JP2015047354A - 超音波測定装置及び超音波測定方法 - Google Patents

超音波測定装置及び超音波測定方法 Download PDF

Info

Publication number
JP2015047354A
JP2015047354A JP2013181342A JP2013181342A JP2015047354A JP 2015047354 A JP2015047354 A JP 2015047354A JP 2013181342 A JP2013181342 A JP 2013181342A JP 2013181342 A JP2013181342 A JP 2013181342A JP 2015047354 A JP2015047354 A JP 2015047354A
Authority
JP
Japan
Prior art keywords
ultrasonic
intraocular pressure
eyeball
eyeball diameter
diameter information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013181342A
Other languages
English (en)
Inventor
西脇 学
Manabu Nishiwaki
学 西脇
智英 小野木
Tomohide Onoki
智英 小野木
勇祐 中澤
Yusuke Nakazawa
勇祐 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013181342A priority Critical patent/JP2015047354A/ja
Publication of JP2015047354A publication Critical patent/JP2015047354A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

【課題】複数の異なるタイミングにおける眼球径情報を容易に取得することができる超音波測定装置及び超音波測定方法等を提供すること。【解決手段】超音波測定装置100は、測定時に眼瞼表面に接触するセンサー面220と、超音波の送受信を行う超音波トランスデューサーデバイス210と、記憶部150とを含む。超音波トランスデューサーデバイス210は、眼瞼を介して眼球方向に超音波ビームを送信し、超音波ビームの超音波エコーを受信する。記憶部150は、複数の異なるタイミングで得られた超音波エコーの受信信号に基づいて得られる眼球径についての眼球径情報を記憶する。【選択図】図1

Description

本発明は、超音波測定装置及び超音波測定方法等に関する。
従来から、超音波を用いて眼球の生体情報、例えば眼軸長や各組織の長さを計測する装置が考案されている。超音波は生体に対して低侵襲であり生体情報の計測に利用されている。
特許文献1には、角膜などに接触させた超音波プローブによって受信した眼組織からの反射エコーに基づいて眼軸長などの眼球生体情報を計測する装置が開示されている。
特開2008−272308号公報
しかしながら、従来の装置においては、その装置の設置されている場所で眼球生体情報(角膜厚、胸膜厚、眼軸長、前房深度、水晶体厚、眼圧など)を計測しなくてはならない。このような装置では、通常の生活状態において長期間にわたって眼球生体情報を複数の異なるタイミングで取得して、その変動を把握するのは困難である。緑内障の診断・治療においては、被検者の眼圧の変化を把握することが不可欠であり、通常の生活状態で長期間にわたって眼圧を容易に計測できる装置が求められている。本発明の幾つかの態様によれば、複数の異なるタイミングにおける眼球径情報を容易に取得することができる超音波測定装置及び超音波測定方法等を提供できる。
本発明の一態様は、測定時に眼瞼表面に接触するセンサー面と、超音波の送受信を行う超音波トランスデューサーデバイスと、記憶部とを含み、前記超音波トランスデューサーデバイスは、前記眼瞼を介して眼球方向に超音波ビームを送信し、前記超音波ビームの超音波エコーを受信し、前記記憶部は、複数の異なるタイミングで得られた前記超音波エコーの受信信号に基づいて得られる眼球径についての眼球径情報を記憶する超音波測定装置に関係する。
本発明の一態様によれば、被験者の身体的な負担を軽減しつつ眼球径情報を精度良く取得することができる。さらに取得した眼球径情報を記憶部に記憶することができる。こうすることで、記憶された眼球径情報に基づいて眼圧の時間変化に関する情報を取得することができる。その結果、例えば緑内障の治療において、投薬後または施術後の眼圧の数日にわたる変化、或いは1日の被検者の活動状態(起床、日常活動、就寝など)毎の眼圧変化を容易に把握することなどが可能になる。
また本発明の一態様では、前記眼球径情報は、前記超音波ビームの1つの送信信号に対する前記超音波エコーの第1の受信信号と前記第1の受信信号の後に受信される第2の受信信号との時間差から得られてもよい。
このようにすれば、第1の受信信号と第2の受信信号との時間差を測定し、測定された時間差と眼球内における音速とから眼球径情報を取得することができる。
また本発明の一態様では、処理部を有し、前記処理部は、前記眼球径情報に基づいて眼球径の推定演算処理を行ってもよい。
このようにすれば、処理部は、超音波測定により取得した眼球径情報に基づいて正確な眼球径を推定することができる。
また本発明の一態様では、前記処理部は、前記超音波ビームのビームスキャンを行って、複数のビーム方向についての前記眼球径情報に基づいて前記推定演算処理を行ってもよい。
このようにすれば、処理部は、複数のビーム方向について取得された複数の眼球径値のうちの例えば最大値を真の眼球径値と推定することができる。こうすることで、ビーム方向が眼球中心からずれている場合などでも、眼球径を精度良く推定することができる。
また本発明の一態様では、前記処理部は、前記眼球径情報に基づいて眼圧の推定処理を行ってもよい。
このようにすれば、超音波測定によって得られた眼球径情報に基づいて眼圧を推定することができるから、被験者に身体的な負担を与えずに眼圧に関する情報を取得することができる。
また本発明の一態様では、前記処理部は、被験者が第1の状態である場合に得られた第1の眼球径情報と前記被験者が前記第1の状態とは異なる第2の状態である場合に得られた第2の眼球径情報とに基づいて、前記眼圧の推定処理を行ってもよい。
このようにすれば、超音波測定により例えば被験者が座位及び立位の2つの状態での眼球径情報を取得することで、被験者の眼圧を容易に推定することができる。
また本発明の一態様では、前記処理部は、被験者が第1の状態である場合に実測された第1の眼圧実測値と、前記被験者が前記第1の状態である場合に得られた第1の眼球径情報と、前記被験者が前記第1の状態とは異なる第2の状態である場合に実測された第2の眼圧実測値と、前記被験者が前記第2の状態である場合に得られた第2の眼球径情報と、に基づいて得られた眼球径情報と眼圧との関係から前記眼圧の推定処理を行ってもよい。
このようにすれば、例えば被験者が座位及び立位の2つの状態で眼圧検査と超音波測定とを行い、それぞれの状態での眼圧実測値と眼球径情報に基づいて被験者の眼圧を推定することができる。
また本発明の一態様では、前記処理部は、前記眼圧の推定処理によって推定された眼圧に基づいて、眼圧が正常であるか又は異常であるかに関する報知情報を生成することを特徴とする超音波測定装置。
このようにすれば、眼圧が正常であるか異常であるかをユーザーに的確に知らせることができる。
また本発明の一態様では、前記処理部は、前記記憶部に記憶された前記複数の異なるタイミングで得られた眼球径情報に基づいて前記眼圧の推定処理を行い、推定された眼圧に基づいて眼圧の時間変化に関する報知情報を生成してもよい。
このようにすれば、眼圧の時間変化に関する情報をユーザーに的確に知らせることができる。こうすることで、眼圧の数日にわたる変化、或いは1日の被検者の活動状態毎の眼圧変化を容易に把握することなどが可能になる。
また本発明の一態様では、前記センサー面と前記超音波トランスデューサーデバイスとを有するセンサー部を支持する支持部を含み、前記センサー面は、前記支持部によって前記眼瞼表面に接触して支持されてもよい。
このようにすれば、センサー部が眼瞼表面に安定して接触することができるから、超音波トランスデューサーデバイスは、眼瞼を介して眼球方向に超音波ビームを送信し、超音波エコーを受信することができる。
本発明の他の態様は、超音波測定装置による測定方法であって、眼瞼を介して眼球方向に超音波ビームを送信し、前記超音波ビームの1つの送信信号に対する超音波エコーの第1の受信信号と前記第1の受信信号の後に受信される第2の受信信号との時間差から眼球径についての情報である眼球径情報を取得し、前記眼球径情報に基づいて眼圧を推定する超音波測定方法に関係する。
本発明の他の態様によれば、超音波測定によって被験者の身体的な負担を軽減しつつ眼球径情報を取得し、取得した眼球径情報に基づいて眼圧を推定することができる。その結果、眼圧の数日にわたる変化、或いは1日の被検者の活動状態毎の眼圧変化を容易に把握することなどが可能になる。
また本発明の他の態様では、前記超音波ビームのビームスキャンを行って、複数のビーム方向についての前記眼球径情報に基づいて眼圧を推定してもよい。
このようにすれば、ビーム方向が眼球中心からずれている場合などでも、眼球径を精度良く推定することができる。
また本発明の他の態様では、被験者が第1の状態である場合に得られた第1の眼球径情報及び第1の眼圧実測値と、前記被験者が前記第1の状態とは異なる第2の状態である場合に得られた第2の眼球径情報及び第2の眼圧実測値とに基づいて、眼球径情報と眼圧との関係を特定し、特定された前記関係から眼圧を推定してもよい。
このようにすれば、例えば被験者が座位及び立位の2つの状態で眼圧検査と超音波測定とを行い、それぞれの状態での眼圧実測値と眼球径情報に基づいて被験者の眼圧を推定することができる。
超音波測定装置の基本的な構成例。 センサー部の構成例。 超音波測定装置の具体的な構成例。 超音波測定装置による眼球径の測定を説明する図。 眼圧と眼球径の変動との関係の一例。 超音波測定装置による眼圧の推定を説明する図。 図7(A)、図7(B)、図7(C)は、超音波トランスデューサー素子の構成例。 超音波トランスデューサーデバイスの第1の構成例。 図9(A)、図9(B)は、超音波トランスデューサーデバイスの第1の構成例によるビームスキャンを説明する図。 真の眼球径の推定を説明する図。 超音波トランスデューサーデバイスの第2の構成例。 超音波トランスデューサーデバイスの第2の構成例によるビームスキャンを説明する図。 眼球径の推定演算処理のフローチャートの一例。 眼球径情報と眼圧との関係を特定する処理のフローチャートの一例。 眼圧の推定処理のフローチャートの一例。
