JP2015041652A - Cutting method of wafer laminate for image sensor - Google Patents

Cutting method of wafer laminate for image sensor Download PDF

Info

Publication number
JP2015041652A
JP2015041652A JP2013170863A JP2013170863A JP2015041652A JP 2015041652 A JP2015041652 A JP 2015041652A JP 2013170863 A JP2013170863 A JP 2013170863A JP 2013170863 A JP2013170863 A JP 2013170863A JP 2015041652 A JP2015041652 A JP 2015041652A
Authority
JP
Japan
Prior art keywords
wafer
cutting
image sensor
silicon wafer
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013170863A
Other languages
Japanese (ja)
Other versions
JP6140030B2 (en
Inventor
剛博 上村
Takehiro Kamimura
剛博 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Diamond Industrial Co Ltd
Original Assignee
Mitsuboshi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co Ltd filed Critical Mitsuboshi Diamond Industrial Co Ltd
Priority to JP2013170863A priority Critical patent/JP6140030B2/en
Priority to TW103114168A priority patent/TWI615254B/en
Priority to KR1020140082926A priority patent/KR102176459B1/en
Priority to CN201410345791.1A priority patent/CN104425527B/en
Publication of JP2015041652A publication Critical patent/JP2015041652A/en
Application granted granted Critical
Publication of JP6140030B2 publication Critical patent/JP6140030B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dicing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting method of an image sensor wafer package which allows for clear cutting effectively by a simple dry technique, without using a dicing saw.SOLUTION: In a cutting method of a wafer laminate W for image sensor having a structure where a glass wafer 1 and a silicon wafer 2 are bonded via a resin layer 4 arranged to surround each photodiode forming region, a scribe line S consisting of a crack penetrating in the thickness direction is formed, by rolling a scribing wheel 10, while pressing, along a cutting line on the upper surface of the glass wafer. Subsequently, the wafer laminate is deflected by pressing a break bar 14 from the lower surface side of the silicon wafer along the scribe line, thus cutting the silicon wafer along with the glass wafer.

Description

本発明は、CMOSイメージセンサのウエハレベルパッケージがパターン形成されたウエハ積層体を個片化するための分断方法に関する。   The present invention relates to a cutting method for separating a wafer laminate in which a wafer level package of a CMOS image sensor is patterned.

近年、低電力、高機能、高集積化が重要視されるモバイルフォン、デジタルカメラ、光マウス等の各種小型電子機器分野において、CMOSイメージセンサの使用が急増している。   In recent years, the use of CMOS image sensors has been rapidly increasing in various small electronic devices such as mobile phones, digital cameras, and optical mice where low power, high functionality, and high integration are important.

図5は、CMOSイメージセンサのウエハレベルパッケージ(チップサイズの単位製品)W1の構成例を概略的に示す断面図である。ウエハレベルパッケージW1は、(個片化された)ガラスウエハ1と(個片化された)シリコンウエハ2とが樹脂隔壁4を挟んで接合された積層構造を有している。
シリコンウエハ2の上面(接合面側)にはフォトダイオード領域(センシング領域)3が形成され、その周囲を樹脂隔壁4が格子状に取り囲むように配置することで、フォトダイオード領域3が設けられた内側空間が気密状態になるようにしてある。さらに、(フォトダイオード領域3の外側の)シリコンウエハ2の上面には金属パッド5が形成され、この金属パッド5が形成された部分の直下にはシリコンウエハ2を上下に貫通するビア(貫通孔)6が形成されている。ビア6には電気的導電性に優れた導電材7が充填され、ビア6下端にははんだバンプ8が形成されている。このように、ビア6を形成するとともに導電材7を充填して電気的接続を行う構成をTSV(Through Silicon Via)という。
なお、上記したはんだバンプ8の下面に、所定の電気回路がパターニングされたPCB基板など(図示略)が接合される。
FIG. 5 is a sectional view schematically showing a configuration example of a wafer level package (chip size unit product) W1 of the CMOS image sensor. The wafer level package W1 has a laminated structure in which a (separated) glass wafer 1 and a (separated) silicon wafer 2 are bonded with a resin partition 4 interposed therebetween.
A photodiode region (sensing region) 3 is formed on the upper surface (joint surface side) of the silicon wafer 2, and the photodiode region 3 is provided by arranging the periphery so that the resin partition 4 surrounds in a lattice shape. The inner space is made airtight. Further, a metal pad 5 is formed on the upper surface of the silicon wafer 2 (outside the photodiode region 3), and a via (through hole) penetrating the silicon wafer 2 vertically below the portion where the metal pad 5 is formed. ) 6 is formed. The via 6 is filled with a conductive material 7 having excellent electrical conductivity, and a solder bump 8 is formed at the lower end of the via 6. The structure in which the via 6 is formed and the conductive material 7 is filled to make electrical connection is referred to as TSV (Through Silicon Via).
A PCB substrate or the like (not shown) on which a predetermined electric circuit is patterned is bonded to the lower surface of the solder bump 8 described above.

