JP2015037125A - 電極活物質及びそれを含む電気化学デバイス - Google Patents

電極活物質及びそれを含む電気化学デバイス Download PDF

Info

Publication number
JP2015037125A
JP2015037125A JP2013168369A JP2013168369A JP2015037125A JP 2015037125 A JP2015037125 A JP 2015037125A JP 2013168369 A JP2013168369 A JP 2013168369A JP 2013168369 A JP2013168369 A JP 2013168369A JP 2015037125 A JP2015037125 A JP 2015037125A
Authority
JP
Japan
Prior art keywords
active material
electrode active
coupling agent
silane coupling
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013168369A
Other languages
English (en)
Inventor
武男 続木
Takeo Tsuzuki
武男 続木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2013168369A priority Critical patent/JP2015037125A/ja
Publication of JP2015037125A publication Critical patent/JP2015037125A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】リフローおよびフロート試験後において、静電容量や内部抵抗率の変化が小さくなり得るような電気化学デバイスおよびそれに用いるに好適な電極活物質の提供。
【解決手段】アミノ基を有するシランカップリング剤を活性炭又はポリアセンに作用させてなる電極活物質であって、上記アミノ基を有するシランカップリング剤は好ましくは一般式Si(OR)3-n−Z−NX2で示される化合物からなる、前記電極活物質、ならびに、この電極活物質を備える電気化学デバイス。
【選択図】なし