以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
1.超音波測定装置
図1に、本実施形態の超音波測定装置100の基本的な構成例を示す。本実施形態の超音波測定装置100は、センサー部200、送受信制御部130、処理部140、記憶部150及び報知部160を含む。センサー部200は、超音波トランスデューサーデバイス210、センサー面220、送信部110及び受信部120を含む。なお、本実施形態の超音波測定装置100は図1の構成に限定されず、その構成要素の一部を省略したり、他の構成要素に置き換えたり、他の構成要素を追加するなどの種々の変形実施が可能である。
超音波トランスデューサーデバイス210は、眼瞼(目蓋)を介して眼球方向に超音波ビームを送信し、超音波ビームが対象物により反射されたものである超音波エコーを受信する。超音波トランスデューサーデバイス210は、超音波トランスデューサー素子を有する。超音波トランスデューサー素子は、電気信号である送信信号を超音波に変換し、また対象物(被検体)からの超音波エコーを電気信号に変換する。超音波トランスデューサー素子は、例えば薄膜圧電型超音波トランスデューサー素子やバルク圧電型超音波トランスデューサー素子であってもよいし、或いは容量性微細加工超音波トランスデューサー素子(CMUT:Capacitive Micromachined Ultrasonic Transducer)であってもよい。
センサー面220は、センサー部200が有する外面のうちの測定時に眼瞼表面に接触する面である。具体的には、例えば超音波トランスデューサーデバイス210を被おう保護膜の表面であってもよいし、或いは音響レンズなど超音波を伝搬する部材の表面などであってもよい。センサー面220は、眼瞼表面に塗布されたジェルを介して眼瞼表面に接触してもよい。
送信部110は、超音波ビームの送信処理を行う。具体的には、送信部110が送受信制御部130の制御に基づいてパルス信号を生成・増幅し、超音波トランスデューサーデバイス210に対して電気信号である送信信号(駆動信号)を出力する。超音波トランスデューサーデバイス210は電気信号である送信信号を超音波に変換して、超音波を送信する。送信部110は、例えばパルス発生器、増幅器などで構成することができる。なお、送信部110の少なくとも一部をセンサー部200の外部(例えば送受信制御部130と一体)に設けてもよい。送信信号は、例えば正弦波パルス、又は矩形波パルス、又は三角波パルスなどであってもよい。また、1周期分のパルスに限定されず、例えば1/2周期分のパルス、又は3/2周期分のパルス、或いは2周期分のパルスなどであってもよい。
受信部120は、超音波エコーの受信処理を行う。具体的には、超音波トランスデューサーデバイス210が被検体(対象物)からの超音波エコーを電気信号に変換して、受信部120に対して出力する。受信部120は、超音波トランスデューサーデバイス210からの電気信号である受信信号(アナログ信号)に対して増幅、検波、A/D変換、位相合わせなどの受信処理を行い、受信処理後の信号である受信信号(デジタルデータ)を送受信制御部130に対して出力する。受信部120は、例えば低雑音増幅器、電圧制御アッテネーター、プログラマブルゲインアンプ、ローパスフィルター、A/Dコンバーターなどで構成することができる。なお、受信部120の少なくとも一部をセンサー部200の外部(例えば送受信制御部130と一体)に設けてもよい。
送受信制御部130は、処理部140の制御処理に基づいて送信部110及び受信部120による送受信処理を制御する。具体的には、例えば送信期間と受信期間との切り換え制御、或いは送信部110が出力する送信信号のタイミングを制御して超音波ビームのビームスキャン制御、或いは受信部120のゲイン制御などを行う。
処理部140は、超音波エコーの受信信号に基づいて、複数の異なるタイミング(時刻)における眼球径についての情報である眼球径情報を取得する処理を行う。眼球径情報は、超音波ビームの1つの送信信号に対する超音波エコーの第1の受信信号と第1の受信信号の後に受信される第2の受信信号との時間差から得られる。具体的には、眼球径情報は、センサー面220が接触する眼瞼に近い強膜からの超音波エコーに対応する第1の受信信号と眼瞼から遠い強膜からの超音波エコーに対応する第2の受信信号との時間差から得られる眼球径(眼球の直径)に関する情報である。眼球径情報は、眼球径の値(長さ)そのものでなくてもよく、例えば眼瞼に近い強膜からの超音波エコー(第1の受信信号)と眼瞼から遠い強膜からの超音波エコー(第2の受信信号)との時間差であってもよいし、或いは超音波エコーの受信信号の振幅波形(Aモード波形)であってもよい。
なお、上記の「複数の異なるタイミング」の時間間隔は、第1の受信信号と第2の受信信号との時間差よりも長い時間である。
また処理部140は、超音波測定により取得した眼球径情報に基づいて眼球径の推定演算処理を行う。具体的には、処理部140は、超音波ビームのビームスキャンを行って、複数のビーム方向についての眼球径情報に基づいて眼球径の推定演算処理を行う。こうすることで、眼球径を精度良く推定することができる。眼球径の推定演算処理の詳細については、後述する。
また処理部140は、推定した眼球径情報に基づいて眼圧の推定処理を行う。具体的には、処理部140は、被験者が座位(広義には第1の状態)である場合に得られた第1の眼球径情報及び第1の眼圧実測値と、被験者が立位(広義には第2の状態)である場合に得られた第2の眼球径情報及び第2の眼圧実測値と、に基づいて得られた眼球径情報と眼圧との関係(関係式)から眼圧の推定処理を行う。眼球径情報と眼圧との関係が特定されれば、処理部140は、超音波測定により取得された眼球径情報から眼圧を推定することができる。眼圧の推定処理の詳細については、後述する。
眼球径情報と眼圧との関係を求める処理は、処理部140が行ってもよいし、眼圧実測値を実測する装置(例えば眼圧計)が行ってもよい。或いは、パーソナルコンピュータ(PC)などが行ってもよい。
また処理部140は、眼圧の推定処理によって推定された眼圧に基づいて、眼圧が正常であるか又は異常であるかに関する報知情報を生成する。また、記憶部150に記憶された複数の異なるタイミングで得られた眼球径情報(例えば時系列の眼球径情報)に基づいて眼圧の推定処理を行い、推定された眼圧に基づいて眼圧の時間変化(時系列変化)に関する報知情報を生成する。生成された報知情報は、報知部160によりユーザーに対して報知される。こうすることで、被験者の眼圧の時間的変化を的確に把握することが可能になる。
記憶部150は、例えばDRAMなどの記憶装置で構成され、受信信号や眼球径情報などを記憶する。また、記憶部150は、フラッシュメモリーなどの不揮発性記憶装置をさらに含み、過去に測定した眼球径情報、即ち複数の異なるタイミングで得られた眼球径情報などを記憶する。処理部140は、記憶部150に記憶された複数の異なるタイミングにおける眼球径情報に基づいて眼圧の推定処理を行い、推定された眼圧に基づいて眼圧の時間変化に関する報知情報を生成することができる。
報知部160は、例えばディスプレイ(表示装置)、或いはスピーカー等であって、処理部140からの報知情報をユーザーに対して報知する。ディスプレイは、例えば液晶ディスプレイ、有機ELディスプレイ等であって、処理部140からの報知情報を含む表示用画像データを表示する。報知部160は、例えばビープ音を発生するビーパー、又は発光・点滅するLED、又は振動するバイブレーターなどであってもよい。報知情報は、眼圧の正常又は異常に関する情報や眼圧の時間変化に関する情報などのほか、ユーザーに対して必要な操作を指示するための情報を含んでもよい。
図2に、本実施形態のセンサー部200の構成例を示す。センサー部200は、超音波トランスデューサーデバイス210、センサー面220、保護膜230、ベース基板240、フレキシブル基板250、送信部110及び受信部120を含む。なお、本実施形態のセンサー部200は図2の構成に限定されず、その構成要素の一部を省略したり、他の構成要素に置き換えたり、他の構成要素を追加するなどの種々の変形実施が可能である。例えば、送信部110及び受信部120のいずれか一方又は両方の少なくとも一部をセンサー部200の外部に設けてもよい。
超音波トランスデューサーデバイス210及びセンサー面220については、既に説明したので、ここでは詳細な説明を省略する。
超音波トランスデューサーデバイス210、送信部110及び受信部120は、ベース基板240の一方の面に設けられる。保護膜230は、超音波トランスデューサーデバイス210、送信部110及び受信部120を保護する部材であって、例えばシリコーン系樹脂で形成される。超音波トランスデューサーデバイス210と送信部110及び受信部120とは、フレキシブル基板250によって電気的に接続される。
センサー部200は、支持部170により眼瞼表面に接触して支持される。支持部170は、例えば金属又は樹脂などの弾性を有する材料で形成することができる。センサー部200は、配線180によって送受信制御部130と電気的に接続される。
図3に、本実施形態の超音波測定装置100の具体的な構成例を示す。図3に示す超音波測定装置100によれば、例えば眼鏡型のフレームに支持部170を設け、支持部170によりセンサー部200を下瞼に確実に接触させることができる。こうすることで、被験者に与える身体的な負担を軽減しつつ、超音波測定を行うことが可能になる。なお、図3には右眼部分を示しているが、左眼部分についても同様に、フレームに支持部170を設けてセンサー部200を下瞼に確実に接触させることができる。なお、フレームは、図3に示す眼鏡型に限定されず、他の形態であってもよい。
送受信制御部130は、例えば眼鏡型のフレームのテンプル(つる)部分に設けられる。センサー部200と送受信制御部130とは、フレームに沿って設けられる配線180によって電気的に接続される。また、送受信制御部130は、ケーブル190によって処理部140に電気的に接続される。処理部140、記憶部150及び報知部160(ディスプレイ)は、超音波測定装置本体101に設けられる。
なお、送受信制御部130と処理部140との接続は、ケーブル190によらずに、例えば非接触電力供給(無接点電力供給)により電力供給とデータ通信とを行ってもよい。或いは、データ通信については近距離無線通信を用いることもできる。
センサー部200を眼瞼に接触させる手段としては、上述した眼鏡型のフレームのほかに、アイマスク型、或いは直接眼瞼に貼り付ける方法などであってもよい。また、センサー部200を接触させる部位は、上瞼であってもよいし、他の部位であってもよい。
2.眼球径の測定及び眼圧の推定
図4は、本実施形態の超音波測定装置100による眼球径(広義には眼球径情報)の測定を説明する図である。図4に示すように、センサー部200は下瞼表面に接触している。センサー部200が有する超音波トランスデューサーデバイス210から眼球方向に超音波ビームUBが送信され、下瞼に近い強膜からの超音波エコーUE1及び下瞼から遠い強膜からの超音波エコーUE2が超音波トランスデューサーデバイス210により受信される。
超音波エコーUE1に対応する第1の受信信号と超音波エコーUE2に対応する第2の受信信号との時間差は、下瞼に近い強膜と下瞼から遠い強膜との距離に比例するから、第1の受信信号と第2の受信信号との時間差を測定することで、眼球径に関する情報を得ることができる。例えば、眼球内における超音波の音速をvとし、第1の受信信号と第2の受信信号との時間差をtdとした場合には、眼球径DはD=v×tdで与えられる。
図5に、豚眼による実験から得られた眼圧と眼球径の変動との関係の一例を示す。図5から分かるように、眼球径の変動は眼圧の1次関数で表される。従って、眼球径が分かれば眼圧を推定することができる。
図6は、本実施形態の超音波測定装置100による眼圧の推定を説明する図である。眼球径Dは眼圧Pの1次関数で表されるから、次式が成り立つ。
D=a×P+b (1)
ここでa、bは眼球径Dと眼圧Pとの関係を特定するパラメーターである。眼球径Dと眼圧Pとの関係は被験者によって異なるから、被験者ごとにパラメーターa、bを決める必要がある。本実施形態の超音波測定装置100によれば、以下のようにしてパラメーターa、bを決めることができる。
座っている状態(座位)での眼圧と立っている状態(立位)での眼圧とは異なることが知られている。そこで被験者が座位の状態(第1の状態)である場合に、超音波測定により第1の眼球径D1を取得し、また眼圧検査により第1の眼圧実測値P1を取得する。さらに被験者が立位の状態(第2の状態)である場合に、超音波測定により第2の眼球径D2を取得し、また眼圧検査により第2の眼圧実測値P2を取得する。
式(1)から次式が成り立つ。
D1=a×P1+b (2)
D2=a×P2+b (3)
従って、式(2)、(3)からパラメーターa、bを求めることができる。
このように本実施形態の超音波測定装置100によれば、被験者が座位の状態及び立位の状態で眼球径を測定し、さらに眼圧検査による眼圧実測値を入力することにより、眼球径と眼圧との関係(具体的にはパラメーター値a、b)を被験者ごとに特定することができる。そして特定されたパラメーター値a、bを用いて、超音波測定により取得した眼球径から眼圧を推定することができる。
なお、眼球径情報と眼圧との関係(パラメーター値)を求める処理は、上述したように処理部140が行ってもよいし、或いは、眼圧実測値を実測する装置(例えば眼圧計)、又はパーソナルコンピュータ(PC)などが行ってもよい。
3.超音波トランスデューサー素子
図7(A)、図7(B)、図7(C)に、本実施形態の超音波測定装置100に用いられる超音波トランスデューサー素子10の構成例を示す。超音波トランスデューサー素子10は、振動膜(メンブレン、支持部材)50と圧電素子部とを有する。圧電素子部は、第1電極層(下部電極)21、圧電体層(圧電体膜)30、第2電極層(上部電極)22を有する。なお、本実施形態の超音波トランスデューサー素子10は図7(A)、図7(B)、図7(C)の構成に限定されず、その構成要素の一部を省略したり、他の構成要素に置き換えたり、他の構成要素を追加するなどの種々の変形実施が可能である。
図7(A)は、基板(シリコン基板)60に形成された超音波トランスデューサー素子10の、素子形成面側の基板60に垂直な方向から見た平面図である。図7(B)は、図7(A)のA−A’に沿った断面を示す断面図である。図7(C)は、図7(A)のB−B’に沿った断面を示す断面図である。
第1電極層21は、振動膜50の上層に例えば金属薄膜で形成される。この第1電極層21は、図7(A)に示すように素子形成領域の外側へ延長され、隣接する超音波トランスデューサー素子10に接続される配線であってもよい。
圧電体層30は、例えばPZT(ジルコン酸チタン酸鉛)薄膜により形成され、第1電極層21の少なくとも一部を覆うように設けられる。なお、圧電体層30の材料は、PZTに限定されるものではなく、例えばチタン酸鉛(PbTiO3)、ジルコン酸鉛(PbZrO3)、チタン酸鉛ランタン((Pb、La)TiO3)などを用いてもよい。
第2電極層22は、例えば金属薄膜で形成され、圧電体層30の少なくとも一部を覆うように設けられる。この第2電極層22は、図7(A)に示すように素子形成領域の外側へ延長され、隣接する超音波トランスデューサー素子10に接続される配線であってもよい。
振動膜(メンブレン)50は、例えばSiO2薄膜とZrO2薄膜との2層構造により空洞領域40を塞ぐように設けられる。この振動膜50は、圧電体層30及び第1、第2電極層21、22を支持すると共に、圧電体層30の伸縮に従って振動し、超音波を発生させることができる。
空洞領域40は、基板60(シリコン基板)の裏面(素子が形成されない面)側から反応性イオンエッチング(RIE)等によりエッチングすることで形成される。この空洞領域40の形成によって振動可能になった振動膜50のサイズによって超音波の共振周波数が決定され、その超音波は圧電体膜30側(図7(A)において紙面奥から手前方向)に放射される。
超音波トランスデューサー素子10の下部電極(第1電極)は、第1電極層21により形成され、上部電極(第2電極)は、第2電極層22により形成される。具体的には、第1電極層21のうちの圧電体層30に覆われた部分が下部電極を形成し、第2電極層22のうちの圧電体層30を覆う部分が上部電極を形成する。即ち、圧電体層30は、下部電極と上部電極に挟まれて設けられる。
圧電体膜30は、下部電極と上部電極との間、即ち第1電極層21と第2電極層22との間に電圧が印加されることで、面内方向に伸縮する。超音波トランスデューサー素子10は、薄手の圧電素子部と振動膜50を貼り合わせたモノモルフ(ユニモルフ)構造を用いており、圧電素子部が面内で伸び縮みすると貼り合わせた振動膜50の寸法はそのままであるため反りが生じる。従って、圧電体膜30に交流電圧を印加することで、振動膜50が膜厚方向に対して振動し、この振動膜50の振動により超音波が放射される。圧電体膜30に印加される電圧は、例えば10〜30Vであり、周波数は例えば1〜10MHzである。
バルクの超音波トランスデューサー素子の駆動電圧がピークからピークで100V程度であるのに対して、図7(A)、図7(B)、図7(C)に示すような薄膜圧電型超音波トランスデューサー素子では、駆動電圧をピークからピークで10〜30V程度に小さくすることができる。
4.超音波トランスデューサーデバイス
本実施形態の超音波測定装置100では、図4で説明したように、下瞼に近い強膜からの超音波エコーUE1に対応する第1の受信信号と下瞼から遠い強膜からの超音波エコーUE2に対応する第2の受信信号との時間差を測定することで眼球径を測定する。超音波トランスデューサーデバイス210から送信される超音波ビームUBが眼球の中心を通過する場合には、正確に眼球径を測定することができる。しかし実際にはセンサー部200の位置及び方向を常に一定に保持することは困難であり、従って超音波ビームUBを常に眼球の中心方向に送信することは難しい。
そこで、本実施形態の超音波測定装置100では、処理部140が超音波ビームUBのビームスキャンを行って、複数のビーム方向についての眼球径情報に基づいて眼球径の推定演算処理を行う。具体的には、処理部140は、セクタースキャン(位相走査)或いはリニアスキャンにより超音波ビームUBをX方向及びY方向にスキャンして、複数のビーム方向について眼球径値を取得し、取得された複数の眼球径値のうちの最大値を真の眼球径値と推定する。
図8に、本実施形態の超音波トランスデューサーデバイス210の第1の構成例を示す。本構成例の超音波トランスデューサーデバイス210は、8×8のマトリックス配置された複数の超音波トランスデューサー素子10、信号端子SG1〜SG64及び複数のコモン電圧端子COMを含む。
信号端子SG1〜SG64は、図8に示すように、超音波トランスデューサーデバイス210の各辺に16個ずつ配置される。複数のコモン電圧端子COMは、各コーナー部に4個ずつ配置される。なお、信号端子SG1〜SG64及びコモン電圧端子COMの配置は図8に示すものに限定されない。
64個の超音波トランスデューサー素子10の各素子の一方の電極は、信号端子SG1〜SG64のうちの対応する1つの信号端子に接続される。また、各素子の他方の電極は、図示していない配線によって複数のコモン電圧端子COMのいずれかに接続される。送信期間には、送信部110からの送信信号が信号端子SG1〜SG64に入力され、受信期間には、64個の超音波トランスデューサー素子10からの受信信号が信号端子SG1〜SG64を介して受信部120に出力される。このようにすることで、64個の超音波トランスデューサー素子10に対してそれぞれ異なる位相の送信信号を入力することができるから、X方向及びY方向のいずれの方向についてもセクタースキャンによるビームスキャンを行うことができる。
図9(A)、図9(B)は、超音波トランスデューサーデバイス210の第1の構成例によるビームスキャンを説明する図である。図9(A)のA1、A2に示すように、センサー部200に設けられた超音波トランスデューサーデバイス210は、セクタースキャンにより超音波ビームの出射方向をY方向にほぼ±45°スキャンさせることができる。実際の測定では、ビーム方向の変化は例えば±5〜10°程度でよい。例えば図9(A)に示すように、超音波ビームをUB1からUB2、そしてUB3へとスキャンさせる。また図示していないが、X方向についても同様にビーム方向をスキャンさせることができる。
図9(B)には、仮想的に図9(A)のPSの位置から見た場合の超音波ビームのスキャンを示す。本実施形態の超音波測定装置100によれば、図9(B)に示すように、例えばY方向の角度を1°ずつ変化させてX方向にスキャンすることができる。即ち、第1のビームスキャンSC1から第n(nは2以上の整数)のビームスキャンSCnまでを行うことで、強膜の所定の範囲にわたって眼球径を取得することができる。
図10は、図9(B)に示すビームスキャンSC1〜SCnによる真の眼球径の推定を説明する図である。図10は、X方向の角度に対する眼球径の測定値をビームスキャンSC1〜SCnのスキャンごとにプロットしたものである。図10から分かるように、測定された眼球径値のうちの最大値が求める真の眼球径値になる。従って、処理部140は、ビームスキャンSC1〜SCnを行って、スキャンごとに眼球径の測定値を取得し、測定された眼球径値のうちの最大値を真の眼球径値であると推定することができる。
測定された眼球径値の最大値を与える角度がX方向又はY方向のスキャン範囲の上限又は下限の角度である場合には、スキャン範囲内に眼球の中心を通るビームが含まれていない可能性がある。この場合には、処理部140はスキャン範囲を適切な方向にシフトさせることができる。
図11に、本実施形態の超音波トランスデューサーデバイス210の第2の構成例を示す。本構成例の超音波トランスデューサーデバイス210は、X方向にリニアスキャンを行うデバイスUDXとY方向にリニアスキャンを行うデバイスUDYとを含む。デバイスUDXは8行16列のマトリックス配置された複数の超音波トランスデューサー素子10、信号端子SGX1〜SGX16及び複数のコモン電圧端子COMを含む。同様に、デバイスUDYは16行8列のマトリックス配置された複数の超音波トランスデューサー素子10、信号端子SGY1〜SGY16及び複数のコモン電圧端子COMを含む。
デバイスUDXの第i(iは1≦i≦16である整数)列の8個の超音波トランスデューサー素子10の一方の電極は、信号端子SGX1〜SGX16のうちの第iの信号端子SGXiに共通接続される。また、各超音波トランスデューサー素子10の他方の電極は、コモン電圧端子COMに共通接続される。送信期間には、送信部110からの送信信号が信号端子SGX1〜SGX16に入力され、受信期間には、各列の超音波トランスデューサー素子10からの受信信号が信号端子SGX1〜SGX16を介して受信部120に出力される。
デバイスUDYの第j(jは1≦j≦16である整数)行の8個の超音波トランスデューサー素子10は、信号端子SGY1〜SGY16のうちの第jの信号端子SGYjに共通接続される。また、各超音波トランスデューサー素子10の他方の電極は、コモン電圧端子COMに共通接続される。送信期間には、送信部110からの送信信号が信号端子SGY1〜SGY16に入力され、受信期間には、各行の超音波トランスデューサー素子10からの受信信号が信号端子SGY1〜SGY16を介して受信部120に出力される。
デバイスUDXの信号端子SGX1からSGX16に向かって順次送信信号を入力することにより、超音波ビームをX方向にリニアスキャンすることができる。同様に、デバイスUDYの信号端子SGY1からSGY16に向かって順次送信信号を入力することにより、超音波ビームをY方向にリニアスキャンすることができる。
図12は、超音波トランスデューサーデバイス210の第2の構成例によるビームスキャンを説明する図である。図12には、図9(B)と同様に、仮想的に図9(A)のPSの位置から見た場合の超音波ビームのスキャンを示す。
図12に示すように、デバイスUDXを用いてX方向にスキャンすることにより、X方向のスキャン範囲SAXについて眼球径の測定値を取得することができる。また、デバイスUDYを用いてY方向にスキャンすることにより、Y方向のスキャン範囲SAYについて眼球径の測定値を取得することができる。そして2つのスキャン範囲SAX、SAYにおいて測定された眼球径値のうちの最大値を真の眼球径値であると推定することができる。
このように本実施形態の超音波測定装置100によれば、超音波ビームをX方向及びY方向にスキャンして、複数のビーム方向について眼球径値を取得し、取得された複数の眼球径値のうちの最大値を真の眼球径値と推定することができる。こうすることで、ビーム方向が眼球中心からずれている場合やセンサー部200の位置及び方向が変化した場合でも、眼球径を精度良く推定することができる。
5.眼球径の推定演算処理及び眼圧の推定処理
図13は、本実施形態の超音波測定装置100による眼球径の推定演算処理のフローチャートの一例である。図13に示す処理は、処理部140により実行される。図13のフローでは、例として超音波トランスデューサーデバイス210の第1の構成例(図8)を用いて図9(B)に示すビームスキャンSC1〜SCnを行う場合について説明する。
最初に、処理部140はビームスキャンの番号(インデックス)iを初期値1に設定する(ステップS1)。次に、処理部140は、ビームスキャンSCiを行って、眼球径情報DAiを取得し(ステップS2)、取得した眼球径情報DAiを記憶部150に書き込む(ステップS3)。
次に処理部140は、ビームスキャンの番号iをインクリメントし(ステップS4)、ビームスキャンの番号iが所定の整数値nより大きいか否かを判断する(ステップS5)。ここで所定の整数値nは、X方向のビームスキャンの回数である。ビームスキャンの番号iが所定の整数値n以下である場合には、ステップS2に戻り、処理部140は、ビームスキャンSCiを行って、眼球径情報DAiを取得する処理を繰り返す。
ビームスキャンの番号iが所定の整数値nより大きい場合には、処理部140は、取得した眼球径情報DA1〜DAnに基づいて、眼球径の推定演算処理を行う(ステップS6)。具体的には、処理部140は、ビームスキャンSC1〜SCnにより取得した眼球径値のうちの最大値を真の眼球径値Dであると推定する。そして処理部140は、推定した真の眼球径値Dを記憶部150に書き込む(ステップS7)。
図14は、本実施形態の超音波測定装置100による眼球径情報と眼圧との関係を特定する処理のフローチャートの一例である。図14に示す処理は、処理部140により実行される。
最初に、処理部140は、座位での超音波測定を行って、第1の眼球径値D1(広義には第1の眼球径情報)を取得する(ステップS11)。次に処理部140は、ユーザーに対して、座位での眼圧実測値P1(第1の眼圧実測値)の入力を促す報知情報を生成し、報知部160に出力する(ステップS12)。そして処理部140は、入力された第1の眼圧実測値P1を記憶部150に書き込む(ステップS13)。
次に処理部140は、立位での超音波測定を行って、第2の眼球径値D2(広義には第2の眼球径情報)を取得する(ステップS14)。次に処理部140は、ユーザーに対して、立位での眼圧実測値P2(第2の眼圧実測値)の入力を促す報知情報を生成し、報知部160に出力する(ステップS15)。そして処理部140は、入力された第2の眼圧実測値P2を記憶部150に書き込む(ステップS16)。
次に処理部140は、第1の眼球径値D1、第1の眼圧実測値P1、第2の眼球径値D2及び第2の眼圧実測値P2から、パラメーターa、bを決定する(ステップS17)。具体的には、既に説明した式(2)、式(3)からパラメーターa、bを求める。そして処理部140は、決定したパラメーターa、bを記憶部150に書き込む(ステップS18)。
図15は、本実施形態の超音波測定装置100による眼圧の推定処理のフローチャートの一例である。図15に示す処理は、処理部140により実行される。
最初に処理部140は、超音波測定を行って眼球径値Dを取得する(ステップS21)。具体的には、例えば図13に示したフローにより眼球径値Dを取得する。次に処理部140は、眼球径と眼圧との関係を特定するパラメーターa、bを記憶部150から読み出し(ステップS22)、眼圧値Pの推定処理を行う(ステップS23)。具体的には、既に説明した式(1)から眼圧値Pを求めることができる。
そして処理部140は、推定した眼圧値Pに基づいて、眼圧が正常であるか又は異常であるかに関する報知情報を生成し、生成された報知情報を報知部160に出力する(ステップS24)。正常な眼圧値の範囲は個人差があるので、予め被験者ごとに異なる正常値の範囲を記憶部150に記憶しておくことができる。
次に処理部140は、k(kは2以上の整数)個のタイミング(時刻)における眼球径値D(t1)、D(t2)、・・・、D(tk)を記憶部150から読み出す(ステップS25)。ここで眼球径値D(t1)は時刻t1に取得された眼球径値であり、D(t2)〜D(tk)は時刻t2〜tkに取得された眼球径値である。
次に処理部140は、時系列の眼球径値D(t1)、D(t2)、・・・、D(tk)に基づいて時系列の眼圧値P(t1)、P(t2)、・・・、P(tk)を推定する(ステップS26)。具体的には、既に説明した式(1)から各時刻の眼圧値を求めることができる。
次に処理部140は、時系列の眼圧値P(t1)、P(t2)、・・・、P(tk)に基づいて、眼圧の時間変化に関する報知情報を生成し、生成された報知情報を報知部160に出力する(ステップS27)。こうすることで、眼圧の時間的変化を的確に把握することが可能になる。
以上説明したように、本実施形態の超音波測定装置100によれば、被験者の身体的な負担を軽減しつつ複数の異なるタイミングにおける眼球径情報を精度良く取得することができ、さらに取得した眼球径情報を記憶部に記憶することができる。そして記憶された眼球径情報に基づいて眼圧の時間変化に関する情報を容易に取得することができる。その結果、例えば緑内障の治療において、投薬後または施術後の眼圧の数日にわたる、且つ日内の被検者の活動状態(起床、日常活動、就寝など)毎の眼圧変化を把握することができるから、治療効果の向上などが期待できる。
なお、以上のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また超音波測定装置の構成、動作及び超音波測定方法も本実施形態で説明したものに限定されず、種々の変形実施が可能である。
10 超音波トランスデューサー素子、21 第1電極層(下部電極)、
22 第2電極層(上部電極)、30 圧電体膜(圧電体層)、40 空洞領域、
45 開口部、50 振動膜、60 基板、
100 超音波測定装置、101 超音波測定装置本体、110 送信部、
120 受信部、130 送受信制御部、140 処理部、150 記憶部、
160 報知部、170 支持部、180 配線、190 ケーブル、
200 センサー部、210 超音波トランスデューサーデバイス、
220 センサー面、230 保護膜、240 ベース基板、
250 フレキシブル基板