チップサイズの単位製品であるウエハレベルパッケージW1は、図6並びに図7に示すように、母体となる大面積のガラスウエハ1と大面積のシリコンウエハ2とが樹脂隔壁4を介して接合されたウエハ積層体Wの上に、X−Y方向に延びる分断予定ラインLで格子状に区分けされて多数個がパターン形成されており、このウエハ積層体Wが当該分断予定ラインLに沿って分断されることにより、(個片化された)チップサイズのウエハレベルパッケージW1となる。   As shown in FIGS. 6 and 7, the wafer level package W <b> 1 which is a chip-sized unit product is obtained by bonding a large-area glass wafer 1 as a base and a large-area silicon wafer 2 through a resin partition 4. On the wafer stack W, a large number of patterns are formed by being divided into a lattice pattern by dividing lines L extending in the XY direction, and the wafer stack W is divided along the scheduled cutting lines L. Thus, the wafer level package W1 having a chip size (separated) is obtained.

ところで、シリコンウエハを分断してウエハレベルパッケージの製品にする加工では、CMOSイメージセンサ用を含め、従来から、特許文献1〜特許文献4に示すようなダイシングソーが用いられている。ダイシングソーは、高速回転する回転ブレードを備え、回転ブレードの冷却と切削時に発生する切削屑を洗浄する切削液を回転ブレードに噴射しながら切削するように構成されている。   By the way, dicing saws as shown in Patent Documents 1 to 4 have been used in the past, including those for CMOS image sensors, in the process of dividing a silicon wafer into a product of a wafer level package. The dicing saw includes a rotating blade that rotates at a high speed, and is configured to perform cutting while spraying a cutting fluid that cools the rotating blade and cleans cutting waste generated during cutting onto the rotating blade.

特開平5−090403号公報JP-A-5-090403 特開平6−244279号公報JP-A-6-244279 特開2002−224929号公報JP 2002-224929 A 特開2003−051464号公報JP 2003-051464 A

上記したダイシングソーは、回転ブレードを用いた切削による分断であるため、切削屑が多量に発生し、たとえ切削液で洗浄したとしても、切削液の一部が残留したり、或いは切削時の飛散により切削屑がパッケージ表面に付着することがあって、品質や歩留まりの低下の大きな原因となる。また、切削液の供給や廃液回収のための機構や配管を必要とするため装置が大掛かりとなる。加えて、切削によってガラスウエハを分断するものであるから、切削面に小さなチッピング(欠け)が発生することが多く、きれいな分断面を得ることができない。また、高速回転する回転ブレードの刃先はノコ歯状で形成されているため、刃先の摩耗や破損が生じやすく使用寿命が短い。さらに、回転ブレードの厚みは強度の面からあまり薄くすることができず、小径のものであっても60μm以上の厚みで形成されているので、切削幅がそれだけ必要となって材料の有効利用が制限される要因の一つにもなるなどの問題点があった。   Since the above-mentioned dicing saw is divided by cutting using a rotating blade, a large amount of cutting waste is generated, and even if the cutting fluid is cleaned with cutting fluid, a part of the cutting fluid remains or is scattered during cutting. As a result, cutting scraps may adhere to the package surface, which is a major cause of deterioration in quality and yield. Further, since a mechanism and piping for supplying the cutting fluid and collecting the waste fluid are required, the apparatus becomes large. In addition, since the glass wafer is cut by cutting, small chipping (chips) often occurs on the cut surface, and a clean cut section cannot be obtained. Further, since the blade edge of the rotating blade rotating at high speed is formed in a sawtooth shape, the blade edge is likely to be worn or damaged, and the service life is short. Furthermore, the thickness of the rotating blade cannot be made very thin from the viewpoint of strength, and even if it has a small diameter, it is formed with a thickness of 60 μm or more. There were problems such as being one of the limiting factors.

そこで本発明は、上記した従来課題の解決を図り、ダイシングソーを用いることなく、ドライ方式の簡単な手法で効果的に、かつ、きれいに分断することができるイメージセンサウエハ・パッケージの分断方法を提供することを目的とする。   Accordingly, the present invention provides a method for dividing an image sensor wafer package that solves the above-described conventional problems and can be divided effectively and cleanly by a simple dry method without using a dicing saw. The purpose is to do.

上記目的を達成するために本発明では次のような技術的手段を講じた。すなわち本発明は、ガラスウエハと、複数のフォトダイオード形成領域が縦横にパターン形成されたシリコンウエハとが、前記各フォトダイオード形成領域を囲むように配置された樹脂層を介して貼り合わされた構造を有するイメージセンサ用のウエハ積層体の分断方法であって、円周稜線に沿って刃先を有するスクライビングホイールを、前記ガラスウエハの上面の分断予定ラインに沿って押圧しながら転動させることによって、厚み方向に浸透するクラックからなるスクライブラインを形成し、次いで、前記シリコンウエハの下面側から前記スクライブラインに沿ってブレイクバーを押圧することにより、前記ウエハ積層体を撓ませてガラスウエハのクラックをさらに浸透させてガラスウエハを分断するとともにシリコンウエハも分断するようにしている。   In order to achieve the above object, the present invention takes the following technical means. That is, the present invention has a structure in which a glass wafer and a silicon wafer in which a plurality of photodiode formation regions are patterned vertically and horizontally are bonded together via a resin layer disposed so as to surround each photodiode formation region. A method for dividing a wafer laminate for an image sensor having a thickness by rolling a scribing wheel having a cutting edge along a circumferential ridge line while pressing along a scheduled cutting line on the upper surface of the glass wafer. Forming a scribe line consisting of cracks penetrating in the direction, and then pressing a break bar along the scribe line from the lower surface side of the silicon wafer to further flex the wafer laminated body to further crack the glass wafer Infiltrate to cut glass wafer and silicon wafer It is way.

本発明によれば、ブレイクバーによる分断時に、ガラスウエハのクラックが厚み方向に浸透して分断されるものであるから、従来のダイシングソーの切削による場合のような切削幅を必要とせず、材料を有効利用することができるとともに、チッピングなどの発生を抑制することができてきれいな切断面で分断することができる。また、切削屑が生じないので、切削屑の付着による品質の劣化や不良品の発生をなくすことができる。
特に本発明では、従来のダイシングソーのような切削液を使用せず、ドライ環境下で分断するものであるから、切削液の供給や廃液回収のための機構や配管を省略でき、かつ、切断後の洗浄や乾燥工程も省略できて装置をコンパクトに構成することができるといった効果がある。
According to the present invention, since the crack of the glass wafer penetrates in the thickness direction and is divided when divided by the break bar, the material does not require a cutting width as in the case of cutting of a conventional dicing saw, Can be effectively used, and the occurrence of chipping and the like can be suppressed, so that it can be cut with a clean cut surface. Moreover, since no cutting waste is generated, it is possible to eliminate the deterioration of quality and the generation of defective products due to the attachment of the cutting waste.
In particular, in the present invention, the cutting fluid such as a conventional dicing saw is not used, and the cutting is performed in a dry environment. Therefore, the mechanism and piping for supplying the cutting fluid and collecting the waste fluid can be omitted, and the cutting is performed. Subsequent washing and drying steps can be omitted, and the apparatus can be configured compactly.

上記分断方法において、前記シリコンウエハの下面には、前記ガラスウエハ上面の前記分断予定ラインの位置の裏となる位置に、切溝を予め形成してからブレイクバーを押圧するようにしてもよい。
これにより、前記ブレイクバーによるガラスウエハ分断時にシリコンウエハも前記溝から容易に、かつ、きれいな分断面で分断することができる。
なお、TSVが形成されるウエハ積層体では、当該TSVのビアを加工する工程の際に前記切溝も形成することで、切溝の加工工程を簡略化することができる。
In the above-described dividing method, a cut groove may be formed in advance on the lower surface of the silicon wafer at a position behind the position of the scheduled cutting line on the upper surface of the glass wafer, and then the break bar may be pressed.
Thereby, the silicon wafer can be easily cut from the groove with a clean cut section when the glass wafer is cut by the break bar.
In the wafer stack in which the TSV is formed, the kerf processing step can be simplified by forming the kerf during the process of processing the via of the TSV.