Description

本発明は電気二重層キャパシタや二次電池などといった電気化学デバイスとそれに好適に用いられる電極活物質に関する。
非水電解液を用いた電気二重層キャパシタや二次電池などの電気化学デバイスは、溶媒の電気分解電圧が高いために耐電圧を高くすることができ、大きなエネルギーを蓄えることが可能である。電解液の水分含有量は厳しく管理されており、水分含有量が数十ppm以下である電解液が通常用いられている。しかし、電極の活物質の細孔に水分が吸着している等の理由により、デバイス内に混入する水分を完全に除去することは難しい。このようにデバイス内の水に起因するセルの特性悪化が問題となっている。例えば電気化学キャパシタや二次電池などでは、電解液の電解質としてテトラフルオロホウ酸塩やヘキサフルオロリン酸塩などが用いられており、これらの電解質は水と反応してフッ化水素が生じることが知られている。ここで発生したフッ化水素は集電体の腐食や電解液溶媒の分解などを引き起こし、セルの諸特性の悪化が懸念される。
上記問題を鑑みて、例えば特許文献1の発明では、加水分解によりフッ化水素を発生する傾向の小さいホウ素化合物の一種(X+[(Rf)BF4−n])を電解質とする電解液が用いられている。しかし、nが1〜3の場合には完全にフッ化水素の発生を抑えることはできず、nが4の化合物は合成するために大掛かりな設備を整える必要がある。
特許文献2の発明では、電解質の分解で生じたフッ化水素を除くために、フッ化水素と反応するホウ酸リチウムが電解液中に添加されている。フッ化水素とホウ酸リチウムとの反応は以下のように考えられている。
Li・10HO+12HF→LiO・4BF+16H
この反応によりフッ化水素は除かれるが、電解液に添加するホウ酸リチウムは10水和物であり、また、反応によって水が生成する。このように発生した水によって電解質の更なる分解が起こるなどといった、水に起因する新たな問題が生じてしまう。
特許文献3の発明では、塩基性の官能基であるアミノ基等をもつ材料を用いて製造された活性炭及びこれを用いて製造された電気二重層キャパシタについて記載されている。アミノ基にはフッ化水素を捕捉する能力があるものの、電極の表面官能基として多数存在すると、自己放電によりキャパシタの特性が悪化する懸念がある。
特開2002−63934号公報 特開2005−71617号公報 特開2007−43091号公報
従来の電気化学デバイスでは、リフロー後のフロート試験における低周波域でのインピーダンスについて、リフロー直後では大きな悪化は見られ難いが、リフローから時間が経過すると顕著な悪化が見られることがある。また、リチウムイオンキャパシタにおいては、特に高温でのフロート試験において静電容量の低下が著しいことがある。本発明は、そのような変化を抑えることができる電気化学デバイスおよびそれに好適に用いられる電極活物質の提供を課題とする。
本発明者らが鋭意検討した結果、以下の内容の本発明を完成した。
本発明によれば、アミノ基を有するシランカップリング剤を活性炭又はポリアセンに作用させてなる電極活物質が提供され、アミノ基を有するシランカップリング剤は、好適には一般式(1)、即ち、Si(OR)3-n−Z−NX2で示される化合物からなる。ここで、3つのRは互いに同じでも異なっていてもよいアルキル基を示し、nは0〜2の整数を示し、Zはアルキレン基を示し、2つのXは互いに同じでも異なっていてもよい水素原子又はアルキル基を示す。本発明によれば、このような電極活物質を含む電極を備える電気化学デバイスも提供される。
本発明によれば、アミノ基を有するシランカップリング剤を作用させた活性炭又はポリアセンを電極活物質として用いることにより、自己放電を抑制しつつ、電解質の分解によって生じたフッ化水素が効果的に捕捉される。その結果、電気二重層キャパシタにおいては、リフロー後に腐食を伴う集電極の劣化が抑制され、セルの静電容量や充放電効率などの電気特性の悪化が防止されるとともに、酸に起因する電解液の分解が抑制され、セルの膨張や内部抵抗の増大を防止することができる。また、リチウムイオンキャパシタにおいては、電極表面の被膜形成が抑制されるため、セルの容量低下や抵抗上昇を抑制することが可能になる。
本発明の一実施形態の電気化学デバイスの側面断面図である。 本発明の一実施形態の電気化学デバイスの平面図である。
以下、図面を適宜参照しながら本発明を詳述する。但し、本発明は図示された態様に限定されるわけでなく、また、図面においては発明の特徴的な部分を強調して表現することがあるので、図面各部において縮尺の正確性は必ずしも担保されていない。
本発明によれば、活性炭又はポリアセンに特定のシランカップリング剤を作用させて電極活物質が得られる。シランカップリング剤は、1つの分子中に、(a)Si−Cの共有結合、(b)各種の有機官能基、(c)Siに結合した加水分解可能なOR基を有する化合物を含む。本発明によれば、シランカップリング剤はアミノ基を有する。
好適には、アミノ基を有するシランカップリング剤は一般式(1)、即ち、Si(OR)3-n−Z−NX2で表される化合物からなる。一般式(1)には3つのRが存在し、これらはアルキル基を示す。3つのRは、同一であってもよいし、互いに異なっていてもよく、好適には3つのRは全て同一である。前記アルキル基は直鎖状であっても分岐していてもよく、好適には炭素数が1〜6のアルキル基であり、より好適には炭素数が1〜4のアルキル基であり、さらに好ましくはメチル基又はエチル基である。nは0〜2の整数を表し、好ましくは0又は1である。Zはアルキレン基を示し、前記アルキレン基は直鎖状であっても分岐していてもよく、好ましくは炭素数が1〜8のアルキレン基であり、より好ましくは炭素数が1〜6のアルキレン基であり、さらに好ましくはプロピレン基である。一般式(1)中の−NXがアミノ基の存在を意味する。ここで、2つのXはそれぞれ水素原子又はアルキル基を示し、好ましくは炭素数1〜4のアルキル基であり、より好ましくはエチル基である。2つのXは互いに同じでも異なっていてもよい。
アミノ基を有するシランカップリング剤の具体的な好適例として、以下のものが非限定的に挙げられる。
化合物(2): (MeO)Si−(CH−NEt
化合物(3): (EtO)Si−(CH−NEt
化合物(4): (MeO)MeSi−(CH−NEt
化合物(5): (EtO)MeSi−(CH−NEt
活性炭は多孔質の炭素を主成分とする物質であり、従来、電池の電極活物質のために用いられるものを特に限定なく、本発明においても用いることができる。活性炭の原料としては、例えばおが屑、椰子殻、フェノール樹脂、各種の耐熱性樹脂、ピッチなどが挙げられる。ポリアセンは、フェノール性水酸基を有する芳香族炭化水素化合物とアルデヒド類とを縮合させて得られたフェノール樹脂を炭化させた後に賦活処理を施したものである。シランカップリング剤を活性炭又はポリアセンへ作用させる態様については特に限定はなく、アルコール等で洗浄して活性炭又はポリアセンからシランカップリング剤が脱離しない程度に両者が結合していればよい。シランカップリング剤のシラノールの部分が活性炭又はポリアセンとの結合に大きく寄与すると考察されるが、活性炭又はポリアセンへの作用の前後においてシランカップリング剤の化学構造が変化していてもよいし、変化していなくてもよい。活性炭又はポリアセンへのシランカップリング剤を作用させる具体例として、シランカップリング剤を水−アルコールの混合溶液に溶解させ、そこに、活性炭又はポリアセンを入れる方法が挙げられる。このとき、活性炭又はポリアセンとバインダー等を含むシートを予め形成しておき、このシートをシランカップリング剤の溶液に1〜30時間程度浸し、その後に、アルコール等で洗浄して乾燥することが好ましい。シランカップリング剤の溶液におけるシランカップリング剤の濃度は好ましくは0.1〜10wt%である。
上記のようにして本発明の電極活物質を得ることができる。従来より、活性炭は電気二重層コンデンサやリチウムイオンキャパシタなどといった電気化学デバイスにおいて用いられているので、本発明の電極活物質もまたそのような電気化学デバイスにおいて好適に用いることができる。
本発明によれば、電気化学デバイスは、電解液の電気化学反応を利用するデバイスであり、その種類は特に限定されず、電気化学キャパシタ、二次電池などが挙げられ、電気化学キャパシタとしては、電気二重層キャパシタ、リチウムイオンキャパシタ、レドックスキャパシタ、ハイブリッドキャパシタなどが挙げられる。
図1は電気化学デバイス一例である電気二重層キャパシタの側面断面図である。図2は、その平面図である。電気二重層キャパシタは、例えば正極10、負極20、及び正極10と負極20との間にセパレータ30を有する蓄電素子Bと、電解質を非水溶媒中に溶解した非水電解液と、ラミネートフィルムから形成される。電気二重層キャパシタは、一端が蓄電素子Bに接続され、他端がフィルムパッケージ40から導出している端子50を有している。フィルムパッケージ40には蓄電素子B及び非水電解液が封入されている。金属箔からなる集電体11及び21の表面には、それぞれ導電性接着剤(図示せず)を介して分極性電極層12及び22が形成されている。正極10及び負極20は、例えば正極10の分極性電極層12と負極20の分極性電極層22とが向き合うように配置されている。
セパレータ30は、セルロース、ポリプロピレン、ポリエチレン、フッ素系樹脂などで例示される、非水電解液を含浸できる材料などから形成される。セパレータ30は、向きあっている正極10及び負極20の各分極性電極層12及び22の間に配置される。なお、蓄電素子Bやフィルムパッケージ40には、フィルムパッケージタイプの電気二重層キャパシタで用いられている公知の構造を適用することができる。電気化学デバイスについては、フィルムパッケージタイプに限らず、円筒タイプやコインタイプなど他の形態のものであってもよい。
