JP2015043420A - マルチポート弁アセンブリを備えるプラズマ処理装置 - Google Patents

マルチポート弁アセンブリを備えるプラズマ処理装置 Download PDF

Info

Publication number
JP2015043420A
JP2015043420A JP2014159292A JP2014159292A JP2015043420A JP 2015043420 A JP2015043420 A JP 2015043420A JP 2014159292 A JP2014159292 A JP 2014159292A JP 2014159292 A JP2014159292 A JP 2014159292A JP 2015043420 A JP2015043420 A JP 2015043420A
Authority
JP
Japan
Prior art keywords
plasma processing
sealing plate
movable sealing
processing apparatus
valve assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014159292A
Other languages
English (en)
Other versions
JP6508895B2 (ja
JP2015043420A5 (ja
Inventor
マイケル・シー.・ケロッグ
C Kellogg Michael
ダニエル・エー.・ブラウン
A Brown Daniel
レオナード・ジェイ.・シャープレス
J Sharpless Leonard
アラン・ケー.・ロン
K Ronne Allan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2015043420A publication Critical patent/JP2015043420A/ja
Publication of JP2015043420A5 publication Critical patent/JP2015043420A5/ja
Application granted granted Critical
Publication of JP6508895B2 publication Critical patent/JP6508895B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Multiple-Way Valves (AREA)
  • Details Of Valves (AREA)
  • Sliding Valves (AREA)

Abstract

【課題】プラズマ処理装置のチェンバと真空ポンプとの間の流体連通を調整することができるマルチポート弁アセンブリを提供する。
【解決手段】プラズマ処理装置100は、チェンバ110と、電極アセンブリ118と、ウェハステージ120と、ガス導入口130と、複数の真空ポート142と、少なくとも1つの真空ポンプ150と、マルチポート弁アセンブリ160と、を備える。マルチポート弁アセンブリは、処理チェンバ内に配置された可動封止板170を含む。可動封止板は、横断ポート封止面141を有し、閉状態では複数の真空ポートと完全にオーバラップし、部分開状態では複数の真空ポートと部分的にオーバラップし、開状態では複数の真空ポートと略オーバラップしないような、形状および大きさになっている。マルチポート弁アセンブリは、可動封止板に連結された横断アクチュエータと、可動封止板に連結された封止アクチュエータとを含む。
【選択図】図1

Description

本明細書は、広くは、プラズマ処理装置に関し、より具体的には、プラズマ処理装置用の弁に関する。
プラズマ処理装置は、一般に、1つ以上の真空ポンプに接続されたプラズマ処理チェンバを備える。プラズマ処理装置は、チェンバと真空ポンプとの間の流体連通を調整する1つ以上の弁を備えることができる。
本明細書で記載する実施形態は、マルチポート弁アセンブリを備えるプラズマ処理装置に関する。一実施形態によれば、プラズマ処理装置は、プラズマ処理チェンバと、プラズマ電極アセンブリと、ウェハステージと、プラズマ生成ガス導入口と、複数の真空ポートと、少なくとも1つの真空ポンプと、マルチポート弁アセンブリと、を備えることができる。プラズマ電極アセンブリおよびウェハステージは、プラズマ処理チェンバ内に配置することができ、プラズマ生成ガス導入口は、プラズマ処理チェンバと流体連通させることができる。真空ポンプは、真空ポートのうちの少なくとも1つを介して、プラズマ処理チェンバと流体連通させることができる。マルチポート弁アセンブリは、プラズマ処理チェンバ内に配置された可動封止板を含み得る。可動封止板は、閉状態では複数の真空ポートと完全にオーバラップし、部分開状態では複数の真空ポートと部分的にオーバラップし、開状態では複数の真空ポートと略オーバラップしないような、形状および大きさになっている、横断ポート封止面を有する。マルチポート弁アセンブリは、可動封止板に連結されている横断アクチュエータを含むことができ、横断アクチュエータは、閉状態と部分開状態と開状態との間で可動封止板を可動封止板の封止面に主に沿った向きである横断方向に移行させるのに十分な作動の横断範囲を規定している。マルチポート弁アセンブリは、可動封止板に連結されている封止アクチュエータを含むことができ、封止アクチュエータは、封止状態と非封止状態との間で可動封止板を可動封止板の封止面に対して主に垂直な方向を向く封止係合/解除パスに沿って往復で移行させるのに十分な作動の封止範囲を規定している。
他の実施形態では、プラズマ処理装置は、プラズマ処理チェンバと、プラズマ電極アセンブリと、ウェハステージと、プラズマ生成ガス導入口と、複数の真空ポートと、少なくとも1つの真空ポンプと、マルチポート弁アセンブリと、を備えることができる。プラズマ電極アセンブリおよびウェハステージは、プラズマ処理チェンバ内に配置することができる。プラズマ生成ガス導入口は、プラズマ処理チェンバと流体連通させることができる。真空ポンプは、真空ポートのうちの少なくとも1つを介して、プラズマ処理チェンバと流体連通させることができる。マルチポート弁アセンブリは、プラズマ処理チェンバ内に配置されている可動封止板を含み得る。可動封止板は、閉状態では複数の真空ポートと完全にオーバラップし、部分開状態では複数の真空ポートと部分的にオーバラップし、開状態では複数の真空ポートと略オーバラップしないような、形状および大きさである横断ポート封止面を有する。マルチポート弁アセンブリは、可動封止板に連結されている横断アクチュエータを含むことができ、横断アクチュエータは、閉状態と部分開状態と開状態との間で可動封止板を可動封止板の封止面に主に沿った向きである横断方向に移行させるのに十分な作動の横断範囲を規定している。横断アクチュエータは、回転動アクチュエータを含むことができ、可動封止板は、中心軸を有する回転可動封止板を含む。マルチポート弁アセンブリは、可動封止板に連結されている封止アクチュエータを含むことができ、封止アクチュエータは、封止状態と非封止状態との間で可動封止板を可動封止板の封止面に対して主に垂直な方向に向く封止係合/解除パスに沿って往復で移行させるのに十分な作動の封止範囲を規定している。
本明細書で記載する実施形態のさらなる特徴ならびに効果について、以下の詳細説明において記載し、当業者は、それらの一部については、その説明から容易に理解できるであろうし、あるいは、以下の詳細説明、請求項、ならびに添付の図面を含めて、本明細書に記載の実施形態を実施することで、認識できるであろう。
理解されるべきことは、上記の概要説明および以下の詳細説明は、いずれも種々の実施形態について記載するものであり、特許請求の対象の特質および特徴を理解するための概観または枠組みを提供することを目的とするものであるということである。種々の実施形態についてのさらなる理解を与えるために、添付の図面を含んでおり、それらは本明細書に組み込まれて、その一部をなすものである。それらの図面は、本明細書に記載の種々の実施形態を例示するものであり、また、説明と併せて、特許請求の対象となる原理および作用を解釈するために役立つものである。
本開示の1つ以上の実施形態による、マルチポート弁アセンブリを備えるプラズマ処理装置の切断正面図を概略的に示す図。
本開示の1つ以上の実施形態による、閉状態のマルチポート弁アセンブリを概略的に示す図。
本開示の1つ以上の実施形態による、開状態のマルチポート弁アセンブリを概略的に示す図。
本開示の1つ以上の実施形態による、部分開状態のマルチポート弁アセンブリを概略的に示す図。
本開示の1つ以上の実施形態による、マルチポート弁アセンブリのベアリング・アセンブリを概略的に示す図。
本開示の1つ以上の実施形態による、図5のベアリング・アセンブリの断面図を概略的に示す図。
本開示の1つ以上の実施形態による、図5のベアリング・アセンブリの切断図を概略的に示す図。
本開示の1つ以上の実施形態による、マルチポート弁アセンブリのベアリング・アセンブリの断面図を概略的に示す図。
本開示の1つ以上の実施形態による、マルチポート弁アセンブリのベアリング・アセンブリの断面図を概略的に示す図。
本開示の1つ以上の実施形態による、マルチポート弁アセンブリを概略的に示す図。
本開示の1つ以上の実施形態による、マルチポート弁アセンブリのベアリング・アセンブリの断面図を概略的に示す図。
本開示の1つ以上の実施形態による、マルチポート弁アセンブリのベアリング・アセンブリの断面図を概略的に示す図。
以下、詳細にプラズマ処理装置の様々な実施形態について言及し、それらの例を添付の図面に示している。図面全体を通して、同一または類似の部材は、可能な限り同じ参照番号を用いて参照している。一実施形態において、プラズマ処理装置は、マルチポート弁アセンブリを備えることができ、これにより、プラズマ処理装置のプラズマ処理チェンバと、これに装着された真空ポンプと、の間の流体連通を調整することができる。マルチポート弁アセンブリは、可動封止板を含むことができ、これは、閉位置にあるときには複数の真空ポートを封止し、開状態または部分開状態では流体連通を許可するように機能し得る。1つ以上のアクチュエータにより単一の封止板を動かすことによって、封止板を、閉位置と開位置との間で移行させることができる。このようにして、それぞれの真空ポートに、個別のアクチュエータと封止板とを有する各自専用の弁アセンブリが不要となり得る。さらには、本明細書に記載のマルチポート弁アセンブリでは、プラズマ処理チェンバ内の基板または真空ポンプを汚染し得るグリースを不要とすることができる。また、本明細書に記載のマルチポート弁アセンブリは、プラズマ処理チェンバ内に収容されることができ、プラズマ処理装置の小型化が可能となる。
図1を参照すると、プラズマ処理装置100が示されている。一般的に、プラズマ処理装置100は、例えば、シリコンなどの半導体またはガラスで形成された基板112から材料をエッチングするために用いることができる。例えば、基板112は、シリコンウェハとすることができ、例えば、300mmウェハ、450mmウェハ、または他のサイズのウェハとすることができる。一実施形態において、プラズマ処理装置100は、少なくとも、プラズマ処理チェンバ110と、プラズマ電極アセンブリ118と、ウェハステージ120と、プラズマ生成ガス導入口130と、少なくとも1つの真空ポンプ150と、複数の真空ポート142と、マルチポート弁アセンブリ160と、を備えることができる。プラズマ処理チェンバ110は、上壁114、側壁116、および真空接続壁140などの壁を有し得る。複数の真空ポート142を、真空接続壁140に貫通させて配置することができる。真空接続壁140は、図1ではプラズマ処理チェンバ110の底部に示しているが、この位置は例示的なものにすぎず、真空接続壁140は、プラズマ処理チェンバ110のどの壁であってもよい。上記少なくとも1つの真空ポンプ150の各々は、真空ポート142のうちの少なくとも1つを介して、プラズマ処理チェンバ110と流体連通させることができる。一実施形態では、それぞれの真空ポンプ150は、個別の真空ポート142を介して、プラズマ処理チェンバ110と流体連通している。例えば、真空接続壁140に3つの真空ポート142を配置することができ、各々は、それぞれ個別の真空ポンプ150接続される。
プラズマ処理チェンバ110は、内部(内側)領域122を有し、その範囲内に、少なくとも、プラズマ電極アセンブリ118とウェハステージ120とを配置することができる。真空ポンプ150の作動に続いてマルチポート弁アセンブリ160が閉状態にあるときなどに、プラズマ処理チェンバ110は、その内部122の範囲内を低圧に維持するように機能し得る。プラズマ生成ガス導入口130は、プラズマ処理チェンバ110と流体連通させることができ、プラズマ生成ガスをプラズマ処理チェンバ110の内部領域122内に供給することができる。プラズマ生成ガスをイオン化させて、プラズマ状態のガスに変換することができ、これを、基板112のエッチングに利用することができる。例えば、エネルギー源(高周波(RF)源、マイクロ波源、または他のエネルギー源)によって、処理ガスにエネルギーを印加することで、プラズマガスを生成することが可能である。プラズマ処理チェンバ110の内部領域122に収容されたウェハなどの基板112を、プラズマによってエッチングすることができる。プラズマ電極アセンブリ118は、シャワーヘッド電極を備えることができ、基板上にエッチングするパターンを規定するように機能し得る。例えば、米国特許出願公開第2011/0108524号は、そのようなプラズマ処理装置の一実施形態について開示している。
マルチポート弁アセンブリ160は、可動封止板170を含むことができる。可動封止板170は、横断ポート封止面141を有し得る。一部の実施形態では、可動封止板170は、プラズマ処理チェンバ110の内部領域122内に配置することができる。マルチポート弁アセンブリ160は、さらに、ベアリング・アセンブリ200を含むことができる。ベアリング・アセンブリ200は、可動封止板170の動きを制限するように機能し得る。マルチポート弁アセンブリ160の可動封止板170が開状態または部分開状態にあるときに、真空ポンプ150はそれぞれ、真空ポート142を介してプラズマ処理装置100と流体連通し得ることを図示している。本明細書で使用される場合の「開状態」とは、プラズマ処理チェンバ110の内部領域122と真空ポンプ150との間が流体連通しているときのマルチポート弁アセンブリ160の状態を指す。本明細書で使用される場合の「閉状態」または「封止状態」とは、プラズマ処理チェンバ110の内部領域122と真空ポンプ150との間が流体連通していないときのマルチポート弁アセンブリ160の状態を指す。本明細書で使用される場合の開状態(「全開状態」と呼ばれることもある)、部分開状態、および閉状態は、可動封止板170の位置またはマルチポート弁アセンブリ160の位置のいずれかを指すことができ、可動封止板170またはマルチポート弁アセンブリ160のいずれかが特定の状態にあるという表現は、同じ意味で用いることができる。真空ポンプ150とプラズマ処理チェンバ110の内部領域122との間の流体連通の状態(全開状態、部分開状態、または閉状態)は、可動封止板170の位置によって決まる。
次に図1〜4を参照すると、真空接続壁140に連結されたときのマルチポート弁アセンブリ160を示している。可動封止板170は、横断ポート封止面141(可動封止板170の下面)を有し得る。一実施形態では、横断ポート封止面141は略平坦である。横断ポート封止面141は、(図2に示す)閉状態では複数の真空ポート142と完全にオーバラップし、(図4に示す)部分開状態では複数の真空ポート142と部分的にオーバラップし、(図3に示す)開状態では複数の真空ポート142と略オーバラップしないような、形状および大きさとすることができる。可動封止板170は、一体構造を有することができ、少なくとも2つの封止ローブ144を含むことができる。可動封止板170が閉状態にあるときに、封止ローブ144はそれぞれ、真空ポート142とオーバラップし得る。封止ローブ144は、対応する個々の真空ポート142とオーバラップするような、大きさおよび相互の相対位置とすることができる。図2〜4では、3つの真空ポート142を備える真空接続壁140を、3つの対応する封止ローブ144を備える板封止と共に示しているが、真空接続壁140は、任意の数の真空ポート142を、対応する数の封止ローブ144と共に備えることができる。例えば、図10は、2つの真空ポート142を備える真空接続壁140を、2つの対応する封止ローブ144を備える可動封止板170と共に、概略的に示している。マルチポート弁アセンブリ160は、ベアリング・アセンブリ200を含むことができる。ベアリング・アセンブリ200は、可動封止板170と真空接続壁140との間など、可動封止板170の下に配置することができ、かつ真空接続壁140の上方に配置することができる。
マルチポート弁アセンブリ160は、フィードスルー・ポート145を有することができる。フィードスルー・ポート145は、プラズマ処理装置100上に設定されたときに、プラズマ電極アセンブリ118の少なくとも一部を取り囲むことができ、また、プラズマ処理チェンバ110の内部と周囲環境との間での流体の流れを阻止するようにマルチポート弁アセンブリ160をプラズマ処理装置100に沿ってフィットさせることを可能とすることができる。一実施形態において、フィードスルー・ポート145は、プラズマ電極アセンブリ118の円筒状部分の周りにフィットするような、略円形状とすることができる。しかしながら、フィードスルー・ポート145は、可動封止板170の自由な動きを可能とするような、任意の形状とすることができる。可動封止板170は、フィードスルー・ポート145の周囲に沿って配置することができ、また、少なくとも2次元において、フィードスルー・ポート145を完全に取り囲むことができる。
図2は、横断ポート封止面141が複数の真空ポート142と完全にオーバラップするように可動封止板170が配置されている閉状態のマルチポート弁アセンブリ160を示している。マルチポート弁アセンブリ160は、閉状態にあるときには、気密シールによって流体連通を制限することができる。図3は、可動封止板170が複数の真空ポート142に略オーバラップしないように配置されている開状態のマルチポート弁アセンブリ160を示している。マルチポート弁アセンブリ160は、開状態にあるときには、流体連通を略制限しない。図4は、可動封止板170が複数の真空ポート142に部分的にオーバラップするように配置されている部分開状態のマルチポート弁アセンブリ160を示している。マルチポート弁アセンブリ160は、部分開状態にあるときには、流体連通を部分的に制限する。部分開状態は、真空ポンプ150をスロットル調整するために利用することができる。
図2〜4に示すように、可動封止板170は、横断方向に可動とすることができる。本明細書で使用される場合の「横断」とは、可動封止板170の封止面に主に沿った向きの方向を指す。例えば、図2〜4において、「横断」方向は、x軸とy軸の平面内に略ある。例えば、封止板170は、回転パスまたは環状パスで動くことができ、これを本明細書では回転封止板と呼ぶ。一部の実施形態では、可動封止板170は、回転可動封止板とすることができる。回転可動封止板170は、中心軸の周りに回転可能とすることができる。そのような回転可動封止板170を、図2〜4の実施形態に示している。
一部の実施形態では、マルチポート弁アセンブリ160は、横断アクチュエータを含むことができる。横断アクチュエータは、可動封止板170に連結されることができ、また、作動の横断範囲を規定することができる。作動の横断範囲は、閉状態と部分開状態と開状態との間で可動封止板170を横断方向に移行させるのに十分とすることができる。横断アクチュエータは、開状態と閉状態との間などで、可動封止板170を横断方向に移行させることが可能な任意の機械的構成要素とすることができる。一実施形態において、横断アクチュエータは、直接の機械的接触によって、可動封止板170と連結されることができる。他の実施形態では、横断アクチュエータは、磁気によるなど、非接触手段によって連結されることができる。一実施形態において、横断アクチュエータは、可動封止板170を中心軸の周りに回転させることが可能な回転動アクチュエータを含む。
可動封止板170は、封止係合/解除パスで動くことが可能とすることができる。本明細書で使用される場合の「係合パス」または「解除パス」とは、可動封止板170の封止面に主に沿った方向に向いたパスを指す。例えば、図2〜4では、係合パスの方向は、略z軸の方向である。可動封止板170は、少なくとも、約2mm、4mm、6mm、8mm、10mm、12mm、20mm、50mm、またはそれより長く、封止係合/解除パス方向に動くように作動し得る。一実施形態では、封止板は、約10mmから約15mmの間の長さを、封止係合/解除パスの方向に動くように作動する。
一部の実施形態では、マルチポート弁アセンブリ160は、封止アクチュエータを含むことができる。封止アクチュエータは、可動封止板170に連結されることができ、また、作動の封止範囲を規定することができる。作動の封止範囲は、封止状態と非封止状態との間で可動封止板170を封止係合/解除パスに沿って往復で移行させるのに十分とすることができる。一実施形態において、封止アクチュエータは、直接の機械的接触によって、可動封止板170と連結されることができる。他の実施形態では、封止アクチュエータは、磁気によるなど、非接触手段によって連結されることができる。
一実施形態において、可動封止板170は、横断方向と封止係合/解除パス方向の両方に動くことが可能とすることができる。
次に図3を参照すると、一実施形態において、マルチポート弁アセンブリ160は、少なくとも1つのOリング148を含むことができる。Oリング148は、真空ポート142のうちの1つ以上の周りに配置することができる。可動封止板170が閉状態にあるときに、可動封止板170は、それぞれのOリング148と直接接触することができる。Oリング148は、可動封止板170が閉状態にあるときに、気密シールを形成する助けとなり得る。
一実施形態では、横断方向と封止方向の両方に封止板170が動くことで、可動封止板170は、閉状態と部分開状態と開状態との間で移行する。一部の実施形態では、横断方向と封止方向の封止板170の移動は、それぞれ横断アクチュエータと封止アクチュエータとによって作動させることができる。他の実施形態では、横断アクチュエータと封止アクチュエータは、横断方向と封止方向の両方の封止板170の移動を作動させることができる単一のアクチュエータを構成することができる。
一実施形態において、図2に示す閉状態では、可動封止板170は、真空接続壁140と接触するとともに、真空ポート142とオーバラップすることができる。気密シールが形成され得る。可動封止板170は、封止アクチュエータによって、真空接続壁140に向けてz軸方向に保持されることができる。
部分開状態に移行させるために、封止アクチュエータによって、可動封止板170を真空接続壁140から離すようにz軸方向に動かすことができる。真空接続壁140から離れる可動封止板170の動きに続いて、横断アクチュエータによって、図4に示す部分開状態まで、可動封止板170を回転させるなどして、可動封止板170を横断方向に動かすことができる。可動封止板170をさらに回転させることで、図3に示す開状態に達することができる。例えば、図2の実施形態において、封止板170は、開状態と閉状態との間で必要なのは約60°回転することのみであり得る。
可動封止板170を開状態から閉状態に移行させるために、横断アクチュエータによって、図4に示す部分開状態まで、可動封止板170を回転させるなど、可動封止板170を横断方向に動かすことができる。横断アクチュエータによって可動封止板170をさらに回転させて、真空ポート142に完全にオーバラップさせることができる。可動封止板170が真空ポート142にオーバラップしたら、封止アクチュエータによって、可動封止板170を真空接続壁140に向かって動かして、プラズマ処理チェンバ110と真空ポンプ150との間の流体連通を許さない気密シールを形成することができる。
他の実施形態では、可動封止板170は、z軸方向の移動を利用することなく、開状態と閉状態との間で移行することができる。例えば、可動封止板170は、真空接続壁140との接触を常に保ったまま、真空接続壁140の上をスライドすることができる。他の実施形態では、可動封止板170は、横断方向の移動を利用することなく、開状態と閉状態との間で移行することができる。例えば、可動封止板170は、z軸方向にのみ移動することによって、流体連通を許可すること、および流体連通を禁止することができる。
図1および5〜7を参照して、マルチポート弁アセンブリ160は、さらに、ベアリング・アセンブリ200を含むことができる。ベアリング・アセンブリ200は、横断方向、封止係合/解除パスの方向、またはその両方の、可動封止板170の動きを制限するように機能し得る。ベアリング・アセンブリ200のいくつかの実施形態について本明細書で開示しているが、理解されるべきことは、ベアリング・アセンブリ200は、可動封止板170の動きを制限することが可能な任意の機械的または他の装置もしくはシステムとすることができるということである。例えば、一実施形態では、ベアリング・アセンブリ200は、軌道186などの案内手段によって制限された可動域を規定することができる。
次に図5〜7を参照すると、一実施形態において、ベアリング・アセンブリ200は、軌道186と、車輪184を有する台車180と、を含む。車輪184が回転して台車180の動きを可能とし得るように、車輪184は台車180に連結されることができる。図5は、軌道186上に車輪184を備える、そのようなベアリング・アセンブリ200の一実施形態の切断図を示している。車輪184は、軌道186に直接接触させて載置することができる。軌道186および台車180は、円形とすることができ、車輪184の円形可動域を規定することができる。ベアリング・アセンブリ200は、さらに、1つ以上の板取付け部材182を含むことができ、これらは、可動封止板170(図5では示していない)に機械的に連結されて、封止アクチュエータの動きを可動封止板170に伝えることができる。
次に図6を参照すると、図5のベアリング・アセンブリ200の車輪部分における断面図を示している。車輪184が自由に回転して、円形とすることができる軌道186の方向に動くことができるように、車輪184は台車180に連結されることができる。車輪184は、軌道186と可動封止板170との間で、これらに接触し得る。車輪184によって、可動封止板170が軌道186に対して回転方向に自由に動くことが可能となり得る。
次に図7を参照すると、板取付け部材182を示す、図5のベアリング・アセンブリ200の切断図を示している。板取付け部材182は、軌道186に機械的に連結されることができ、軌道186は、アクチュエータ連結アタッチメント190に機械的に連結されることができる。一実施形態において、アクチュエータ連結アタッチメント190は、封止アクチュエータを構成し得る。例えば、アクチュエータ連結アタッチメント190は、板取付け部材182、台車180、軌道186をz軸方向に動かすこと、および可動封止板170をz軸方向に動かすことが可能な、空気圧式アクチュエータとすることができる。アクチュエータ連結アタッチメント190は、チェンバの真空部分を周囲大気から遮断する真空シールとして機能し得る。一部の実施形態では、アクチュエータ連結アタッチメント190は、ベローズ192を含むことができる。アクチュエータ連結アタッチメント190がz軸方向に動くときに、ベローズ192は、チェンバの真空部分をプラズマ処理チェンバ110の周囲大気領域122から切り離すように機能し得る。
次に図8を参照すると、ベアリング・アセンブリ200の他の実施形態の断面図を示している。このような実施形態では、ベアリング・アセンブリ200は、軌道186に対して横断方向に向いた車輪184を含むことができる。ベアリング・アセンブリ200は、板取付け部材182と、アクチュエータ連結アタッチメント190とを含むことができ、これらはそれぞれ軌道186に連結されている。図8の実施形態では、車輪184は、軌道186の輪郭に適合した溝付きとすることができる。車輪184は、可動封止板170に直接連結されることができる。図8は、可動封止板170に連結された板取付け部材182を示しており、これにより、板取付け部材182は、動きを可動封止板170に伝えることが可能である。このような実施形態では、可動封止板170が車輪184で回転するときに、軌道186および板取付け部材182は、静止したままである。空気圧式アクチュエータなどの封止アクチュエータによってアクチュエータ連結アタッチメント190がz軸方向に動かされるときに、板取付け部材182は、封止板170の横断方向の移動を作動させることなく、封止板170の封止方向の移動を作動させる。
次に図9を参照すると、マルチポート弁アセンブリ160の他の実施形態を示している。一部の実施形態では、マルチポート弁アセンブリ160は、交互配置されたシール延出部193、194、195、196を含むラビリンス設計191を有することができる。一実施形態では、少なくとも1つのシール延出部193、196は、可動封止板170から延出することができ、少なくとも1つのシール延出部194、195は、可動封止板170の封止面に対向するチェンバ部材197から延出することができる。なお、チェンバ部材197または可動封止板170のいずれかから延出し得るシール延出部193、194、195、196の数は、任意とすることができる。一実施形態では、マルチポート弁アセンブリ160は、車輪184の各側にラビリンス設計191を有することができる。ラビリンス設計191は、プラズマ処理チェンバ110の内部領域122からプラズマ処理チェンバ110の外部への粒子の通過、およびプラズマ処理チェンバ110の外部からプラズマ処理チェンバ110の内部領域122への粒子の通過を阻止するように機能し得る。
ラビリンス設計191を有するプラズマ処理装置100の一実施形態では、封止アクチュエータは、可動封止板170、台車180、車輪184、軌道186、シール延出部196、およびシール延出部193の、封止方向の移動を作動させることができる。真空接続壁140、シール延出部194、195、およびチェンバ部材197は、静止したままとなり得る。
一実施形態では、マルチポート弁アセンブリ160の少なくとも一部分を、静電帯電させることができる。本明細書で使用される場合の静電帯電とは、マルチポート弁アセンブリ160の部分を通り抜ける電荷を指す。例えば、一実施形態では、交互配置されたシール延出部193、194、195、196のうちの少なくとも1つを、静電帯電させることができる。電荷は、粒子を引き付けるか、または引き離すように機能し得る。例えば、電荷は、プラズマ処理チェンバ110の内部領域122からプラズマ処理チェンバ110の外部への粒子の通過、およびプラズマ処理チェンバ110の外部からプラズマ処理チェンバ110の内部領域122への粒子の通過を阻止するように機能し得る。
次に図10を参照すると、一実施形態において、横断アクチュエータは、機械的クランク164を含むことができる。機械的クランク164は、封止板170を横断方向に動かすように機能し得る。機械的クランク164は、可動封止板170に連結点165で連結されたクランク軸162を備えることができる。連結点165が可動封止板170のエッジに沿ってスライドすることを可能としながら、連結点165で、機械的クランク164を可動封止板170に機械的に連結することができる。クランク軸162は、回転することで、可動封止板170を横断方向に動かすことができる。162は、回転することで、連結点165を可動封止板170のエッジに沿ってスライドさせて、動きを可動封止板170に伝えることができる。一実施形態では、クランク軸162は、プラズマ処理チェンバ110の外部からプラズマ処理チェンバ110の内部領域122に延出することができる。クランク軸162の回転は、モータまたは他の機械的手段によって制御することができる。
他の実施形態では、横断アクチュエータは、磁気系を含むことができる。例えば、封止板170は、第1の磁性部品を有することができ、これを、プラズマ処理チェンバ110の外側に配置された第2の磁性部品に磁気的に連結することができる。第2の磁性部品の動きによって、可動封止板170の横断方向の移動を作動させることができる。
他の実施形態では、マルチポート弁アセンブリ160は、磁性流体シール174を含むことができる。図11は、磁性流体シール174の一実施形態の断面図を示している。磁性流体シール174は、磁性流体172を含むことができる。一実施形態では、可動封止板170は、板部材178を有することができ、磁性流体172は、可動封止板170の板部材178と、可動封止板170の封止面に対向するチェンバ部材146との間に配置することができる。磁性流体シール174は、磁性液体シール系とすることができ、これを用いて、磁性流体172の形の物理的障壁により気密シールを維持しつつ、可動封止板170を回転させることができる。
他の実施形態では、マルチポート弁アセンブリ160は、磁気アクチュエータ系を含むことができる。磁気アクチュエータ系は、可動封止板170を浮上させるように機能し得る。図12は、浮上式封止板170の一実施形態の断面図を示している。封止板170は、真空接続壁140の形状に沿う輪郭の板部材176を有することができる。可動封止板170は、第1の磁性部品を有することができる。第1の磁性部品は、プラズマ処理チェンバ110の外側に配置された第2の磁性部品に磁気的に連結されることができる。磁気系によって、可動封止板170の横断方向および封止方向の動きを作動させることができる。
このような一実施形態において、横断アクチュエータは、磁気アクチュエータ系を含むことができ、封止アクチュエータは、磁気アクチュエータ系を含むことができる。横断アクチュエータと封止アクチュエータは、同じ磁気アクチュエータ系を含むことができる。図12に示す実施形態では、磁気アクチュエータ系は、可動封止板170を浮上させて、その閉状態から開状態への移動、およびその逆の移動を作動させるように機能する。
種々の実施形態の機械系が、横断方向、封止方向、またはその両方の可動封止板170の動きを作動させ、さらに/または制限するように機能し得るが、理解されるべきことは、これらは例示的なものであって、可動封止板170を、閉状態と部分開状態と開状態との間で移行させるために、他の機械的実施形態を用いてもよいということである。
なお、留意すべきことは、「実質的に(substantially)」および「約(about)」という用語は、本明細書では、定量的な比較、値、測定、または他の表現に帰することができる不確実性の固有の度合いを表すために使用されることがあるということである。また、これらの用語は、本明細書において、定量的表現が、当該の主題の基本的機能の変化を伴うことなく、記載の基準から外れ得る度合いを表すためにも使用される。
特許請求の対象範囲から逸脱することなく、本明細書に記載の実施形態に対して種々の変形および変更を実施することができる。従って、本明細書は、本明細書に記載の種々の実施形態の変形および変更を、かかる変形および変更が添付の請求項およびそれらの均等物の範囲内にある限りにおいて、包含する。

Claims (20)

  1. プラズマ処理チェンバと、プラズマ電極アセンブリと、ウェハステージと、プラズマ生成ガス導入口と、複数の真空ポートと、少なくとも1つの真空ポンプと、マルチポート弁アセンブリと、を備えるプラズマ処理装置において、
    前記プラズマ電極アセンブリおよび前記ウェハステージは、前記プラズマ処理チェンバ内に配置されており、
    前記プラズマ生成ガス導入口は、前記プラズマ処理チェンバと流体連通しており、
    前記真空ポンプは、前記真空ポートのうちの少なくとも1つを介して、前記プラズマ処理チェンバと流体連通しており、
    前記マルチポート弁アセンブリは、前記プラズマ処理チェンバ内に配置されている可動封止板を含み、
    前記可動封止板は、閉状態では前記複数の真空ポートと完全にオーバラップし、部分開状態では前記複数の真空ポートと部分的にオーバラップし、開状態では前記複数の真空ポートと略オーバラップしないような、形状および大きさになっている、横断ポート封止面を有し、
    前記マルチポート弁アセンブリは、前記可動封止板に連結されている横断アクチュエータを含み、前記横断アクチュエータは、閉状態と部分開状態と開状態との間で前記可動封止板を前記可動封止板の封止面に主に沿った向きである横断方向に移行させるのに十分な作動の横断範囲を規定しており、
    前記マルチポート弁アセンブリは、前記可動封止板に連結されている封止アクチュエータを含み、前記封止アクチュエータは、封止状態と非封止状態との間で前記可動封止板を前記可動封止板の封止面に対して主に垂直な方向を向く封止係合/解除パスに沿って往復で移行させるのに十分な作動の封止範囲を規定している、プラズマ処理装置。
  2. 前記横断アクチュエータは、回転動アクチュエータを含み、前記可動封止板は、中心軸を有する回転可動封止板を含む、請求項1に記載のプラズマ処理装置。
  3. 前記回転可動封止板は、複数の封止ローブを含み、
    前記封止ローブは、対応する個々の真空ポートとオーバラップするような、大きさおよび相互の相対位置になっている、請求項2に記載のプラズマ処理装置。
  4. 前記可動封止板は、複数の真空ポートとオーバラップすることができる、請求項2に記載のプラズマ処理装置。
  5. 前記マルチポート弁アセンブリは、さらに、前記横断方向、前記封止係合/解除パスの方向、またはその両方の、前記可動封止板の動きを制限するように機能するベアリング・アセンブリを含む、請求項1に記載のプラズマ処理装置。
  6. 前記ベアリング・アセンブリは、軌道と、車輪を有する台車と、を含み、前記車輪は、前記軌道と前記可動封止板とに接触して、これらの間に配置されている、請求項5に記載のプラズマ処理装置。
  7. 前記マルチポート弁アセンブリの少なくとも一部分は、静電帯電される、請求項1に記載のプラズマ処理装置。
  8. 前記マルチポート弁アセンブリは、交互配置されたシール延出部を含むラビリンス設計を有し、少なくとも1つのシール延出部は、前記可動封止板から延出し、少なくとも1つのシール延出部は、前記可動封止板の封止面に対向するチェンバ部材から延出している、請求項1に記載のプラズマ処理装置。
  9. 前記交互配置されたシール延出部のうちの少なくとも1つは、静電帯電される、請求項8に記載のプラズマ処理装置。
  10. 前記マルチポート弁アセンブリは、前記可動封止板と、前記可動封止板の封止面に対向するチェンバ部材と、の間に配置されている磁性流体を含む磁性流体シールを備える、請求項1に記載のプラズマ処理装置。
  11. 前記横断アクチュエータは、磁気アクチュエータ系を含む、請求項1に記載のプラズマ処理装置。
  12. 前記横断アクチュエータは、前記可動封止板に連結されているクランク軸を有する機械的クランクを含み、
    前記クランク軸は、回転することで、前記可動封止板を横断方向に動かし、
    前記クランク軸は、前記プラズマ処理チェンバの外部から前記プラズマ処理チェンバの内部に延出している、請求項1に記載のプラズマ処理装置。
  13. 前記横断アクチュエータおよび前記封止アクチュエータは、磁気アクチュエータ系を含む、請求項1に記載のプラズマ処理装置。
  14. 前記磁気アクチュエータ系は、前記可動封止板を浮上させるように機能する、請求項13に記載のプラズマ処理装置。
  15. 前記プラズマ処理装置は、さらに、各真空ポートの周りに配置されたOリングを有し、前記可動封止板が閉状態にあるときに、前記可動封止板は各Oリングと直接接触する、請求項1に記載のプラズマ処理装置。
  16. プラズマ処理チェンバと、プラズマ電極アセンブリと、ウェハステージと、プラズマ生成ガス導入口と、複数の真空ポートと、少なくとも1つの真空ポンプと、マルチポート弁アセンブリと、を備えるプラズマ処理装置において、
    前記プラズマ電極アセンブリおよび前記ウェハステージは、前記プラズマ処理チェンバ内に配置されており、
    前記プラズマ生成ガス導入口は、前記プラズマ処理チェンバと流体連通しており、
    前記真空ポンプは、前記真空ポートのうちの少なくとも1つを介して、前記プラズマ処理チェンバと流体連通しており、
    前記マルチポート弁アセンブリは、前記プラズマ処理チェンバ内に配置されている可動封止板を含み、
    前記可動封止板は、閉状態では前記複数の真空ポートと完全にオーバラップし、部分開状態では前記複数の真空ポートと部分的にオーバラップし、開状態では前記複数の真空ポートと略オーバラップしないような、形状および大きさである、横断ポート封止面を有し、
    前記マルチポート弁アセンブリは、前記可動封止板に連結されている横断アクチュエータを含み、前記横断アクチュエータは、閉状態と部分開状態と開状態との間で前記可動封止板を前記可動封止板の封止面に主に沿った向きである横断方向に移行させるのに十分な作動の横断範囲を規定しており、
    前記横断アクチュエータは、回転動アクチュエータを含み、前記可動封止板は、中心軸を有する回転可動封止板を含み、
    前記マルチポート弁アセンブリは、前記可動封止板に連結されている封止アクチュエータを含み、前記封止アクチュエータは、封止状態と非封止状態との間で前記可動封止板を前記可動封止板の封止面に対して主に垂直な方向を向く封止係合/解除パスに沿って往復で移行させるのに十分な作動の封止範囲を規定している、プラズマ処理装置。
  17. 前記マルチポート弁アセンブリは、さらに、前記横断方向、前記封止係合/解除パスの方向、またはその両方の、前記可動封止板の動きを制限するように機能するベアリング・アセンブリを含む、請求項16に記載のプラズマ処理装置。
  18. 前記ベアリング・アセンブリは、軌道と、車輪を有する台車と、を含み、前記車輪は、前記軌道と前記可動封止板とに接触して、これらの間に配置されている、請求項17に記載のプラズマ処理装置。
  19. 前記マルチポート弁アセンブリの少なくとも一部分は、静電帯電される、請求項16に記載のプラズマ処理装置。
  20. 前記マルチポート弁アセンブリは、交互配置されたシール延出部を含むラビリンス設計を有し、少なくとも1つのシール延出部は、前記可動封止板から延出し、少なくとも1つのシール延出部は、前記可動封止板の封止面に対向するチェンバ部材から延出している、請求項16に記載のプラズマ処理装置。
JP2014159292A 2013-08-13 2014-08-05 マルチポート弁アセンブリを備えるプラズマ処理装置 Active JP6508895B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/965,796 US20150047785A1 (en) 2013-08-13 2013-08-13 Plasma Processing Devices Having Multi-Port Valve Assemblies
US13/965,796 2013-08-13

Publications (3)

Publication Number Publication Date
JP2015043420A true JP2015043420A (ja) 2015-03-05
JP2015043420A5 JP2015043420A5 (ja) 2015-04-23
JP6508895B2 JP6508895B2 (ja) 2019-05-08

Family

ID=52465964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014159292A Active JP6508895B2 (ja) 2013-08-13 2014-08-05 マルチポート弁アセンブリを備えるプラズマ処理装置

Country Status (4)

Country Link
US (1) US20150047785A1 (ja)
JP (1) JP6508895B2 (ja)
KR (1) KR20150020120A (ja)
TW (1) TWI659444B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10049862B2 (en) * 2015-04-17 2018-08-14 Lam Research Corporation Chamber with vertical support stem for symmetric conductance and RF delivery
TW202101638A (zh) * 2019-03-15 2021-01-01 美商蘭姆研究公司 用於蝕刻反應器的渦輪分子泵及陰極組件
US11199267B2 (en) * 2019-08-16 2021-12-14 Applied Materials, Inc. Symmetric flow valve for higher flow conductance
JP2021039880A (ja) 2019-09-03 2021-03-11 株式会社日立ハイテク 荷電粒子線装置

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198261A (en) * 1981-05-29 1982-12-04 Fuji Xerox Co Ltd Vapor depositing device
US4516606A (en) * 1983-02-16 1985-05-14 Exxon Research And Engineering Co. Variable orifice valve assembly
JPS62112790A (ja) * 1985-11-09 1987-05-23 Anelva Corp 集塵装置付薄膜処理装置
US5000225A (en) * 1989-11-17 1991-03-19 Applied Materials, Inc. Low profile, combination throttle/gate valve for a multi-pump chamber
JPH043927A (ja) * 1990-04-20 1992-01-08 Mitsubishi Electric Corp 半導体処理装置
JPH07106307A (ja) * 1993-10-07 1995-04-21 Mitsubishi Electric Corp プラズマ処理装置およびプラズマ処理方法
JPH09213689A (ja) * 1996-02-01 1997-08-15 Canon Sales Co Inc プラズマ処理装置
JPH10321604A (ja) * 1997-05-22 1998-12-04 Nec Kyushu Ltd プラズマ処理装置
JPH1154496A (ja) * 1997-08-07 1999-02-26 Tokyo Electron Ltd 熱処理装置及びガス処理装置
US5997589A (en) * 1998-07-09 1999-12-07 Winbond Electronics Corp. Adjustment pumping plate design for the chamber of semiconductor equipment
JP2000216105A (ja) * 1999-01-26 2000-08-04 Tokyo Electron Ltd 縦型熱処理装置
JP2003525412A (ja) * 2000-03-02 2003-08-26 ドッツ.イング.マリオ コッツァーニ エス.アール.エル. コンンプレッサなどの大断面積流れの制御用の弁
US20060162656A1 (en) * 2002-07-31 2006-07-27 Tokyo Electron Limited Reduced volume, high conductance process chamber
JP2007191728A (ja) * 2006-01-17 2007-08-02 Ulvac Japan Ltd 真空処理装置
JP2010003958A (ja) * 2008-06-23 2010-01-07 Tokyo Electron Ltd バッフル板及び基板処理装置
JP2010514216A (ja) * 2006-12-20 2010-04-30 ラム リサーチ コーポレーション 容量結合プラズマプロセスチャンバにおけるガスフローコンダクタンス制御のための装置および方法
JP2010186891A (ja) * 2009-02-12 2010-08-26 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理装置のメンテナンス方法及びプラズマ処理装置の組み立て方法
JP2012503338A (ja) * 2008-09-19 2012-02-02 アプライド マテリアルズ インコーポレイテッド 複数のプロセシングレベルおよび2軸モータ付きリフト機構を具備するcvd反応装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330703B2 (ja) * 1999-06-18 2009-09-16 東京エレクトロン株式会社 搬送モジュール及びクラスターシステム
US6261408B1 (en) * 2000-02-16 2001-07-17 Applied Materials, Inc. Method and apparatus for semiconductor processing chamber pressure control
US6531069B1 (en) * 2000-06-22 2003-03-11 International Business Machines Corporation Reactive Ion Etching chamber design for flip chip interconnections
TWI261313B (en) * 2005-07-29 2006-09-01 Ind Tech Res Inst A method for a large dimension plasma enhanced atomic layer deposition cavity and an apparatus thereof
WO2008038940A1 (en) * 2006-09-27 2008-04-03 Ats Engineering Co., Ltd. Gate valve
KR20110022036A (ko) * 2008-06-02 2011-03-04 맷슨 테크놀로지, 인크. 기판 처리방법
CN109300806B (zh) * 2010-12-29 2022-04-15 瑞士艾发科技 真空处理设备

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198261A (en) * 1981-05-29 1982-12-04 Fuji Xerox Co Ltd Vapor depositing device
US4516606A (en) * 1983-02-16 1985-05-14 Exxon Research And Engineering Co. Variable orifice valve assembly
JPS62112790A (ja) * 1985-11-09 1987-05-23 Anelva Corp 集塵装置付薄膜処理装置
US5000225A (en) * 1989-11-17 1991-03-19 Applied Materials, Inc. Low profile, combination throttle/gate valve for a multi-pump chamber
JPH043927A (ja) * 1990-04-20 1992-01-08 Mitsubishi Electric Corp 半導体処理装置
JPH07106307A (ja) * 1993-10-07 1995-04-21 Mitsubishi Electric Corp プラズマ処理装置およびプラズマ処理方法
JPH09213689A (ja) * 1996-02-01 1997-08-15 Canon Sales Co Inc プラズマ処理装置
JPH10321604A (ja) * 1997-05-22 1998-12-04 Nec Kyushu Ltd プラズマ処理装置
JPH1154496A (ja) * 1997-08-07 1999-02-26 Tokyo Electron Ltd 熱処理装置及びガス処理装置
US5997589A (en) * 1998-07-09 1999-12-07 Winbond Electronics Corp. Adjustment pumping plate design for the chamber of semiconductor equipment
JP2000216105A (ja) * 1999-01-26 2000-08-04 Tokyo Electron Ltd 縦型熱処理装置
JP2003525412A (ja) * 2000-03-02 2003-08-26 ドッツ.イング.マリオ コッツァーニ エス.アール.エル. コンンプレッサなどの大断面積流れの制御用の弁
US20060162656A1 (en) * 2002-07-31 2006-07-27 Tokyo Electron Limited Reduced volume, high conductance process chamber
JP2007191728A (ja) * 2006-01-17 2007-08-02 Ulvac Japan Ltd 真空処理装置
JP2010514216A (ja) * 2006-12-20 2010-04-30 ラム リサーチ コーポレーション 容量結合プラズマプロセスチャンバにおけるガスフローコンダクタンス制御のための装置および方法
JP2010003958A (ja) * 2008-06-23 2010-01-07 Tokyo Electron Ltd バッフル板及び基板処理装置
JP2012503338A (ja) * 2008-09-19 2012-02-02 アプライド マテリアルズ インコーポレイテッド 複数のプロセシングレベルおよび2軸モータ付きリフト機構を具備するcvd反応装置
JP2010186891A (ja) * 2009-02-12 2010-08-26 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理装置のメンテナンス方法及びプラズマ処理装置の組み立て方法

Also Published As

Publication number Publication date
JP6508895B2 (ja) 2019-05-08
TWI659444B (zh) 2019-05-11
KR20150020120A (ko) 2015-02-25
US20150047785A1 (en) 2015-02-19
TW201521076A (zh) 2015-06-01

Similar Documents

Publication Publication Date Title
JP2015043420A (ja) マルチポート弁アセンブリを備えるプラズマ処理装置
CN102900861B (zh) 用于基本上气密截断流动路径的阀门
US11268630B2 (en) Direct-drive flexure-mechanism vacuum control valve
TW201340231A (zh) 雙向閘閥及具有雙向閘閥的基板處理系統
US9752703B2 (en) Methods and apparatus to reduce shock in a slit valve door
US20200273677A1 (en) Closure mechanism vacuum chamber isolation device and sub-system
JP2015043420A5 (ja)
KR101494307B1 (ko) 다양한 형태의 진공장치에 설치가 가능한 진공 게이트밸브
KR20190093693A (ko) 공간적 ald 프로세스 균일성을 개선하기 위한 웨이퍼 회전을 위한 장치 및 방법들
JP2948216B1 (ja) 複数軸動力伝達装置およびウエハ搬送用アームリンク
CN204481006U (zh) 一种用于腔室门的密封装置
CN103602956B (zh) 一种真空沉积系统及其旋转馈入装置
US20180323041A1 (en) Plasma processing devices having multi-port valve assemblies
JP2005180535A (ja) バルブ、真空用バルブ及び真空容器
JP7419115B2 (ja) 処理装置と切換バルブユニット
KR101055225B1 (ko) 마그넷 셔터 및 이를 이용한 기판처리장치
KR101765249B1 (ko) 증착장치
JPH11888A (ja) マニプレータ装置
TW201600748A (zh) 密封軸承組件
TWI484531B (zh) 閥門總成以及閥門
US9520312B2 (en) System and method for moving workpieces between multiple vacuum environments
CN104109847A (zh) 一种反应腔室及等离子体加工设备
JP3206604U (ja) 回転式開閉バルブ
KR101779654B1 (ko) 진공 게이트밸브
KR20170044018A (ko) 멀티-포트 밸브 어셈블리들을 가진 플라즈마 프로세싱 디바이스들

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190402

R150 Certificate of patent or registration of utility model

Ref document number: 6508895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250