で、あるいはモーメント荷重作用下で使用する場合を考慮して、例えばステンレス鋼(SUS)などの高強度材で形成される。
特開平11−182551号公報
On the other hand, the shaft supported for rotation is formed of a high-strength material such as stainless steel (SUS) in consideration of the case where it is used under an axial compressive load action or a moment load action.
Japanese Patent Laid-Open No. 11-182551

この種の焼結含油軸受においては、支持すべき軸との間で摺動摩擦が避けられないことから、軸との摺動面(軸受面)には、良好な摺動性および高い耐摩耗性が要求される。   In this type of sintered oil-impregnated bearing, sliding friction with the shaft to be supported is inevitable, so the sliding surface (bearing surface) with the shaft has good slidability and high wear resistance. Is required.

しかしながら、上記材料(Cu、Fe粉末)で形成された焼結含油軸受では、軸との摺動性(なじみ性)に関しては良好な結果を示すものの、耐摩耗性に関しては常に良好であるとは限らない。特に、相手材がより硬度の高い材料(例えばSUSなど)で形成されている場合には、焼結含油軸受の摩耗が早期に進行する恐れがある。   However, a sintered oil-impregnated bearing formed of the above materials (Cu, Fe powder) shows good results with respect to sliding properties (compatibility) with the shaft, but is always good with respect to wear resistance. Not exclusively. In particular, when the counterpart material is formed of a material having higher hardness (for example, SUS), there is a possibility that the wear of the sintered oil-impregnated bearing may proceed early.

本発明の課題は、支持すべき摺動相手材に対する摺動性および耐摩耗性を向上させた焼結金属材、およびこの金属材で形成された焼結含油軸受を提供することである。   An object of the present invention is to provide a sintered metal material having improved slidability and wear resistance with respect to a sliding partner material to be supported, and a sintered oil-impregnated bearing formed of the metal material.

前記課題を解決するため、本発明は、Cu粉末と、SUS粉末と、Cu粉末の融点未満となる焼結温度より低い温度で溶融可能な低融点金属の粉末とを含む混合金属粉末を圧縮成形した後、焼結して得られたものであって、混合金属粉末は、さらに固体潤滑剤としての黒鉛を含み、黒鉛の配合量の上限値を2.5wt%とした焼結金属材を提供する。なお、ここでいうCu粉末は、純Cu粉末の他、他金属とのCu合金粉末、あるいは他の金属粒子の表層部にCuの被覆層が形成されたCu被覆金属粉末などを含む。 In order to solve the above-mentioned problems, the present invention compression-molds mixed metal powder comprising Cu powder, SUS powder, and low melting point metal powder that can be melted at a temperature lower than the sintering temperature that is less than the melting point of Cu powder. After that, the mixed metal powder further includes graphite as a solid lubricant, and provides a sintered metal material in which the upper limit of the amount of graphite is 2.5 wt%. To do. The Cu powder referred to here includes pure Cu powder, Cu alloy powder with other metals, or Cu-coated metal powder in which a Cu coating layer is formed on the surface layer of other metal particles.

また、前記課題を解決するため、本発明は、上記混合金属粉末からなる焼結金属材で形成され、その内周に、支持すべき軸の摺動面を流体の潤滑膜を介して支持する軸受面が設けられた焼結含油軸受を提供する。   Further, in order to solve the above-mentioned problems, the present invention is formed of a sintered metal material made of the above mixed metal powder, and supports the sliding surface of the shaft to be supported on the inner periphery thereof through a fluid lubricating film. A sintered oil-impregnated bearing provided with a bearing surface is provided.

このように、SUS粉末を配合することで、焼結金属材の成形表面(焼結含油軸受の軸受面)の硬度が向上する。その一方で、Cu粉末を配合することで、成形表面(軸受面)の摺動相手材(軸)に対する良好な摺動性(なじみ性)が確保される。従って、この両粉末を含む混合金属粉末で焼結金属材を形成し、あるいはこの焼結金属材で焼結含油軸受を形成することにより、摺動相手材に対する耐摩耗性を改善することができると共に、摺動相手材に対する良好な摺動特性(低摩擦性、低ロストルク性)を得ることができる。   Thus, the hardness of the shaping | molding surface (bearing surface of a sintered oil-impregnated bearing) of a sintered metal material improves by mix | blending SUS powder. On the other hand, good slidability (compatibility) of the molding surface (bearing surface) with respect to the sliding counterpart material (shaft) is ensured by blending Cu powder. Therefore, by forming a sintered metal material with the mixed metal powder containing both powders, or forming a sintered oil-impregnated bearing with this sintered metal material, the wear resistance against the sliding counterpart material can be improved. At the same time, it is possible to obtain good sliding characteristics (low friction property, low loss torque property) with respect to the sliding counterpart material.

上記SUS粉末としては、種々のものが使用できるが、その中でも、例えばCrを5wt%以上16wt%以下含むSUS粉末が好ましく使用可能であり、Crを6wt%以上10wt%以下含むSUS粉末がより好ましく使用可能である。これは、SUS粉末中に合金化された状態で存在するCrの含有量が16wt%を超えると、焼結材の二次成形性(焼結後の成形性)、あるいは焼結材強度に悪影響を及ぼす恐れがあるためである。また、Cr含有量が5wt%未満だと、これを配合してなるSUS粉末の硬度が不十分となり、耐摩耗性の改善効果が得られない可能性があるためである。   Various types of SUS powder can be used. Among them, for example, a SUS powder containing 5 wt% to 16 wt% of Cr is preferably used, and a SUS powder containing 6 wt% to 10 wt% of Cr is more preferable. It can be used. This is because when the content of Cr present in the alloyed state in the SUS powder exceeds 16 wt%, the secondary formability (formability after sintering) of the sintered material or the strength of the sintered material is adversely affected. It is because there is a risk of affecting. Moreover, if the Cr content is less than 5 wt%, the hardness of the SUS powder formed by blending it becomes insufficient, and the effect of improving the wear resistance may not be obtained.

これらCu粉末とSUS粉末とを含む混合金属粉末としては、Cu粉末を5wt%〜95wt%、SUS粉末を5wt%〜95wt%含むものが好ましい。これは、SUS粉末の含有量が5wt%未満だと、SUS粉末を配合したことによる耐摩耗性の改善効果が不十分となる恐れがあるためである。また、Cu粉末の含有量が5wt%未満だと、Cu粉末による良好な摺動性(摺動相手材に対するなじみ性)が確保できない恐れがあるためである。   As the mixed metal powder containing Cu powder and SUS powder, those containing 5 wt% to 95 wt% of Cu powder and 5 wt% to 95 wt% of SUS powder are preferable. This is because if the content of the SUS powder is less than 5 wt%, the effect of improving the wear resistance due to the blending of the SUS powder may be insufficient. Moreover, it is because there exists a possibility that favorable slidability (familiarity with a sliding other material) with Cu powder may not be ensured when content of Cu powder is less than 5 wt%.

Cu粉末とSUS粉末とを含む混合金属粉末に、さらに配合可能なものとして、例えば低融点金属(焼結温度以下の温度で溶融する金属。合金を含む。)の粉末がある。これは、通常Cu粉末あるいはSUS粉末の融点未満に設定される焼結温度下で溶融可能な金属粉末を配合することで、溶融(液相化)した金属がCu粉末間、あるいはCu、SUS粉末間のバインダとして作用することを狙ったものである。これにより、焼結後の焼結金属材、あるいは焼結含油軸受の機械的強度を高めることが可能になる。   As a compound that can be further added to the mixed metal powder containing Cu powder and SUS powder, for example, there is a powder of a low melting point metal (a metal that melts at a temperature equal to or lower than the sintering temperature, including an alloy). This is because by mixing a metal powder that can be melted at a sintering temperature that is usually set below the melting point of Cu powder or SUS powder, the molten (liquid phase) metal is between Cu powder, or Cu, SUS powder. It aims to act as a binder. This makes it possible to increase the mechanical strength of the sintered metal material after sintering or the sintered oil-impregnated bearing.