分極性電極層12及び22は、電気二重層キャパシタの分極性電極層で用いられている公知の構造を有するものを使用することができる。分極性電極層12及び22の少なくとも一方には、上述した本発明の電極活物質が含まれる。分極性電極層12及び22には、上述した本発明の電極活物質以外にも例えば、ポリアニリン(PAN)、活性炭、カーボンブラック、グラファイト、カーボンナノチューブなど、さらには、シランカップリング剤を作用させていない活性炭やポリアセンが含まれてもよい。分極性電極層12及び22には、電気二重層キャパシタの分極性電極層に用いられる導電剤やバインダーなどの他の成分も必要に応じて含まれていてもよい。また、耐熱性樹脂としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルケトン、ビスマレイミドトリアジン、アラミド、フッ素樹脂、ポリフェニレン、ポリフェニレンスルフィドなどが挙げられる。これらは1種でも使用可能であり、2種以上を併用することも可能である。
非水電解液は電気化学デバイスに通常用いられるものを適宜利用することができる。非水電解液は非水溶媒とその中に含まれる電解質とを含む。非水溶媒としては、非限定的に、エチレンカーボネート、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などの環状炭酸エステル、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネートなどの鎖状炭酸エステル、γ−ブチロラクトン(GBL)、γ−バレロラクトン、3−メチル−γ−ブチロラクトン、2−メチル−γ−ブチロラクトンなどの環状エステル、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、酪酸メチル、吉草酸メチルなどの鎖状エステル、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、2−メチル−1,3−ジオキソランなどの環状エーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジメチル−2,5−ジオキサヘキサンジオエート、ジプロピルエーテルなどの鎖状エーテル、アセトニトリル、プロパンニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリルなどのニトリル化合物、及びスルホラン(SL)、ジメチルスルホン、ジエチルスルホン、エチルメチルスルホン(EMS)、エチルプロピルスルホン、エチルイソプロピルスルホン、ジメチルスルホキシドなどの含イオウ化合物などが挙げられる。これらを単独で用いてもよいし、組み合わせて用いてもよい。
非水電解液における電解質の濃度は特に限定されず、好ましくは1.0〜2.5mol/Lである。電解質の種類は特に限定されず、電気化学デバイスに通常使用される化合物などを適宜用いることができる。電解質として、例えば四級アンモニウム塩、四級ホスホニウム塩、リチウム化合物などが挙げられる。これらの電解質は、単独で使用することもできるし、2種以上混合して使用することもできる。4級アンモニウム塩及び4級ホスホニウム塩としては、テトラエチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、1,1’−スピロビピロリジニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロホスフェート、テトラブチルアンモニウムヘキサフルオロホスフェート、トリエチルメチルアンモニウムヘキサフルオロホスフェート、テトラエチルホスホニウムテトラフルオロボレート、テトラブチルホスホニウムテトラフルオロボレート、テトラエチルホスホニウムヘキサフルオロホスフェート、テトラブチルホスホニウムヘキサフルオロホスフェートなどが挙げられる。リチウム化合物としては、LiClO、LiBF、LiPF、LiCFSO、LiCSO、LiN(SOCF、LiN(SO、LiB(Cなどが挙げられる。上記の電解質の中でも、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、1,1’−スピロビピロリジニウムテトラフルオロボレートが好ましい。
電気化学デバイスの他の例としてのリチウムイオンキャパシタの構造を説明する。図1を参照して、例えば正極10、負極20、及び正極10と負極20との間にセパレータ30を有する蓄電素子Bと、電解質を非水溶媒中に溶解した非水電解液と、ラミネートフィルムから形成される。電解液の好適態様は上述の電気二重層キャパシタの場合と同様である。リチウムイオンキャパシタは、一端が蓄電素子に接続され、他端がフィルムパッケージ(蓄電素子及び非水電解液が封入されている)から導出している端子を有している。例えばアルミニウムの金属箔からなる正極10の集電体11の表面には、導電性接着剤を介して分極性電極層12が形成されている。分極性電極層12は、前記電気二重層キャパシタで用いられるものと同様の材料及び構造を有するものが使用できる。また、リチウムイオンキャパシタの正極の分極性電極層で用いられている公知の材料及び構造を有するものが使用できる。また、例えば銅の金属箔からなる負極集電体21の表面には、(電気二重層キャパシタでは分極性電極層が形成されていたのに対して)活物質層22が形成されている。正極又は負極のうち少なくとも一方の電極活物質として、上述した本発明の電極活物質が用いられる。好適には負極の電極活物質として本発明の電極活物質が用いられる。なお、本発明の電極活物質以外の電極活物質をさらに用いてもよく、そのような負極の電極活物質層として、リチウムイオンキャパシタの電極活物質層で用いられている公知の材料及び構造を有するものが使用でき、例えば難黒鉛化炭素、グラファイト、錫酸化物、珪素酸化物等の電極活物質を含有し、カーボンブラックや金属粉末等の導電助剤や、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)やスチレンブタジエンゴム(SBR)等のバインダーも必要に応じて含有してもよい。正極10及び負極20は、例えば正極10の分極性電極層12と負極20の電極活物質層22とが向き合うように配置されている。
また、リチウム金属のシートが負極20の近傍に配置される。これにより、リチウム金属シートのリチウムが非水電解液内に溶解するとともに、そのリチウムイオンが負極20の電極活物質層22にプレドープされ、充電前の状態で負極20の電位が正極10の電位に比べて、例えば3V程度低くなる。セパレータ30は、向きあっている正極10の分極性電極層12及び負極20の電極活物質層22の間に配置される。なお、蓄電素子Bやフィルムパッケージ40には、フィルムパッケージタイプのリチウムキャパシタで用いられている公知の構造を適用することができる。リチウムイオンキャパシタとしては、フィルムパッケージタイプに限らず、円筒タイプやコインタイプなど他の形態のものであってもよい。
以下、実施例により本発明をより詳細に説明する。しかし、本発明は実施例の態様に限定される訳ではない。
[実施例1]
電極活物質の原料としての活性炭、ならびに、バインダーとしてのカルボキシメチルセルロース及びスチレンブタジエンゴムを含むスラリーを調製し、このスラリーをアルミ箔上に塗布してシートを得た。このシートに含まれる活性炭へシランカップリング剤を作用させるために、上記化合物(4)のエタノール:水(9:1)溶液(1%)を調製した(比率やパーセンテージは特記無い限り全て重量基準。以下、同じ。)。この溶液に、上記シートを室温にて24時間浸した。その後、このシートを引き上げ、エタノールで洗浄し、100℃で12時間乾燥した。シランカップリング剤の作用によりシートの重量が約5%増し、これにより、シートに含まれる活性炭にシランカップリング剤が作用したことを確認した。この処理を得たシートを分極性電極として用いた。
分極性電極間に、セルロースからなるセパレータを挟み、引出し端子を超音波溶接により取り付け、約180℃で真空乾燥して素子を得た。電極サイズにカットした封止材に、素子を入れ、さらに、電解液を注入した。電解液は後述の表1記載の非水溶媒に、電解質としてのトリエチルメチルアンモニウムテトラフルオロボレートのPC溶液を1.5mol/lの濃度で溶解させたものを用いた。その後、シール材を用いて封止材を熱融着し、約20mm×26mmのサイズのセルを作製した。封止材として、ナイロン/アルミ/CPP(無延伸ポリプロピレン)のラミネートフィルムを用い、更に耐熱外装で覆って電気二重層キャパシタを得た。
[実施例2〜8、比較例1〜5]
シランカップリング剤の種類と、電解液の溶媒とを表1のように変えたことのほかは、実施例1と同様に電気二重層キャパシタを得た。なお、比較例1〜5ではシランカップリング剤を作用させなかった。
Figure 2015037125
[評価方法]
実施例1〜8、比較例1〜5で作製した電気二重層キャパシタについて、初期特性として、静電容量、及び内部抵抗を測定した。静電容量は充放電試験器(東洋システム株式会社製TOSCAT−3200)を用い、室温で30分間放電した電気二重層キャパシタを100mAで2.5Vまで10分間充電した後に10mAで0Vまで放電させた時の放電カーブの傾きから算出した。内部抵抗は充放電試験器(東洋システム株式会社製TOSCAT−3200)を用い、室温で30分間放電した電気二重層キャパシタを100mAで2.5Vまで10分間充電した後に2Aで0Vまで放電させた時の電圧降下から算出した。
次いで、150℃から15分間かけて260℃に昇温する温度プロファイルに設定したリフロー炉に得られた電気二重層キャパシタを5回通した(リフロー試験)。その後のキャパシタ容器の厚み(T1)を測定した。キャパシタ容器の厚みはマイクロメーターを用い、セルの中央部分の厚みを計測した。次いで、60℃の恒温槽中で1000時間2.5Vの電圧で連続充電した。その後、室温まで放冷し、0Vまで放電した後、静電容量、内部抵抗及びキャパシタ容器の厚み(T2)を測定した(フロート試験)。静電容量および内部抵抗について初期特性としての測定値(100%)に対する、連続充放電を行った後の測定値のパーセンテージを算出した。キャパシタ容器の厚みについては上記T1の値(100%)に対する、上記T2の値のパーセンテージを算出した。
各実施例・比較例の測定結果を表2にまとめる。
Figure 2015037125
[評価結果]
比較例1〜5と比べて実施例1〜8では、リフロー+フロート試験後の静電容量の低下、内部抵抗の増大、及びセル厚みの変化が抑制される結果となった。当該結果は、電解液の溶媒を種々変更した場合においても同様であった。これらの結果は、リフロー工程の際に電解質の分解によって生じたフッ化水素が、アミノ基を有するシランカップリング剤によって効果的に捕捉され、フロート試験において集電極の腐食や電解液溶媒の分解が抑制されたことにもとづくと考察される。
[実施例9]
正極活物質としてのポリアセンとバインダーとしてのPTFEとを含むスラリーを調製した。このスラリーをアルミ箔上に塗布してシートを得た。このシートに含まれるポリアセンへシランカップリング剤を作用させるために、上記化合物(4)のエタノール:水(9:1)溶液(1%)を調製した。この溶液に、上記シートを室温100℃にて24時間浸した。その後、このシートを引き上げ、エタノールで洗浄し、100℃で12時間乾燥することにより分極性電極を得た。シランカップリング剤の作用によりシートの重量が約5%増し、これにより、シートに含まれる活性炭にシランカップリング剤が作用したことを確認した。
負極活物質としてのフェノール樹脂原料からなる難黒鉛化炭素、バインダーとしてのカルボキシメチルセルロース及びスチレンブダジエンゴムを含むスラリーを調製した。このスラリーを銅箔上に塗布してシート状の分極性電極を作製した。正極及び負極の分極性電極の間に、セルロースからなるセパレータを挟み、引出し端子を超音波溶接により取り付け、約180℃で真空乾燥した後、負極にリチウム箔を貼り付け、電極サイズにカットした封止材に素子を入れ、さらに、電解液を注入した。電解液は後述の表3記載の非水溶媒に、電解質としてのリチウムヘキサフルオロホスフェートのPC溶液を1.2mol/lの濃度で溶解させたものを用いた。その後、シール材を用いて封止材を熱融着し、約20mm×26mmのサイズのセル(リチウムイオンキャパシタ)を作製した。封止材として、ナイロン/アルミ/CPP(無延伸ポリプロピレン)のラミネートフィルムを用いた。
[実施例10〜15、比較例6〜9]
シランカップリング剤の種類と、電解液の溶媒とを表3のように変えたことのほかは、実施例9と同様にリチウムイオンキャパシタを得た。なお、比較例6〜9ではシランカップリング剤を作用させなかった。
Figure 2015037125
[評価方法]
実施例9〜15、比較例6〜9で作製したリチウムイオンキャパシタについて、初期特性として、静電容量、内部抵抗及びキャパシタ容器の厚み(T1)を測定した。次いで、85℃の恒温槽中で1000時間3.8Vの電圧で連続充電した。その後、室温まで放冷し、静電容量、内部抵抗及びキャパシタ容器の厚み(T2)を測定した(フロート試験)。静電容量および内部抵抗について初期特性としての測定値(100%)に対する、連続充放電を行った後の測定値のパーセンテージを算出した。キャパシタ容器の厚みについては上記T1の値(100%)に対する、上記T2の値のパーセンテージを算出した。
各実施例・比較例の測定結果を表4にまとめる。
Figure 2015037125
[評価結果]
比較例6〜9と比べて実施例9〜15では、フロート試験後の静電容量の低下、内部抵抗の増大、及びセル厚みの変化が抑制される結果となった。これらの結果が得られる理由については、実施例1〜8における考察を同様に適用することができる。
10 正極、20 負極、11・21 集電体、12 分極性電極層、22 分極性電極層又は活物質層、30 セパレータ、40 フィルムパッケージ、50 端子、B 蓄電素子。

Claims (3)

  1. アミノ基を有するシランカップリング剤を活性炭又はポリアセンに作用させてなる電極活物質。
  2. 上記アミノ基を有するシランカップリング剤が一般式Si(OR)3-n−Z−NX2(但し、
    3つのRは互いに同じでも異なっていてもよいアルキル基を示し、
    nは0〜2の整数を示し、
    Zはアルキレン基を示し、
    2つのXは互いに同じでも異なっていてもよい水素原子又はアルキル基を示す。)
    で示される化合物からなる請求項1記載の電極活物質。
  3. 請求項1又は2記載の電極活物質を含む電極を備える電気化学デバイス。
JP2013168369A 2013-08-13 2013-08-13 電極活物質及びそれを含む電気化学デバイス Pending JP2015037125A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013168369A JP2015037125A (ja) 2013-08-13 2013-08-13 電極活物質及びそれを含む電気化学デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013168369A JP2015037125A (ja) 2013-08-13 2013-08-13 電極活物質及びそれを含む電気化学デバイス

Publications (1)

Publication Number Publication Date
JP2015037125A true JP2015037125A (ja) 2015-02-23

Family

ID=52687489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013168369A Pending JP2015037125A (ja) 2013-08-13 2013-08-13 電極活物質及びそれを含む電気化学デバイス

Country Status (1)

Country Link
JP (1) JP2015037125A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614299B1 (ko) 2015-06-05 2016-04-21 한국세라믹기술원 밀도가 향상된 울트라커패시터 전극의 제조방법 및 이를 이용하여 제조된 울트라커패시터 전극을 적용한 울트라커패시터 셀

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614299B1 (ko) 2015-06-05 2016-04-21 한국세라믹기술원 밀도가 향상된 울트라커패시터 전극의 제조방법 및 이를 이용하여 제조된 울트라커패시터 전극을 적용한 울트라커패시터 셀

Similar Documents

Publication Publication Date Title
WO2014126256A1 (ja) 電解液及びこれを備えたリチウムイオン二次電池
JP5392355B2 (ja) 電気二重層キャパシタ
WO2016080063A1 (ja) 非水電解液電池用電解液及びリチウム非水電解液電池
CN109841425B (zh) 一种电容电池及其制备方法
WO2020054863A1 (ja) 非水系電解液及び非水系二次電池
JP2011150920A (ja) リチウムイオン電池
JP6818723B2 (ja) 電気化学デバイス用電解液および電気化学デバイス
JP2013051342A (ja) 電気化学デバイス
Sun et al. Determination strategy of stable electrochemical operating voltage window for practical lithium-ion capacitors
JP6955672B2 (ja) リチウム二次電池用の電解液
KR101138522B1 (ko) 전극 구조체 및 이를 구비하는 리튬 이온 캐패시터
JP6712117B2 (ja) 非水電解液及びこれを備えたリチウムイオン二次電池
JP2015225920A (ja) 電気化学キャパシタ
JP2015037125A (ja) 電極活物質及びそれを含む電気化学デバイス
JP2014090024A (ja) 電気化学デバイス及びそれに用いるセパレータ
JP2017108127A (ja) 電気二重層キャパシタ用非水系電解液及びそれを用いた電気二重層キャパシタ
JP2012248816A (ja) 電気化学デバイス
JP2017216309A (ja) リチウムイオンキャパシタ
JP2012256789A (ja) 電気化学デバイス用活物質及びそれを用いた電気化学デバイス
JP2012069576A (ja) 非水電解液及びこれを用いた電気化学デバイス
CN112490500A (zh) 蓄电设备用电解液和蓄电设备以及蓄电设备的制造方法
JP2012089621A (ja) 非水電解液、電気二重層キャパシタ用電解質及び電気二重層キャパシタ
JP2013219187A (ja) 電気化学デバイス
JP5473296B2 (ja) 第4級アンモニウム塩
JPWO2015087963A1 (ja) 電解液及び電気化学デバイス