Claims (13)

  1. 測定時に眼瞼表面に接触するセンサー面と、
    超音波の送受信を行う超音波トランスデューサーデバイスと、
    記憶部とを含み、
    前記超音波トランスデューサーデバイスは、前記眼瞼を介して眼球方向に超音波ビームを送信し、前記超音波ビームの超音波エコーを受信し、
    前記記憶部は、複数の異なるタイミングで得られた前記超音波エコーの受信信号に基づいて得られる眼球径についての眼球径情報を記憶することを特徴とする超音波測定装置。
  2. 請求項1において、
    前記眼球径情報は、前記超音波ビームの1つの送信信号に対する前記超音波エコーの第1の受信信号と前記第1の受信信号の後に受信される第2の受信信号との時間差から得られることを特徴とする超音波測定装置。
  3. 請求項1又は2において、
    処理部を有し、
    前記処理部は、前記眼球径情報に基づいて眼球径の推定演算処理を行うことを特徴とする超音波測定装置。
  4. 請求項3において、
    前記処理部は、前記超音波ビームのビームスキャンを行って、複数のビーム方向についての前記眼球径情報に基づいて前記推定演算処理を行うことを特徴とする超音波測定装置。
  5. 請求項3又は4において、
    前記処理部は、前記眼球径情報に基づいて眼圧の推定処理を行うことを特徴とする超音波測定装置。
  6. 請求項5において、
    前記処理部は、被験者が第1の状態である場合に得られた第1の眼球径情報と前記被験者が前記第1の状態とは異なる第2の状態である場合に得られた第2の眼球径情報とに基づいて、前記眼圧の推定処理を行うことを特徴とする超音波測定装置。
  7. 請求項5において、
    前記処理部は、被験者が第1の状態である場合に実測された第1の眼圧実測値と、前記被験者が前記第1の状態である場合に得られた第1の眼球径情報と、前記被験者が前記第1の状態とは異なる第2の状態である場合に実測された第2の眼圧実測値と、前記被験者が前記第2の状態である場合に得られた第2の眼球径情報と、に基づいて得られた眼球径情報と眼圧との関係から前記眼圧の推定処理を行うことを特徴とする超音波測定装置。
  8. 請求項5乃至7のいずれかにおいて、
    前記処理部は、前記眼圧の推定処理によって推定された眼圧に基づいて、眼圧が正常であるか又は異常であるかに関する報知情報を生成することを特徴とする超音波測定装置。
  9. 請求項5乃至8のいずれかにおいて、
    前記処理部は、前記記憶部に記憶された前記複数の異なるタイミングで得られた眼球径情報に基づいて前記眼圧の推定処理を行い、推定された眼圧に基づいて眼圧の時間変化に関する報知情報を生成することを特徴とする超音波測定装置。
  10. 請求項1乃至9のいずれかにおいて、
    前記センサー面と前記超音波トランスデューサーデバイスとを有するセンサー部を支持する支持部を含み、
    前記センサー面は、前記支持部によって前記眼瞼表面に接触して支持されることを特徴とする超音波測定装置。
  11. 超音波測定装置による測定方法であって、
    眼瞼を介して眼球方向に超音波ビームを送信し、
    前記超音波ビームの1つの送信信号に対する超音波エコーの第1の受信信号と前記第1の受信信号の後に受信される第2の受信信号との時間差から眼球径についての情報である眼球径情報を取得し、
    前記眼球径情報に基づいて眼圧を推定することを特徴とする超音波測定方法。
  12. 請求項11において、
    前記超音波ビームのビームスキャンを行って、複数のビーム方向についての前記眼球径情報に基づいて眼圧を推定することを特徴とする超音波測定方法。
  13. 請求項12において、
    被験者が第1の状態である場合に得られた第1の眼球径情報及び第1の眼圧実測値と、前記被験者が前記第1の状態とは異なる第2の状態である場合に得られた第2の眼球径情報及び第2の眼圧実測値とに基づいて、眼球径情報と眼圧との関係を特定し、
    特定された前記関係から眼圧を推定することを特徴とする超音波測定方法。
JP2013181342A 2013-09-02 2013-09-02 超音波測定装置及び超音波測定方法 Withdrawn JP2015047354A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181342A JP2015047354A (ja) 2013-09-02 2013-09-02 超音波測定装置及び超音波測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181342A JP2015047354A (ja) 2013-09-02 2013-09-02 超音波測定装置及び超音波測定方法

Publications (1)

Publication Number Publication Date
JP2015047354A true JP2015047354A (ja) 2015-03-16

Family

ID=52697866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181342A Withdrawn JP2015047354A (ja) 2013-09-02 2013-09-02 超音波測定装置及び超音波測定方法

Country Status (1)

Country Link
JP (1) JP2015047354A (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867403U (ja) * 1981-10-31 1983-05-07 株式会社富士通ゼネラル 眼軸長計測用表示装置
JPH08322803A (ja) * 1995-05-31 1996-12-10 Canon Inc 眼圧計
JPH10309275A (ja) * 1997-05-13 1998-11-24 Tomey:Kk 眼科用超音波診断装置のプローブ
JPH11244245A (ja) * 1998-02-27 1999-09-14 Topcon Corp 眼科用診断支援システム
JP2000014643A (ja) * 1998-06-29 2000-01-18 Toomee:Kk 組合せ眼圧計
JP2002500059A (ja) * 1998-01-12 2002-01-08 サーントゥル ナシオナル ドゥ ラ ルシェルシュ シャーンティフィク (セ エン エール エス) 高周波数超音波プローブにより人間または動物の原組織を検査およびディスプレイする方法
JP2004097619A (ja) * 2002-09-11 2004-04-02 Canon Inc 非接触式眼圧計
JPWO2002078531A1 (ja) * 2001-03-30 2004-07-15 学校法人早稲田大学 眼圧測定の方法及び装置
JP2005304930A (ja) * 2004-04-23 2005-11-04 Univ Waseda 圧力測定方法および圧力測定装置ならびに眼圧計
JP2008272308A (ja) * 2007-05-01 2008-11-13 Nidek Co Ltd 眼科用超音波診断装置
JP2009285322A (ja) * 2008-05-30 2009-12-10 Nidek Co Ltd 眼科用超音波プローブ及びこれを備える眼科用超音波診断装置
JP2013106821A (ja) * 2011-11-22 2013-06-06 Rexxam Co Ltd 眼圧測定装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867403U (ja) * 1981-10-31 1983-05-07 株式会社富士通ゼネラル 眼軸長計測用表示装置
JPH08322803A (ja) * 1995-05-31 1996-12-10 Canon Inc 眼圧計
JPH10309275A (ja) * 1997-05-13 1998-11-24 Tomey:Kk 眼科用超音波診断装置のプローブ
JP2002500059A (ja) * 1998-01-12 2002-01-08 サーントゥル ナシオナル ドゥ ラ ルシェルシュ シャーンティフィク (セ エン エール エス) 高周波数超音波プローブにより人間または動物の原組織を検査およびディスプレイする方法
JPH11244245A (ja) * 1998-02-27 1999-09-14 Topcon Corp 眼科用診断支援システム
JP2000014643A (ja) * 1998-06-29 2000-01-18 Toomee:Kk 組合せ眼圧計
JPWO2002078531A1 (ja) * 2001-03-30 2004-07-15 学校法人早稲田大学 眼圧測定の方法及び装置
JP2004097619A (ja) * 2002-09-11 2004-04-02 Canon Inc 非接触式眼圧計
JP2005304930A (ja) * 2004-04-23 2005-11-04 Univ Waseda 圧力測定方法および圧力測定装置ならびに眼圧計
JP2008272308A (ja) * 2007-05-01 2008-11-13 Nidek Co Ltd 眼科用超音波診断装置
JP2009285322A (ja) * 2008-05-30 2009-12-10 Nidek Co Ltd 眼科用超音波プローブ及びこれを備える眼科用超音波診断装置
JP2013106821A (ja) * 2011-11-22 2013-06-06 Rexxam Co Ltd 眼圧測定装置

Similar Documents

Publication Publication Date Title
US9439626B2 (en) Attachment for ultrasonic probe, ultrasonic probe, electronic device, and ultrasonic diagnostic apparatus
JP5499938B2 (ja) 超音波センサー、測定装置、プローブ、および測定システム
US10608753B2 (en) Ultrasonic diagnostic apparatus, probe head, ultrasonic probe, electronic machine, and ultrasonic diagnostic apparatus
JP5499939B2 (ja) 測定装置、生体検査装置、流速測定方法、および圧力測定方法
JP6205709B2 (ja) 超音波測定装置
JP6069848B2 (ja) プローブヘッド、超音波プローブ、電子機器及び診断装置
JP2015016144A (ja) 超音波測定装置、超音波画像装置及び超音波測定方法
US20140290369A1 (en) Ultrasonic measuring system, ultrasonic probe, and sheet member
JP6135185B2 (ja) 超音波トランスデューサーデバイス、ヘッドユニット、プローブ、超音波画像装置及び電子機器
US20150198564A1 (en) Ultrasonic device, ultrasonic transducer device, electronic device and ultrasonic imaging device
JP2017098781A (ja) 圧電素子、超音波プローブ、超音波測定装置及び圧電素子の製造方法
US10363574B2 (en) Piezoelectric element, probe, and ultrasonic measurement apparatus
JP2017092535A (ja) 圧電素子、超音波プローブ、超音波測定装置及び圧電素子の製造方法
JP2015188467A (ja) 超音波測定装置及び測定方法
Moisello et al. PMUT and CMUT Devices for Biomedical Applications: A Review
JP6135184B2 (ja) 超音波トランスデューサーデバイス、ヘッドユニット、プローブ及び超音波画像装置
JP2015047354A (ja) 超音波測定装置及び超音波測定方法
JP2015104498A (ja) 超音波装置
JP5962226B2 (ja) 眼球生体情報収集装置および眼球生体情報収集方法
JP2015166024A (ja) 超音波センサーおよび超音波測定装置
JP2013055564A (ja) 圧電デバイスおよび超音波探触子
JP2014100590A (ja) 超音波プローブ、超音波センサー、測定装置、および測定システム
JP6024154B2 (ja) 超音波装置、プローブ、電子機器及び診断装置
JP2014226186A (ja) 超音波測定装置及び超音波測定装置の制御方法
JP2015188466A (ja) 超音波測定装置及び測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170623