低融点金属としては、所定の焼結温度(焼結含油軸受の焼結温度は、通常750〜1000℃)以下の温度で溶融する金属であればよく、例えばSn、Zn、Al、P等の金属が、あるいはこれらを2種以上含む合金が使用可能である。その中でも、Snは、液相状態でCuと合金化して、焼結金属材の成形品表面(焼結含油軸受の軸受面)の硬度を高める作用があるため、特に好ましい。   The low melting point metal may be any metal that melts at a predetermined sintering temperature (sintering temperature of the sintered oil-impregnated bearing is usually 750 to 1000 ° C.) or less, such as Sn, Zn, Al, P, and the like. A metal or an alloy containing two or more of these can be used. Among them, Sn is particularly preferable because it has an action of alloying with Cu in a liquid phase state and increasing the hardness of the surface of the sintered metal material (the bearing surface of the sintered oil-impregnated bearing).

Cu粉末とSUS粉末とを含む原料金属粉末に、さらに低融点金属の粉末を配合する場合、その配合比率は、Cu粉末:5wt%以上94.8wt%以下、SUS粉末:5wt%以上94.8wt%以下、低融点金属粉末:0.2wt%以上10wt%以下、とするのがよい。   When a low melting point metal powder is further blended with the raw metal powder containing Cu powder and SUS powder, the blending ratio is Cu powder: 5 wt% or more and 94.8 wt% or less, SUS powder: 5 wt% or more and 94.8 wt% % Or lower, low melting point metal powder: 0.2 wt% or more and 10 wt% or less.

また、摺動面における摺動特性をより高めるために、上記混合金属粉末に、さらに黒鉛(グラファイト)などの固体潤滑剤を配合することもできる。しかしながら、黒鉛は、Cu等の金属粉末に対する焼結時の結合性に非常に乏しいため、黒鉛を配合することで焼結体の強度低下を招く恐れがある。従って、その配合量には留意する必要がある。   Moreover, in order to further improve the sliding characteristics on the sliding surface, a solid lubricant such as graphite can be further blended with the mixed metal powder. However, graphite has a very poor bonding property to a metal powder such as Cu during sintering, and therefore blending graphite may cause a decrease in strength of the sintered body. Therefore, it is necessary to pay attention to the blending amount.

上述の観点から、黒鉛の配合量の上限値を2.5wt%とした。この範囲内に黒鉛の配合量を抑えることで、これらを焼結して得られる焼結金属材や焼結含油軸受の強度低下を最小限に留めることができる。一方で、他金属に比べて硬いSUS粉末を配合することにより、成形時の金型への攻撃性が高まる点を考慮すると、黒鉛の配合量の下限値を0.5wt%以上とするのが好ましい。これにより、成形時の金型に対する摺動性を改善して、成形金型の継続使用に伴う損傷を低減することができる。   From the above viewpoint, the upper limit of the amount of graphite was set to 2.5 wt%. By suppressing the blending amount of graphite within this range, it is possible to minimize the decrease in strength of the sintered metal material and the sintered oil-impregnated bearing obtained by sintering them. On the other hand, considering the point that the aggressiveness to the mold during molding is increased by blending SUS powder harder than other metals, the lower limit of the blending amount of graphite is 0.5 wt% or more. preferable. Thereby, the slidability with respect to the metal mold | die at the time of shaping | molding can be improved, and the damage accompanying continuous use of a metal mold can be reduced.

この場合、全体の配合比率は、Cu粉末:5wt%以上94.5wt%以下、SUS粉末:5wt%以上94.5wt%以下、黒鉛:0.5wt%以上2.5wt%以下、とするのがよい。さらに、低融点金属粉末も配合する場合には、その配合比率を、Cu粉末:5wt%以上94.3wt%以下、SUS粉末:5wt%以上94.3wt%以下、黒鉛:0.5wt%以上2.5wt%以下、低融点金属粉末:0.2wt%以上10wt%以下、とするのがよい。   In this case, the total blending ratio is Cu powder: 5 wt% or more and 94.5 wt% or less, SUS powder: 5 wt% or more and 94.5 wt% or less, and graphite: 0.5 wt% or more and 2.5 wt% or less. Good. Further, when a low melting point metal powder is also blended, the blending ratio is as follows: Cu powder: 5 wt% to 94.3 wt%, SUS powder: 5 wt% to 94.3 wt%, graphite: 0.5 wt% to 2 0.5 wt% or less, low melting point metal powder: 0.2 wt% or more and 10 wt% or less is preferable.

上記組成の焼結金属材で形成された焼結含油軸受は、その内周に設けられた軸受面に、動圧発生部を形成した構成とすることもできる。この場合、焼結含油軸受は、支持すべき軸との軸受隙間に生じる流体の動圧作用で軸を回転自在に非接触支持する。   A sintered oil-impregnated bearing formed of a sintered metal material having the above composition may have a structure in which a dynamic pressure generating portion is formed on a bearing surface provided on the inner periphery thereof. In this case, the sintered oil-impregnated bearing rotatably supports the shaft in a non-contact manner by the dynamic pressure action of the fluid generated in the bearing gap with the shaft to be supported.

上記の焼結含油軸受は、例えば焼結含油軸受を有する流体軸受装置として提供することができる。また、この流体軸受装置は、流体軸受装置を備えたモータとしても提供可能である。   The sintered oil-impregnated bearing can be provided as a fluid bearing device having a sintered oil-impregnated bearing, for example. The hydrodynamic bearing device can also be provided as a motor including the hydrodynamic bearing device.

以上より、本発明によれば、支持すべき軸に対する耐摩耗性および摺動性を向上させた焼結金属材、およびこの金属材で形成された焼結含油軸受を提供することができる。   As described above, according to the present invention, it is possible to provide a sintered metal material with improved wear resistance and slidability with respect to the shaft to be supported, and a sintered oil-impregnated bearing formed of this metal material.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る焼結含油軸受を備えた流体軸受装置(動圧軸受装置)1、およびこの流体軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5は、ディスクハブ3の内周に取付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスク状情報記憶媒体(以下、単にディスクという。)Dを一枚または複数枚(図1では2枚)保持している。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 shows a configuration example of a hydrodynamic bearing device (dynamic pressure bearing device) 1 including a sintered oil-impregnated bearing according to an embodiment of the present invention, and a spindle motor for information equipment incorporating the hydrodynamic bearing device 1. It shows conceptually. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radial direction, for example. A stator coil 4 and a rotor magnet 5 are provided to face each other through a gap. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or a plurality (two in FIG. 1) of a disk-shaped information storage medium (hereinafter simply referred to as a disk) D such as a magnetic disk on its outer periphery. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the disk are rotated. The disk D held by the hub 3 rotates integrally with the shaft member 2.

図2は、流体軸受装置1を示している。この流体軸受装置1は、軸部材2と、ハウジング7と、ハウジング7に固定された軸受スリーブ8、およびシール部材9とを主な構成要素として構成されている。なお、説明の便宜上、ハウジング7の底部7bの側を下側、底部7bと反対の側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a shaft member 2, a housing 7, a bearing sleeve 8 fixed to the housing 7, and a seal member 9 as main components. For convenience of explanation, the bottom 7b side of the housing 7 will be described below, and the side opposite to the bottom 7b will be described as the upper side.

軸部材2は、例えばステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。なお、軸部材2は、金属材料と樹脂材料とのハイブリッド構造とすることもでき、その場合、軸部2aの少なくとも外周面2a1を含む鞘部が上記金属で形成され、残りの箇所(例えば軸部2aの芯部やフランジ部2b)が樹脂で形成される。   The shaft member 2 is formed of a metal material such as stainless steel, for example, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. In addition, the shaft member 2 can also have a hybrid structure of a metal material and a resin material. In this case, the sheath portion including at least the outer peripheral surface 2a1 of the shaft portion 2a is formed of the metal, and the remaining portion (for example, the shaft portion) The core part of the part 2a and the flange part 2b) are formed of resin.

ハウジング7は、LCPやPPS、PEEK等をベース樹脂とする樹脂組成物で射出成形され、例えば図2に示すように、筒部7aと、筒部7aの下端に一体に形成された底部7bとで構成される。ハウジング7を構成する上記樹脂組成物には、例えば、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボン繊維、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材を、目的に応じて適量配合することができる。   The housing 7 is injection-molded with a resin composition having LCP, PPS, PEEK or the like as a base resin. For example, as shown in FIG. 2, a cylindrical portion 7 a and a bottom portion 7 b integrally formed at the lower end of the cylindrical portion 7 a Consists of. Examples of the resin composition constituting the housing 7 include fibrous fillers such as glass fibers, whisker-like fillers such as potassium titanate, scaly fillers such as mica, carbon fibers, carbon black, graphite, carbon An appropriate amount of a fibrous or powdery conductive filler such as a nanomaterial or various metal powders can be blended depending on the purpose.

底部7bの上端面7b1の全面又は一部環状領域には、スラスト動圧発生部として、例えば図示は省略するが、複数の動圧溝をスパイラル形状に配列した領域が形成される。この動圧溝形成領域は、フランジ部2bの下端面2b2と対向し、軸部材2の回転時には、下端面2b2との間に第二スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。この動圧溝は、ハウジング7を成形する成形型の所要部位(上端面7b1を成形する部位)に、動圧溝を成形する溝型を加工しておくことで、ハウジング7と同時成形することができる。また、上端面7b1から軸方向上方に所定寸法だけ離れた位置には、軸受スリーブ8の下端面8cと係合して軸方向の位置決めを行う段部7dが一体に形成される。   For example, although not shown, a region in which a plurality of dynamic pressure grooves are arranged in a spiral shape is formed on the entire upper surface 7b1 of the bottom 7b or a partial annular region as a thrust dynamic pressure generating portion. This dynamic pressure groove forming region faces the lower end surface 2b2 of the flange portion 2b, and forms a thrust bearing gap of the second thrust bearing portion T2 between the lower end surface 2b2 and the shaft member 2 when the shaft member 2 rotates (see FIG. 2). reference). This dynamic pressure groove is formed at the same time as the housing 7 by machining the groove mold for forming the dynamic pressure groove in a required part of the mold for molding the housing 7 (the part for molding the upper end surface 7b1). Can do. Further, a step portion 7d that engages with the lower end surface 8c of the bearing sleeve 8 and performs axial positioning is integrally formed at a position that is separated from the upper end surface 7b1 in the axial direction by a predetermined dimension.

軸受スリーブ8は、Cu(あるいはCu合金)およびSUSを主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cに固定される。この軸受スリーブ8は、後述のように内部空孔に潤滑油を充填することで焼結含油軸受を構成する。   The bearing sleeve 8 is made of a sintered metal porous body mainly composed of Cu (or Cu alloy) and SUS and is formed in a cylindrical shape, and is fixed to the inner peripheral surface 7 c of the housing 7. The bearing sleeve 8 constitutes a sintered oil-impregnated bearing by filling the internal holes with lubricating oil as will be described later.

軸受スリーブ8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部としての動圧溝が形成される。この実施形態では、例えば図3(a)に示すように、複数の動圧溝8a1、8a2をへリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。上側の動圧溝8a1の形成領域では、動圧溝8a1が、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。   A dynamic pressure groove as a radial dynamic pressure generating portion is formed on the entire inner surface 8a of the bearing sleeve 8 or a partial cylindrical region. In this embodiment, for example, as shown in FIG. 3A, two regions having a plurality of dynamic pressure grooves 8a1 and 8a2 arranged in a herringbone shape are formed apart from each other in the axial direction. In the formation region of the upper dynamic pressure groove 8a1, the dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions). The axial dimension X1 of the upper region is larger than the axial dimension X2 of the lower region.

軸受スリーブ8の下端面8cの全面または一部の環状領域には、スラスト動圧発生部として、例えば図3(b)に示すように、複数の動圧溝8c1をスパイラル形状に配列した領域が形成される。   In the entire or part of the annular region of the lower end surface 8c of the bearing sleeve 8, there is a region where a plurality of dynamic pressure grooves 8c1 are arranged in a spiral shape as a thrust dynamic pressure generating portion, for example, as shown in FIG. It is formed.

この軸受スリーブ8は、Cu(あるいはCu合金)粉末、SUS粉末、さらに低融点金属粉末としてSn粉末を含む混合金属粉末を円筒状に圧縮成形し、これを所定の焼結温度で焼結することで得られる。この実施形態では、さらに内周面8aの回転サイジングと、溝サイジング加工が施され、これにより焼結体の外表面に動圧溝8a1、8c1等が形成される。なお、回転サイジングや溝サイジングの前に寸法サイジングを施しておくことで、後工程の上記各サイジング加工を高精度に行うことができる。また、Sn粉末は、例えばCu粉末の表面に被覆させることで(Sn被覆Cu粉末を使用することで)、粉末の混合工程を簡略化でき、かつ焼結時には、Cu粉末間に均一に分散した状態となるのでバインダ効果をより一層高めることができる。   The bearing sleeve 8 is formed by compressing a mixed metal powder containing Cu powder (or Cu alloy) powder, SUS powder, and Sn powder as a low melting point metal powder into a cylindrical shape and sintering it at a predetermined sintering temperature. It is obtained by. In this embodiment, rotational sizing and groove sizing of the inner peripheral surface 8a are further performed, whereby dynamic pressure grooves 8a1, 8c1 and the like are formed on the outer surface of the sintered body. In addition, by performing dimension sizing before rotational sizing and groove sizing, each sizing process in the subsequent process can be performed with high accuracy. In addition, for example, the Sn powder can be coated on the surface of the Cu powder (by using the Sn-coated Cu powder), thereby simplifying the powder mixing step and being uniformly dispersed between the Cu powders during sintering. Since it becomes a state, the binder effect can be further enhanced.

軸受スリーブ8の材料として使用するCu粉末のサイズは、SUS粉末と同等、あるいはそれ以下であることが好ましい。また、この実施形態におけるCu粉末とSUS粉末、およびSn粉末との配合比率は、Cu粉末:40wt%以上94.5wt%以下、SUS粉末:5wt%以上50wt%以下、Sn粉末:0.5wt%以上10wt%以下、であることが好ましい。これは、SUS粉末の配合量が5wt%未満だと、SUS粉末による耐摩耗性改善効果が十分ではなく、50wt%を超えると、焼結後のサイジング加工、特に上記動圧溝8a1、8c1等の溝成形が困難になるためである。   The size of the Cu powder used as the material of the bearing sleeve 8 is preferably equal to or less than that of the SUS powder. Moreover, the compounding ratio of Cu powder, SUS powder, and Sn powder in this embodiment is Cu powder: 40 wt% to 94.5 wt%, SUS powder: 5 wt% to 50 wt%, Sn powder: 0.5 wt% It is preferably 10 wt% or less. This is because if the blending amount of the SUS powder is less than 5 wt%, the effect of improving the wear resistance by the SUS powder is not sufficient, and if it exceeds 50 wt%, the sizing process after sintering, particularly the dynamic pressure grooves 8a1, 8c1, etc. This is because it becomes difficult to form the groove.

また、圧縮成形時の成形性、あるいは完成品の摺動特性を改善する目的で、上記混合金属粉末に、さらに黒鉛(グラファイト)などの固体潤滑剤を配合することもできる。この場合、あまりに黒鉛の配合量が多いと、黒鉛が各金属粉末間の焼結作用を阻害し、これにより焼結体の強度が低下する恐れがある。また、軸受スリーブ8(流体軸受装置1)の使用時、他の金属粉末と未結合の黒鉛が軸受スリーブ8から遊離し、コンタミとして潤滑油に混入する恐れがある。これらの点を考慮すると、黒鉛の配合量の上限値を2.5wt%とするのが好ましい。   Further, for the purpose of improving the moldability at the time of compression molding or the sliding property of the finished product, a solid lubricant such as graphite can be further blended with the mixed metal powder. In this case, if the amount of graphite is too large, the graphite hinders the sintering action between the metal powders, which may reduce the strength of the sintered body. Further, when the bearing sleeve 8 (fluid bearing device 1) is used, other metal powder and unbound graphite may be released from the bearing sleeve 8 and mixed into the lubricating oil as contamination. Considering these points, it is preferable to set the upper limit of the amount of graphite to 2.5 wt%.

その一方で、あまりに黒鉛の配合量が少ないと、SUS粉末の配合による成形性への悪影響をカバーすることができない恐れがある。すなわち、他金属との焼結性に乏しいSUS粉末を配合することで成形体(焼結体)自体が脆くなるため、サイジング等の二次成形時、例えば離型時に生じる金型からの抜け力等により焼結体の欠損が生じ易くなる。特に、溝サイジング時には、焼結体のスプリングバックによる内周面8aの拡径により動圧溝8a1、8a2を成形するコアロッドを引抜くため、多少の引っかかりは避けようがないが、この際、焼結体が摺動性に乏しいと、動圧溝8a1、8a2あるいはその周囲領域に多大な抜け力(抵抗力)が作用する。そのため、焼結体が脆い場合には容易に欠損を生じる。これでは、動圧溝8a1、8a2の成形精度が不足し、十分な動圧作用を発揮することができない恐れがある。   On the other hand, if the blending amount of graphite is too small, there is a possibility that an adverse effect on moldability due to blending of SUS powder cannot be covered. In other words, by blending SUS powder with poor sinterability with other metals, the molded body (sintered body) itself becomes brittle, so that the detachment force from the mold that occurs during secondary molding such as sizing, for example, during mold release Etc., the sintered body is easily damaged. In particular, during sizing of the groove, the core rod for forming the dynamic pressure grooves 8a1 and 8a2 is pulled out by expanding the inner peripheral surface 8a due to the spring back of the sintered body. If the bonded body is poor in slidability, a large pulling force (resistance force) acts on the dynamic pressure grooves 8a1, 8a2 or the surrounding area. Therefore, if the sintered body is brittle, defects are easily generated. In this case, the molding accuracy of the dynamic pressure grooves 8a1 and 8a2 may be insufficient, and a sufficient dynamic pressure action may not be exhibited.

上述の観点から、黒鉛の配合量の下限値は0.5wt%以上とするのが好ましい。これにより、成形時の金型に対する摺動性を改善して、金型の損傷を低減することができる。また、溝サイジング加工における離型時、コアロッドの抜けを滑らかにすることで、焼結体、特に動圧溝8a1、8a2やその周囲領域に作用する抜け力(抵抗力)を小さく抑えて、かかる動圧溝8a1、8a2の成形精度を向上することができる。特に、この実施形態のように、軸受スリーブ8に動圧溝8a1、8a2を設ける場合、焼結により互いにネック結合した金属粉末間の隙間(空孔)に黒鉛が入り込むことで、動圧溝8a1、8a2に生じる動圧の逃げを低減することができる。従って、軸受性能(軸受剛性)をさらに高めることができる。   From the above viewpoint, it is preferable that the lower limit of the blending amount of graphite is 0.5 wt% or more. Thereby, the slidability with respect to the metal mold | die at the time of shaping | molding can be improved, and damage to a metal mold | die can be reduced. Further, by smoothing the removal of the core rod at the time of releasing in the groove sizing process, the removal force (resistance force) acting on the sintered body, in particular, the dynamic pressure grooves 8a1 and 8a2 and the surrounding area is suppressed to a small level. The molding accuracy of the dynamic pressure grooves 8a1 and 8a2 can be improved. In particular, when the dynamic pressure grooves 8a1 and 8a2 are provided in the bearing sleeve 8 as in this embodiment, the dynamic pressure grooves 8a1 are formed by the graphite entering the gaps (holes) between the metal powders neck-bonded to each other by sintering. , 8a2 can reduce the escape of dynamic pressure. Therefore, bearing performance (bearing rigidity) can be further enhanced.

この場合、全体の配合比率は、Cu粉末:40wt%以上94wt%以下、SUS粉末:5wt%以上50wt%以下、Sn粉末:0.5wt%以上10wt%以下、黒鉛:0.5wt%以上2.5wt%以下、とするのがよい。   In this case, the total blending ratio is Cu powder: 40 wt% or more and 94 wt% or less, SUS powder: 5 wt% or more and 50 wt% or less, Sn powder: 0.5 wt% or more and 10 wt% or less, Graphite: 0.5 wt% or more. It should be 5 wt% or less.

焼結時の温度(焼結温度)は、750℃以上1000℃以下であることが好ましく、800℃以上950℃以下であればより好ましい。これは、焼結温度が750℃未満だと各粉末間の焼結作用が十分でないことから焼結体の強度が低下し、1000℃を超えると、上記と同様の理由で、つまりサイジング加工時の溝成形性に支障を来す恐れがあるためである。   The temperature during sintering (sintering temperature) is preferably 750 ° C. or higher and 1000 ° C. or lower, and more preferably 800 ° C. or higher and 950 ° C. or lower. This is because when the sintering temperature is less than 750 ° C., the sintering action between the powders is not sufficient, so the strength of the sintered body is reduced. When the sintering temperature exceeds 1000 ° C., for the same reason as described above, that is, during sizing processing This is because there is a risk of disturbing the groove formability.

このようにして焼結体を形成することにより、サイジング後の焼結体における内周面および外周面の真円度、あるいは動圧溝8a1、8c1の溝深さ等が、高精度に仕上げられる。最後に、この焼結体に潤滑油を含浸させることで(通常はハウジング7に固定した後)、焼結含油軸受としての軸受スリーブ8が完成する。完成品としての軸受スリーブ8の密度は例えば7.0〜7.4[g/cm]、内周面の表面開孔率は2〜10[vol%]である。このように、所定割合のCu粉末とSUS粉末とを含む混合金属粉末を使用することで、軸受面の摺動性や硬度、あるいは本体の機械的強度、加工性に優れた軸受スリーブ(焼結含油軸受)8を得ることができる。 By forming the sintered body in this way, the roundness of the inner peripheral surface and the outer peripheral surface of the sintered body after sizing, or the groove depth of the dynamic pressure grooves 8a1 and 8c1 can be finished with high accuracy. . Finally, the sintered body is impregnated with lubricating oil (usually after being fixed to the housing 7), thereby completing a bearing sleeve 8 as a sintered oil-impregnated bearing. The density of the bearing sleeve 8 as a finished product is, for example, 7.0 to 7.4 [g / cm 3 ], and the surface opening ratio of the inner peripheral surface is 2 to 10 [vol%]. In this way, by using a mixed metal powder containing a predetermined proportion of Cu powder and SUS powder, a bearing sleeve (sintered) excellent in the slidability and hardness of the bearing surface, or the mechanical strength and workability of the main body. Oil-impregnated bearing) 8 can be obtained.

なお、この実施形態では、上記混合金属粉末に含まれるSUS粉末として、例えばCrを5wt%以上16wt%以下含むものが使用される。この範囲内でCrを合金化したSUS粉末を用いることで、耐摩耗性の向上と焼結後の成形性(サイジング加工性、動圧溝8a1、8c1の成形性)、さらには焼結体強度とをより高レベルに兼ね備えた軸受スリーブ8が形成される。さらに、この実施形態のように、動圧溝8a1、8a2を有する軸受スリーブ8を成形する場合、上記範囲内でCrを含有するSUS粉末の中でも、特にCrを6wt%以上10wt%以下含むSUS粉末(例えばCrを8wt%含むSUS粉末)が好適である。この範囲内でCrを合金化したSUS粉末を用いることで、適度な硬度を軸受スリーブ8の軸受面に適度な硬度を付与しつつも、回転サイジングによる表面開孔率の調整を容易にし、かつ動圧溝8a1、8a2サイジングの加工性(成形性)をより高めることができる。   In this embodiment, as the SUS powder contained in the mixed metal powder, for example, a powder containing 5 wt% or more and 16 wt% or less of Cr is used. By using SUS powder alloyed with Cr within this range, the wear resistance is improved and the formability after sintering (sizing workability, formability of the dynamic pressure grooves 8a1 and 8c1), and the strength of the sintered body And the bearing sleeve 8 having a higher level. Further, when the bearing sleeve 8 having the dynamic pressure grooves 8a1 and 8a2 is formed as in this embodiment, among the SUS powders containing Cr within the above range, particularly the SUS powder containing 6 wt% or more and 10 wt% or less of Cr. (For example, SUS powder containing 8 wt% Cr) is preferable. By using a SUS powder alloyed with Cr within this range, it is possible to easily adjust the surface opening ratio by rotational sizing while imparting an appropriate hardness to the bearing surface of the bearing sleeve 8, and The workability (formability) of the dynamic pressure grooves 8a1 and 8a2 can be further improved.

シール部材9は、例えば樹脂材料又は金属材料で環状に形成され、ハウジング7の筒部7aの上端部内周に配設される。シール部材9の内周面9aは、軸部2aの外周に設けられたテーパ面2a2と所定のシール空間Sを介して対向する。なお、軸部2aのテーパ面2a2は上側(ハウジング7に対して外部側)に向かって漸次縮径し、軸部材2の回転時には毛細管力シールおよび遠心力シールとしても機能する。   The seal member 9 is formed in an annular shape with, for example, a resin material or a metal material, and is disposed on the inner periphery of the upper end portion of the cylindrical portion 7 a of the housing 7. An inner peripheral surface 9a of the seal member 9 is opposed to a tapered surface 2a2 provided on the outer periphery of the shaft portion 2a via a predetermined seal space S. The tapered surface 2a2 of the shaft portion 2a is gradually reduced in diameter toward the upper side (outside of the housing 7), and also functions as a capillary force seal and a centrifugal force seal when the shaft member 2 rotates.

ハウジング7の内周に、軸部材2および軸受スリーブ8を挿入し、段部7dにより軸受スリーブ8の軸方向の位置決めを行った上で、軸受スリーブ8をハウジング7の内周面7cに、例えば接着、圧入、溶着等の手段により固定する。そして、シール部材9を、その下端面9bを軸受スリーブ8の上端面8bに当接させた上で、ハウジング7の内周面7cに固定する。その後、ハウジング7の内部空間に潤滑油を充満させることで、流体軸受装置1の組立が完了する。このとき、シール部材9で密封されたハウジング7の内部空間(軸受スリーブ8の内部空孔を含む)に充満した潤滑油の油面は、シール空間Sの範囲内に維持される。   After the shaft member 2 and the bearing sleeve 8 are inserted into the inner periphery of the housing 7 and the bearing sleeve 8 is positioned in the axial direction by the step portion 7d, the bearing sleeve 8 is placed on the inner peripheral surface 7c of the housing 7, for example, Fix by means of adhesion, press-fitting, welding, etc. The seal member 9 is fixed to the inner peripheral surface 7 c of the housing 7 with the lower end surface 9 b abutting against the upper end surface 8 b of the bearing sleeve 8. Then, the assembly of the hydrodynamic bearing device 1 is completed by filling the internal space of the housing 7 with lubricating oil. At this time, the oil level of the lubricating oil filled in the internal space of the housing 7 (including the internal holes of the bearing sleeve 8) sealed by the seal member 9 is maintained within the range of the seal space S.

軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の動圧溝8a1、8a2形成領域)は、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝8a1、8a2の軸方向中心m側に押し込まれ、その圧力が上昇する。このような動圧溝の動圧作用によって、軸部2aを非接触支持する第一ラジアル軸受部R1と第二ラジアル軸受部R2がそれぞれ構成される。   When the shaft member 2 rotates, a region (a region where the dynamic pressure grooves 8a1 and 8a2 are formed in the upper and lower portions) of the inner peripheral surface 8a of the bearing sleeve 8 is a radial bearing gap between the outer peripheral surface 2a1 of the shaft portion 2a. Opposite through. As the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed toward the axial center m of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. The first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft portion 2a in a non-contact manner are configured by the dynamic pressure action of the dynamic pressure groove.

これと同時に、フランジ部2bの上端面2b1とこれに対向する軸受スリーブ8の下端面8c(動圧溝8c1形成領域)との間のスラスト軸受隙間、およびフランジ部2bの下端面2b2とこれに対向する底部7bの上端面7b1(動圧溝形成領域)との間のスラスト軸受隙間に、動圧溝の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、フランジ部2bを両スラスト方向に回転自在に非接触支持する第一スラスト軸受部T1と、第二スラスト軸受部T2が構成される。   At the same time, the thrust bearing gap between the upper end surface 2b1 of the flange portion 2b and the lower end surface 8c (dynamic pressure groove 8c1 formation region) of the bearing sleeve 8 facing the flange portion 2b, and the lower end surface 2b2 of the flange portion 2b and Oil films of lubricating oil are respectively formed in the thrust bearing gaps between the opposed bottom portion 7b and the upper end surface 7b1 (dynamic pressure groove forming region) by the dynamic pressure action of the dynamic pressure grooves. The pressure of these oil films forms a first thrust bearing portion T1 and a second thrust bearing portion T2 that support the flange portion 2b in a non-contact manner so as to be rotatable in both thrust directions.

軸部材2の回転開始時、あるいは回転停止時に、軸部材2の軸部外周面2a1とこれに対向する軸受スリーブ8の内周面8a(のラジアル軸受面)との間で接触摺動が生じた場合でも、軸受スリーブ8を、Cu粉末とSUS粉末とを含む混合金属粉末で形成することで、摺動面となるラジアル軸受面の硬度が高められる。これにより、両面2a1、8a間の硬度差が小さくなり、互いに接触摺動する軸受スリーブ8と軸部材2の軸部2aのうち、何れか一方、あるいは双方が摩耗するといった事態を可及的に防ぐことができる。特に、この実施形態のように、軸部材2の上部にディスクハブ3およびディスクDを装着した状態では、軸部材2にモーメント荷重が作用し、軸部材2と軸受スリーブ8とが軸受上端で接触摺動し易いが、上述のように両部材2a、8の硬度差(両摺動面2a1、8aの硬度差)を小さくすることで、両者間の摺動摩耗を極力抑えることができる。   When the rotation of the shaft member 2 starts or stops, contact sliding occurs between the shaft portion outer peripheral surface 2a1 of the shaft member 2 and the inner peripheral surface 8a (radial bearing surface thereof) of the bearing sleeve 8 opposed thereto. Even when the bearing sleeve 8 is made of a mixed metal powder containing Cu powder and SUS powder, the hardness of the radial bearing surface serving as the sliding surface can be increased. As a result, the difference in hardness between the two surfaces 2a1 and 8a is reduced, and the situation where one or both of the bearing sleeve 8 and the shaft portion 2a of the shaft member 2 are in contact with each other and wear is minimized. Can be prevented. In particular, when the disc hub 3 and the disc D are mounted on the upper portion of the shaft member 2 as in this embodiment, a moment load acts on the shaft member 2, and the shaft member 2 and the bearing sleeve 8 contact at the upper end of the bearing. Although it is easy to slide, the sliding wear between the two members 2a and 8 can be suppressed as much as possible by reducing the hardness difference between the two members 2a and 8 (the hardness difference between both sliding surfaces 2a1 and 8a).

以上、本発明の一実施形態を説明したが、本発明はこの実施形態に限定されるものではない。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment.

以上の実施形態では、ハウジング7として筒部7aおよび底部7bを樹脂で一体成形したものを説明したが、これ以外にも、例えば図示は省略するが、筒部7aを底部7bとは別体に樹脂で成形することもできる。この場合には、例えばシール部材9を筒部7aと一体に樹脂で成形することもでき、これによれば、軸受スリーブ8の軸方向位置決めを、筒部7aと一体に成形したシール部の下端面に軸受スリーブ8の上端面8bを当接させることで行うことができる。   In the above embodiment, the cylindrical portion 7a and the bottom portion 7b are integrally molded with the resin as the housing 7. However, for example, although not shown, the cylindrical portion 7a is separated from the bottom portion 7b. It can also be molded with resin. In this case, for example, the seal member 9 can be molded integrally with the cylindrical portion 7a from resin, and according to this, the axial positioning of the bearing sleeve 8 can be performed under the seal portion molded integrally with the cylindrical portion 7a. This can be done by bringing the upper end surface 8b of the bearing sleeve 8 into contact with the end surface.

また、以上の実施形態では、スラスト軸受部を、ハウジング7の底部7b側に設けた場合を説明したが、例えば底部7bとは反対の側(ハウジング7の開口側)に設けることも可能である。この場合、例えば図示は省略するが、金属製(例えばステンレス鋼)のフランジ部2bを軸部2aの下端よりも上方に形成し、軸受スリーブ8の上端面8bにフランジ部2bの下端面2b2を対向させると共に、上端面8bの全面又は一部環状領域に動圧溝8c1と同様の動圧溝(向きは逆)を形成する。これにより、両面8b、2b2間にスラスト軸受隙間が形成される。   Moreover, although the case where the thrust bearing part was provided in the bottom part 7b side of the housing 7 was demonstrated in the above embodiment, for example, it is also possible to provide in the opposite side (opening side of the housing 7) from the bottom part 7b. . In this case, for example, although not shown, a metal (for example, stainless steel) flange portion 2b is formed above the lower end of the shaft portion 2a, and the lower end surface 2b2 of the flange portion 2b is formed on the upper end surface 8b of the bearing sleeve 8. While making it face, a dynamic pressure groove (direction opposite) similar to the dynamic pressure groove 8c1 is formed on the entire upper surface 8b or a partial annular region. Thereby, a thrust bearing gap is formed between both surfaces 8b and 2b2.

軸部材2の回転開始時、あるいは回転停止時に、フランジ部2bの下端面2b2とこれに対向する軸受スリーブ8の上端面8b(のスラスト軸受面となる領域)との間で接触摺動が生じるが、この場合も、軸受スリーブ8をCu粉末とSUS粉末とを含む混合金属粉末で形成することで、スラスト軸受面を含む上端面8bの硬度が高められる。これにより、両面2b2、8b間の硬度差が小さくなり、互いに接触摺動する軸受スリーブ8と軸部材2のフランジ部2bのうち、何れか一方、あるいは双方が摩耗するといった事態を可及的に防ぐことができる。   When the rotation of the shaft member 2 is started or stopped, contact sliding occurs between the lower end surface 2b2 of the flange portion 2b and the upper end surface 8b of the bearing sleeve 8 (the region serving as a thrust bearing surface thereof) facing the flange portion 2b. However, in this case as well, the hardness of the upper end surface 8b including the thrust bearing surface can be increased by forming the bearing sleeve 8 with a mixed metal powder containing Cu powder and SUS powder. As a result, the difference in hardness between the two surfaces 2b2 and 8b is reduced, and the situation where one or both of the bearing sleeve 8 and the flange portion 2b of the shaft member 2 wear in contact with each other is worn as much as possible. Can be prevented.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑流体の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。   In the above embodiment, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are configured to generate the dynamic pressure action of the lubricating fluid by the herringbone shape or spiral shape dynamic pressure grooves. However, the present invention is not limited to this.

例えば、ラジアル軸受部R1、R2として、いわゆるステップ軸受や多円弧軸受を採用してもよい。   For example, so-called step bearings or multi-arc bearings may be employed as the radial bearing portions R1 and R2.

図4は、ラジアル軸受部R1、R2の一方又は双方を多円弧軸受で構成した場合の一例を示している。同図において、軸受スリーブ8の内周面8aのラジアル軸受面となる領域は、複数の円弧面8a3(この図では3円弧面)で構成されている。各円弧面8a3は、回転軸心Oからそれぞれ等距離オフセットした点を中心とする偏心円弧面であり、円周方向で等間隔に形成される。各偏心円弧面8a3の間には軸方向の分離溝8a4がそれぞれ形成される。   FIG. 4 shows an example in which one or both of the radial bearing portions R1 and R2 are constituted by multi-arc bearings. In the same figure, the area | region used as the radial bearing surface of the internal peripheral surface 8a of the bearing sleeve 8 is comprised by several arc surface 8a3 (this figure 3 arc surface). Each arc surface 8a3 is an eccentric arc surface centered at a point offset from the rotation axis O by an equal distance, and is formed at equal intervals in the circumferential direction. An axial separation groove 8a4 is formed between each eccentric arc surface 8a3.

軸受スリーブ8の内周面8aに軸部材2の軸部2aを挿入することにより、軸受スリーブ8の偏心円弧面8a3および分離溝8a4と、軸部2aの真円状外周面2a1との間に、第一および第二ラジアル軸受部R1、R2の各ラジアル軸受隙間がそれぞれ形成される。ラジアル軸受隙間のうち、偏心円弧面8a3と真円状外周面2a1とで形成される領域は、隙間幅を円周方向の一方で漸次縮小させたくさび状隙間8a5となる。くさび状隙間8a5の縮小方向は軸部材2の回転方向に一致している。   By inserting the shaft portion 2a of the shaft member 2 into the inner peripheral surface 8a of the bearing sleeve 8, the eccentric arc surface 8a3 and the separation groove 8a4 of the bearing sleeve 8 and the perfect circular outer peripheral surface 2a1 of the shaft portion 2a are interposed. The radial bearing gaps of the first and second radial bearing portions R1 and R2 are respectively formed. In the radial bearing gap, a region formed by the eccentric arc surface 8a3 and the perfect circular outer peripheral surface 2a1 is a wedge-shaped gap 8a5 in which the gap width is gradually reduced in the circumferential direction. The reduction direction of the wedge-shaped gap 8a5 coincides with the rotation direction of the shaft member 2.

図5は、第一および第二ラジアル軸受部R1、R2を構成する多円弧軸受の他の実施形態を示すものである。この実施形態では、図4に示す構成において、各偏心円弧面8a3の最小隙間側の所定領域θが、それぞれ回転軸心Oを中心とする同心の円弧で構成されている。従って、各所定領域θにおけるラジアル軸受隙間(最小隙間)8a6は一定となる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 5 shows another embodiment of the multi-arc bearing constituting the first and second radial bearing portions R1 and R2. In this embodiment, in the configuration shown in FIG. 4, the predetermined region θ on the minimum gap side of each eccentric arc surface 8 a 3 is configured by concentric arcs with the rotation axis O as the center. Accordingly, the radial bearing gap (minimum gap) 8a6 in each predetermined region θ is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

図6では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が3つの円弧面8a7で形成されると共に、3つの円弧面8a7の中心は、回転軸心Oから等距離オフセットされている。3つの偏心円弧面8a7で区画される各領域において、ラジアル軸受隙間8a8は、円周方向の両方向に対してそれぞれ漸次縮小した形状を有している。   In FIG. 6, a region that becomes a radial bearing surface of the inner peripheral surface 8 a of the bearing sleeve 8 is formed by three arc surfaces 8 a 7, and the centers of the three arc surfaces 8 a 7 are offset from the rotation axis O by an equal distance. Yes. In each region defined by the three eccentric arc surfaces 8a7, the radial bearing gap 8a8 has a shape that is gradually reduced with respect to both circumferential directions.

以上説明した第一および第二ラジアル軸受部R1、R2の多円弧軸受は、何れもいわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらには6円弧以上の数の円弧面で構成された多円弧軸受を採用してもよい。また、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とするほか、軸受スリーブ8の内周面8aの上下領域に亘って1つのラジアル軸受部を設けた構成としてもよい。   The multi-arc bearings of the first and second radial bearing portions R1 and R2 described above are all so-called three-arc bearings, but are not limited thereto, so-called four-arc bearings, five-arc bearings, and more than six arcs. You may employ | adopt the multi-arc bearing comprised by the several circular arc surface. In addition to the configuration in which the two radial bearing portions are provided apart in the axial direction as in the radial bearing portions R1 and R2, one radial bearing portion extends over the upper and lower regions of the inner peripheral surface 8a of the bearing sleeve 8. It is good also as a structure which provided.

また、スラスト軸受部T1、T2の一方又は双方は、例えば図示は省略するが、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる。   One or both of the thrust bearing portions T1 and T2, for example, are not shown in the figure, but a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. It can also be constituted by a step bearing, a so-called corrugated bearing (the corrugated step mold) or the like.

また、以上の実施形態では、ラジアル軸受部R1、R2やスラスト軸受部T1、T2を動圧軸受で構成した場合を説明したが、これ以外の軸受で構成することもできる。例えば、ラジアル軸受面となる軸受スリーブ8の内周面8aを、動圧発生部としての動圧溝8a1や円弧面8a3を設けない真円内周面とし、この内周面と対向する軸部2aの真円状外周面2a1とで、いわゆる真円軸受を構成することができる。   Moreover, although the radial bearing part R1 and R2 and the thrust bearing part T1 and T2 were comprised by the dynamic pressure bearing in the above embodiment, it can also comprise by bearings other than this. For example, the inner peripheral surface 8a of the bearing sleeve 8 serving as a radial bearing surface is a perfect circular inner peripheral surface not provided with the dynamic pressure groove 8a1 or the circular arc surface 8a3 as a dynamic pressure generating portion, and the shaft portion opposed to the inner peripheral surface A so-called perfect circle bearing can be constituted by the perfect circular outer peripheral surface 2a1 of 2a.

真円軸受の場合、好ましいCu粉末の配合割合は30wt%以上80wt%以下となる。ここで、下限値を30wt%としたのは、動圧発生部としての動圧溝8a1を内周面に形成した軸受スリーブ8に比べて、真円状内周面は接触摺動時の摺動面積が大きく、回転開始(停止時)のロストルクが増加することによる。   In the case of a perfect circle bearing, the preferable mixing ratio of Cu powder is 30 wt% or more and 80 wt% or less. Here, the lower limit is set to 30 wt%, as compared to the bearing sleeve 8 in which the dynamic pressure groove 8a1 as the dynamic pressure generating portion is formed on the inner peripheral surface, the perfectly circular inner peripheral surface slides at the time of contact sliding. This is because the moving area is large and the loss torque at the start of rotation (when stopped) increases.

上記真円軸受は、流体軸受装置1に限らず、例えば小型モータや、事務機用の軸受部品としても使用することができる。   The perfect circle bearing is not limited to the hydrodynamic bearing device 1 and can be used as a bearing component for, for example, a small motor or an office machine.

また、以上の実施形態では、流体軸受装置1の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に潤滑膜を形成する流体として、潤滑油を例示したが、それ以外にも各軸受隙間に潤滑膜を形成可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Further, in the above embodiment, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and forms a lubricating film in the radial bearing gap or the thrust bearing gap. A fluid capable of forming a lubricating film, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

本発明の効果を実証するため、Cu粉末とSUS粉末とを含む混合金属粉末で形成された焼結金属材(実施品)と、従来組成の金属粉末(Cu粉末とFe粉末との混合粉末)で形成された焼結金属材(比較品)とについて、それぞれ摩耗試験を行い、耐摩耗性を評価比較した。   In order to demonstrate the effect of the present invention, a sintered metal material (practical product) formed of a mixed metal powder containing Cu powder and SUS powder, and a metal powder of a conventional composition (mixed powder of Cu powder and Fe powder) Each of the sintered metal materials (comparative products) formed in (1) was subjected to a wear test, and the wear resistance was evaluated and compared.

試験材料には、Cu粉末として福田金属箔粉工業(株)製のCE−15を、SUS粉末として大同特殊鋼(株)製のDAP410Lを、また、Fe粉末としてヘガネス(株)製のNC100.24をそれぞれ用いた。また、低融点金属粉末としてのSn粉末には福田金属箔粉工業(株)製のSn-At-W350を、固体潤滑剤としての黒鉛には日本黒鉛工業(株)製のECB−250をそれぞれ用いた。試験片(焼結金属材)の焼結温度は、比較品、実施品共に870℃とした。比較品と実施品、各々の混合金属粉末の組成は図7に示す通りである。また、各粉末の粒度分布は図8に示す通りである。   As test materials, CE-15 manufactured by Fukuda Metal Foil Powder Co., Ltd. was used as Cu powder, DAP410L manufactured by Daido Steel Co., Ltd. as SUS powder, and NC100. 24 were used. In addition, Sn-At-W350 manufactured by Fukuda Metal Foil Powder Co., Ltd. is used for Sn powder as a low melting point metal powder, and ECB-250 manufactured by Nippon Graphite Industry Co., Ltd. is used as graphite as a solid lubricant. Using. The sintering temperature of the test piece (sintered metal material) was 870 ° C. for both the comparative product and the implementation product. The composition of each of the mixed metal powders of the comparative product and the practical product is as shown in FIG. Further, the particle size distribution of each powder is as shown in FIG.

摩耗試験は、比較品、実施品共に以下の条件で行った。
試験片寸法;外径7.5mm×軸方向幅10mm
相手試験片
材質;SUS420J2
寸法;外径40mm×軸方向幅4mm
周速 ;50m/min
面圧 ;1.3MPa
潤滑油 ;エステル油(12mm/s)
試験時間 ;3hrs
The abrasion test was performed under the following conditions for both the comparative product and the implementation product.
Specimen size: 7.5mm outer diameter x 10mm axial width
Counter specimen Material: SUS420J2
Dimensions: 40mm outer diameter x 4mm axial width
Peripheral speed: 50 m / min
Surface pressure: 1.3 MPa
Lubricating oil; ester oil (12 mm 2 / s)
Test time: 3 hrs

図9に摩耗試験結果を示す。同図に示すように、SUS粉末を含まない焼結金属材(比較品)では顕著な摩耗が確認された。これに対して、SUS粉末を含む金属粉末で形成された焼結金属材(実施品)における摩耗量(摩耗深さ、摩耗痕面積)は、従来組成品(比較品)に比べて非常に小さいものであった。このことから、本発明に係る焼結金属材では大幅な摩耗量の低減効果が確認された。   FIG. 9 shows the wear test results. As shown in the figure, remarkable wear was confirmed in the sintered metal material (comparative product) not containing SUS powder. On the other hand, the wear amount (wear depth, wear scar area) in the sintered metal material (practical product) formed of metal powder containing SUS powder is very small compared to the conventional composition product (comparative product). It was a thing. From this, it was confirmed that the sintered metal material according to the present invention significantly reduces the amount of wear.

本発明の一実施形態に係る流体軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment incorporating a hydrodynamic bearing device according to an embodiment of the present invention. 流体軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. それぞれ軸受スリーブの(a)縦断面図、(b)下端面である。2A is a longitudinal sectional view of the bearing sleeve, and FIG. ラジアル軸受部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a radial bearing part. ラジアル軸受部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a radial bearing part. ラジアル軸受部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a radial bearing part. 試験片材料の組成を示す図である。It is a figure which shows a composition of test piece material. 粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of powder. 摩耗試験結果を示す図である。It is a figure which shows an abrasion test result.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
8 軸受スリーブ(焼結含油軸受)
8a1、8a2 動圧溝
8c1 動圧溝
9 シール部材
S シール空間
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid bearing apparatus 2 Shaft member 3 Disc hub 4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 8 Bearing sleeve (sintered oil-impregnated bearing)
8a1, 8a2 Dynamic pressure groove 8c1 Dynamic pressure groove 9 Seal member S Seal space R1, R2 Radial bearing portion T1, T2 Thrust bearing portion

Claims (8)

Cu粉末と、SUS粉末と、前記Cu粉末の融点未満となる焼結温度より低い温度で溶融可能な低融点金属の粉末とを含む混合金属粉末を圧縮成形した後、焼結して得られたものであって、
前記混合金属粉末は、さらに固体潤滑剤としての黒鉛を含み、黒鉛の配合量の上限値を2.5wt%とした焼結金属材。
It was obtained by compressing and then sintering a mixed metal powder containing Cu powder, SUS powder, and a low melting point metal powder that can be melted at a temperature lower than the sintering temperature that is less than the melting point of the Cu powder. And
The mixed metal powder further includes graphite as a solid lubricant, and is a sintered metal material in which the upper limit of the amount of graphite is 2.5 wt% .
前記黒鉛の配合量の下限値を0.5wt%とした請求項記載の焼結金属材。 Sintered metal material according to claim 1, wherein the lower limit of the amount of the graphite was 0.5 wt%. 前記混合金属粉末は、5wt%以上94.3wt%以下の前記Cu粉末と、5wt%以上94.3wt%以下の前記SUS粉末と、0.2wt%以上10wt%以下の前記低融点金属粉末とを含む請求項記載の焼結金属材。 The mixed metal powder, and 5 wt% or more 94.3 wt% or less of the Cu powder, and 5 wt% or more 94.3 wt% or less of the SUS powder, 0.2 wt% or more to 10wt% of the low melting point metal powder The sintered metal material according to claim 2 , comprising: 前記SUS粉末は、Crを5wt%以上16wt%以下含む請求項1記載の焼結金属材。   The sintered metal material according to claim 1, wherein the SUS powder contains 5 wt% or more and 16 wt% or less of Cr. 請求項1〜の何れかに記載の焼結金属材で形成され、その内周に、支持すべき軸の摺動面を流体の潤滑膜を介して支持する軸受面が設けられた焼結含油軸受。 A sintered body formed of the sintered metal material according to any one of claims 1 to 4 , wherein a bearing surface for supporting a sliding surface of a shaft to be supported through a fluid lubricating film is provided on an inner periphery thereof. Oil-impregnated bearing. 前記軸受面に動圧発生部が形成された請求項記載の焼結含油軸受。 The sintered oil-impregnated bearing according to claim 5, wherein a dynamic pressure generating portion is formed on the bearing surface. 請求項5又は6に記載の焼結含油軸受を有する流体軸受装置。 A hydrodynamic bearing device comprising the sintered oil-impregnated bearing according to claim 5 . 請求項に記載の流体軸受装置を備えたモータ。 A motor comprising the hydrodynamic bearing device according to claim 7 .
JP2005368338A 2005-01-05 2005-12-21 Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor Active JP5085035B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005368338A JP5085035B2 (en) 2005-01-06 2005-12-21 Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor
US11/719,809 US20090142010A1 (en) 2005-01-05 2005-12-27 Sintered metal material, sintered oil-impregnated bearing formed of the metal material, and fluid lubrication bearing device
CN201210052284.XA CN102588428B (en) 2005-01-05 2005-12-27 Fluid lubrication bearing device and motor having the same
KR1020077012362A KR101339745B1 (en) 2005-01-05 2005-12-27 Sintered metallic material, oil-retaining bearing constituted of the metallic material, and fluid bearing apparatus
CN2005800442241A CN101087669B (en) 2005-01-05 2005-12-27 Sintered oil-retaining bearing and fluid lubrication bearing device
PCT/JP2005/023897 WO2006073090A1 (en) 2005-01-05 2005-12-27 Sintered metallic material, oil-retaining bearing constituted of the metallic material, and fluid bearing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005001781 2005-01-06
JP2005001781 2005-01-06
JP2005368338A JP5085035B2 (en) 2005-01-06 2005-12-21 Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009179167A Division JP5214555B2 (en) 2005-01-06 2009-07-31 Sintered oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JP2006214003A JP2006214003A (en) 2006-08-17
JP5085035B2 true JP5085035B2 (en) 2012-11-28

Family

ID=36977462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368338A Active JP5085035B2 (en) 2005-01-05 2005-12-21 Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor

Country Status (1)

Country Link
JP (1) JP5085035B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214555B2 (en) * 2005-01-06 2013-06-19 Ntn株式会社 Sintered oil-impregnated bearing
WO2008123068A1 (en) * 2007-03-19 2008-10-16 Nidec Corporation Sleeve, bearing unit, process for manufacturing bearing unit, process for manufacturing fluid dynamic pressure bearing mechanism, fluid dynamic pressure bearing mechanism and motor
JP2008232230A (en) * 2007-03-19 2008-10-02 Nippon Densan Corp Sintered bearing, bearing device and method of manufacturing bearing device
JP5384079B2 (en) * 2008-10-29 2014-01-08 Ntn株式会社 Sintered bearing
JP5318619B2 (en) * 2009-03-19 2013-10-16 Ntn株式会社 Sintered metal bearing
CN102356249B (en) * 2009-03-19 2014-07-16 Ntn株式会社 Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
JP5558041B2 (en) * 2009-08-04 2014-07-23 Ntn株式会社 Fe-based sintered metal bearing and manufacturing method thereof
JP5323620B2 (en) * 2009-09-08 2013-10-23 Ntn株式会社 Sintered metal bearing for fluid dynamic bearing device, and fluid dynamic bearing device provided with the bearing
JP5881975B2 (en) * 2011-05-16 2016-03-09 Ntn株式会社 Manufacturing method of sintered bearing
JP5950207B2 (en) * 2012-12-25 2016-07-13 株式会社石垣 Filter press
JP6199106B2 (en) * 2013-07-22 2017-09-20 Ntn株式会社 Sintered bearing, method for manufacturing the same, and fluid dynamic bearing device provided with the sintered bearing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192504A (en) * 1986-02-17 1987-08-24 Asahi Press Kogyo Kk Production of gasket
JP3607478B2 (en) * 1997-12-18 2005-01-05 Ntn株式会社 Dynamic pressure type porous oil-impregnated bearing
JP3482162B2 (en) * 1999-08-31 2003-12-22 イーグル工業株式会社 Sintered alloys and bearing materials
JP4430468B2 (en) * 2004-07-05 2010-03-10 東海カーボン株式会社 Copper-based sintered friction material
JP4954478B2 (en) * 2005-01-05 2012-06-13 Ntn株式会社 Hydrodynamic bearing device

Also Published As

Publication number Publication date
JP2006214003A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP5085035B2 (en) Sintered metal material, sintered oil-impregnated bearing, fluid bearing device, and motor
KR101339745B1 (en) Sintered metallic material, oil-retaining bearing constituted of the metallic material, and fluid bearing apparatus
JP5384014B2 (en) Sintered bearing
KR101615147B1 (en) Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
JP5318619B2 (en) Sintered metal bearing
CN101087669B (en) Sintered oil-retaining bearing and fluid lubrication bearing device
JP5881975B2 (en) Manufacturing method of sintered bearing
JP5214555B2 (en) Sintered oil-impregnated bearing
JP5558041B2 (en) Fe-based sintered metal bearing and manufacturing method thereof
JP5384079B2 (en) Sintered bearing
JP2006316896A (en) Method for manufacturing oil-impregnated sintered bearing and oil-impregnated sintered bearing
JP5323620B2 (en) Sintered metal bearing for fluid dynamic bearing device, and fluid dynamic bearing device provided with the bearing
JP2008232230A (en) Sintered bearing, bearing device and method of manufacturing bearing device
JP4579177B2 (en) Hydrodynamic bearing device
JP2006046431A (en) Dynamic pressure bearing device
JP6026123B2 (en) Sintered metal bearing
JP3997113B2 (en) Hydrodynamic bearing device
JP2008039104A (en) Fluid bearing device
JP5394182B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP2021001629A (en) Bearing member and fluid dynamic pressure bearing device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R150 Certificate of patent or registration of utility model

Ref document number: 5085035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250