本発明の分断方法の第一段階を示す図。The figure which shows the 1st step of the cutting method of this invention. 本発明の分断方法の第二段階を示す図。The figure which shows the 2nd step of the cutting method of this invention. 図2の別実施例を示す図。The figure which shows another Example of FIG. 本発明で使用されるスクライビングホイールとそのホルダ部分を示す図。The figure which shows the scribing wheel used by this invention, and its holder part. CMOSイメージセンサ用のウエハレベルパッケージの一例を示す断面図。Sectional drawing which shows an example of the wafer level package for CMOS image sensors. 母材となるCMOSイメージセンサ用ウエハ積層体の一部を示す断面図。Sectional drawing which shows a part of wafer laminated body for CMOS image sensors used as a base material. 図6のCMOSイメージセンサ用ウエハ積層体を示す概略的な平面図。FIG. 7 is a schematic plan view showing the CMOS image sensor wafer laminate of FIG. 6.

以下、本発明に係るイメージセンサ用のウエハ積層体の分断方法の詳細を、図面に基づいて説明する。
図1は本発明の分断方法の第一段階である、加工対象となるCMOSイメージセンサ用のウエハ積層体Wの一部断面を示すものである。ウエハ積層体Wの構造は、上述した図5〜図7に示したものと基本的に同じ構造である。
すなわち、母体となる大面積(例えば直径8インチ)のガラスウエハ1と、その下面側に配置されるシリコンウエハ2とが、格子状の樹脂隔壁4を介して接合される。
シリコンウエハ2の上面(接合面側)にはフォトダイオード形成領域(センシング領域)3が設けられている。フォトダイオード形成領域3にはフォトダイオードアレイが形成されており、イメージセンサの受光面として機能する。そして、フォトダイオード形成領域3近傍には、金属パッド5が形成され、この金属パッド5が形成された部分の直下にはシリコンウエハ2を上下に貫通するビア(貫通孔)6が形成されている。ビア6には電気的導電性に優れた導電材7が充填され(TSV)、ビア6下端にははんだバンプ8が形成されている。なお、上記したはんだバンプ8の下面に、所定の電気回路がパターニングされたPCB基板など(図示略)が接合される。
このCMOSイメージセンサ用ウエハ積層体Wは、図7に示したようにX−Y方向に延びる格子状の分断予定ラインLに沿って分断されることにより個片化され、チップサイズの単位製品であるウエハレベルパッケージW1が取り出されることになる。
Hereinafter, details of the method for dividing a wafer laminate for an image sensor according to the present invention will be described with reference to the drawings.
FIG. 1 shows a partial cross section of a wafer laminate W for a CMOS image sensor to be processed, which is the first stage of the cutting method of the present invention. The structure of the wafer stack W is basically the same as that shown in FIGS.
That is, a large-area glass wafer 1 (for example, 8 inches in diameter) serving as a base and a silicon wafer 2 disposed on the lower surface side of the glass wafer 1 are bonded via a lattice-shaped resin partition 4.
A photodiode formation region (sensing region) 3 is provided on the upper surface (bonding surface side) of the silicon wafer 2. A photodiode array is formed in the photodiode formation region 3 and functions as a light receiving surface of the image sensor. A metal pad 5 is formed in the vicinity of the photodiode forming region 3, and a via (through hole) 6 penetrating the silicon wafer 2 vertically is formed immediately below the portion where the metal pad 5 is formed. . The via 6 is filled with a conductive material 7 having excellent electrical conductivity (TSV), and a solder bump 8 is formed at the lower end of the via 6. A PCB substrate or the like (not shown) on which a predetermined electric circuit is patterned is bonded to the lower surface of the solder bump 8 described above.
As shown in FIG. 7, the CMOS image sensor wafer laminated body W is divided into pieces by being cut along a grid-like cutting planned line L extending in the XY direction, and is a chip-sized unit product. A certain wafer level package W1 is taken out.

次に分断加工手順について説明する。ウエハ積層体Wを分断予定ラインLに沿って分断する際に、最初に、図4に示すようなスクライビングホイール10を用いてガラスウエハ1の表面にクラック(厚み方向に浸透する亀裂)からなるスクライブラインを加工する。
スクライビングホイール10は、超硬合金や焼結ダイヤモンドなどの工具特性に優れた材料で形成されており、円周稜線(外周面)に刃先10aが形成されている。具体的には直径が1〜6mm、好ましくは1.5〜4mmで刃先角度が85〜150度、好ましくは105〜140度のものを使用するのが好ましいが、加工されるガラスウエハ1の厚みや種類に応じて適宜選択される。
このスクライビングホイール10は、ホルダ11に回転可能に支持され、昇降機構12を介してスクライブヘッド(図示略)に保持される。スクライブヘッドは、ウエハ積層体Wを水平に載置する台板(図示略)の上方で分断予定ラインLの方向に沿って移動できるように形成されている。
そして図1に示すように、スクライビングホイール10を、ガラスウエハ1の表面で分断予定ラインに沿って押圧しながら転動させることにより、ガラスウエハ1にクラックからなるスクライブラインSを形成する。このスクライブラインSは、ガラスウエハ1の厚みの半分程度まで浸透するクラックとして形成されるようにするのが好ましい。なお、スクライブラインSはウエハレベルパッケージW1の樹脂隔壁4の外側に形成される。
Next, a parting procedure will be described. When the wafer stack W is cut along the line L to be cut, first, a scribe consisting of cracks (cracks penetrating in the thickness direction) on the surface of the glass wafer 1 using a scribing wheel 10 as shown in FIG. Process the line.
The scribing wheel 10 is formed of a material having excellent tool characteristics such as cemented carbide or sintered diamond, and a cutting edge 10a is formed on a circumferential ridgeline (outer peripheral surface). Specifically, it is preferable to use one having a diameter of 1 to 6 mm, preferably 1.5 to 4 mm, and a cutting edge angle of 85 to 150 degrees, preferably 105 to 140 degrees. It is appropriately selected according to the type.
The scribing wheel 10 is rotatably supported by a holder 11 and is held by a scribe head (not shown) via an elevating mechanism 12. The scribe head is formed so as to be movable in the direction of the division line L above a base plate (not shown) on which the wafer stack W is horizontally placed.
As shown in FIG. 1, a scribe line S composed of cracks is formed on the glass wafer 1 by rolling the scribing wheel 10 while pressing the scribing wheel 10 along the planned dividing line on the surface of the glass wafer 1. The scribe line S is preferably formed as a crack that penetrates to about half the thickness of the glass wafer 1. The scribe line S is formed outside the resin partition 4 of the wafer level package W1.

次いで、図2に示す第二段階で基板(ウエハ積層体W)を反転し、ガラスウエハ1の外側面(接合面側とは反対面)で、スクライブラインSを挟むようにその両脇に沿って延びる左右一対の受台13、13を配置し、シリコンウエハ2の外面側(接合面とは反対面)からスクライブラインSに向けて長尺のブレイクバー14を押しつける。この場合、スクライブラインSに相対するシリコンウエハ2の外側面(接合面とは反対面)にも分断予定ラインLに沿って予め溝15を加工しておくのがよい。この溝15は、例えばウエハ積層体Wのシリコンウエハ2に対し、ビア6をRIEなどの溝加工技術で加工するときに、同じ加工技術を利用して同時に形成するようにすれば、効率的に加工することができる。   Next, the substrate (wafer stack W) is reversed in the second stage shown in FIG. 2, and along the both sides so that the scribe line S is sandwiched between the outer surface of the glass wafer 1 (the surface opposite to the bonding surface). A pair of left and right receiving bases 13, 13 are arranged, and a long break bar 14 is pressed toward the scribe line S from the outer surface side (surface opposite to the bonding surface) of the silicon wafer 2. In this case, the groove 15 is preferably processed in advance along the line L to be divided on the outer surface (the surface opposite to the bonding surface) of the silicon wafer 2 facing the scribe line S. For example, when the vias 6 are formed on the silicon wafer 2 of the wafer stack W by a groove processing technique such as RIE, the grooves 15 are efficiently formed by using the same processing technique. Can be processed.

このブレイクバー14の押圧により、ガラスウエハ1並びにシリコンウエハ2が押圧方向とは反対側に撓んで、ガラスウエハ1のスクライブラインS、すなわち、クラックが厚み全域に浸透してガラスウエハ1が分断されるとともに、シリコンウエハ2も溝15に沿って分断され、これにより個片化されたウエハレベルパッケージW1が分断予定ラインLに沿って完全分断される。
この分断において、ガラスウエハ1は、スクライブラインSをなすクラックが厚み方向に浸透して分断されるものであるから、従来のダイシングソーの切削による場合のようなチッピングなどの発生を抑制することができ、きれいな切断面で分断することができる。また、シリコンウエハ2にも、予め、分断予定ラインLに沿って溝15が設けてあるので、シリコンウエハ2についても溝15に沿ってきれいな分断面で分断することができる。
なお、シリコンウエハ2は、多くの場合(研削によって)その厚みが25μm〜100μmと非常に薄くなっているので、上記したような溝15を設けなくても、ブレイクバー14の押しつけによる撓みによってガラスウエハ1の分断と同時に容易に分断が可能である。したがって、溝15を加工する工程を省略することもできる。
By the pressing of the break bar 14, the glass wafer 1 and the silicon wafer 2 are bent in the direction opposite to the pressing direction, and the scribe line S of the glass wafer 1, that is, the crack penetrates the entire thickness, and the glass wafer 1 is divided. At the same time, the silicon wafer 2 is also divided along the groove 15, whereby the wafer level package W 1 separated into individual pieces is completely divided along the division line L.
In this division, the glass wafer 1 is divided by cracks forming the scribe line S penetrating in the thickness direction, so that occurrence of chipping as in the case of cutting of a conventional dicing saw can be suppressed. Can be cut with a clean cut surface. Further, since the groove 15 is provided in the silicon wafer 2 along the planned division line L in advance, the silicon wafer 2 can also be divided along the groove 15 in a clean divided section.
Since the thickness of the silicon wafer 2 is very thin (25 μm to 100 μm) in many cases (by grinding), even if the groove 15 as described above is not provided, the glass is deformed by pressing the break bar 14. The wafer 1 can be easily divided at the same time as the wafer 1 is divided. Therefore, the process of processing the groove 15 can be omitted.

上記したように、ブレイクバー14によるブレイク加工時に、ガラスウエハ1のスクライブラインSのクラックが厚み方向に浸透して分断されるものであるから、従来のダイシングソーによる切削加工の場合のような切削幅を必要とせず、材料を有効利用することができる。また、切削屑が生じないので、切削屑の付着による品質の劣化や不良品の発生をなくすことができる。特に本発明では、従来のダイシングソーのような切削液を使用せず、ドライ環境下で分断するものであるから、切削液の供給や廃液回収のための機構や配管を省略でき、装置をコンパクトに構成することができる。   As described above, since the crack of the scribe line S of the glass wafer 1 penetrates in the thickness direction and is divided at the time of the break processing by the break bar 14, cutting as in the case of cutting by a conventional dicing saw is performed. The material can be used effectively without requiring a width. Moreover, since no cutting waste is generated, it is possible to eliminate the deterioration of quality and the generation of defective products due to the attachment of the cutting waste. In particular, in the present invention, the cutting fluid such as a conventional dicing saw is not used, and the cutting is performed in a dry environment. Therefore, the mechanism and piping for supplying the cutting fluid and collecting the waste fluid can be omitted, and the apparatus is compact. Can be configured.

本発明において、ブレイクバー14によるブレイク加工時に、ガラスウエハ1を受ける左右一対の受台13、13に代えて、図3に示すように、カラスウエハ1が撓む程度に凹ませることが可能な厚みを有するクッション材16をガラスウエハ1の面に接して配置するようにしてもよい。   In the present invention, at the time of the break processing by the break bar 14, instead of the pair of left and right receiving bases 13 and 13 that receive the glass wafer 1, as shown in FIG. 3, the thickness that can be recessed to the extent that the crow wafer 1 is bent. The cushion material 16 having the above may be arranged in contact with the surface of the glass wafer 1.

以上、本発明の代表的な実施例について説明したが、本発明は必ずしも上記の実施形態に特定されるものではなく、その目的を達成し、請求の範囲を逸脱しない範囲内で適宜修正、変更することが可能である。   As mentioned above, although the typical Example of this invention was described, this invention is not necessarily specified to said embodiment, The objective is achieved and it corrects and changes suitably within the range which does not deviate from a claim. Is possible.

本発明の分断方法は、ガラスウエハとシリコンウエハを貼り合わせたウエハ積層体の分断に利用できる。   The dividing method of the present invention can be used for dividing a wafer laminate in which a glass wafer and a silicon wafer are bonded together.

L 分断予定ライン
S スクライブライン
W ウエハ積層体
W1 ウエハレベルパッケージ
1 ガラスウエハ
2 シリコンウエハ
10 スクライビングホイール
10a 刃先
14 ブレイクバー
15 溝
L Scheduled line S Scribe line W Wafer stack W1 Wafer level package 1 Glass wafer 2 Silicon wafer 10 Scribing wheel 10a Cutting edge 14 Break bar 15 Groove

Claims (3)

ガラスウエハと、複数のフォトダイオード形成領域が縦横にパターン形成されたシリコンウエハとが、前記各フォトダイオード形成領域を囲むように配置された樹脂層を介して貼り合わされた構造を有するイメージセンサ用のウエハ積層体の分断方法であって、
円周稜線に沿って刃先を有するスクライビングホイールを、前記ガラスウエハの上面の分断予定ラインに沿って押圧しながら転動させることによって、厚み方向に浸透するクラックからなるスクライブラインを形成し、
次いで、前記シリコンウエハの下面側から前記スクライブラインに沿ってブレイクバーを押圧することにより、前記ウエハ積層体を撓ませてガラスウエハのクラックをさらに浸透させてガラスウエハを分断するとともにシリコンウエハも分断するイメージセンサ用のウエハ積層体の分断方法。
For an image sensor having a structure in which a glass wafer and a silicon wafer in which a plurality of photodiode formation regions are patterned vertically and horizontally are bonded together via a resin layer disposed so as to surround each photodiode formation region. A method for dividing a wafer stack,
A scribe line composed of cracks penetrating in the thickness direction is formed by rolling a scribing wheel having a cutting edge along a circumferential ridge line while pressing along a scheduled cutting line on the upper surface of the glass wafer,
Next, by pressing a break bar along the scribe line from the lower surface side of the silicon wafer, the wafer laminated body is bent to further penetrate the cracks of the glass wafer to divide the glass wafer and also divide the silicon wafer. A method for dividing a wafer laminate for an image sensor.
前記シリコンウエハの下面には、前記ガラスウエハ上面の前記分断予定ラインの位置の裏となる位置に、切溝を予め形成してからブレイクバーを押圧するようにした請求項1に記載のイメージセンサ用のウエハ積層体の分断方法。   2. The image sensor according to claim 1, wherein a kerf is formed in advance on a lower surface of the silicon wafer at a position on the upper surface of the glass wafer behind the position of the line to be cut, and the break bar is pressed. Method for dividing a wafer laminate for use. 前記ウエハ積層体にはTSVが形成されており、当該TSVのビアを加工する工程の際に前記切溝も形成される請求項2に記載のイメージセンサ用のウエハ積層体の分断方法。   3. The method of dividing a wafer laminate for an image sensor according to claim 2, wherein a TSV is formed in the wafer laminate, and the kerf is also formed in a step of processing a via of the TSV.
JP2013170863A 2013-08-21 2013-08-21 Method for dividing wafer laminate for image sensor Expired - Fee Related JP6140030B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013170863A JP6140030B2 (en) 2013-08-21 2013-08-21 Method for dividing wafer laminate for image sensor
TW103114168A TWI615254B (en) 2013-08-21 2014-04-18 Method for dividing wafer laminate by image sensor
KR1020140082926A KR102176459B1 (en) 2013-08-21 2014-07-03 Method of cutting wafer laminated body for image sensor
CN201410345791.1A CN104425527B (en) 2013-08-21 2014-07-18 The method for dividing of the wafer laminate of Image Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013170863A JP6140030B2 (en) 2013-08-21 2013-08-21 Method for dividing wafer laminate for image sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014215919A Division JP6005708B2 (en) 2014-10-23 2014-10-23 Method and apparatus for dividing wafer laminate for image sensor

Publications (2)

Publication Number Publication Date
JP2015041652A true JP2015041652A (en) 2015-03-02
JP6140030B2 JP6140030B2 (en) 2017-05-31

Family

ID=52695657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013170863A Expired - Fee Related JP6140030B2 (en) 2013-08-21 2013-08-21 Method for dividing wafer laminate for image sensor

Country Status (4)

Country Link
JP (1) JP6140030B2 (en)
KR (1) KR102176459B1 (en)
CN (1) CN104425527B (en)
TW (1) TWI615254B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826180A (en) * 2015-01-08 2016-08-03 三星钻石工业股份有限公司 Method and device for breaking image sensor-used wafer laminated body
CN104843488B (en) * 2015-04-10 2017-12-29 京东方科技集团股份有限公司 A kind of output device and cutting splitting system
JP6561565B2 (en) * 2015-04-30 2019-08-21 三星ダイヤモンド工業株式会社 Method and apparatus for dividing bonded substrate
WO2021138794A1 (en) 2020-01-07 2021-07-15 Yangtze Memory Technologies Co., Ltd. Methods for multi-wafer stacking and dicing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590403A (en) * 1991-08-01 1993-04-09 Disco Abrasive Syst Ltd Cutting apparatus
WO2001082542A2 (en) * 2000-04-23 2001-11-01 Coppergate Communications Ltd. Adsl system for transmission of voice and data signals
WO2007004700A1 (en) * 2005-07-06 2007-01-11 Mitsuboshi Diamond Industrial Co., Ltd. Brittle material scribing wheel, method for manufacturing such brittle material scribing wheel, and scribing method, scribing apparatus and scribing tool using such brittle material scribing wheel
JP2009204780A (en) * 2008-02-27 2009-09-10 Mitsubishi Electric Corp Liquid crystal panel and method of manufacturing the same
JP2010232378A (en) * 2009-03-26 2010-10-14 Oki Semiconductor Co Ltd Method of producing semiconductor device
JP2013012552A (en) * 2011-06-28 2013-01-17 Sony Corp Semiconductor device and semiconductor device manufacturing method
JP2013122984A (en) * 2011-12-12 2013-06-20 Canon Inc Semiconductor device manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244279A (en) 1993-02-19 1994-09-02 Fujitsu Miyagi Electron:Kk Dicing saw
JP2002224929A (en) * 2001-01-30 2002-08-13 Takemoto Denki Seisakusho:Kk Device for cutting plate-like workpiece
JP2003051464A (en) 2001-08-03 2003-02-21 Takemoto Denki Seisakusho:Kk Inspection means for cutting in cutting apparatus for flat work to be machined
TWI270183B (en) * 2005-12-30 2007-01-01 Advanced Semiconductor Eng Wafer-level chip package process
JP5067828B2 (en) * 2006-03-10 2012-11-07 Agcテクノグラス株式会社 Glass substrate cutting method and optical glass
US8569086B2 (en) * 2011-08-24 2013-10-29 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of dicing semiconductor devices
JP2013089622A (en) * 2011-10-13 2013-05-13 Mitsuboshi Diamond Industrial Co Ltd Breaking method of semiconductor substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590403A (en) * 1991-08-01 1993-04-09 Disco Abrasive Syst Ltd Cutting apparatus
WO2001082542A2 (en) * 2000-04-23 2001-11-01 Coppergate Communications Ltd. Adsl system for transmission of voice and data signals
WO2007004700A1 (en) * 2005-07-06 2007-01-11 Mitsuboshi Diamond Industrial Co., Ltd. Brittle material scribing wheel, method for manufacturing such brittle material scribing wheel, and scribing method, scribing apparatus and scribing tool using such brittle material scribing wheel
JP2009204780A (en) * 2008-02-27 2009-09-10 Mitsubishi Electric Corp Liquid crystal panel and method of manufacturing the same
JP2010232378A (en) * 2009-03-26 2010-10-14 Oki Semiconductor Co Ltd Method of producing semiconductor device
JP2013012552A (en) * 2011-06-28 2013-01-17 Sony Corp Semiconductor device and semiconductor device manufacturing method
JP2013122984A (en) * 2011-12-12 2013-06-20 Canon Inc Semiconductor device manufacturing method

Also Published As

Publication number Publication date
TWI615254B (en) 2018-02-21
TW201507834A (en) 2015-03-01
CN104425527A (en) 2015-03-18
JP6140030B2 (en) 2017-05-31
CN104425527B (en) 2018-09-25
KR102176459B1 (en) 2020-11-09
KR20150021878A (en) 2015-03-03

Similar Documents

Publication Publication Date Title
JP6005708B2 (en) Method and apparatus for dividing wafer laminate for image sensor
JP2014165246A (en) Processing method of wafer
JP6140030B2 (en) Method for dividing wafer laminate for image sensor
TWI657540B (en) Stealth dicing of wafers having wafer-level underfill
KR20180050225A (en) Method for processing wafer
JP2015097223A (en) Segmentation method of wafer laminate, and segmentation device
JP6185813B2 (en) Method and apparatus for dividing wafer laminate for image sensor
JP2018074082A (en) Processing method of wafer
TWI582843B (en) The manufacturing method of the attached wafer
JPWO2014167745A1 (en) Semiconductor device and method for manufacturing semiconductor device
CN108015650B (en) Method for processing wafer
JP5913489B2 (en) Scribing line forming and cutting method and scribing line forming and cutting apparatus for wafer stack for image sensor
JP2014013807A (en) Wafer processing method
JP2011218607A (en) Substrate dividing apparatus and substrate dividing method
JP2018067647A (en) Wafer processing method
JP2014011381A (en) Wafer processing method
JP6185792B2 (en) Semiconductor wafer cutting method
JP6783620B2 (en) Wafer processing method
JP4553878B2 (en) Manufacturing method of semiconductor device
JP2018067645A (en) Wafer processing method
JP2010251416A (en) Method of manufacturing semiconductor device
JP2012015309A (en) Semiconductor device manufacturing method
JP2013035038A (en) Semiconductor chip and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160630

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170428

R150 Certificate of patent or registration of utility model

Ref document number: 6140030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees