JP2015044798A - ビナフチル化合物、液晶組成物、液晶素子及び液晶表示装置 - Google Patents

ビナフチル化合物、液晶組成物、液晶素子及び液晶表示装置 Download PDF

Info

Publication number
JP2015044798A
JP2015044798A JP2014153169A JP2014153169A JP2015044798A JP 2015044798 A JP2015044798 A JP 2015044798A JP 2014153169 A JP2014153169 A JP 2014153169A JP 2014153169 A JP2014153169 A JP 2014153169A JP 2015044798 A JP2015044798 A JP 2015044798A
Authority
JP
Japan
Prior art keywords
group
liquid crystal
substituted
carbon atoms
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014153169A
Other languages
English (en)
Other versions
JP6346517B2 (ja
JP2015044798A5 (ja
Inventor
桃子 嘉藤
Momoko Kato
桃子 嘉藤
泰裕 新倉
Yasuhiro Niikura
泰裕 新倉
石谷 哲二
Tetsuji Ishitani
哲二 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2014153169A priority Critical patent/JP6346517B2/ja
Publication of JP2015044798A publication Critical patent/JP2015044798A/ja
Publication of JP2015044798A5 publication Critical patent/JP2015044798A5/ja
Application granted granted Critical
Publication of JP6346517B2 publication Critical patent/JP6346517B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0425Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect
    • C09K2019/0437Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect the specific unit being an optically active chain used as linking group between rings or as end group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • C09K2019/323Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring containing a binaphthyl

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Liquid Crystal (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Abstract

【課題】多様な液晶デバイスに適用することが可能な新規液晶組成物用材料を提供する。【解決手段】一般式(G1)で表されるビナフチル化合物。(Ar11及びAr12はアリーレン基、シクロアルキレン基、又はシクロアルケニレン基;mは1〜2;nは0〜2;R12はアルキレン基等;R13はH等;R10及びR11のうちの一方はアリーレン基、シクロアルケニレン基等で置換された置換基で、他方は水素)【選択図】なし

Description

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特に、本発明の一態様は、半導体装置、表示装置、それらの駆動方法、または、それらの製造方法に関する。特に、本発明の一態様は、新規ビナフチル化合物及びそれを含有する液晶組成物、該液晶組成物を適用した液晶素子及び液晶表示装置、並びにそれらの作製方法に関する。
近年、液晶は多様なデバイスに利用されており、特に薄型、軽量の特徴を持つ液晶表示装置(液晶ディスプレイ)は幅広い分野のディスプレイにおいて用いられている。
液晶表示装置の応用分野の広がりに呼応して、表示性能の向上を目的として、種々の液晶モード、液晶組成物の開発が進められている(例えば、特許文献1及び特許文献2参照)。
特開平11−305187号公報 特開2003−238961号公報
特許文献1及び特許文献2において報告されているように、液晶組成物の開発は活発に行われている。しかし、該液晶組成物を用いた液晶素子または液晶表示装置においては、視野角、コントラスト、応答速度、駆動電圧、または製造コストといった様々な面で改善の余地が残されており、より優れた液晶組成物の開発が望まれている。
上記問題に鑑み、本発明の一態様においては、多様な液晶デバイスに用いることができる新規なビナフチル化合物を提供することを目的の一とする。または、該ビナフチル化合物を用いた液晶組成物を提供することを目的の一とする。または、該液晶組成物を用いた液晶素子及び液晶表示装置を提供することを目的の一とする。または、新規な液晶組成物を提供することを目的の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
開示する発明の一態様は、下記一般式(G10)で表されるビナフチル化合物である。
但し、一般式(G10)中、2つの置換基Xは、それぞれ下記一般式(G11)で表される置換基を表すか、2つの置換基Xが一緒に下記一般式(G12)で表される置換基を形成する。また、a101は単結合、カルボニル基、又はジフルオロメチレン基を表す。また、R100及びR101のうちの一方は、下記一般式(G13)で表される置換基を表し、他方は水素を表す。

但し、一般式(G11)中、Ar101、Ar102は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、mは1乃至2を表し、nは0乃至2を表す。また、R102は、置換もしくは無置換の炭素数1乃至12のアルキレン基、又は単結合を表す。また、R103は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
但し、一般式(G12)中、R105は、置換もしくは無置換の炭素数1乃至12のアルキレン基を表す。

但し、一般式(G13)中、Ar103、Ar104は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2を表す。また、R104は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
開示する発明の一態様は、下記一般式(G1)で表されるビナフチル化合物である。
但し、一般式(G1)中、Ar11、Ar12は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、mは1乃至2を表し、nは0乃至2を表す。また、R12は、置換もしくは無置換の炭素数1乃至12のアルキレン基、又は単結合を表す。また、R13は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。また、R10及びR11のうちの一方は、下記一般式(G2)で表される置換基を表し、他方は水素を表す。
但し、一般式(G2)中、Ar13、Ar14は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2を表す。また、R14は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
なお、一般式(G1)及び(G2)において、炭素数6乃至12のアリーレン基、炭素数3乃至12のシクロアルキレン基、炭素数3乃至12のシクロアルケニレン基、炭素数1乃至12のアルキレン基、炭素数1乃至12のアルコキシ基、又は、炭素数1乃至12のアルキル基が有する置換基としては、例えば、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、シアノ基(CN)、トリフルオロメチルスルホニル基(SOCF)、トリフルオロメチル基(CF)、ニトロ基(NO)、イソチオシアネート基(NCS)、又はペンタフルオロスルファニル基(SF)等が挙げられる。
また、本発明の他の一態様は、下記構造式(100)で表されるビナフチル化合物である。
また、本発明の他の一態様は、下記構造式(101)で表されるビナフチル化合物である。
また、本発明の他の一態様は、下記一般式(G3)で表されるビナフチル化合物である。
但し、一般式(G3)中、R25は、置換もしくは無置換の炭素数1乃至12のアルキレン基を表す。また、a21は単結合、カルボニル基、又はジフルオロメチレン基を表す。また、R20及びR21のうちの一方は、下記一般式(G4)で表される置換基を表し、他方は水素を表す。
但し、一般式(G4)中、Ar21、Ar22は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2である。また、R22は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
なお、一般式(G3)及び(G4)において、炭素数1乃至12のアルキレン基、炭素数6乃至12のアリーレン基、炭素数3乃至12のシクロアルキレン基、炭素数3乃至12のシクロアルケニレン基、炭素数1乃至12のアルキル基、又は、炭素数1乃至12のアルコキシ基が有する置換基としては、例えば、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、シアノ基(CN)、トリフルオロメチルスルホニル基(SOCF)、トリフルオロメチル基(CF)、ニトロ基(NO)、イソチオシアネート基(NCS)、又はペンタフルオロスルファニル基(SF)等が挙げられる。
また、本発明の他の一態様は、下記構造式(200)で表されるビナフチル化合物である。
また、本発明の他の一態様は、下記構造式(201)で表されるビナフチル化合物である。
また、本発明の他の一態様は、一般式(G10)、一般式(G1)、一般式(G3)、構造式(100)、構造式(101)、構造式(200)または構造式(201)の中から選ばれるいずれか一つのビナフチル化合物と、ネマチック液晶とを含む液晶組成物である。
一般式(G10)、一般式(G1)、一般式(G3)、構造式(100)、構造式(101)、構造式(200)または構造式(201)で表される本発明の一態様のビナフチル化合物は、不斉中心を有し、液晶組成物中に含まれることで、該液晶組成物の捩れを誘起して螺旋構造に配向させることができる。すなわち、本発明の一態様のビナフチル化合物は、液晶組成物中において、カイラル剤として機能することができる。
なお、カイラル剤は、液晶組成物中に含まれる液晶分子に捩れを付与できる機能を有する。また、該液晶組成物の捩れ力の強さの指標としては、螺旋ピッチ、選択反射波長、HTP(Helical Twisting Power)、回折波長が挙げられる。
なお、本明細書等において、液晶組成物は、一般式(G10)、一般式(G1)、一般式(G3)、構造式(100)、構造式(101)、構造式(200)または構造式(201)で表されるビナフチル化合物に加えて、他の液晶性化合物、非液晶性化合物を含有してなるものである。とくに、該液晶性化合物としては、ネマチック液晶が好ましい。また、該非液晶性化合物としては、例えば、重合性モノマー及び/又は重合開始剤等を含んでもよい。
また、本発明の一態様は、上記の液晶組成物を適用した液晶素子、液晶表示装置又は電子機器を範疇に含めるものである。
本発明の一態様によって、新規なビナフチル化合物を提供することができる。または、該ビナフチル化合物を用いた液晶組成物を提供することができる。または、該液晶組成物を用いた液晶素子及び液晶表示装置を提供することができる。または、新規な液晶組成物を提供することができる。
液晶性化合物及び液晶組成物を説明する概念図。 液晶表示装置の一形態を説明する図。 液晶表示装置の電極構成の一形態を説明する図。 液晶表示モジュールを説明する図。 電子機器を説明する図。 S−BN−EPFPO6−6(PC3)のH NMRチャート。 S−BN−EPFPO6−6(PC3)のH NMRチャート。 S−BN−E11OPC3−6(PC3)のH NMRチャート。 S−BN−E11OPC3−6(PC3)のH NMRチャート。 cS−BN−O7−6(PC3)のH NMRチャート。 cS−BN−O7−6(PC3)のH NMRチャート。 cS−BN−E5−6(PC3)のH NMRチャート。 cS−BN−E5−6(PC3)のH NMRチャート。
以下では、本明細書に開示する発明の実施の形態について図面を用いて詳細に説明する。但し、本明細書に開示する発明は以下の説明に限定されず、その形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本明細書に開示する発明は以下に示す実施の形態又は実施例の記載内容に限定して解釈されるものではない。
(実施の形態1)
本実施の形態では、本発明の一態様に係るビナフチル化合物について説明する。
本発明の一態様は、下記一般式(G10)で表されるビナフチル化合物である。
但し、一般式(G10)中、2つの置換基Xは、それぞれ下記一般式(G11)で表される置換基を表すか、2つの置換基Xが一緒に下記一般式(G12)で表される置換基を形成する。また、a101は単結合、カルボニル基、又はジフルオロメチレン基を表す。また、R100及びR101のうちの一方は、下記一般式(G13)で表される置換基を表し、他方は水素を表す。

但し、一般式(G11)中、Ar101、Ar102は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、mは1乃至2を表し、nは0乃至2を表す。また、R102は、置換もしくは無置換の炭素数1乃至12のアルキレン基、又は単結合を表す。また、R103は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。

但し、一般式(G12)中、R105は、置換もしくは無置換の炭素数1乃至12のアルキレン基を表す。

但し、一般式(G13)中、Ar103、Ar104は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2を表す。また、R104は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
一般式(G10)で表されるビナフチル化合物は、不斉中心を有し、液晶組成物中に含まれることで、該液晶組成物の捩れを誘起して螺旋構造に配向させ、カイラル剤として機能することができる。
例えば、一般式(G10)で表されるビナフチル化合物をカイラル剤として含む液晶組成物は、TNモードやコレステリック液晶モード、VAモードなどの縦電界方式を採用した液晶表示装置等に適用することができる。また、ブルー相液晶モードなどの横電界方式を採用した液晶表示装置等に適用することができる。
以上、本実施の形態に示す、構成、方法等は、他の実施の形態に示す、構成、方法等と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、本発明の一態様に係るビナフチル化合物について説明する。
本発明の一態様は、下記一般式(G1)で表されるビナフチル化合物である。
但し、一般式(G1)中、Ar11、Ar12は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、mは1乃至2を表し、nは0乃至2を表す。また、R12は、置換もしくは無置換の炭素数1乃至12のアルキレン基、又は単結合を表す。また、R13は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。また、R10及びR11のうちの一方は、下記一般式(G2)で表される置換基を表し、他方は水素を表す。
但し、一般式(G2)中、Ar13、Ar14は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2を表す。また、R14は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
なお、一般式(G1)及び(G2)において、炭素数6乃至12のアリーレン基、炭素数3乃至12のシクロアルキレン基、炭素数3乃至12のシクロアルケニレン基、炭素数1乃至12のアルキレン基、炭素数1乃至12のアルコキシ基、又は、炭素数1乃至12のアルキル基が有する置換基としては、例えば、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、シアノ基(CN)、トリフルオロメチルスルホニル基(SOCF)、トリフルオロメチル基(CF)、ニトロ基(NO)、イソチオシアネート基(NCS)、又はペンタフルオロスルファニル基(SF)等が挙げられる。
上記一般式(G1)で表されるビナフチル化合物の具体例としては、構造式(100)〜(113)で表されるビナフチル化合物を挙げることができる。但し、本発明はこれらに限定されるものではない。
本実施の形態に係るビナフチル化合物の合成方法としては、種々の反応を適用することができる。以下に、一般式(G1−1)で表されるビナフチル化合物の合成方法の一例を示す。
一般式(G1−1)で表されるビナフチル化合物は、下記の反応式(K1−1)及び(K1−2)に示す合成反応を行うことで合成することができる。
ビナフチル化合物(化合物11)のハロゲン基(X)を、ホウ素化合物(化合物12)と鈴木・宮浦カップリング反応等を行うことにより、ビナフチル化合物(化合物13)を得ることができる(反応式(K1−1))。化合物13のヒドロキシル基を、有機ハロゲン化物(化合物14)とエステル化反応等を行うことにより、エステル基に置換して目的物である一般式(G1−1)で表されるビナフチル化合物を得ることができる(反応式(K1−2))。
反応式(K1−1)及び(K1−2)において、Xは、ヨウ素(I)、臭素(Br)又は塩素(Cl)を表す。また、Ar13、Ar14は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、kは0乃至2を表し、lは1乃至2である。また、Ar11、Ar12は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、mは1乃至2を表し、nは0乃至2である。また、R12は、置換もしくは無置換の炭素数1乃至12のアルキレン基、又は単結合を表す。また、R13は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。また、R10は下記一般式(G2)で表される置換基を表す。
但し、一般式(G2)中、Ar13、Ar14は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、kは0乃至2を表し、lは1乃至2である。また、R14は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
また、反応式(K1−1)及び(K1−2)では、化合物11として、ビナフチル骨格の6,6’位に活性部位を有する化合物を用いたが、化合物11に代えてビナフチル骨格の3,3’位に活性部位を有する化合物(下記、化合物15)を用いて同様の反応を行うことで、一般式(G1−2)で表されるビナフチル化合物を合成することができる。この場合の合成反応を以下の反応式(K2−1)および(K2−2)に示す。
ビナフチル化合物(化合物15)のハロゲン基(X)を、ホウ素化合物(化合物16)と鈴木・宮浦カップリング反応等を行うことにより、ビナフチル化合物(化合物17)を得ることができる(反応式(K2−1))。化合物17のヒドロキシル基を、有機ハロゲン化物(化合物18)とエステル化反応等を行うことにより、エステル基に置換して目的物である一般式(G1−2)で表されるビナフチル化合物を得ることができる(反応式(K2−2))。
反応式(K2−1)および(K2−2)において、Xは、ヨウ素(I)、臭素(Br)又は塩素(Cl)を表す。また、Ar13、Ar14は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、kは0乃至2を表し、lは1乃至2である。また、R14は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。また、Ar11、Ar12は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、mは1乃至2を表し、nは0乃至2である。また、R12は、置換もしくは無置換の炭素数1乃至12のアルキレン基、又は単結合を表す。また、R13は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。また、R11は下記一般式(G2)で表される置換基を表す。
但し、一般式(G2)中、Ar13、Ar14は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、kは0乃至2を表し、lは1乃至2である。また、R14は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
なお、一般式(G1−2)及び(G2)において、Ar11、Ar12、Ar13、Ar14、R12、R13、又はR14はさらに置換基を有していてもよい。置換基としては、例えば、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、シアノ基(CN)、トリフルオロメチルスルホニル基(SOCF)、トリフルオロメチル基(CF)、ニトロ基(NO)、イソチオシアネート基(NCS)、又はペンタフルオロスルファニル基(SF)等が挙げられる。
以上によって、本発明の一態様のビナフチル化合物を合成することができる。
一般式(G1)で表されるビナフチル化合物は、不斉中心を有し、液晶組成物中に含まれることで、該液晶組成物の捩れを誘起して螺旋構造に配向させ、カイラル剤として機能することができる。
例えば、一般式(G1)で表されるビナフチル化合物をカイラル剤として含む液晶組成物は、TNモードやコレステリック液晶モード、VAモードなどの縦電界方式を採用した液晶表示装置等に適用することができる。また、ブルー相液晶モードなどの横電界方式を採用した液晶表示装置等に適用することができる。
以上、本実施の形態に示す、構成、方法等は、他の実施の形態に示す、構成、方法等と適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、本発明の一態様に係るビナフチル化合物について説明する。
本発明の一態様は、下記一般式(G3)で表されるビナフチル化合物である。
但し、一般式(G3)中、R25は、置換もしくは無置換の炭素数1乃至12のアルキレン基を表す。また、a21は単結合、カルボニル基、又はジフルオロメチレン基を表す。また、R20及びR21のうちの一方は、下記一般式(G4)で表される置換基を表し、他方は水素を表す。
但し、一般式(G4)中、Ar21、Ar22は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2である。また、R22は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
なお、一般式(G3)及び(G4)において、Ar21、Ar22、R22、又はR25はさらに置換基を有していてもよい。置換基としては、例えば、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、シアノ基(CN)、トリフルオロメチルスルホニル基(SOCF)、トリフルオロメチル基(CF)、ニトロ基(NO)、イソチオシアネート基(NCS)、又はペンタフルオロスルファニル基(SF)等が挙げられる。
上記一般式(G3)で表されるビナフチル化合物の具体例としては、構造式(200)〜(209)で表されるビナフチル化合物を挙げることができる。但し、本発明はこれらに限定されるものではない。
本実施の形態に係るビナフチル化合物の合成方法としては、種々の反応を適用することができる。以下に、一般式(G3−1)で表されるビナフチル化合物の合成方法の一例を示す。
一般式(G3−1)で表されるビナフチル化合物は、下記の反応式(K3−1)及び(K3−2)に示す合成反応を行うことで合成することができる。
ビナフチル化合物(化合物21)のハロゲン基(X)を、ホウ素化合物(化合物22)と鈴木・宮浦カップリング反応等を行うことにより、ビナフチル化合物(化合物23)を得ることができる(反応式(K3−1)。化合物23のヒドロキシル基を、有機ハロゲン化物(化合物24)とエステル化反応等を行うことにより、エステル基に置換して目的物である一般式(G3−1)で表されるビナフチル化合物を得ることができる(反応式(K3−2))。
反応式(K3−1)及び(K3−2)において、Xは、ヨウ素(I)、臭素(Br)又は塩素(Cl)を表す。また、Ar21、Ar22は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2を表す。また、R22は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。また、R25は、置換もしくは無置換の炭素数1乃至12のアルキレン基を表す。また、R20は下記一般式(G4)で表される置換基を表す。
Ar21、Ar22は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2である。また、R22は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
なお、一般式(G3−1)及び(G4)において、Ar21、Ar22、R22、又はR25はさらに置換基を有していてもよい。置換基としては、例えば、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、シアノ基(CN)、トリフルオロメチルスルホニル基(SOCF)、トリフルオロメチル基(CF)、ニトロ基(NO)、イソチオシアネート基(NCS)、又はペンタフルオロスルファニル基(SF)等が挙げられる。
また、反応式(K3−1)及び(K3−2)では、化合物21として、ビナフチル骨格の6,6’位に活性部位を有する化合物を用いたが、化合物21に代えてビナフチル骨格の3、3’位に活性部位を有する化合物(下記、化合物25)を用いて同様の反応を行うことで、一般式(G3−2)で表されるビナフチル化合物を合成することができる。この場合の合成反応を以下の反応式(K4−1)及び(K4−2)に示す。

ビナフチル化合物(化合物25)のハロゲン基(X)を、ホウ素化合物(化合物26)と鈴木・宮浦カップリング反応等を行うことにより、ビナフチル化合物(化合物27)を得ることができる(反応式(K4−1))。化合物27のヒドロキシル基を、有機ハロゲン化物(化合物28)とエステル化反応等を行うことにより、エステル基に置換して目的物である一般式(G3−2)で表されるビナフチル化合物を得ることができる(反応式(K4−2))。
反応式(K4−1)及び(K4−2)において、Xは、ヨウ素(I)、臭素(Br)又は塩素(Cl)を表す。また、Ar21、Ar22は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2を表す。また、R22は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。また、R25は、置換もしくは無置換の炭素数1乃至12のアルキレン基を表す。また、R21は下記一般式(G4)で表される置換基を表す。
但し、一般式(G4)中、Ar21、Ar22は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2である。また、R22は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。
なお、一般式(G3−2)及び(G4)において、Ar21、Ar22、R22、又はR25はさらに置換基を有していてもよい。置換基としては、例えば、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、シアノ基(CN)、トリフルオロメチルスルホニル基(SOCF)、トリフルオロメチル基(CF)、ニトロ基(NO)、イソチオシアネート基(NCS)、又はペンタフルオロスルファニル基(SF)等が挙げられる。
以上によって、本発明の一態様のビナフチル化合物を合成することができる。
一般式(G3)で表されるビナフチル化合物は、不斉中心を有し、液晶組成物中に含まれることで、該液晶組成物の捩れを誘起して螺旋構造に配向させ、カイラル剤として機能することができる。
例えば、一般式(G3)で表されるビナフチル化合物をカイラル剤として含む液晶組成物は、TNモードやコレステリック液晶モード、VAモードなどの縦電界方式を採用した液晶表示装置等に適用することができる。また、ブルー相液晶モードなどの横電界方式を採用した液晶表示装置等に適用することができる。
以上、本実施の形態に示す、構成、方法等は、他の実施の形態に示す、構成、方法等と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、実施の形態1乃至3で示した本発明の一態様に係るビナフチル化合物を含有する液晶組成物、及び該液晶組成物を用いた液晶素子、又は液晶表示装置について図1を用いて説明する。
本実施の形態に係る液晶組成物は、上記実施の形態1乃至3で示したビナフチル化合物と、ネマチック液晶と、を少なくとも含む。
本発明の一態様に係る液晶組成物に含まれるネマチック液晶としては、特に限定されず、ビフェニル系化合物、ターフェニル系化合物、フェニルシクロヘキシル系化合物、ビフェニルシクロヘキシル系化合物、フェニルビシクロヘキシル系化合物、安息香酸フェニル系化合物、シクロヘキシル安息香酸フェニル系化合物、フェニル安息香酸フェニル系化合物、ビシクロヘキシルカルボン酸フェニル系化合物、アゾメチン系化合物、アゾ系化合物、アゾオキシ系化合物、スチルベン系化合物、ビシクロヘキシル系化合物、フェニルピリミジン系化合物、ビフェニルピリミジン系化合物、ピリミジン系化合物、又は、ビフェニルエチン系化合物等が挙げられる。
本発明の一態様に係る液晶素子及び液晶表示装置の例を図1(A)及び図1(B)に示す。
なお、本明細書等において、液晶素子とは、液晶の光学的変調作用により光の透過又は非透過を制御する素子であり、一対の電極層及びその間に挟持された液晶組成物を少なくとも含んで構成される。本実施の形態において液晶素子は、少なくとも一対の電極層(電位の異なる画素電極層230及び共通電極層232)の間に、実施の形態1で示した一般式(G10)で表されるビナフチル化合物及びネマチック液晶を含有する液晶組成物208を有する。なお、液晶組成物208には、有機樹脂が含まれていてもよい。
図1(A)及び図1(B)は、第1の基板200と第2の基板201とが、一般式(G10)、一般式(G1)、または一般式(G3)で表されるビナフチル化合物及びネマチック液晶を含有する液晶組成物208を間に挟持して対向するように配置された液晶素子及び液晶表示装置である。図1(A)及び図1(B)の液晶素子及び液晶表示装置は、液晶組成物208に対する画素電極層230及び共通電極層232の配置が異なる例である。
図1(A)の液晶素子及び液晶表示装置は、第1の基板200と液晶組成物208との間に画素電極層230と、共通電極層232が隣接して設けられている。図1(A)の構成であると、基板に概略平行(即ち、水平な方向)な電界を生じさせて、基板と平行な面内で液晶分子の配向を変化させて、階調を制御する方式を用いることができる。
例えば、ブルー相液晶モードとして使用した場合では、高速応答が可能であるため、バックライト装置にRGBの発光ダイオード(LED)等を配置し、時分割によりカラー表示する継時加法混色法(フィールドシーケンシャル法)や、時分割により左目用の映像と右目用の映像を交互に見るシャッター眼鏡方式による3次元表示方式に好適に採用することができる。
図1(B)の液晶素子および液晶表示装置は、液晶組成物208を挟持して第1の基板200側に画素電極層230、第2の基板201側に共通電極層232が設けられている。図1(B)の構成であると、基板に概略垂直な電界を生じさせて、基板と垂直な面内で液晶分子を動かして、階調を制御する方式を用いることができる。また、液晶組成物208と、画素電極層230及び共通電極層232との間に配向膜202a、配向膜202bを設けてもよい。本発明の一態様に係る、一般式(G10)、一般式(G1)、又は、一般式(G3)で表されるビナフチル化合物及びネマチック液晶を含有する液晶組成物は、様々な構成の液晶素子及びTNモードやコレステリック液晶モードのような様々なモードの液晶表示装置に用いることができる。
液晶組成物208を介して隣接する画素電極層230と、共通電極層232との距離は、画素電極層230及び共通電極層232にそれぞれ所定の電圧を印加した時、画素電極層230及び共通電極層232間に介在する液晶組成物208の液晶が応答する距離とする。該距離に応じて印加する電圧を適宜制御する。
また、図1(A)及び図1(B)では図示しないが、偏光板、位相差板、反射防止膜などの光学フィルムなどは適宜設ける。例えば、偏光板及び位相差板による円偏光を用いてもよい。また、光源としてバックライトなどを用いることができる。
本明細書では、半導体素子(例えばトランジスタ)、又は画素電極層が形成されている基板を素子基板(第1の基板)といい、該素子基板と液晶組成物を介して対向する基板を対向基板(第2の基板)という。
本発明の一態様に係る液晶表示装置として、光源の光を透過することによって表示を行う透過型の液晶表示装置、入射する光を反射することによって表示を行う反射型の液晶表示装置、又は透過型と反射型を両方有する半透過型の液晶表示装置を提供することができる。
透過型の液晶表示装置の場合、光が透過する画素領域に存在する画素電極層、共通電極層、第1の基板、第2の基板、その他の絶縁膜、導電膜などは可視光の波長領域の光に対して透光性とする。図1(A)の構成の液晶表示装置においては、画素電極層、共通電極層は透光性が好ましいが、開口パターンを有する場合は形状によっては金属膜などの非透光性材料を用いてもよい。
一方反射型の液晶表示装置の場合、液晶組成物に対して視認側と反対側には液晶組成物を透過した光を反射する反射性の部材(反射性を有する膜や基板など)を設ければよい。よって、視認側より反射性の部材までに設けられた、光が透過する基板、絶縁膜、導電膜は可視光の波長領域の光に対して透光性とする。なお、本明細書で透光性とは少なくとも可視光の波長領域の光を透過する性質をいう。図1(B)の構成の液晶表示装置においては、視認側と反対側の画素電極層又は共通電極層を反射性とし、反射性の部材として用いることができる。
画素電極層230、共通電極層232は、インジウム錫酸化物(ITO)、酸化インジウムに酸化亜鉛(ZnO)を混合した導電材料、酸化インジウムに酸化シリコン(SiO)を混合した導電材料、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、グラフェン、又はタングステン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属、又はその合金、若しくはその金属窒化物から一つ、又は複数種を用いて形成することができる。
第1の基板200、第2の基板201にはバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、石英基板、プラスチック基板などを用いることができる。なお、反射型の液晶表示装置の場合、視認側と反対側の基板にはアルミニウム基板やステンレス基板などの金属基板を用いてもよい。
以上、本実施の形態で示す、構成、方法等は、他の実施の形態に示す、構成、方法等と適宜組み合わせて用いることができる。
(実施の形態5)
本発明の一態様に係る液晶表示装置として、パッシブマトリクス型の液晶表示装置、アクティブマトリクス型の液晶表示装置を提供することができる。本実施の形態は、本発明の一態様に係るアクティブマトリクス型の液晶表示装置の例を、図2及び図3を用いて説明する。
図2(A)は液晶表示装置の平面図であり1画素分の画素を示している。図2(B)は図2(A)の線X1−X2における断面図である。
図2(A)において、複数のソース配線層(配線層405aを含む)が互いに平行(図中上下方向に延伸)かつ互いに離間した状態で配置されている。複数のゲート配線層(ゲート電極層401を含む)は、ソース配線層に略直交する方向(図中左右方向)に延伸し、かつ互いに離間するように配置されている。共通配線層408は、複数のゲート配線層それぞれに隣接する位置に配置されており、ゲート配線層に概略平行な方向、つまり、ソース配線層に概略直交する方向(図中左右方向)に延伸している。ソース配線層と、共通配線層408及びゲート配線層とによって、略長方形の空間が囲まれているが、この空間に液晶表示装置の画素電極層及び共通電極層が配置されている。画素電極層を駆動するトランジスタ420は、図中左上の角に配置されている。画素電極層及びトランジスタは、マトリクス状に複数配置されている。
図2の液晶表示装置において、トランジスタ420に電気的に接続する第1の電極層447が画素電極層として機能し、共通配線層408と電気的に接続する第2の電極層446が共通電極層として機能する。なお、第1の電極層と共通配線層によって容量が形成されている。共通電極層はフローティング状態(電気的に孤立した状態)として動作させることも可能だが、固定電位、好ましくはコモン電位(データとして送られる画像信号の中間電位)近傍でフリッカーの生じないレベルに設定してもよい。
基板に概略平行(すなわち水平な方向)な電界を生じさせて、基板と平行な面内で液晶分子の配向を変化させて、階調を制御する方式を用いることができる。このような方式として、図2及び図3に示すようなIPSモードで用いる電極構成が適用できる。
IPSモードなどに示される横電界モードは、液晶組成物の下方に開口パターンを有する第1の電極層(例えば各画素別に電圧が制御される画素電極層)及び第2の電極層(例えば全画素に共通の電圧が供給される共通電極層)を配置する。よって、少なくとも第1の電極層及び第2の電極層の一方が絶縁膜上に形成されている。第1の電極層447及び第2の電極層446は、様々な形状を有し、例えば、開口部、屈曲部、枝分かれした部分、あるいは櫛歯状を含む。第1の電極層447及び第2の電極層446の間に基板に概略平行な電界を発生させるため、同形状で、かつ完全に重なる配置は避ける。
また、第1の電極層447及び第2の電極層446としてFFSモードで用いる電極構成を適用してもよい。FFSモードに示される横電界モードは、液晶組成物の下方に開口パターンを有する第1の電極層(例えば各画素別に電圧が制御される画素電極層)及びさらにその開口パターンの下方に平板状の第2の電極層(例えば全画素に共通の電圧が供給される共通電極層)を配置する。この場合、画素電極層と共通電極層とは絶縁膜(又は層間絶縁層)を介して積層するように配置される。画素電極層及び共通電極層のいずれか一方は、絶縁膜(又は層間絶縁層)の下方に形成され、かつ平板状であり、他方は絶縁膜(又は層間絶縁層)の上方に形成され、かつ様々な形状を有し、例えば、開口部、屈曲部、枝分かれした部分、あるいは櫛歯状を含む。第1の電極層447及び第2の電極層446はその電極間に電界を発生させるため、同形状で完全に重なる配置は避ける。
液晶組成物444に、実施の形態1乃至3で示した一般式(G10)、一般式(G1)、又は一般式(G3)で表されるビナフチル化合物、及びネマチック液晶を含有してなる液晶組成物を用いる。また、液晶組成物444には、有機樹脂が含まれてもよい。
画素電極層である第1の電極層447と共通電極層である第2の電極層446との間に電界を形成することで、液晶組成物444の液晶を制御する。液晶には水平方向の電界が形成されるため、その電界を用いて液晶分子を制御できる。
第1の電極層447及び第2の電極層446の他の例を図3に示す。図3(A)乃至図3(D)の上面図に示すように、第1の電極層447a乃至447d及び第2の電極層446a乃至446dが互い違いとなるように形成されており、図3(A)では第1の電極層447a及び第2の電極層446aはうねりを有する波状形状であり、図3(B)では第1の電極層447b及び第2の電極層446bは同心円状の開口部を有する形状であり、図3(C)では第1の電極層447c及び第2の電極層446cは櫛歯状であり一部重なっている形状であり、図3(D)では第1の電極層447d及び第2の電極層446dは櫛歯状であり電極同士がかみ合うような形状である。なお、図3(A)乃至図3(C)のように、第1の電極層447a、447b、447c、と第2の電極層446a、446b、446cとが重なる場合は、第1の電極層447と第2の電極層446との間には絶縁膜を形成し、異なる膜上に第1の電極層447と第2の電極層446とをそれぞれ形成する。
なお、第1の電極層447、第2の電極層446は、開口パターンを有する形状であるために、図2(B)の断面図においては分断された複数の電極層として示されている。これは本明細書の他の図面においても同様である。
トランジスタ420は逆スタガ型の薄膜トランジスタであり、絶縁表面を有する基板である第1の基板441上に形成され、ゲート電極層401、ゲート絶縁層402、半導体層403、ソース電極層又はドレイン電極層として機能する配線層405a、405bを含む。
本明細書に開示する液晶表示装置に適用できるトランジスタの構造は特に限定されず、例えばトップゲート構造、又はボトムゲート構造のスタガ型及びプレーナ型などを用いることができる。また、トランジスタはチャネル形成領域が一つ形成されるシングルゲート構造でも、2つ形成されるダブルゲート構造もしくは3つ形成されるトリプルゲート構造であっても良い。また、チャネル領域の上下にゲート絶縁層を介して配置された2つのゲート電極層を有する、デュアルゲート型でもよい。
トランジスタ420を覆い、半導体層403に接する絶縁膜407、絶縁膜409が設けられ、絶縁膜409上に層間膜413が積層されている。
第1の基板441と対向基板である第2の基板442とを、液晶組成物444を間に挟持させてシール材で固着する。液晶組成物444を形成する方法として、ディスペンス法(滴下法)や、第1の基板441と第2の基板442とを貼り合わせてから毛細管現象等を用いて液晶を注入する注入法を用いることができる。
シール材としては、代表的には可視光硬化性、紫外線硬化性又は熱硬化性の樹脂を用いるのが好ましい。代表的には、アクリル樹脂、エポキシ樹脂、アミン樹脂などを用いることができる。また、フィラー、カップリング剤を含んでもよい。
本実施の形態では、第1の基板441の外側(液晶組成物444と反対側)に偏光板443aを、第2の基板442の外側(液晶組成物444と反対側)に偏光板443bを設ける。また、偏光板の他、位相差板、反射防止膜などの光学フィルムなどを設けてもよい。例えば、偏光板及び位相差板による円偏光を用いてもよい。以上の工程で、液晶表示装置を完成させることができる。
図示しないが、光源としてはバックライト、サイドライトなどを用いればよい。光源は素子基板である第1の基板441側から、視認側である第2の基板442へと透過するように照射される。
第1の電極層447及び第2の電極層446は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、ITO、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物、グラフェンなどの透光性を有する導電性材料を用いることができる。
また、第1の電極層447及び第2の電極層446はタングステン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属、又はその合金、若しくはその金属窒化物から一つ、又は複数種を用いて形成することができる。
また、第1の電極層447及び第2の電極層446として、導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いて形成することができる。導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例えば、ポリアニリン又はその誘導体、ポリピロール又はその誘導体、ポリチオフェン又はその誘導体、若しくはアニリン、ピロール及びチオフェンの2種以上からなる共重合体又はその誘導体などがあげられる。
下地膜となる絶縁膜を第1の基板441とゲート電極層401の間に設けてもよい。ゲート電極層401は、モリブデン、チタン、クロム、タンタル、タングステン、アルミニウム、銅、ネオジム、スカンジウム等の金属材料又はこれらを主成分とする合金材料を用いて、単層で又は積層して形成することができる。また、ゲート電極層401としてリン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜、ニッケルシリサイドなどのシリサイド膜を用いてもよい。ゲート電極層401に遮光性を有する導電膜を用いると、バックライトからの光(第1の基板441から入射する光)が、半導体層403へ入射することを防止することができる。
ゲート絶縁層402は、酸化シリコン膜、酸化ガリウム膜、酸化アルミニウム膜、窒化シリコン膜、酸化窒化シリコン膜、酸化窒化アルミニウム膜、又は窒化酸化シリコン膜等を用いて形成することができる。又は、ゲート絶縁層402の材料として酸化ハフニウム、酸化イットリウム、酸化ランタン、ハフニウムシリケート、ハフニウムアルミネート、窒素が添加されたハフニウムシリケート、窒素が添加されたハフニウムアルミネートなどのhigh−k材料を用いてもよい。これらのhigh−k材料を用いることでゲートリーク電流を低減できる。
また、ゲート絶縁層402として、有機シランガスを用いたCVD法により酸化シリコン層を形成することも可能である。有機シランガスとしては、テトラエトキシシラン(TEOS:化学式Si(OC)、テトラメチルシラン(TMS:化学式Si(CH)、テトラメチルシクロテトラシロキサン(TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘキサメチルジシラザン(HMDS)、トリエトキシシラン(SiH(OC)、トリスジメチルアミノシラン(SiH(N(CH)等のシリコン含有化合物を用いることができる。なお、ゲート絶縁層402は、単層構造としてもよいし、積層構造としてもよい。
半導体層403に用いる材料は特に限定されず、トランジスタ420に要求される特性に応じて適宜設定すればよい。半導体層403に用いることのできる材料の例を説明する。
半導体層403を形成する材料としては、シランやゲルマンに代表される半導体材料ガスを用いた化学気相成長法やスパッタリング法等の物理気相成長法で作製される非晶質(アモルファスともいう)半導体、該非晶質半導体を光エネルギーや熱エネルギーを利用して結晶化させた多結晶半導体、或いは微細な結晶相とアモルファス相が混在した微結晶半導体などを用いることができる。半導体層はスパッタリング法、LPCVD法、又はプラズマCVD法等により成膜することができる。
アモルファス半導体としては、代表的には水素化アモルファスシリコン、結晶性半導体としては代表的にはポリシリコンなどがあげられる。ポリシリコン(多結晶シリコン)には、800℃以上のプロセス温度を経て形成されるポリシリコンを主材料として用いた所謂高温ポリシリコンや、600℃以下のプロセス温度で形成されるポリシリコンを主材料として用いた所謂低温ポリシリコン、また結晶化を促進する元素などを用いて、非晶質シリコンを結晶化させたポリシリコンなどを含んでいる。もちろん、前述したように、微結晶半導体又は半導体層の一部に結晶相を含む半導体を用いることもできる。
また、酸化物半導体を用いてもよく、酸化物半導体としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、In−Zn系酸化物、Sn−Zn系酸化物、Al−Zn系酸化物、Zn−Mg系酸化物、Sn−Mg系酸化物、In−Mg系酸化物、In−Ga系酸化物、In−Ga−Zn系酸化物(IGZOとも表記する)、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、Sn−Ga−Zn系酸化物、Al−Ga−Zn系酸化物、Sn−Al−Zn系酸化物、In−Hf−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、In−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、In−Hf−Al−Zn系酸化物を用いることができる。また、上記酸化物半導体にInとGaとSnとZn以外の元素、例えばSiOを含ませてもよい。
ここで、例えば、In−Ga−Zn−O系酸化物半導体とは、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)を有する酸化物半導体、という意味であり、その組成は問わない。
また、酸化物半導体層は、化学式InMO(ZnO)(m>0)で表記される薄膜を用いることができる。ここで、Mは、Ga、Al、MnおよびCoから選ばれた一又は複数の金属元素を示す。例えばMとして、Ga、Ga及びAl、Ga及びMn、又はGa及びCoなどがある。
酸化物半導体層として、例えば、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)膜を用いることができる。
CAAC−OS膜は、c軸配向した複数の結晶部を有する酸化物半導体膜の一つである。
ソース電極層又はドレイン電極層として機能する配線層405a、405bの材料としては、Al、Cr、Ta、Ti、Mo、Wから選ばれた元素、又は上述した元素を成分とする合金等が挙げられる。また、熱処理を行う場合には、この熱処理に耐える耐熱性を導電膜に持たせることが好ましい。
ゲート絶縁層402、半導体層403、ソース電極層又はドレイン電極層として機能する配線層405a、405bを大気に触れさせることなく連続的に形成してもよい。大気に触れさせることなく連続成膜することで、大気成分や大気中に浮遊する汚染不純物元素に汚染されることなく各積層界面を形成することができるので、トランジスタ特性のばらつきを低減することができる。
なお、半導体層403は一部のみがエッチングされ、溝部(凹部)を有する半導体層である。
トランジスタ420を覆う絶縁膜407、絶縁膜409は、乾式法や湿式法で形成される無機絶縁膜、有機絶縁膜を用いることができる。例えば、CVD法やスパッタリング法などを用いて得られる窒化シリコン膜、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化タンタル膜などを用いることができる。また、ポリイミド、アクリル、ベンゾシクロブテン系樹脂、ポリアミド、エポキシ等の有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。また、絶縁膜407として酸化ガリウム膜を用いてもよい。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン系樹脂は置換基としては有機基(例えばアルキル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有していても良い。シロキサン系樹脂は塗布法により成膜し、焼成することによって絶縁膜407として用いることができる。
なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁膜407、絶縁膜409を形成してもよい。例えば、無機絶縁膜上に有機樹脂膜を積層する構造としてもよい。
以上のように、一般式(G10)、一般式(G1)、又は一般式(G3)で表されるビナフチル化合物、及びネマチック液晶を含有してなる液晶組成物を、液晶素子又は液晶表示装置に適用することができる。
以上、本実施の形態に示す、構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態6)
トランジスタを作製し、該トランジスタを画素部、さらには駆動回路に用いて表示機能を有する液晶表示装置を作製することができる。また、トランジスタを用いて駆動回路の一部又は全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することができる。
液晶表示装置は表示素子として液晶素子(液晶表示素子ともいう)を含む。
また、液晶表示モジュールは、表示素子が封止された状態にあるパネル(液晶表示装置)と、該パネルにコントローラを含むIC等を実装した部品とを含む。さらに、該液晶表示装置を作製する過程における、表示素子が完成する前の一形態に相当する素子基板に関し、該素子基板は、電流を表示素子に供給するための手段を複数の各画素に備える。素子基板は、具体的には、表示素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜を成膜した後であって、エッチングして画素電極を形成する前の状態であっても良いし、あらゆる形態があてはまる。
なお、本明細書中における液晶表示装置とは、画像表示デバイス、もしくは光源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible printed circuit)もしくはTCP(Tape Carrier Package)が液晶表示装置に取り付けられた表示モジュール、TCPの先にプリント配線板が設けられた表示モジュール、又は液晶表示装置にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装された表示モジュールも全て液晶表示装置に含む場合がある。
なお、表示モジュールは、液晶表示装置の上に設けられたタッチセンサパネルを有している場合がある。ただし、タッチセンサ用のパネルを別途設けるのではなく、液晶表示装置の対向基板に、タッチセンサ用の電極が設けられているなどのような、インセル型、オンセル型の場合もある。また、表示モジュールは、バックライト、光学フィルム(偏光板、位相差板、輝度向上フィルム)などを有している場合がある。
液晶表示装置の一形態に相当する液晶表示パネル(表示モジュール)の外観及び断面について、図4を用いて説明する。図4(A1)(A2)は、第1の基板4001上に形成されたトランジスタ4010、4011、及び液晶素子4013を、第2の基板4006との間にシール材4005によって封止した、パネルの上面図であり、図4(B)は、図4(A1)(A2)のM−Nにおける断面図に相当する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006とによって、液晶組成物4008と共に封止されている。
また、図4(A1)は第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。なお、図4(A2)は信号線駆動回路の一部を第1の基板4001上に設けられたトランジスタで形成する例であり、第1の基板4001上に信号線駆動回路4003bが形成され、かつ別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003aが実装されている。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG方法、ワイヤボンディング方法、或いはTAB方法などを用いることができる。図4(A1)は、COG方法により信号線駆動回路4003を実装する例であり、図4(A2)は、TAB方法により信号線駆動回路4003を実装する例である。
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、トランジスタを複数有しており、図4(B)では、画素部4002に含まれるトランジスタ4010と、走査線駆動回路4004に含まれるトランジスタ4011とを例示している。トランジスタ4010、4011上には絶縁層4020、層間膜4021が設けられている。
トランジスタ4010、4011は、実施の形態3に示すトランジスタを適用することができる。
また、層間膜4021、又は絶縁層4020上において、駆動回路用のトランジスタ4011の半導体層のチャネル形成領域と重なる位置に導電層を設けてもよい。導電層は、電位がトランジスタ4011のゲート電極層と同じでもよいし、異なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層の電位がGND、或いは導電層はフローティング状態であってもよい。
また、層間膜4021上に画素電極層4030及び共通電極層4031が形成され、画素電極層4030はトランジスタ4010と電気的に接続されている。液晶素子4013は、画素電極層4030、共通電極層4031及び液晶組成物4008を含む。なお、第1の基板4001、第2の基板4006の外側にはそれぞれ偏光板4032a、4032bが設けられている。
液晶組成物4008に、実施の形態1で示した一般式(G10)、一般式(G1)、又は一般式(G3)で表されるビナフチル化合物、及びネマチック液晶を含有してなる液晶組成物を用いる。画素電極層4030及び共通電極層4031には、上記実施の形態で示したような画素電極層及び共通電極層の構成を適用することができる。
画素電極層4030と共通電極層4031との間に電界を形成することで、液晶組成物4008の液晶を制御する。液晶には水平方向の電界が形成されるため、その電界を用いて液晶分子を制御できる。
なお、第1の基板4001、第2の基板4006としては、透光性を有するガラス、プラスチックなどを用いることができる。プラスチックとしては、FRP(Fiber Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルム又はアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用いることもできる。
またスペーサ4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、液晶組成物4008の膜厚(セルギャップ)を制御するために設けられている。なお球状のスペーサを用いていても良い。液晶組成物4008を用いる液晶表示装置において液晶組成物の厚さであるセルギャップは1μm以上20μm以下とすることが好ましい。なお、本明細書においてセルギャップの厚さとは、液晶組成物の厚さ(膜厚)の最大値とする。
なお図4は透過型液晶表示装置の例であるが、本発明の一態様は半透過型液晶表示装置でも、反射型液晶表示装置でも適用できる。
また、図4の液晶表示装置では、基板の外側(視認側)に偏光板を設ける例を示すが、偏光板は基板の内側に設けてもよい。偏光板の材料や作製工程条件によって適宜設定すればよい。また、ブラックマトリクスとして機能する遮光層を設けてもよい。
層間膜4021の一部としてカラーフィルタ層や遮光層を形成してもよい。図4においては、トランジスタ4010、4011上方を覆うように遮光層4034が第2の基板4006側に設けられている例である。遮光層4034を設けることにより、さらにコントラスト向上やトランジスタの安定化の効果を高めることができる。
図4(B)においては、トランジスタ4010、4011を保護膜として機能する絶縁層4020で覆う構成としてもよいが、特に限定されない。なお、保護膜は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐためのものであり、緻密な膜を適用することが好ましい。例えば、スパッタリング法を用いて、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、又は窒化酸化アルミニウム膜の単層、又は積層を形成すればよい。
また、平坦化絶縁膜として透光性の絶縁層をさらに形成してもよい。
画素電極層4030及び共通電極層4031は、透光性を有する導電性材料を用いることができる。
また別途形成された信号線駆動回路4003と、走査線駆動回路4004又は画素部4002に与えられる各種信号及び電位は、FPC4018から供給されている。
また、トランジスタは静電気などにより破壊されやすいため、ゲート線又はソース線に対して、駆動回路保護用の保護回路を同一基板上に設けることが好ましい。保護回路は、非線形素子を用いて構成することが好ましい。
図4では、接続端子電極4015が、画素電極層4030と同じ導電膜から形成され、端子電極4016は、トランジスタ4010、4011のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介して電気的に接続されている。
また図4においては、信号線駆動回路4003を別途形成し、第1の基板4001に実装している例を示しているが、この構成に限定されない。走査線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部又は走査線駆動回路の一部のみを別途形成して実装しても良い。
以上のように、一般式(G10)、一般式(G1)、又は一般式(G3)で表されるビナフチル化合物、及びネマチック液晶を含有してなる液晶組成物を、液晶素子又は液晶表示装置に適用することができる。
以上、本実施の形態に示す、構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態7)
本明細書に開示する液晶表示装置は、さまざまな電子機器(遊技機も含む)に適用することができる。電子機器としては、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
図5(A)は、ノート型のパーソナルコンピュータであり、本体3001、筐体3002、表示部3003、キーボード3004などによって構成されている。上記実施の形態のいずれかで示した液晶表示装置を表示部3003に適用することにより、低消費電力なノート型のパーソナルコンピュータとすることができる。
図5(B)は、携帯情報端末(PDA)であり、本体3021には表示部3023と、外部インターフェイス3025と、操作ボタン3024等が設けられている。また操作用の付属品としてスタイラス3022がある。上記実施の形態のいずれかで示した液晶表示装置を表示部3023に適用することにより、低消費電力な携帯情報端末とすることができる。
図5(C)は、電子書籍であり、筐体2701および筐体2703の2つの筐体で構成されている。筐体2701および筐体2703は、軸部2711により一体とされており、該軸部2711を軸として開閉動作を行うことができる。このような構成により、紙の書籍のような動作を行うことが可能となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み込まれている。表示部2705および表示部2707は、続き画面を表示する構成としてもよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とすることで、例えば右側の表示部(図5(C)では表示部2705)に文章を表示し、左側の表示部(図5(C)では表示部2707)に画像を表示することができる。上記実施の形態のいずれかで示した液晶表示装置を表示部2705、表示部2707に適用することにより、低消費電力な電子書籍とすることができる。表示部2705として半透過型、又は反射型の液晶表示装置を用いる場合、比較的明るい状況下での使用も予想されるため、太陽電池を設け、太陽電池による発電、及びバッテリーでの充電を行えるようにしてもよい。なおバッテリーとしては、リチウムイオン電池を用いると、小型化を図れる等の利点がある。
また、図5(C)では、筐体2701に操作部などを備えた例を示している。例えば、筐体2701において、電源2721、操作キー2723、スピーカー2725などを備えている。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキーボードやポインティングデバイスなどを備える構成としてもよい。また、筐体の裏面や側面に、外部接続用端子(イヤホン端子、USB端子など)、記録媒体挿入部などを備える構成としてもよい。さらに、電子書籍は、電子辞書としての機能を持たせた構成としてもよい。
また、電子書籍は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能である。
図5(D)は、携帯電話であり、筐体2800及び筐体2801の二つの筐体で構成されている。筐体2801には、表示パネル2802、スピーカー2803、マイクロフォン2804、ポインティングデバイス2806、カメラ用レンズ2807、外部接続端子2808などを備えている。また、筐体2800には、携帯電話の充電を行う太陽電池セル2810、外部メモリスロット2811などを備えている。また、アンテナは筐体2801内部に内蔵されている。上記実施の形態のいずれかで示した液晶表示装置を表示パネル2802に適用することにより、低消費電力な携帯電話とすることができる。
また、表示パネル2802はタッチパネルを備えており、図5(D)には映像表示されている複数の操作キー2805を点線で示している。なお、太陽電池セル2810で出力される電圧を各回路に必要な電圧に昇圧するための昇圧回路も実装している。
表示パネル2802は、使用形態に応じて表示の方向が適宜変化する。また、表示パネル2802と同一面上にカメラ用レンズ2807を備えているため、テレビ電話が可能である。スピーカー2803及びマイクロフォン2804は音声通話に限らず、テレビ電話、録音、再生などが可能である。さらに、筐体2800と筐体2801は、スライドし、図5(D)のように展開している状態から重なり合った状態とすることができ、携帯に適した小型化が可能である。
外部接続端子2808はACアダプタ及びUSBケーブルなどの各種ケーブルと接続可能であり、充電及びパーソナルコンピュータなどとのデータ通信が可能である。また、外部メモリスロット2811に記録媒体を挿入し、より大量のデータ保存及び移動に対応できる。
また、上記機能に加えて、赤外線通信機能、テレビ受信機能などを備えたものであってもよい。
図5(E)は、デジタルビデオカメラであり、本体3051、表示部3057、接眼部3053、操作スイッチ3054、表示部3055、バッテリー3056などによって構成されている。上記実施の形態のいずれかで示した液晶表示装置を表示部3057、表示部3055に適用することにより、低消費電力なデジタルビデオカメラとすることができる。
図5(F)は、テレビジョン装置であり、筐体9601や表示部9603などによって構成されている。表示部9603により、映像を表示することが可能である。また、ここでは、スタンド9605により筐体9601を支持した構成を示している。上記実施の形態のいずれかで示した液晶表示装置を表示部9603に適用することにより、低消費電力なテレビジョン装置とすることができる。
テレビジョン装置の操作は、筐体9601が備える操作スイッチや、別体のリモコン操作機により行うことができる。また、リモコン操作機に、当該リモコン操作機から出力する情報を表示する表示部を設ける構成としてもよい。
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線又は無線による通信ネットワークに接続することにより、一方向(送信者から受信者)又は双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
以上、本実施の形態に示す、構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
本実施例では、実施の形態2の構造式(100)で表されるビナフチル化合物である、(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス[2−フルオロ−4−(4−n−ヘキシル−1−オキシ)フェニル]ベンゾエート(略称:S−BN−EPFPO6−6(PC3))を合成する例を示す。
[ステップ1:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールの合成法]
3.2g(7.3mmol)の(S)−6,6’−ジブロモ−1,1’−ビ−2−ナフトールと、5.4g(22mmol)の4−(trans−4−n−プロピルシクロヘキシル)フェニルボロン酸と、335mg(1.1mmol)のトリス(2−メチルフェニル)ホスフィンを200mLの三口フラスコに入れ、フラスコ内を窒素置換した。この混合物に7.3mLの2.0M炭酸カリウム水溶液と、3.7mLのトルエンと、3.7mLのエタノールを加え、減圧下で攪拌することにより脱気した。この混合物に49mg(0.22mmol)の酢酸パラジウム(II)を加え、窒素気流下、90℃で5時間攪拌した。所定時間経過後、得られた混合物の水層をトルエンで抽出した。得られた抽出溶液と有機層を合わせ、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。
この混合物を自然濾過により濾別し、濾液を濃縮して褐色油状物を得た。得られた油状物を、セライト(和光純薬工業株式会社、カタログ番号:531−16855)、アルミナ、フロリジール(和光純薬工業株式会社、カタログ番号:540−00135)を通して吸引ろ過した。この混合物を濃縮し、黄色油状物を得た。この固体にヘキサンを加え超音波を照射し、固体を吸引ろ過により濾取したところ、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールの白色固体を収量2.4g、収率48%で得た。上記ステップ1の反応スキームを下記(E1−1)に示す。
[ステップ2:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス(4−ブロモ−2−フルオロ)ベンゾエートの合成法]
1.2g(1.8mmol)の(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールと、0.94g(4.3mmol)の4−ブロモ−2−フルオロ安息香酸と、66mg(0.39mmol)のN,N−ジメチル−N−(4−ピリジニル)アミンと、1.8mLのジクロロメタンを50mLのナスフラスコに加え、攪拌した。この混合物に0.82g(4.3mmol)の1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)を加え、大気下、室温で17時間攪拌した。所定時間経過後、得られた混合物の水層をジクロロメタンで抽出した。
得られた抽出溶液と有機層を合わせ、水と、飽和炭酸水素ナトリウム水溶液と、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。この混合物を自然濾過により濾別し、濾液を濃縮して白色固体を得た。
この固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=2:1)により精製した。得られたフラクションを濃縮して、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス(4−ブロモ−2−フルオロ)ベンゾエートの白色固体を収量1.9g、収率96%で得た。上記ステップ2の反応スキームを下記(E1−2)に示す。
[ステップ3:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス[2−フルオロ−4−(4−n−ヘキシル−1−オキシ)フェニル]ベンゾエートの合成法]
1.9g(1.7mmol)の(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス(4−ブロモ−2−フルオロ)ベンゾエートと、61mg(0.20mmol)のトリス(2−メチルフェニル)ホスフィンを50mLの三口フラスコに入れ、フラスコ内を窒素置換した。この混合物に1.7mLの2.0M炭酸カリウム水溶液と、4.0mLのトルエンと、4.0mLのエタノールを加え、減圧下で攪拌することにより脱気した。この混合物に8.8mg(39μmol)の酢酸パラジウム(II)を加え、窒素気流下、90℃で6.5時間攪拌した。所定時間経過後、得られた混合物の水層をトルエンで抽出した。
得られた抽出溶液と有機層を合わせ、水と飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。この混合物を自然濾過により濾別し、濾液を濃縮して淡褐色固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム)により精製した。得られたフラクションを濃縮して淡黄色固体を得た。この固体を高速液体カラムクロマトグラフィー(HPLC)(展開溶媒:クロロホルム)により精製した。得られたフラクションを濃縮して白色固体を得た。
この固体にヘキサンとメタノールを加え超音波を照射し、固体を吸引ろ過により濾取し真空乾燥して、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス[2−フルオロ−4−(4−n−ヘキシル−1−オキシ)フェニル]ベンゾエートの白色固体を収量1.2g、収率56%で得た。上記ステップ3の反応スキームを下記(E1−3)に示す。
核磁気共鳴法(NMR)によって、この化合物が目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス[2−フルオロ−4−(4−n−ヘキシル−1−オキシ)フェニル]ベンゾエート(略称:S−BN−EPFPO6−6(PC3))であることを確認した。
得られた物質S−BN−EPFPO6−6(PC3)のH NMRデータを以下に示す。H NMR(CDCl、300MHz):δ(ppm)=0.86−0.93(m、12H)、1.06−1.60(m、30H)、1.77−1.96(m、12H)、2.48−2.56(m、2H)、3.98(t、4H)、6.92(d、4H)、7.13−7.18(m、4H)、7.30(d、4H)、7.38−7.50(m、8H)、7.61−7.65(m、8H)、8.06(d、2H)、8.11(s,2H)。
また、H NMRチャートを図6(A)、(B)、及び、図7に示す。なお、図6(B)は、図6(A)における0ppmから5ppmの範囲を拡大して表したチャートであり、図7は、図6(A)における5ppmから10ppmの範囲を拡大して表したチャートである。測定結果から、目的物であるS−BN−EPFPO6−6(PC3)が得られたことを確認した。
また、本実施例において合成したS−BN−EPFPO6−6(PC3)とネマチック液晶とを混合した液晶組成物のHTPを測定した。測定は室温下にて行い、測定方法はグランジャン−カノ−くさび法を用いた。なお、液晶組成物におけるネマチック液晶とS−BN−EPFPO6−6(PC3)の混合比は99.9wt%:0.1wt%(=ネマチック液晶:S−BN−EPFPO6−6(PC3))とした。また、ネマチック液晶は、混合液晶E−8(株式会社LCC製)、4−(trans−4−n−プロピルシクロヘキシル)−3’,4’−ジフルオロ−1,1’−ビフェニル(略称:CPP−3FF)(大立高分子工業社製)、及び4−n−ペンチル安息香酸4−シアノ−3−フルオロフェニル(略称:PEP−5CNF)(大立高分子工業社製)の混合液晶を用い、その混合比を、40wt%:30wt%:30wt%(=E−8:CPP−3FF:PEP−5CNF)とした。
測定の結果、本実施例で作製したS−BN−EPFPO6−6(PC3)を含有する液晶組成物のHTPは、およそ15μm−1であり、本実施例で合成したS−BN−EPFPO6−6(PC3)は液晶組成物中でカイラル剤として機能することが確認された。
液晶組成物のHTPを20μm−1以下とするカイラル剤は、TNモードのような螺旋ピッチの長い液晶組成物の調合に適している。HTP(μm−1)とカイラル剤添加量(wt%)と螺旋ピッチ(μm)の関係は、数式(1)で与えられる。ここで数式(1)より、ある目的の螺旋ピッチを設定してカイラル剤の添加量を決定する場合、HTPを高くするカイラル剤を用いることにより、カイラル剤の添加量を少量とすることができる。その反面、目的の液晶組成物が少量である場合、カイラル剤の添加量も少量となるため、そのカイラル剤の添加量の誤差による影響が大きくなってしまう。
一般的にTN材料の螺旋ピッチは50μm〜200μm程度である。例えば螺旋ピッチを100μm±10μmに設定した場合、HTPを5μm−1とするカイラル剤を使用した場合では、カイラル剤の添加量は0.182wt%〜0.222wt%となる。一方、HTPを100μm−1とするカイラル剤を使用した場合では、カイラル剤の添加量は0.009wt%〜0.011wt%とごくわずかであり、添加量の調整が難しくなる。よって、液晶組成物のHTPを20μm−1以下とするカイラル剤はTNモード用のカイラル剤に適していることがわかる。
よって、本実施例で作製したS−BN−EPFPO6−6(PC3)は、液晶組成物のカイラル剤として、特にTNモードの液晶組成物のカイラル剤として好適に用いることが可能であることが示された。
本実施例では、実施の形態2の構造式(101)で表されるビナフチル化合物である、(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス{12−[4−(trans−4−n−ペンチルシクロヘキシル)フェノキシ]ドデカナート}(略称:S−BN−E11OPC3−6(PC3))を合成する例を示す。
[ステップ1:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールの合成法]
3.2g(7.3mmol)の(S)−6,6’−ジブロモ−1,1’−ビ−2−ナフトールと、5.4g(22mmol)の4−(trans−4−n−プロピルシクロヘキシル)フェニルボロン酸と、335mg(1.1mmol)のトリス(2−メチルフェニル)ホスフィンを200mLの三口フラスコに入れ、フラスコ内を窒素置換した。この混合物に7.3mLの2.0M炭酸カリウム水溶液と、3.7mLのトルエンと、3.7mLのエタノールを加え、減圧下で攪拌することにより脱気した。この混合物に49mg(0.22mmol)の酢酸パラジウム(II)を加え、窒素気流下、90℃で5時間攪拌した。所定時間経過後、得られた混合物の水層をトルエンで抽出した。得られた抽出溶液と有機層を合わせ、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。
この混合物を自然濾過により濾別し、濾液を濃縮して褐色油状物を得た。得られた油状物を、セライト(和光純薬工業株式会社、カタログ番号:531−16855)、アルミナ、フロリジール(和光純薬工業株式会社、カタログ番号:540−00135)を通して吸引ろ過した。この混合物を濃縮し、黄色油状物を得た。この固体にヘキサンを加え超音波を照射し、固体を吸引ろ過により濾取したところ、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールの白色固体を収量2.4g、収率48%で得た。上記ステップ1の反応スキームを、下記(E2−1)に示す。
[ステップ2:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス(12−ブロモドデカナート)の合成法]
1.2g(1.7mmol)の(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールと、1.2g(4.3mmol)の12−ブロモドデカン酸と、61mg(0.50mmol)のN,N−ジメチル−N−(4−ピリジニル)アミンと、4.3mLのジクロロメタンを50mLのナスフラスコに加え、攪拌した。この混合物に0.82g(4.3mmol)の1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩を加え、大気下、室温で17時間攪拌した。所定時間経過後、得られた混合物の水層をジクロロメタンで抽出した。得られた抽出溶液と有機層を合わせ、飽和炭酸水素ナトリウム水溶液と、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。
この混合物を自然濾過により濾別し、濾液を濃縮して黄色油状物を得た。この油状物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=5:1)により精製した。得られたフラクションを濃縮して、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス(12−ブロモドデカナート)の黄色油状物を、収量1.2g、収率62%で得た。上記ステップ2の反応スキームを、下記(E2−2)に示す。
[ステップ3:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス{12−[4−(trans−4−n−ペンチルシクロヘキシル)フェノキシ]ドデカナート}(略称:S−BN−E11OPC3−6(PC3))の合成法]
1.2g(1.0mmol)の(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス(12−ブロモドデカナート)と、0.55g(2.5mmol)の4−(trans−4−n−プロピルシクロヘキシル)フェノールと、0.35g(2.5mmol)の炭酸カリウムと、100mLのシクロヘキサノンを300mLのナスフラスコに加え、大気下、室温で17時間攪拌した。所定時間経過後、得られた混合物の水層をトルエンで抽出した。得られた抽出溶液と有機層を合わせ、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。
この混合物を自然濾過により濾別し、濾液を濃縮して黄色油状物を得た。この油状物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=1:1)により精製した。得られたフラクションを濃縮して黄色油状物を得た。この油状物を高速液体カラムクロマトグラフィー(HPLC)(展開溶媒:クロロホルム)により精製した。得られたフラクションを濃縮して黄色固体を得た。
この固体にヘキサンを加え超音波を照射し、固体を吸引ろ過により濾取したところ、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス{12−[4−(trans−4−n−ペンチルシクロヘキシル)フェノキシ]ドデカナート}の白色固体を収量40mg、収率2.6%で得た。上記ステップ3の反応スキームを、下記(E2−3)に示す。
核磁気共鳴法(NMR)によって、この化合物が目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス{12−[4−(trans−4−n−ペンチルシクロヘキシル)フェノキシ]ドデカナート}(略称:S−BN−E11OPC3−6(PC3))であることを確認した。
得られた物質S−BN−E11OPC3−6(PC3)のH NMRデータを以下に示す。
H NMR(CDCl、300MHz):δ(ppm)=0.91(t、12H)、1.01−1.56(m、92H)、1.91(t、12H)、2.33(t、4H)、2.45−2.55(m、2H)、3.99−4.02(m、2H)、7.15(d、2H)、7.27−7.32(m、8H)、7.36(d、2H)、7.48(d、2H)、7.55(d、2H)、7.60(d,2H)、7.94(d、4H)、8.05(d、2H)、8.08(s、2H)。
また、H NMRチャートを図8(A)、(B)、及び、図9に示す。なお、図8(B)は、図8(A)における0ppmから5ppmの範囲を拡大して表したチャートであり、図9は、図8(A)における6ppmから9ppmの範囲を拡大して表したチャートである。測定結果から、目的物であるS−BN−E11OPC3−6(PC3)が得られたことを確認した。
また、本実施例において合成したS−BN−E11OPC3−6(PC3)とネマチック液晶とを混合した液晶組成物のHTPを測定した。測定は室温下にて行い、測定方法はグランジャン−カノ−くさび法を用いた。なお、液晶組成物におけるネマチック液晶とS−BN−E11OPC3−6(PC3)の混合比は95.0wt%:5.0wt%(=ネマチック液晶:S−BN−E11OPC3−6(PC3))とした。また、ネマチック液晶は、混合液晶E−8(株式会社LCC製)、4−(trans−4−n−プロピルシクロヘキシル)−3’,4’−ジフルオロ−1,1’−ビフェニル(略称:CPP−3FF)(大立高分子工業社製)、及び4−n−ペンチル安息香酸4−シアノ−3−フルオロフェニル(略称:PEP−5CNF)(大立高分子工業社製)の混合液晶を用い、その混合比を、40wt%:30wt%:30wt%(=E−8:CPP−3FF:PEP−5CNF)とした。
測定の結果、本実施例で作製したS−BN−E11OPC3−6(PC3)を含有する液晶組成物のHTPは、およそ4.4μm−1であり、本実施例で合成したS−BN−E11OPC3−6(PC3)は液晶組成物中でカイラル剤として機能することが確認された。
液晶組成物のHTPを20μm−1以下とするカイラル剤は、TNモードのような螺旋ピッチの長い液晶組成物に適している。HTP(μm−1)とカイラル剤添加量(wt%)と螺旋ピッチ(μm)の関係は、数式(1)で与えられる。ここで数式(1)より、ある目的の螺旋ピッチを設定してカイラル剤の添加量を決定する場合、HTPを高くするカイラル剤を用いることにより、カイラル剤の添加量を少量とすることができる。その反面、目的の液晶組成物の調合が少量である場合、カイラル剤の添加量も少量となるため、そのカイラル剤の添加量の誤差による影響が大きくなってしまう。
一般的にTN材料の螺旋ピッチは50μm〜200μm程度である。例えば螺旋ピッチを100μm±10μmに設定した場合、HTPを5μm−1とするカイラル剤を使用した場合では、カイラル剤の添加量は0.182wt%〜0.222wt%となる。一方、HTPを100μm−1とするカイラル剤を使用した場合では、カイラル剤の添加量は0.009wt%〜0.011wt%とごくわずかであり、添加量の調整が難しくなる。よって、液晶組成物のHTPを20μm−1以下とするカイラル剤はTNモード用のカイラル剤に適していることがわかる。
よって、本実施例で作製したS−BN−E11OPC3−6(PC3)は、液晶組成物のカイラル剤として、特にTNモードの液晶組成物のカイラル剤として好適に用いることが可能であることが示された。
本実施例では、本発明の一態様の液晶組成物、及び該液晶組成物を用いたTNモードの液晶素子を2種類作製し、特性の評価を行った。
本実施例で作製した2種類の液晶組成物は、ネマチック液晶として、共通して混合液晶ZLI−4792(メルク株式会社製)、カイラル剤として、それぞれ、実施例1で合成方法を示した(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス[2−フルオロ−4−(4−n−ヘキシル−1−オキシ)フェニル]ベンゾエート(略称:S−BN−EPFPO6−6(PC3))、実施例2で合成方法を示した(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジイルビス{12−[4−(trans−4−n−ペンチルシクロヘキシル)フェノキシ]ドデカナート}(略称:S−BN−E11OPC3−6(PC3))を用いた。液晶組成物において、ネマチック液晶ZLI−4792に対するカイラル剤の割合は、それぞれ、0.02wt%、0.38wt%である。
本実施例で作製した2種類の液晶組成物について室温下にてグランジャン−カノーくさび法を用いて螺旋ピッチを測定したところ、それぞれ、50.3μm、174.7μmであった。
続いて透過型のTNセルを用いて電圧印加前後の配向観察を行った。使用したTNセルは、セル厚4μmの縦電界印加用のセルである。画素電極層は、酸化珪素を含むインジウム錫酸化物(ITSO)を用いて2枚のガラス基板上にそれぞれスパッタリング法にて形成した。その膜厚は110nmである。このガラス基板2枚に水平配向膜であるSE−6414(日産化学工業株式会社製)をスピンコーターにて塗布し、230℃にて焼成を行った。続いてラビング装置にてラビング処理を行い、一方の基板に直径4μmのスペーサを散布した。そして、スペーサを散布した基板に熱硬化型のシールを塗布し、両方の基板のラビング方向が90°となるように貼り合わせを行った。そして、貼り合わせた基板を0.3kgf/cmの圧力で押しながら、160℃の温度で4時間の加熱処理を行った。
このようにして作製した基板を分断し、毛細管現象を利用した注入法を用いて2種類の液晶組成物をそれぞれ注入し、2種類の液晶素子を作製した。この2種類の液晶素子を偏光顕微鏡(MX−61L オリンパス株式会社製)にてクロスニコル観察を行ったところ、液晶素子すべてについてリバースツイストによる線欠陥は全く発生しておらず、良好な配向が得られていた。
続いて、この2種類の液晶素子の電圧−透過率特性をRETS+VT測定システム(大塚電子社製)にて測定した。印加した電圧は0Vから10Vで0.2V刻みである。測定後に偏光顕微鏡にて再度クロスニコル観察を行ったところ、液晶素子すべてについてリバースツイストによる線欠陥は全く発生しておらず、電圧印加後でも良好な配向が得られていた。
以上の結果より本発明の一形態である液晶組成物は、一般式(G1)で表されるビナフチル化合物をカイラル剤として含有することで、TNモードの素子として使用することができることが示された。
本実施例では、実施の形態3の構造式(200)で表されるビナフチル化合物である、(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジオキシヘプタン(略称:cS−BN−O7−6(PC3))を合成する例を示す。
[ステップ1:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールの合成法]
3.2g(7.3mmol)の(S)−6,6’−ジブロモ−1,1’−ビ−2−ナフトールと、5.4g(22mmol)の4−(trans−4−n−プロピルシクロヘキシル)フェニルボロン酸と、335mg(1.1mmol)のトリス(2−メチルフェニル)ホスフィンを200mLの三口フラスコに入れ、フラスコ内を窒素置換した。この混合物に7.3mLの2.0M炭酸カリウム水溶液と、3.7mLのトルエンと、3.7mLのエタノールを加え、減圧下で攪拌することにより脱気した。この混合物に49mg(0.22mmol)の酢酸パラジウム(II)を加え、窒素気流下、90℃で5時間攪拌した。所定時間経過後、得られた混合物の水層をトルエンで抽出した。得られた抽出溶液と有機層を合わせ、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。
この混合物を自然濾過により濾別し、濾液を濃縮して褐色油状物を得た。得られた油状物を、セライト(和光純薬工業株式会社、カタログ番号:531−16855)、アルミナ、フロリジール(和光純薬工業株式会社、カタログ番号:540−00135)を通して吸引ろ過した。この混合物を濃縮し、黄色油状物を得た。この固体にヘキサンを加え超音波を照射し、固体を吸引ろ過により濾取したところ、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールの白色固体を収量2.4g、収率48%で得た。上記ステップ1の反応スキームを下記(E3−1)に示す。
[ステップ2:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジオキシヘプタン(略称:cS−BN−O7−6(PC3)の合成法]
0.90g(1.3mmol)の(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールと、0.34g(1.3mmol)の1,7−ジブロモヘプタンと、0.20mg(1.3mmol)のヨウ化ナトリウムと、52mg(1.3mmol)の水酸化ナトリウムと、100mLの2−ブタノンを200mLのナスフラスコに加え、大気下、80度で10時間攪拌した。所定時間経過後、得られた混合物の水層を酢酸エチルで抽出した。得られた抽出溶液と有機層を合わせ、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。
この混合物を自然濾過により濾別し、濾液を濃縮して淡黄色油状物を得た。この油状物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=5:1)により精製した。得られたフラクションを濃縮して黄色油状物を得た。この油状物を高速液体カラムクロマトグラフィー(HPLC)(展開溶媒:クロロホルム)により精製した。得られたフラクションを濃縮して白色固体を得た。
この固体にメタノールを加え超音波を照射し、固体を吸引ろ過により濾取したところ、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジオキシヘプタン(略称:cS−BN−O7−6(PC3)を収量40mg、収率4.0%で得た。上記ステップ2の反応スキームを下記(E3−2)に示す。
核磁気共鳴法(NMR)によって、この化合物が目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジオキシヘプタン(略称:cS−BN−O7−6(PC3))であることを確認した。
得られた物質cS−BN−O7−6(PC3)のH NMRデータを以下に示す。H NMR(CDCl、300MHz):δ(ppm)=0.90(t、6H)、1.00−1.95(m、36H)、2.46−2.54(m、2H)、4.08(t、2H)、4.29(t、2H)、7.09(d、2H)、7.27(d、4H)、7.43(d、4H)、7.58(d、4H)、7.99(d、2H)、8.03(s,2H)。
また、H NMRチャートを図10(A)、(B)、及び、図11に示す。なお、図10(B)は、図10(A)における0ppmから5ppmの範囲を拡大して表したチャートであり、図11は、図10(A)における5ppmから10ppmの範囲を拡大して表したチャートである。測定結果から、目的物であるcS−BN−O7−6(PC3)が得られたことを確認した。
また、本実施例において合成したcS−BN−O7−6(PC3)とネマチック液晶とを混合した液晶組成物のHTPを測定した。測定は室温下にて行い、測定方法はグランジャン−カノ−くさび法を用いた。なお、液晶組成物におけるネマチック液晶とcS−BN−O7−6(PC3)の混合比は99.9wt%:0.1wt%(=ネマチック液晶:cS−BN−O7−6(PC3))とした。また、ネマチック液晶は、混合液晶E−8(株式会社LCC製)、4−(trans−4−n−プロピルシクロヘキシル)−3’,4’−ジフルオロ−1,1’−ビフェニル(略称:CPP−3FF)(大立高分子工業社製)、及び4−n−ペンチル安息香酸4−シアノ−3−フルオロフェニル(略称:PEP−5CNF)(大立高分子工業社製)の混合液晶を用い、その混合比を、40wt%:30wt%:30wt%(=E−8:CPP−3FF:PEP−5CNF)とした。
測定の結果、本実施例で作製したcS−BN−O7−6(PC3)を含有する液晶組成物のHTPは、およそ12μm−1であり、本実施例で合成したcS−BN−O7−6(PC3)は、液晶組成物中でカイラル剤として機能することが確認された。
液晶組成物のHTPを20μm−1以下とするカイラル剤は、TNモードのような螺旋ピッチの長い液晶組成物の調合に適している。HTP(μm−1)とカイラル剤添加量(wt%)と螺旋ピッチ(μm)の関係は、数式(1)で与えられる。ここで数式(1)より、ある目的の螺旋ピッチを設定してカイラル剤の添加量を決定する場合、液晶組成物のHTPを高くするカイラル剤を用いることにより、カイラル剤の添加量を少量とすることができる。その反面、目的の液晶組成物が少量である場合、カイラル剤の添加量も少量となるため、そのカイラル剤の添加量の誤差による影響が大きくなってしまう。
一般的にTN材料の螺旋ピッチは50μm〜200μm程度である。例えば螺旋ピッチを100μm±10μmに設定した場合、HTPを5μm−1とするカイラル剤を使用した場合では、カイラル剤の添加量は0.182wt%〜0.222wt%となる。一方、HTPを100μm−1とするカイラル剤を使用した場合では、カイラル剤の添加量は0.009wt%〜0.011wt%とごくわずかであり、添加量の調整が難しくなる。よって、液晶組成物のHTPを20μm−1以下とするカイラル剤はTNモード用のカイラル剤に適していることがわかる。
よって、本実施例で作製したcS−BN−O7−6(PC3)は、液晶組成物のカイラル剤として、特にTNモードの液晶組成物のカイラル剤として好適に用いることが可能であることが示された。
本実施例では、実施の形態1の構造式(201)で表されるビナフチル化合物である、(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジオキシ−1,7−ヘプタンジオン(略称:cS−BN−E5−6(PC3))を合成する例を示す。
[ステップ1:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールの合成法]
3.2g(7.3mmol)の(S)−6,6’−ジブロモ−1,1’−ビ−2−ナフトールと、5.4g(22mmol)の4−(trans−4−n−プロピルシクロヘキシル)フェニルボロン酸と、335mg(1.1mmol)のトリス(2−メチルフェニル)ホスフィンを200mLの三口フラスコに入れ、フラスコ内を窒素置換した。この混合物に7.3mLの2.0M炭酸カリウム水溶液と、3.7mLのトルエンと、3.7mLのエタノールを加え、減圧下で攪拌することにより脱気した。この混合物に49mg(0.22mmol)の酢酸パラジウム(II)を加え、窒素気流下、90℃で5時間攪拌した。所定時間経過後、得られた混合物の水層をトルエンで抽出した。得られた抽出溶液と有機層を合わせ、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。
この混合物を自然濾過により濾別し、濾液を濃縮して褐色油状物を得た。得られた油状物を、セライト(和光純薬工業株式会社、カタログ番号:531−16855)、アルミナ、フロリジール(和光純薬工業株式会社、カタログ番号:540−00135)を通して吸引ろ過した。この混合物を濃縮し、黄色油状物を得た。この固体にヘキサンを加え超音波を照射し、固体を吸引ろ過により濾取したところ、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールの白色固体を収量2.4g、収率48%で得た。上記ステップ1の反応スキームを、下記(E4−1)に示す。
[ステップ2:(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジオキシ−1,7−ヘプタンジオンの合成法]
1.7g(2.5mmol)の(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビ−2−ナフトールと、0.40g(2.5mmol)のピメリン酸と、46mg(0.38mmol)のN,N−ジメチル−N−(4−ピリジニル)アミンと、2.5mLのジクロロメタンを50mLのナスフラスコに加え、攪拌した。この混合物に0.54g(2.8mmol)の1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩を加え、大気下、室温で17時間攪拌した。所定時間経過後、得られた混合物の水層をジクロロメタンで抽出した。得られた抽出溶液と有機層を合わせ、飽和炭酸水素ナトリウム水溶液と、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。
この混合物を自然濾過により濾別し、濾液を濃縮して白色固体を得た。この固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:酢酸エチル=2:1)により精製した。得られたフラクションを濃縮して白色固体を得た。この固体を高速液体カラムクロマトグラフィー(HPLC)(展開溶媒:クロロホルム)により精製した。得られたフラクションを濃縮して白色固体を得た。
この固体にヘキサンを加え超音波を照射し、固体を吸引ろ過により濾取したところ、目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジオキシ−1,7−ヘプタンジオン(略称:cS−BN−E5−6(PC3))の白色固体を収量0.10g、収率5.0%で得た。上記ステップ2の反応スキームを、下記(E4−2)に示す。
核磁気共鳴法(NMR)によって、この化合物が目的物である(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジオキシ−1,7−ヘプタンジオン(略称:cS−BN−E5−6(PC3))であることを確認した。
得られた物質cS−BN−E5−6(PC3)のH NMRデータを以下に示す。
H NMR(CDCl、300MHz):δ(ppm)=0.91(t、6H)、1.06−1.35(m、28H)、1.83−1.96(m、8H)、2.42−2.57(m、2H)、7.07(d、2H)、7.21−7.37(m、8H)、7.51(d、2H)、7.62(d、2H)、7.85(d、1H)、7.95(s、1H)、8.10(d,1H)、8.15(s、1H)。
また、H NMRチャートを図12(A)、(B)、及び図13に示す。なお、図12(B)は、図12(A)における0ppmから5ppmの範囲を拡大して表したチャートであり、図13は、図12(A)における5ppmから10ppmの範囲を拡大して表したチャートである。測定結果から、目的物であるcS−BN−E5−6(PC3)が得られたことを確認した。
本実施例で作製したcS−BN−E5−6(PC3)は、分子構造の特徴を考慮すれば液晶組成物のカイラル剤として好適に用いることが可能であることが理解される。
本実施例では、本発明の一態様の液晶組成物、及び該液晶組成物を用いたTNモードの液晶素子を作製し、特性の評価を行った。
本実施例で作製した液晶組成物は、ネマチック液晶として、混合液晶ZLI−4792(メルク株式会社製)、カイラル剤として、実施例4で合成方法を示した(S)−6,6’−ビス[4−(trans−4−n−プロピルシクロヘキシル)フェニル]−1,1’−ビナフチル−2,2’−ジオキシヘプタン(略称:cS−BN−O7−6(PC3))を用いた。液晶組成物において、ネマチック液晶ZLI−4792に対するカイラル剤の割合は、0.07wt%である。
本実施例で作製した液晶組成物について室温下にてグランジャン−カノーくさび法を用いて螺旋ピッチを測定したところ、70.2μmであった。
続いて透過型のTNセルを用いて電圧印加前後の配向観察を行った。使用したTNセルは、セル厚4μmの縦電界印加用のセルである。画素電極層は、酸化珪素を含むインジウム錫酸化物(ITSO)を用いてガラス基板上にスパッタリング法にて形成した。その膜厚は110nmである。このガラス基板2枚に水平配向膜であるSE−6414(日産化学工業株式会社製)をスピンコーターにて塗布し、230℃にて焼成を行った。続いてラビング装置にてラビング処理を行い、一方の基板に直径4μmのスペーサを散布した。そして、スペーサを散布した基板に熱硬化型のシールを塗布し、両方の基板のラビング方向が90°捩れるように貼り合わせを行った。そして、貼り合わせた基板を0.3kgf/cm2の圧力で押しながら、160℃の温度で4時間の加熱処理を行った。
このようにして作製した基板を分断し、毛細管現象を利用した注入法を用いて液晶組成物を注入し、液晶素子を作製した。この液晶素子を偏光顕微鏡(MX−61L オリンパス株式会社製)にてクロスニコル観察を行ったところ、リバースツイストによる線欠陥は全く発生しておらず、良好な配向が得られていた。
続いて、液晶素子の電圧−透過率特性をRETS+VT測定システム(大塚電子社製)にて測定した。印加した電圧は0Vから10Vで0.2V刻みである。測定後に偏光顕微鏡にて再度クロスニコル観察を行ったところ、リバースツイストによる線欠陥は全く発生しておらず、電圧印加後でも良好な配向が得られていた。
以上の結果より本発明の一形態である液晶組成物は、一般式(G3)で表されるビナフチル化合物をカイラル剤として含有することで、TNモードの素子として使用することができることが示された。
200 基板
201 基板
202a 配向膜
202b 配向膜
208 液晶組成物
230 画素電極層
232 共通電極層
401 ゲート電極層
402 ゲート絶縁層
403 半導体層
405a 配線層
405b 配線層
407 絶縁膜
408 共通配線層
409 絶縁膜
413 層間膜
420 トランジスタ
441 基板
442 基板
443a 偏光板
443b 偏光板
444 液晶組成物
446 電極層
446a 電極層
446b 電極層
446c 電極層
446d 電極層
447 電極層
447a 電極層
447b 電極層
447c 電極層
447d 電極層
2701 筐体
2703 筐体
2705 表示部
2707 表示部
2711 軸部
2721 電源
2723 操作キー
2725 スピーカー
2800 筐体
2801 筐体
2802 表示パネル
2803 スピーカー
2804 マイクロフォン
2805 操作キー
2806 ポインティングデバイス
2807 カメラ用レンズ
2808 外部接続端子
2810 太陽電池セル
2811 外部メモリスロット
3001 本体
3002 筐体
3003 表示部
3004 キーボード
3021 本体
3022 スタイラス
3023 表示部
3024 操作ボタン
3025 外部インターフェイス
3051 本体
3053 接眼部
3054 操作スイッチ
3055 表示部
3056 バッテリー
3057 表示部
4001 基板
4002 画素部
4003 信号線駆動回路
4003a 信号線駆動回路
4003b 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶組成物
4010 トランジスタ
4011 トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 絶縁層
4021 層間膜
4030 画素電極層
4031 共通電極層
4032a 偏光板
4032b 偏光板
4034 遮光層
4035 スペーサ
9601 筐体
9603 表示部
9605 スタンド

Claims (13)

  1. 一般式(G10)で表される構造を有する一般式で表されるビナフチル化合物。

    (但し、一般式(G10)中、2つの置換基Xは、それぞれ下記一般式(G11)で表される置換基を表すか、2つの置換基Xが一緒に下記一般式(G12)で表される置換基を形成する。また、a101は単結合、カルボニル基、又はジフルオロメチレン基を表す。また、R100及びR101のうちの一方は、下記一般式(G13)で表される置換基を表し、他方は水素を表す。)

    (但し、一般式(G11)中、Ar101、Ar102は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、mは1乃至2を表し、nは0乃至2を表す。また、R102は、置換もしくは無置換の炭素数1乃至12のアルキレン基、又は単結合を表す。また、R103は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。)

    (但し、一般式(G12)中、R105は、置換もしくは無置換の炭素数1乃至12のアルキレン基を表す。)

    (但し、一般式(G13)中、Ar103、Ar104は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2を表す。また、Rは、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。)
  2. 一般式(G1)で表されるビナフチル化合物。

    (但し、一般式(G1)中、Ar11、Ar12は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、mは1乃至2を表し、nは0乃至2を表す。また、R12は、置換もしくは無置換の炭素数1乃至12のアルキレン基、又は単結合を表す。また、R13は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。また、R10及びR11のうちの一方は、下記一般式(G2)で表される置換基を表し、他方は水素を表す。)

    (但し、一般式(G2)中、Ar13、Ar14は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2を表す。また、R14は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。)
  3. 前記Ar11、前記Ar12、前記Ar13、前記Ar14、前記R12、前記R13、又は前記R14の少なくとも一は、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、シアノ基(CN)、トリフルオロメチルスルホニル基(SOCF)、トリフルオロメチル基(CF)、ニトロ基(NO)、イソチオシアネート基(NCS)、又はペンタフルオロスルファニル基(SF)のいずれか少なくとも一つの置換基を有する、請求項2記載のビナフチル化合物。
  4. 構造式(100)で表されるビナフチル化合物。
  5. 構造式(101)で表されるビナフチル化合物。
  6. 一般式(G3)で表されるビナフチル化合物。

    (但し、一般式(G3)中、R25は、置換もしくは無置換の炭素数1乃至12のアルキレン基を表す。また、a21は単結合、カルボニル基、又はジフルオロメチレン基を表す。また、R20及びR21のうちの一方は、下記一般式(G4)で表される置換基を表し、他方は水素を表す。)

    (但し、一般式(G4)中、Ar21、Ar22は、それぞれ独立に、置換もしくは無置換の炭素数6乃至12のアリーレン基、置換もしくは無置換の炭素数3乃至12のシクロアルキレン基、又は置換もしくは無置換の炭素数3乃至12のシクロアルケニレン基を表し、lは1乃至2を表し、kは0乃至2を表す。また、R22は、水素、置換もしくは無置換の炭素数1乃至12のアルキル基、又は置換もしくは無置換の炭素数1乃至12のアルコキシ基を表す。)
  7. 前記Ar21、前記Ar22、前記R23、又は前記R25の少なくとも一は、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、シアノ基(CN)、トリフルオロメチルスルホニル基(SOCF)、トリフルオロメチル基(CF)、ニトロ基(NO)、イソチオシアネート基(NCS)、又はペンタフルオロスルファニル基(SF)のいずれか少なくとも一つの置換基を有する、請求項6記載のビナフチル化合物。
  8. 構造式(200)で表されるビナフチル化合物。
  9. 構造式(201)で表されるビナフチル化合物。
  10. 請求項1乃至9のいずれか一に記載のビナフチル化合物、及びネマチック液晶を少なくとも含有する液晶組成物。
  11. 請求項10に記載の液晶組成物を用いる液晶素子。
  12. 請求項10に記載の液晶組成物を用いる液晶表示装置。
  13. 請求項12において、前記液晶組成物は有機樹脂を含む液晶表示装置。
JP2014153169A 2013-07-31 2014-07-28 液晶素子、及び液晶表示装置 Expired - Fee Related JP6346517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014153169A JP6346517B2 (ja) 2013-07-31 2014-07-28 液晶素子、及び液晶表示装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013159202 2013-07-31
JP2013159202 2013-07-31
JP2013159199 2013-07-31
JP2013159199 2013-07-31
JP2014153169A JP6346517B2 (ja) 2013-07-31 2014-07-28 液晶素子、及び液晶表示装置

Publications (3)

Publication Number Publication Date
JP2015044798A true JP2015044798A (ja) 2015-03-12
JP2015044798A5 JP2015044798A5 (ja) 2017-08-03
JP6346517B2 JP6346517B2 (ja) 2018-06-20

Family

ID=52426794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014153169A Expired - Fee Related JP6346517B2 (ja) 2013-07-31 2014-07-28 液晶素子、及び液晶表示装置

Country Status (3)

Country Link
US (1) US9475989B2 (ja)
JP (1) JP6346517B2 (ja)
KR (1) KR102320930B1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207267A (ja) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol クラウン化合物
JPH01146877A (ja) * 1987-12-03 1989-06-08 Agency Of Ind Science & Technol 光学活性クラウン化合物
GB2394475A (en) * 2002-09-14 2004-04-28 Merck Patent Gmbh High-twist liquid-crystalline medium and liquid-crystal display
JP2004250341A (ja) * 2003-02-18 2004-09-09 Mitsubishi Gas Chem Co Inc 光学活性化合物およびそれを含む液晶組成物
JP2004532345A (ja) * 2001-06-13 2004-10-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 液晶媒体および高ねじれ液晶ディスプレイデバイス
JP2013136740A (ja) * 2011-11-29 2013-07-11 Semiconductor Energy Lab Co Ltd 液晶組成物、液晶素子及び液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738559B2 (ja) 1998-04-20 2006-01-25 コニカミノルタホールディングス株式会社 液晶組成物及び液晶表示素子
JP2002179669A (ja) 2000-12-14 2002-06-26 Fuji Photo Film Co Ltd 光学活性化合物、光反応型キラル剤、液晶組成物、液晶の捻れ構造を変化させる方法、液晶の螺旋構造を固定化する方法、液晶カラーフィルタ、光学フィルム及び記録媒体
JP2003238961A (ja) 2002-02-22 2003-08-27 Kyocera Corp 液晶表示装置
JP4788123B2 (ja) * 2003-09-19 2011-10-05 Jnc株式会社 光重合性液晶組成物、その重合体または重合体組成物及び光学異方性膜
WO2013008657A1 (en) 2011-07-08 2013-01-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal composition, liquid crystal element, and liquid crystal display device
KR20130057396A (ko) 2011-11-23 2013-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 조성물 및 액정 표시 장치
JP6009335B2 (ja) 2011-12-16 2016-10-19 株式会社半導体エネルギー研究所 液晶組成物、液晶素子、及び液晶表示装置
US8968841B2 (en) 2012-03-29 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Binaphthyl compound, liquid crystal composition, liquid crystal element, and liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207267A (ja) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol クラウン化合物
JPH01146877A (ja) * 1987-12-03 1989-06-08 Agency Of Ind Science & Technol 光学活性クラウン化合物
JP2004532345A (ja) * 2001-06-13 2004-10-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 液晶媒体および高ねじれ液晶ディスプレイデバイス
GB2394475A (en) * 2002-09-14 2004-04-28 Merck Patent Gmbh High-twist liquid-crystalline medium and liquid-crystal display
JP2004250341A (ja) * 2003-02-18 2004-09-09 Mitsubishi Gas Chem Co Inc 光学活性化合物およびそれを含む液晶組成物
JP2013136740A (ja) * 2011-11-29 2013-07-11 Semiconductor Energy Lab Co Ltd 液晶組成物、液晶素子及び液晶表示装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 34(16), JPN6018004834, 2001, pages 5719 - 5722 *
POLYMER JOURNAL (TOKYO, JAPAN), vol. 23(5), JPN6018004833, 1991, pages 347 - 56 *
REGISTRY(STN)[ONLINE], JPN6018004831 *
REGISTRY(STN)[ONLINE], JPN6018004832 *

Also Published As

Publication number Publication date
JP6346517B2 (ja) 2018-06-20
US9475989B2 (en) 2016-10-25
KR20150015416A (ko) 2015-02-10
US20150034869A1 (en) 2015-02-05
KR102320930B1 (ko) 2021-11-04

Similar Documents

Publication Publication Date Title
JP6236132B2 (ja) 化合物、液晶組成物、液晶素子、液晶表示装置
JP5715970B2 (ja) 化合物、組成物、液晶素子及び液晶表示装置
JP6009335B2 (ja) 液晶組成物、液晶素子、及び液晶表示装置
JP6042632B2 (ja) 組成物、液晶素子及び液晶表示装置。
JP5918620B2 (ja) 化合物、組成物、液晶素子および液晶表示装置
JP2013136740A (ja) 液晶組成物、液晶素子及び液晶表示装置
JP6584606B2 (ja) イソソルビド誘導体
JP6100512B2 (ja) 液晶組成物、液晶表示装置、電子機器
JP6334844B2 (ja) 液晶組成物、液晶素子及び液晶表示装置
JP6101059B2 (ja) 液晶組成物、液晶素子及び液晶表示装置
JP2015044796A (ja) シアノビフェニル誘導体、液晶組成物、液晶素子及び液晶表示装置
JP6346517B2 (ja) 液晶素子、及び液晶表示装置
JP6505388B2 (ja) ジオキソラン誘導体、液晶組成物及び液晶表示装置
JP2015044795A (ja) トリフルオロフェニル誘導体、液晶組成物及び液晶表示装置
JP2015044794A (ja) 有機化合物、液晶組成物、液晶素子及び液晶表示装置。

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180525

R150 Certificate of patent or registration of utility model

Ref document number: 6346517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees