JP2015007509A - ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。 - Google Patents

ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。 Download PDF

Info

Publication number
JP2015007509A
JP2015007509A JP2013133278A JP2013133278A JP2015007509A JP 2015007509 A JP2015007509 A JP 2015007509A JP 2013133278 A JP2013133278 A JP 2013133278A JP 2013133278 A JP2013133278 A JP 2013133278A JP 2015007509 A JP2015007509 A JP 2015007509A
Authority
JP
Japan
Prior art keywords
data
boiler
tube leak
measurement signal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013133278A
Other languages
English (en)
Other versions
JP6037954B2 (ja
Inventor
孝朗 関合
Takao Sekiai
孝朗 関合
林 喜治
Yoshiharu Hayashi
喜治 林
正博 村上
Masahiro Murakami
正博 村上
勝秀 北川
Katsuhide Kitagawa
勝秀 北川
清水 悟
Satoru Shimizu
悟 清水
深井 雅之
Masayuki Fukai
雅之 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013133278A priority Critical patent/JP6037954B2/ja
Priority to PCT/JP2014/063635 priority patent/WO2014208227A1/ja
Publication of JP2015007509A publication Critical patent/JP2015007509A/ja
Application granted granted Critical
Publication of JP6037954B2 publication Critical patent/JP6037954B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/42Applications, arrangements, or dispositions of alarm or automatic safety devices
    • F22B37/421Arrangements for detecting leaks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

【課題】ボイラチューブリークの早期検知とリーク位置の早期特定を実現するボイラチューブリーク検出装置を提供する。【解決手段】ボイラプラントの状態量を計測した計測信号データベースと、ボイラプラントの運転状態の変化を検知する状態変化検知部と、状態変化検知部で検知した変化をリークか評価する検知内容評価部を備え、状態変化検知部には、計測信号データベースの第一の計測信号データ項目を、ボイラプラントの複数ある熱交換器のメタル温度が含む監視グループ化する監視データ抽出部と、ボイラプラントの運転パターンを識別する運転パターン評価部と、識別された運転パターン毎にかつ監視グループ毎に、グループ化されたデータ項目に属する第一の計測信号データを分類して診断モデルを構築する分類部と、診断モデルと第二の計測信号を比較することで運転状態が変化したことを検知する検知部が備えた。【選択図】図1

Description

本発明は、ボイラチューブリークの検出装置、及びボイラチューブリークの検出方法に関する。また、これらを用いたデータ監視センタ、情報提供サービス、ボイラプラントに関する。
ボイラプラントでは、石炭の燃焼によって生成した高温のガスを用いて、給水を複数の熱交換器にて加熱して蒸気を生成する。熱交換器は高温・高腐食性のガスと接触するため、クリープ、熱疲労、腐食などが原因で、金属材料が損傷する場合がある。金属材料が損傷すると、その損傷個所から蒸気が漏れる。この事象をチューブリークと呼ぶ。
ボイラ内を循環する蒸気量が一定になるように給水流量が制御されるため、チューブリークが発生すると給水流量が増加する。給水流量の増加は、発電コストの増加を招く。
チューブリークが発生して給水流量が増加した際は、現場パトロールによりリーク発生個所を目視にて確認する。プラントを停止するとリーク発生箇所を確認できなくなるため、リーク発生箇所の目視確認はプラント運転中に実施する必要がある。
一方、リークした蒸気が周囲のチューブに衝突すると、そのチューブも損傷する2次被害が発生する。そのため、リーク発生から時間が経過するに従って損傷範囲が拡大する。被害が拡大すると、補修期間が長くなるため、コスト損失が大きくなる。
従って、チューブリーク発生の早期検知、リーク発生位置の早期特定はプラントの保守コスト低減に寄与する。
チューブリーク発生の早期検知、あるいはリーク発生位置の特定を実現する技術として、特許文献1〜3で公開されている技術がある。
特許文献1は、ボイラプラントの熱交換器ではないが、補給水流量の計測値とリーク検出箇所の一つの配管上に設けた温度センサの計測値を用い、補給水流量の増加と温度変化からチューブリーク発生を検知する。特許文献2では、液体を収容するためのドレンポットを備え、ドレンポットにて液体を収容した際にチューブリーク発生を検知する。特許文献3では、音センサをボイラ建屋内に設置し、リーク音を検出した際にリーク発生を検知する。さらにリーク音の発生源を音響データの相互相関処理で求め、リーク位置を特定する。
特開2008−144995号公報 特開2011−141085号公報 特開平9−229811号公報
特許文献1の技術は、給水流量の増加、温度の変化幅が閾値を超えた時にリーク発生を検知する。しかし、ボイラプラントでは負荷、バーナパターン、炭種を変更するなど、多種多様な運転パターンがある。運転パターン毎に温度の基準となる値が異なるため、チューブリーク発生検知のための閾値も異なる。従って、本技術を適用するには、閾値を運転パターン毎に設定する必要がある。
特許文献2、特許文献3の技術では、ドレンポットの設置、音センサの設置など、チューブリークを検知するために新たなハードウェアが必要であり、これはコスト増加の要因となる。
本発明の目的は、ボイラチューブリークの早期検知とリーク位置の早期特定を実現する、誤検知が抑制されたボイラチューブリーク検出装置を提供することである。
上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、本発明のボイラチューブリーク検出装置は以下の構成とする。
ボイラプラントの状態量を計測した計測信号がデータ項目別に保存される計測信号データベースと、前記ボイラプラントの運転状態の変化を検知する状態変化検知部と、前記状態変化検知部で検知した変化をリークか評価する検知内容評価部を備えたボイラチューブリーク検出装置において、前記状態変化検知部には、前記計測信号データベースから第一の計測信号データが入力され、前記データ項目の一部を監視グループとしてグループ化する監視データ抽出部と、前記ボイラプラントの運転パターンを識別する運転パターン評価部と、前記識別された運転パターン毎にかつ前記監視グループ毎に、前記グループ化されたデータ項目に属する第一の計測信号データを分類して診断モデルを構築する分類部と、前記診断モデルと第二の計測信号を比較することで運転状態が変化したことを検知する検知部が備えられ、前記監視データ抽出部がグループ化するデータ項目に前記ボイラプラントの複数ある熱交換器のメタル温度が含まれることを特徴としたボイラチューブリーク検出装置。
ボイラチューブリークの早期検知とリーク位置の早期特定を実現する、誤検知が抑制されたボイラチューブリーク検出装置を提供する。
上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施例であるボイラチューブリーク検出装置を説明するブロック図である。 ボイラチューブリーク検出装置の動作を説明する動作フローチャート図である。 ボイラプラントの実施形態を示した図である。 計測信号データベースに保存されるデータの態様、及び監視データ抽出部の動作を説明する図である。 運転パターン評価部の動作を説明するフローチャート図である。 分類部、及び検知部にて計測信号を分類する機能を説明する図である。 分類部で分類用データ信号を分類した結果、及び検知部にて検知用信号を分類した結果を説明する図である。 チューブリーク発生時、灰脱落発生時の給水流量、メタル温度、及び分類結果であるカテゴリー番号の経時変化を説明する図である。 検知内容推定部の動作を説明するフローチャート図である。 検知内容推定部のステップの動作を説明する図である。 過去事例データベースに保存されるデータの態様を説明する図である。 画像表示装置に表示される画面の実施例を説明する図である。 本発明の第2の実施例であるボイラチューブリーク検出装置を説明するブロック図である。 ボイラ特性計算部の計算結果を説明する図である。 本発明の第3の実施例を説明するブロック図である。 送信情報決定部の動作フローチャート図である。
次に、本発明の実施例であるボイラチューブリーク検出装置について、図面を参照して以下に説明する。
図1は、本発明の第1の実施例であるボイラチューブリーク検出装置400を説明するブロック図である。ボイラチューブリーク検出装置400を用いてボイラプラント100を監視する。ボイラプラント100の構成については、図3を用いて後述する。 ボイラチューブリーク検出装置400は、演算装置として状態変化検知部700を構成する監視データ抽出部710、運転パターン評価部720、分類部730、検知部750と、検知内容評価部800を構成する検知内容推定部810を備えている。また、ボイラチューブリーク検出装置400はデータベースとして計測信号データベース510、診断モデルデータベース740、過去事例データベース820を備えている。なお図1においては、データベースをDBと略記している。
計測信号データベース510、診断モデルデータベース740、過去事例データベース820には、電子化された情報が保存されており、通常電子ファイル(電子データ)と呼ばれる形態で情報が保存される。
また、ボイラチューブリーク検出装置400は、外部とのインターフェイスとして外部入力インターフェイス410及び外部出力インターフェイス420を備えている。
そして、外部入力インターフェイス410を介してボイラプラント100の運転状態である各種状態量を計測した計測信号1と、運転管理室900に備えられている、例えばキーボード920及びマウス930で構成される外部入力装置910の操作で作成する外部入力信号2がボイラチューブリーク検出装置400に取り込まれる。また、外部出力インターフェイス420を介して、画像表示情報7を運転管理室900に備えられている画像表示装置940に出力する。
図1に示したボイラチューブリーク検出装置400において、ボイラプラント100の各種状態量を計測した計測信号1は外部入力インターフェイス410を介して取り込まれる。計測信号3は、計測信号データベース510に保存する。
ボイラチューブリーク検出装置400は、モデル構築処理と診断処理の二つの処理モードを持つ。モデル構築処理では、計測信号データベースの正常状態と判断された期間の計測信号を用いて、診断モデルを構築する。診断モデルはクラスタリング技術により構築され、正常状態の計測信号がいくつかのデータグループに分類される。次に、診断処理では、診断する時刻の計測信号を処理する。計測信号が正常状態の時と同じ特性であれば、診断モデルのデータグループのいずれか1つに分類される。特性が異なる場合は、診断モデルのデータグループには属さないことになる。尚、データグループの構築方法は、図6、7を用いて後述する。
ボイラにてチューブリークが発生すると計測信号の特性が正常状態とは異なる。そこで、本実施例のボイラチューブリーク検出装置400では、診断する計測信号が診断モデルのデータグループに分類されなかった場合に、チューブリークの発生を検知する。
しかし、ボイラの特性は、負荷、炭種、バーナパターンなどの運転パターンに応じて変化する。また、熱交換器に付着している灰の脱落などの外乱によっても変化する。
本実施例のボイラチューブリーク検出装置400は、運転パターン変化、外乱とボイラチューブリークを区別して検出する。これは、状態変化検知部700と検知内容評価部800にて実現している。
状態変化検知部700は、計測信号データベース510に保存されている計測信号4を用いてボイラプラント100を診断し、ボイラプラント100の状態が変化したかどうかを評価する。状態変化検知部700の動作により得られる検知結果5は、検知内容評価部800、及び外部出力インターフェイス420に出力する。
まず、モデル構築処理モードの状態変化検知部700の動作を述べる。モデル構築処理モードでは、監視データ抽出部710、運転パターン評価部720、分類部730、診断モデルデータベース740を動作させる。
監視データ抽出部710では、予め定められたデータ項目、及び正常と定義された期間のデータを計測信号データベース510から抽出する。この正常と定義された期間のデータをここでは第一の計測信号データと呼称する。監視データ抽出部710でデータ項目単位で抽出しグループ化した監視データグループ信号701は、運転パターン評価部720に出力する。
運転パターン評価部720では、運転パターンを識別し、監視データグループ信号701のデータを運転パターン毎に区別する。ここで運転パターンとは、負荷、炭種、バーナパターンなどであり、例えば監視グループとして抽出したデータの中に含まれた石炭流量のデータ等から読み取ったデータに基づき評価する。運転パターン評価結果と監視データグループ信号で構成される分類用データ信号702は、分類部730に送信する。
分類部730では、クラスタリング技術を用いて分類用データ信号702に含まれる監視データグループ信号を分類し、診断モデルを構築する。尚、診断モデル703は監視パターン毎かつ運転パターン毎に生成する。分類部730で構築した診断モデル703は、診断モデルデータベース740に保存する。
次に、診断処理モードの状態変化検知部700の動作を説明する。診断処理モードでは、監視データ抽出部710、運転パターン評価部720、検知部750を動作させる。
監視データ抽出部710では、予め定められたデータ項目、及び診断する期間のデータを計測信号データベース510から抽出する。この診断する期間のデータをここでは第二の計測信号データと呼称する。監視データ抽出部710で抽出した監視データグループ信号701は、運転パターン評価部720に出力する。
運転パターン評価部720では、監視データグループ信号701のデータを運転パターン毎に区別する。運転パターン評価結果と監視データグループ信号で構成される検知用データ信号706は、検知部750に送信する。
検知部750では、現在の運転パターンに対応した診断モデルを診断モデルデータベース740から診断モデルデータベース情報704として抽出する。また、検知用データ信号706と抽出した診断モデルを用い、ボイラプラント100の状態が変化したかどうかを診断する。
このように、本実施例のボイラチューブリーク検出装置400では、負荷、炭種、バーナパターンなどの運転パターンに応じて診断モデルを切り替えて診断するため、運転パターン変化によるプラント特性の変化を考慮した診断が可能となる。尚、状態変化検知部700の詳細及び診断方法については、図4〜図7を用いて後述する。
検知内容評価部800は、診断処理モードにおいて動作させる。検知内容評価部800では、計測信号4及び検知結果5を用いて、検知内容を評価する。検知内容の例として、チューブリークの発生位置を特定する内容が挙げられる。検知内容評価部800の動作により得られる検知内容推定結果6は、外部出力インターフェイス420に出力する。以下、検知内容評価部800の概略を述べる。
検知内容推定部810では、過去事例データベース820に保存されている過去事例データベース情報802、計測信号4、診断結果5に基づいて検知内容を推定する。検知内容推定結果6は外部出力インターフェイス420に出力する。検知内容にはボイラチューブリークの発生有無、及びチューブリーク発生時にはその発生位置に関する情報が含まれる。尚、検知内容評価部800の詳細は、図8〜図9を用いて後述する。
診断結果5と検知内容推定結果6は、外部出力インターフェイス420にて画像表示情報7に変換し、画像表示装置940に送信される。
このようにして、本実施例のボイラチューブリーク検出装置400では、ボイラプラント100でチューブリークが発生した場合、リーク発生の検知結果とリークの発生位置を画像表示装置940に表示し、オペレータに情報を提供する。
なお、本実施例のボイラチューブリーク検出装置400においては、状態変化検知部700、検知内容評価部800、計測信号データベース510がボイラチューブリーク検出装置400の内部に備えられているが、これらの一部の装置をボイラチューブリーク検出装置400の外部に配置し、データのみを装置間で通信するようにしてもよい。
また、図1はそれぞれの機能の関係性を表した図であり、その実装や装置の態様は、図に示される区分や包含関係に限られるものではない。例えば図1のように状態検知部700に診断モデルDB740が含まれていてもよいし、例えば他のDBと併用されていても本実施例効果は得られる。
また、ボイラチューブリーク検出装置400に設置された計測信号データベース510、診断モデル740、過去事例データベース820に保存されている情報は、任意に運転管理室900の画像表示装置940に表示できるようになっている。また、これらの情報は、キーボード920とマウス930で構成する外部入力装置910を操作して生成する外部入力信号2で、修正できる。
また、図示していないが、本実施例の実施形態として、チューブリーク検出装置400を動作させて得られた情報を運転員に提供する情報提供サービス、チューブリーク検出装置400を搭載した運転制御装置、ボイラ装置、ボイラプラントなども含まれる。
図2はボイラチューブリーク検出装置400の動作を説明する動作フローチャート図である。
まず、ステップ1000では、以下の条件を満足する時にモデル構築モードで動作すると判定し、診断モデルを構築する。それ以外の時は診断モードで動作すると判定する。
・ボイラチューブリーク検出装置400を最初に使用する時、すなわち、診断モデルが存在しない時。
・運転パターン評価部720にて新しい運転パターンを検出し、診断モデルを追加する必要が生じた時。
・外部入力装置910からの入力で、モデル構築のリクエストがあった時。
モデル構築モードの場合はステップ1010に進み、診断モードの場合はステップ1020に進む。
ステップ1010では、状態変化検知部700の監視データ抽出部710、運転パターン評価部720、分類部730を動作させ、診断モデルを構築する。
ステップ1020では、1サイクル前の診断終了後から予め定められた診断周期の時間が経過したかどうかを判定し、時間が経過する前であればステップ1020に戻り、時間が経過している場合はステップ1030に進む。
ステップ1030では、状態変化検知部700の監視データ抽出部710、運転パターン評価部720、検知部750を動作させて、ボイラプラント100を診断する。
ステップ1040では、ステップ1030にて動作させた検知部750でプラントの異常を検知したかどうかを評価する。検知した場合はステップ1050に進み、検知しなかった場合はステップ1060に進む。
ステップ1050では、検知内容評価部800を動作させて、検知内容を評価する。
ステップ1060では、外部入力装置910からの外部入力信号2により、ボイラチューブリーク検出装置400を終了させるリクエストがあった時は終了へ進み、それ以外の時はステップ1000に戻る。
図3はボイラプラント100の実施形態を示した図である。
本実施例はボイラ200、ボイラ200で発生させた蒸気により駆動する蒸気タービン300を主構成要素とする火力発電プラントである(発電機は図示していない)。ボイラプラント100は、負荷要求指令に基づいて、指定された負荷(発電出力)に制御する。蒸気加減弁290の弁開度を調節することで、タービン300へ導かれる蒸気流量261が変化し発電出力が変化する。
その他にも水・蒸気系統には、蒸気タービン300から出た蒸気を冷却して液体にする復水器310、復水器310で冷却された水をボイラ給水として再びボイラ200へ送り込む給水ポンプ320がある。また、図示していないが、実際のプラントには蒸気タービン300の途中段から抜き出した一部の蒸気を加熱源としてボイラ給水を予熱する給水加熱器もある。
一方、ボイラから排出される燃焼ガス201の系統には、排ガスを浄化するための排ガス処理装置330、浄化したガス331を放出する煙突340がある。
燃料である石炭381は燃料供給量調整弁380を介して、石炭粉砕機(ミル)350に送られる。また、石炭搬送と燃焼調整にもちいる空気382は空気量調整弁370を介して、石炭粉砕機350とバーナ210に供給される。石炭粉砕機350で粉末(微粉炭)となった石炭は、空気で搬送されてバーナ210に供給される。バーナ210の上部にはアフタエアポート220が配置され、アフタエアポート220には空気383が空気量調整弁360を介して供給される。
次にボイラ200の構成について説明する。
燃料を燃焼させるバーナ210がある火炉は炉内が高温になるため、壁面全体を冷却すると共に燃焼ガスの熱を回収する水壁230と呼ばれる冷却壁がある。ボイラ200内には他にも節炭器280、1次過熱器270、2次過熱器240、3次過熱器250、4次過熱器260からなる熱交換器があり、これらによって燃焼ガスの熱を回収して高温蒸気を生成する。
尚、図中には記載していないが、プラントには、ガスの組成、温度、圧力や、蒸気の温度、圧力、熱交換器のメタル温度などを計測するためのセンサーが多数配置されており、この計測結果はデータ送信装置390から計測情報1としてボイラチューブリーク検出装置400に送信される。また、図示していないが、ボイラのバーナ210は火炉前後に水平方向に複数本、高さ方向に複数段設置し、アフタエアポートは、火炉前後に水平方向に複数本配置するのが一般的である。
図3(b)は給水からタービンに供給されるまでの蒸気の経路を示す図である。図3(b)に示すように、ボイラ給水はまず節炭器280に導かれ、その後水壁230、1次過熱器270、2次過熱器240、3次過熱器250、4次過熱器260の順に通って昇温され、主蒸気261となって蒸気タービン300へ流入する。高圧蒸気タービン300で仕事をした蒸気は復水器310で液体となり、給水ポンプ320で再びボイラへ送られる。
図3(c)は、3次過熱器250の上面図である。過熱器を構成するチューブ251(細線)は、ボイラの幅方向および奥行き方向に複数本配置される。チューブの形状として例えば、図3(c)の奥行き方向にUの字型をしており、その片側から入った蒸気は反対側の出口から戻ってくる。また、過熱器にはチューブメタル温度の計測器252が(例えば図の太線箇所蒸気出口部に)取り付けられている。一般に、メタル温度計測器は数本〜数十本おきに取り付けられている。
図4は、計測信号データベース510に保存されるデータの態様、及び監視データ抽出部710の動作を説明する図である。
図4(a)は、計測信号データベース510に保存されるデータの態様を示す図である。図4(a)に示すように、計測信号データベース510には、プラント100に対して計測した運転データである計測信号1(図では、データ項目A、B、Cを記載)の値が、サンプリング周期(縦軸の時刻)毎に保存される。
表示画面511において縦横に移動可能なスクロールボックス512及び513を用いることにより、広範囲のデータをスクロール表示することができる。
図4(b)は、監視データ抽出部710のブロック図である。診断箇所、及び範囲に応じて、データ項目を複数のグループに分割する。例えば、運転パターンを評価する監視グループ1、主給水流量を監視する監視グループ2、1次過熱器(1SH)出口メタル温度を監視する監視グループ3に分割しいる。
図4(c)はそれぞれのグループのデータ項目を示す図である。このような監視グループは、外部入力装置910を用いて、任意に追加・削除できる。本実施例では、熱交換器毎にメタル温度計測値をグループ化したが、ガスの流れに沿ってメタル温度計測値をグループ化してもよい。
グループ化の仕方により異なる効果を得ることができる。例えば、各熱交換器がそれぞれ有する多数のチューブで計測されるメタル温度計測値に対応するデータ項目を、熱交換器ごとにグループ化する。それらチューブの位置関係と温度相関性を見ることで、特定の熱交換器の中のどのチューブでリークが起きたか早期にミス少なく検知できる効果が得られる。また、例えばボイラ缶の同じ幅方向の位置にある、複数の熱交換器それぞれのチューブであって、同じガス流れの上流と下流の位置関係にあるチューブのメタル温度計測値に対応するデータ項目で、ガスの流れ方向等の規則性に沿ってグループ化する。それら異なる熱交換器に位置するチューブの位置関係と温度相関性をガスの流れの観点で評価することで、正確なリーク判定を行い(例えば灰脱落、特定温度計の異常等他の事故による誤検出を抑制し)、リーク箇所発生熱交換機、チューブを早期に特定できる。また、後述するが、検知結果やデータは画像表示装置で表示され、運転員がデータ及びそのグラフの表示から視覚的に判断するケースもあるため、複数の観点でグループ化しておくことで多角的判断が可能となり判定精度が向上する効果も見込める。
図5は、運転パターン評価部720の動作を説明するフローチャート図である。
まず、運転パターン評価部720の目的について説明する。ボイラプラント100の運転状態が過渡状態である場合、計測信号は不規則に変化する。また、バーナパターン、炭種、負荷などの運転パターンに応じて、プラントの特性が変化する。そのため、過渡状態、及び過去に経験したことのない運転パターンで運転した場合、プラントに異常が発生していなくても状態変化検知部700にて異常を検知する誤報が発生する可能性がある。
そこで、本実施例の状態変化検知部700では、過渡状態である場合には診断を実施しない。また、運転パターン毎に診断モデルを構築して診断することで、誤報の発生を抑制する。本機能を実現するには、プラントの運転状態が過渡状態であるか、定常状態であるかを判定する機能と、運転パターンを判別する機能が必要であり、本実施例の運転パターン評価部720にはこれらの機能が搭載されている。以下、フローチャートの各ステップの動作内容を述べる。
ステップ1100では、監視データ抽出部710で抽出した運転パターン監視のための計測信号を用いて、プラントの運転状態が定常状態であるか、過渡状態であるかを判定する。過渡状態とは、以下のいずれかの所定期間内の状態であり、それ以外は定常状態である。
・スートブロワ噴射開始からの所定期間。 ボイラプラント100では熱交換器に付着した灰を除去するために、チューブに蒸気を噴射するスートブロワ設備がある。スートブロワにより、熱交換器のメタル温度が変動する。
・バーナ点火・消火開始からの所定期間。 ボイラプラント100では、所望の負荷を得るために、負荷要求信号に合わせてバーナを点火・消火する。また、バーナ保守のためにバーナパターン変更を実施する。バーナ点火・消火時にはバーナに流れる石炭流量が大きく変化するため、石炭燃焼により発生するガスの温度も変動する。ガス温度の変動に伴い、メタル温度も変動する。
・負荷変化時、及び負荷変化終了後の所定期間。 ボイラプラント100では、中央給電指令所からの指令に基づいた負荷要求信号を用いて、プラントの発電出力を変化させる。負荷変化中は、石炭流量、給水流量、空気流量を変化させる。その結果、ガス温度、蒸気温度が変動するため、メタル温度も変動する。
ステップ1110では、各バーナに供給される石炭流量に基づいて、各バーナが点火状態であるか、消火状態であるかを評価し、バーナパターンを判別する。ステップ1120では、バーナに供給されている石炭の種類を判別する。石炭の種類は、例えば石炭の種類毎に割りつけられている炭種コードから判別する。ステップ1130では、発電機出力の計測値に基づいて負荷を判別する。本実施例では、これら運転パターンにより各値が変動することに対応したリーク検知方法を可能とする。
図6は、分類部730、及び検知部750にて分類用データ信号702、及び検知用データ信号706を分類する機能を説明する図である。分類部730が動作するか、検知部750が動作するかは、前述の通り状態変化検知部700の動作モードに依存する。
本実施例では、信号を分類する技術として、適応共鳴理論(Adaptive Resonance Theory:ART)を適用した場合について述べる。尚、ベクトル量子化、サポートベクターマシン等、他のクラスタリング手法を用いることもできる。
図6(a)に示すように、データ分類機能はデータ前処理装置610とARTモジュール620で構成する。データ前処理装置610は、運転データをARTモジュール620の入力データに変換する。
以下に、前記データ前処理装置610及びARTモジュール620によるそれらの手順について説明する。
まず、データ前処理装置610において、計測項目毎にデータを正規化する。計測信号を正規化したデータNxi(n)及び正規化したデータの補数CNxi(n)(=1−Nxi(n))を含むデータを入力データIi(n)とする。この入力データIi(n)が、ARTモジュール620に入力される。
ARTモジュール620においては、入力データである分類用データ信号702、もしくは検知用データ信号706を複数のカテゴリーに分類する。
ARTモジュール620は、F0レイヤー621、F1レイヤー622、F2レイヤー623、メモリ624及び選択サブシステム625を備え、これらは相互に結合している。F1レイヤー622及びF2レイヤー623は、重み係数を介して結合している。重み係数は、入力データが分類されるカテゴリーのプロトタイプ(原型)を表している。ここで、プロトタイプとは、カテゴリーの代表値を表すものである。
次に、ARTモジュール620のアルゴリズムについて説明する。
ARTモジュール620に入力データが入力された場合のアルゴリズムの概要は、下記の処理1〜処理5のようになる。
処理1:F0レイヤー621により入力ベクトルを正規化し、ノイズを除去する。
処理2:F1レイヤー622に入力された入力データと重み係数との比較により、ふさわしいカテゴリーの候補を選択する。
処理3:選択サブシステム625で選択したカテゴリーの妥当性がパラメータρとの比により評価される。妥当と判断されれば、入力データはそのカテゴリーに分類され、処理4に進む。一方、妥当と判断されなければ、そのカテゴリーはリセットされ、他のカテゴリーからふさわしいカテゴリーの候補を選択する(処理2を繰り返す)。パラメータρの値を大きくするとカテゴリーの分類が細かくなり、ρの値を小さくすると分類が粗くなる。このパラメータρをビジランス(vigilance)パラメータと呼ぶ。
処理4:処理2において全ての既存のカテゴリーがリセットされると、入力データが新規カテゴリーに属すると判断され、新規カテゴリーのプロトタイプを表す新しい重み係数を生成する。
処理5:入力データがカテゴリーJに分類されると、カテゴリーJに対応する重み係数WJ(new)は、過去の重み係数WJ(old)及び入力データp(又は入力データから派生したデータ)を用いて下記式(1)により更新される。
ここで、Kwは、学習率パラメータ(0<Kw<1)であり、入力ベクトルを新しい重み係数に反映させる度合いを決定する値である。
尚、式(1)及び後述する式(2)乃至式(12)の各演算式は前記ARTモジュール620に組み込まれている。
ARTモジュール620のデータ分類アルゴリズムの特徴は、上記の処理4にある。
処理4においては、学習した時のパターンと異なる入力データが入力された場合、記録されているパターンを変更せずに新しいパターンを記録することができる。このため、過去に学習したパターンを記録しながら、新たなパターンを記録することが可能となる。
このように、入力データとして予め与えた運転データを与えると、ARTモジュール620は与えられたパターンを学習する。したがって、学習済みのARTモジュール620に新たな入力データが入力されると、上記アルゴリズムにより、過去におけるどのパターンに近いかを判定することができる。また、過去に経験したことのないパターンであれば、新規カテゴリーに分類される。
図6(b)は、F0レイヤー621の構成を示すブロック図である。F0レイヤー621では、入力データIiを各時刻で再度正規化し、F1レイヤー621、及び選択サブシステム625に入力する正規化入力ベクトルui 0を作成する。
始めに、入力データIiから、式(2)に従ってwi 0を計算する。ここで、αは定数である。
次に、wi 0を正規化したxi 0を、式(3)を用いて計算する。ここで、|| ||はノルムを表す記号である。
そして、式(4)を用いて、xi 0からノイズを除去したvi 0を計算する。ただし、θはノイズを除去するための定数である。式(4)の計算により、微小な値は0となるため、入力データのノイズが除去される。
最後に、式(5)を用いて正規化入力ベクトルui 0を求める。ui 0はF1レイヤーの入力となる。
図6(c)は、F1レイヤー622の構成を示すブロック図である。F1レイヤー622では、式(5)で求めたui 0を短期記憶として保持し、F2レイヤー722に入力するpiを計算する。F2レイヤーの計算式をまとめて式(6)〜式(12)に示す。ただし、a、bは定数、f()は式(4)で示した関数、TjはF2レイヤー722で計算する適合度である。
ただし、
図7は分類部730で分類用データ信号702を分類した結果、及び検知部750にて検知用信号706を分類した結果を説明する図である。前述の通り、状態変化検知部700がモデル構築モードで動作する場合、分類部730が動作し、診断モードで動作する場合は検知部750が動作する。
図7(a)は、ボイラプラント100から取得した計測信号1を、カテゴリーに分類した結果を説明する図である。横軸は、時間、縦軸は計測信号、カテゴリー番号である。図7(a)では、正常期間と診断期間が時間軸で連続するように示されているが、正常期間と診断機関が時間的に連続である必要はない。例えば、前日の正常状態と判断された一定時間帯をモデル構築モードで用いて診断モデルを作成し、別の日の一定時間帯を診断してもよい。図7(a)は、モデル構築モードで利用する正常状態と判断された期間(図左側)の計測信号データと、診断する期間(図右側)の計測信号データを比較したときのデータ例として示したものである。前者の計測信号データを第一の計測信号データ、後者の計測信号データを第二の計測信号データとして区別してもよい。
図7(b)は、プラント100の計測信号1を、カテゴリーに分類した分類結果の一例を示す図である。図7(b)は、一例として、計測信号のうちの2項目を表示したものであり、2次元のグラフで表記した。また、縦軸及び横軸は、それぞれの項目の計測信号を規格化して示した。
計測信号は、図6(a)のARTモジュール620によって複数のカテゴリー630(図7(b)に示す円)に分割される。1つの円が、1つのカテゴリーに相当する。
本実施例では、計測信号は4つのカテゴリーに分類されている。カテゴリー番号1は、項目Aの値が大きく、項目Bの値が小さいグループ、カテゴリー番号2は、項目A、項目Bの値が共に小さいグループ、カテゴリー番号3は項目Aの値が小さく、項目Bの値が大きいグループ、カテゴリー番号4は項目A、項目Bの値が共に大きいグループである。
図7(a)に示すように、正常期間のデータは、カテゴリー1〜3に分類された。診断モードで監視開始後の前半のデータはカテゴリー2に分類されており、モデルデータと同じカテゴリーである。この場合、データの傾向が同じであることから、状態は変化していないと判断する。一方、監視開始後の後半のデータはカテゴリー4に分類されており、診断モデルデータと異なるカテゴリーに分類されている。データの傾向が異なることから、プラントの状態が変化したと判断する。
尚、本実施例においては、2項目の計測信号をカテゴリーに分類する例を述べたが、3項目以上の計測信号について多次元の座標を用いてカテゴリーに分類することもできる。その場合はメタル温度、給水流量、燃焼ガス流量等、プラントの状態量が依存するこれら傾向の異なる多数のデータ項目の相関関係を同時に見ることで、より細かく判定分けが可能となる。
診断モデルデータベース740には、図7(c)に示すように、カテゴリー番号と重み係数の関係が保存されている。ここで、重み係数とは、カテゴリーの中心座標のことである。
図8は、チューブリーク発生時及び灰脱落発生時の、給水流量、メタル温度、及び分類結果であるカテゴリー番号の経時変化を説明する図である。
図8(a)はチューブリーク発生時の経時変化を説明する図である。チューブリーク発生時に蒸気が漏洩すると、発電出力を維持するために給水流量がわずかに増加し始める。その後、リークした蒸気により周囲のチューブに損傷が波及する。その結果、漏洩する蒸気の量が増加し、給水流量も増加する。
破損が発生した箇所周囲のチューブのメタル温度は、リークした蒸気によって冷却されるため低下する。一方、破損した個所と離れているチューブのメタル温度は上昇する。これは、リーク発生によりチューブ内を流れる蒸気が少なくなる影響で冷却効果が弱くなるためである。
給水流量を監視する監視グループ2では、リーク発生直後の給水流量の増加が少ないと、状態変化を検知できない場合がある。一方、メタル温度を監視する監視グループ3では、リーク発生後に上述のように計測値が変化するため、新規カテゴリーが発生し状態変化を検知する。その後、損傷範囲が広くなると、給水流量が大幅に増加するため、監視グループ2でも状態変化を検知する。
図8(b)は、灰脱落時の経時変化を説明する図である。
熱交換器に付着していた灰が脱落することで、ガスからの伝熱量が増加し、メタル温度は上昇する。その後、除々にメタルに灰が再び付着するため、メタル温度は低下する。その結果、監視グループ3では、灰脱落のタイミングで異常を検知し、その後メタル温度が基の状態に戻ると正常時のカテゴリーの範囲になる。
また、灰の脱落は給水流量にはほぼ影響しない。そのため、監視グループ2では新規カテゴリーは発生しない。
以上より、メタル温度監視でメタル温度の変化から(箇所により上昇又は低下)チューブリークの発生を早期に検知し、給水流量監視でチューブリークの発生検知の精度を向上できる。一方、外乱の代表例である灰脱落時にもメタル温度は変化するため異常を検知するが、メタル温度と給水流量の両方を監視することで、チューブリークとは図8についての説明で述べたような違いがある。それにより本実施例の検知内容評価部800では、灰脱落に代表される外乱と、チューブリークを区別する機能を有する。以下、検知内容評価部800の動作を説明する。
図9は、検知内容評価部800における検知内容推定部810の動作を説明するフローチャート図である。
ステップ1200では、診断周期を確認する。1サイクル前の診断終了後から予め定められた診断周期の時間が経過したかどうかを判定し、時間が経過する前であればステップ1200に戻り、時間が経過している場合はステップ1210に進む。
ステップ1210では、検知部750で状態変化を検知したかを評価し、検知している場合はステップ1220に進み、していない時はステップ1200に戻る。
ステップ1220はチューブリークと外乱を区別する。チューブリークの場合はステップ1230に進み、外乱の場合はステップ1240に進む。
ステップ1230では、チューブリークの発生位置およびその規模を推定する。また、ボイラプラント100の運転ガイダンスを決定する。
ステップ1220とステップ1230の詳細は、図10を用いて説明する。
ステップ1240では、検知内容推定結果6を外部出力インターフェイス420に出力する。
ステップ1250では、外部入力装置910からの外部入力信号2により、ボイラチューブリーク検出装置400を終了させるリクエストがあった時は終了へ進み、それ以外の時はステップ1200に戻る。
図10は、検知内容推定部810のステップ1220とステップ1230の動作を説明する図である。ステップ1220では、検知直前の正常状態と検知後のメタル温度の変化幅に基づいて、チューブリークと灰脱落を区別する。図10(a)(b)(c)はチューブリークが缶の中央部で発生した時のメタル温度変化幅であり、時間の経過とともに(a)(b)(c)の順で変化する。
図10(a)に示すように、事象発生の熱交換器ではメタル温度が上昇する部位と降下する部位がある(図10(a)の丸)。この理由は、図8にて説明した通りである。
また、この影響はガス流れの下流側の熱交換器のメタル温度に波及する(図10(a)の四角)。この理由は以下の通りである。事象発生の熱交換器でメタル温度が上昇したチューブ部位を通過するガス温度が上昇するため、下流側に位置する熱交換器のチューブの内、事象発生チューブのすぐ下流に位置するチューブのメタル温度も上昇する。また、事象発生の熱交換器でメタル温度が低下した部位を通過するガス温度は低下するため、下流側のメタル温度も低下する。
さらに、漏洩した蒸気がガス流れに逆流して噴出した場合は、ガス流れの上流側のメタルが冷却されるため、メタル温度が低下する(図10(a)の三角)。
メタル温度の低下幅は、リークが発生した部位周辺で大きくなり、リークが発生した熱交換器で大きくなり、多くの場合低下幅は最大となる。この傾向に基づき、検知内容推定部810が、メタル温度低下幅が大きく算出された、多くの場合は低下幅が最大の、熱交換器のメタル温度計測チューブ個所の周辺を、チューブリーク発生箇所として抽出する。
リーク発生後、時間が経過するに従い、2次被害によりリークの規模が大きくなるため、図10(b)(c)に示すようにメタル温度の変化幅が大きくなり、メタル温度の変化する領域も広くなる。
図10(d)(e)(f)は、灰脱落が発生したときのメタル温度変化幅であり、時間の経過と共に(d)(e)(f)の順に変化する。
図10(d)に示すように、灰が脱落した部位のメタル温度は上昇する(図10(d)の丸)。また、この影響は下流の熱交換器にも波及する(図10(d)の四角)。これは、事象発生の熱交換器でメタル温度が上昇した部位を通過するガス温度が上昇するため、下流側のメタル温度も上昇するためである。一方、ガス流れ上流の熱交換器には影響しない(図10(d)の三角)。
その後、時間の経過と共に灰が付着するので、図10(e)(f)のように元の状態に戻る。
ステップ1220では、チューブリーク発生時と外乱の代表例である灰脱落では、メタル温度変化幅に上述した特徴的な違いがあることを利用して、チューブリークと外乱を区別する。
事象発生直後、メタル温度が上昇する部位と降下する部位の両方が含まれる場合はチューブリーク発生と診断する。また、メタル温度変化幅が最大となる熱交換器に対してガスの上流側に配置されている熱交換器のメタル温度が変化している場合は、チューブリーク発生と診断する。
異常検知から時間が経過するに従ってメタル温度の変化幅が大きくなれば、チューブリークと診断する。以上のような診断基準を採用することにより、灰脱落等の外乱を区別し、チューブリークを検知出来る。
また、このような事例は過去事例データベース820に保存されている。
ステップ1220では、過去事例データベース820に保存されている情報と比較し、類似の事例からチューブリークと外乱を区別するようにしてもよい。運転員に過去事例に係る情報が表示、提示されることで、リーク判定に過去の知見を利用でき、リーク判断をする手間、時間等が低減できる。ここで類似事例とは、式(13)が最小となる事例である。
Σ(対象事例のメタル温度変化幅 − 過去事例データベースのメタル温度変化幅)2
・・・(13)
また、ステップ1230では、メタル温度の変化幅が最大となる個所を、リーク発生位置として抽出する。また、メタル温度の最大変化幅に応じて、チューブリークの規模を推定する。さらに、予めメタル温度の最大変化幅毎に推奨する運転ガイダンス(プラント停止、出力を下げて運転するなど)を対応付けしておき、その対応付けした運転ガイダンスを決定する。ボイラチューブリーク検出装置が判定する機能及び、ガイダンスを決定する機能を有することにより、ヒューマンエラーが抑制された正確なチューブリーク判定が可能となる。
図11は、過去事例データベース820に保存されるデータの態様を説明する図である。
図11(a)に示すように、過去事例データベース820には、チューブリーク発生や灰脱落などの事象とメタル温度最大変化幅、各メタル温度の変化幅が対応付けられて保存されている。
また、図11(b)に示すように、構造と計測位置の関係が保存されており、チューブリークが発生した位置を設計図面上でどこにあるかを探索することができる。
さらに、図示していないが、過去事例データベース820には、ボイラプラント100の3D−CADデータが保存されている。
図12は、画像表示装置940に表示される画面の実施例を説明する図である。
図10で示したような検知前の現時刻におけるメタル温度変化幅を表示し、プラントの状態を確認できる。また、3D−CAD上にメタル温度降下幅が最大となった計測器の位置を表示し、チューブリークが発生している可能性の高い場所を確認できる。CAD図として表示されることでチューブリークの位置の認識を容易にし、それ以降連鎖的に起こる可能性のあるリークの波及等を予測するために有用な情報となる。
また、過去の類似事例、最大メタル温度変化幅に応じた運転ガイダンスを表示し、運転の判断材料を運転員に提供する。これら本実施例による有効な判断材料となるデータを、視認しやすくインターフェースで提供することにより、運転員が早期にリーク検知を視認し、早期に対処を取ることができる。
以上に述べたボイラチューブリーク検出装置400を用いることで、運転パターン毎の閾値の設定や、新たなハードウェアを設置を要することなく、チューブリークの早期検知とチューブリーク発生位置の早期特定を実現し、2次被害の拡大を抑制できる。
また、ボイラチューブリーク検出装置400を用いた発電プラントに対して、得られた情報をプラント運用会社に提供するサービスも事業形態として想定される。その場合、プラント運用会社にとっては判定に要する知識を持つ人員を抱える必要はなくなる経済的効果や、情報提供をする会社にとってはノウハウの集約、囲い込みを可能とする効果が得られる点で双方に利点が生じる。
本実施例で説明したボイラチューブリーク検出装置とは、ボイラのチューブリークを検出する機能を有する装置のことであり、例えば本実施例の構成を有するボイラ制御装置や、ボイラで計測されたデータを元に本実施例の構成を持って処理しリークを判定し検知する遠隔地に位置する装置もこれに該当する。
図13は、本発明の第2の実施例であるボイラチューブリーク検出装置400を説明するブロック図である。本発明の第1の実施例(図1)とは、ボイラ特性計算部450が備えられている点で異なる。
ボイラ特性計算部450は、ボイラプラント100の特性を模擬するモデルであり、その燃焼(反応)、ガス流動、伝熱のプロセスを差分法、有限体積法、有限要素法等の数値解析手法を用いて計算する。数値解析の解析精度が高い方が望ましいが、本実施例は解析手法に特徴があるのでは無いため数値解析方法に関する説明は省略するが、一般に計算対象であるボイラの形状を計算格子(メッシュ)に分割し、格子内の物理量を計算する。計測信号データベース510に保存されている燃料流量、又は空気流量、又は給水流量のいずれか一つ以上の条件を入力として、数値解析によりガス温度、ガス成分の濃度、ガスの流速と流れの方向、各熱交換器のメタル温度等が計算結果として出力される。数値解析により、様々な操作条件における現象を計算する。
ボイラ特性計算部450は、熱交換器の全てのチューブのメタル温度を計算することが可能であり、この計算結果が計算結果9として出力される。計算結果9は状態変化検知部700、又は検知内容評価部800のいずれか一つ以上に出力され、そこで計測信号データベースからの計測信号4を補足するように、若しくは計測信号4の代わりに利用される。状態変化検知部700では、監視データ抽出部710が計測信号データベースと前記ボイラ特性計算部の計算結果から監視に用いるデータ項目を抽出してグループ化する。それ以降の状態変化検知部700及び検知内容評価部800の動作は実施例1と同様である。
図14は、ボイラ特性計算部450の計算結果を説明する図である。メタル温度の計測値と計算値を重ねて表示した図である。各熱交換器が有する多数のチューブの中でメタル温度の計測点数は限られているが、ボイラ特性計算部450により全てのチューブのメタル温度が計算結果として出力され、診断するデータ項目に計算結果を用いることが可能である。その結果、全チューブのメタル温度を考慮した診断が実施でき、より高精度に状態変化を検知できる。また、リーク検知結果を運転員が判断する時に、より滑らかで詳細な視覚情報として表示されるため、その判断精度の向上が得られる。
図15は、本発明の第3の実施例を説明するブロック図である。
本実施例では、データ監視センタ950、発電所970、負荷調整部署980が、情報通信ネットワーク960で相互に接続している。
発電所970は複数あり、本実施例では2つの発電所を記載したが、実際には3つ以上の発電所と接続するように構成してもよい。
データ監視センタ950は実施例1もしくは実施例2で述べたボイラチューブリーク検出装置400、送信情報決定部951を備える。送信情報決定部951では、診断結果8と計測信号21を用いてデータを処理し、発電所970と負荷調整部署980に送信情報22を送信する。
負荷調整部署980では、外部入力装置981を用いて各発電所の負荷要求信号(出力要求信号)を含む信号10を出力する。負荷要求信号を含む信号9は、画像表示装置940に表示され、表示された情報に従って各発電所にて出力を制御する。
発電所で計測した計測信号1は、情報通信ネットワーク960を介してデータ監視センタ950に送信される。データ監視センタ950では、受信した計測信号21を用いて各発電所の運転状態を監視し、チューブリークの発生有無を評価する。
データ監視センタ980にデータを監視する部署を、各発電所とは別に一か所に集めたことで、プラントの計測信号からリークをより精度高く判定するために必要な知識を持つ運転員を、各発電所に配置する必要が無くなり、コスト削減及びノウハウの集約が可能となる。これは、本実施例の発電所970a、bが、実施例1又は実施例2のボイラチューブリーク検出装置400を有することにより、クラスタリング技術を適用し各発電所個別の特徴に依存が少ない表示データから判断が可能となったことや、早期にチューブリークを検知可能にしたため遠隔地から対応するための時間的猶予を作り出せたことによる。また、これらを遠隔地から監視をすることの上記問題が改善された、本実施例のデータ監視センタ及び監視情報提供サービスが実施できる。
チューブリークの発生を検知した場合は、チューブリークが発生したプラントの運転可能持続時間、被害の波及度合い、プラント停止による損失コストと、それ以外のプラントの出力増加余裕の有無、起動または負荷上げに要する時間、追加コストなどを考慮し、コストが最小となる運転スケジュールを求め、発電所970と負荷調整部署980に運転スケジュール情報を含む送信情報22を送信する。
各発電所では、負荷調整部署から負荷要求信号が届く前に運転スケジュール案を取得できるため、出力増加、出力低下などの運転に対する事前準備が可能となる。
図16は、送信情報決定部951の動作フローチャート図である。
まず、ステップ1300では1サイクル前の診断終了後から予め定められた診断周期の時間が経過したかどうかを判定し、時間が経過する前であればステップ1300に戻り、時間が経過している場合はステップ1310に進む。
ステップ1310ではボイラチューブリーク検出装置400でチューブリーク発生を検知した場合はステップ1320に進み、検知しなかった場合はステップ1300に戻る。
ステップ1320では式(14)の評価関数が最小となる運用スケジュールを決定する。
ただし、1≦i≦Pで、Pは発電プラントの総数、αiは重み係数、Ciは各発電プラントで生じる追加コストである。
ステップ1330ではステップ1320で決定した運用スケジュールを、発電所970、負荷調整部署980に送信する。
ステップ1340ではチューブリーク検出装置400を停止する指令の有無を評価し、停止指令有りの場合は終了へ進み、無しの場合はステップ1300に戻る。
チューブリーク発生に伴うコスト損失が最小となるような運用スケジュールを自動的に作成することが可能となり、また本運用スケジュールに従ってプラントを運用することが可能となる。また、各発電所に、各プラントの負荷要求値を含む運転スケジュールの情報を提供するサービスは、プラント運用会社に運転に対する事前準備が可能となる上述のメリットを提供する効果がある。
1 ・・・ 計測信号
2 ・・・ 外部入力信号
3 ・・・ 計測信号
4 ・・・ 計測信号
5 ・・・ 診断結果
6 ・・・ 検知内容推定結果
7 ・・・ 画像表示情報
100 ・・・ プラント
400 ・・・ ボイラチューブリーク検出装置
410 ・・・ 外部入力インターフェイス
420 ・・・ 外部出力インターフェイス
510 ・・・ 計測信号データベース
700 ・・・ 状態変化検知部
710 ・・・ 監視データ抽出部
720 ・・・ 運転パターン評価部
730 ・・・ 分類部
740 ・・・ 診断モデルデータベース
750 ・・・ 検知部
800 ・・・ 検知内容評価部
810 ・・・ 検知要因推定部
820 ・・・ 過去事例データベース
701 ・・・ 監視データグループ信号
702 ・・・ 分類用データ信号
703 ・・・ 診断モデル
704 ・・・ 診断モデルデータベース情報
705 ・・・ 診断モデルデータベース情報
706 ・・・ 検知用データ信号
801 ・・・ 過去事例データベース情報
802 ・・・ 過去事例データベース情報
900 ・・・ 運転管理室
910 ・・・ 外部入力装置
920 ・・・ キーボード
930 ・・・ マウス

Claims (15)

  1. ボイラプラントの状態量を計測した計測信号がデータ項目別に保存される計測信号データベースと、
    前記ボイラプラントの運転状態の変化を検知する状態変化検知部と、
    前記状態変化検知部で検知した変化をリークか否か評価する検知内容評価部を備えたボイラチューブリーク検出装置において、
    前記状態変化検知部には、
    前記計測信号データベースから第一の計測信号データが入力され、前記データ項目の一部を監視グループとしてグループ化する監視データ抽出部と、
    前記ボイラプラントの運転パターンを識別する運転パターン評価部と、
    前記識別された運転パターン毎にかつ前記監視グループ毎に、前記グループ化されたデータ項目に属する第一の計測信号データを分類して診断モデルを構築する分類部と、
    前記診断モデルと第二の計測信号を比較することで運転状態が変化したことを検知する検知部が備えられ、
    前記監視データ抽出部がグループ化するデータ項目に前記ボイラプラントの複数ある熱交換器のメタル温度が含まれる
    ことを特徴としたボイラチューブリーク検出装置。
  2. 請求項1に記載のボイラチューブリーク検出装置において、
    前記監視データ抽出部が抽出しグループ化するデータ項目が、給水流量を含むことを特徴とするボイラチューブリーク検出装置。
  3. 請求項1乃至2のいずれかに記載のボイラチューブリーク検出装置において、
    前記検知部において前記診断モデルと比較される前記第二の計測信号は、前記計測信号データベースからデータ項目単位で抽出され、グループ化され、運転パターン評価されるデータであることを特徴とするボイラチューブリーク検出装置。
  4. 請求項1乃至3のいずれかに記載のボイラチューブリーク検出装置において、
    前記計測信号データベースに保存されている燃料流量、又は空気流量、又は給水流量の少なくとも一つの条件からメタル温度を計算するボイラ特性計算部を備え、
    前記監視データ抽出部が、前記計測信号データベースと前記ボイラ特性計算部の計算結果からデータを入力することを特徴としたボイラチューブリーク検出装置。
  5. 請求項1乃至4のいずれかに記載のボイラチューブリーク検出装置において、
    プラントの運転状態が過渡状態と前記運転パターン評価部が判断した時は、前記検知部を動作させないこと
    を特徴としたボイラチューブリーク検出装置。
  6. 請求項1乃至5のいずれかに記載のボイラチューブリーク検出装置において、
    前記監視データ抽出部が行うメタル温度のグループ化が、
    熱交換器毎のメタル温度計測値のグループ化、若しくはガスの流れに沿ったメタル温度計測値のグループ化のいずれか一つ以上を含むことを特徴としたボイラチューブリーク検出装置。
  7. 請求項1乃至6のいずれかに記載のボイラチューブリーク検出装置において、
    前記検知内容評価部には、
    前記検知部で状態の変化を検知する前後のメタル温度の変化幅を計算し、メタル温度低下幅が最大と算出された、熱交換器のメタル温度計測チューブ個所を、チューブリーク発生箇所周辺として抽出する検知内容推定部が備えられていること
    を特徴としたボイラチューブリーク検出装置。
  8. 請求項1乃至7に記載のボイラチューブリーク検出装置において、
    前記検知内容評価部では、
    メタル温度が上昇する部位と降下する部位の両方が含まれる場合、
    もしくはメタル温度変化幅が最大となる熱交換器に対してガスの上流側に配置されている熱交換器のメタル温度が変化している場合、
    もしくは異常検知から時間が経過するに従ってメタル温度の変化幅が大きくなった場合に、
    チューブリーク発生と判定することを特徴としたボイラチューブリーク検出装置。
  9. 請求項1乃至8のいずれかに記載のボイラチューブリーク検出装置において、
    前記検知内容評価部には、過去に発生した事象と各メタル温度の変化幅が対応付けられて保存されている過去事例データベースと、前記過去事例データベースに保存されている事例からメタル温度変化幅の2乗誤差が最小となる事例を抽出する検知内容推定部が備えられていること
    を特徴としたボイラチューブリーク検出装置。
  10. 請求項1乃至9のいずれかに記載のボイラチューブリーク検出装置において、
    前記検知内容評価部に、メタル温度の変化幅に基づいてチューブリークの程度を評価し、前記チューブリークの程度に基づいてプラントの運転継続、出力低下、停止を判断する機能が備えられていること
    を特徴としたボイラチューブリーク検出装置。
  11. 請求項1乃至10のいずれかに記載のボイラチューブリーク検出装置において、
    前記検知内容評価部には、
    前記検知部で検知する前後のメタル温度の変化幅を計算し、メタル温度低下幅が最大となる個所をチューブリーク発生箇所として抽出する検知内容推定部が備えられており、
    前記検知内容推定部で計算したメタル温度変化幅の情報、若しくは抽出したチューブリーク発生箇所をCAD図面上で確認するための情報、の少なくとも一つを画像表示装置に表示すること
    を特徴としたボイラチューブリーク検出装置。
  12. 請求項1乃至11のいずれかに記載のボイラチューブリーク検出装置が備えられているデータ監視センタにおいて、
    前記データ監視センタと複数の発電プラントと負荷調整部署とが情報通信ネットワークで相互に接続されており、
    前記データ監視センタには、特定の発電プラントでボイラチューブリークが発生した時には、他の発電プラントの出力増加の可能性を評価して各プラントの負荷要求値を決定する送信情報決定部
    が備えられていることを特徴としたデータ監視センタ。
  13. 請求項1乃至11のいずれかに記載したボイラチューブリーク検出装置を用いた情報提供サービスにおいて、
    前記ボイラチューリーク検出装置から該当するボイラプラントにボイラチューブリーク検出情報、若しくはデータ監視センタから前記検出情報を元に求められた各プラントの負荷要求値を含む運転スケジュールの情報、の少なくとも一つを提供することを特徴とした
    情報提供サービス。
  14. ボイラプラントの状態量を計測した計測信号を用いて、前記ボイラプラントの運転状態の変化を検知する状態変化検知ステップと、
    前記状態変化検知部で検知した変化をリークか否か評価する検知内容評価ステップを含むボイラチューブリーク検出方法であって、
    前記状態変化検知ステップは、
    過去の前記計測信号から、正常と定義された期間のデータである第一の計測信号データをデータ項目単位で監視グループとしてグループ化する監視データ抽出ステップと、
    前記ボイラプラントの運転パターンを識別する運転パターン評価ステップと、
    前記監視グループ毎にかつ前記運転パターン毎に、前記グループ化されたデータ項目に属する第一の計測信号データを分類して診断モデルを構築する分類ステップと、
    前記診断モデルと診断する期間の計測信号を比較することで運転状態が変化したことを検知する検知ステップを含み、
    前記監視グループに用いるデータ項目として複数ある熱交換器のメタル温度を含むこと
    を特徴としたボイラチューブリーク検出方法。
  15. 複数の熱交換器と、ボイラプラントの状態量を計測する装置と、前記ボイラプラントを制御する運転制御装置を有するボイラプラントにおいて、
    前記運転制御装置は、
    前記状態量を検出する装置から伝達される計測信号がデータ項目別に保存される計測信号データベースと、
    前記計測信号データベースから入力された計測信号に基づき前記ボイラプラントの運転状態の変化を診断結果データとして出力する状態変化検知部と、
    前記診断結果データが入力され、運転状態変化がリークか否か評価し、検知内容推定結果データを出力する検知内容評価部と、
    前記推定検知内容推定結果データを表示する画像表示装置を備え、
    前記状態変化検知部は、
    前記計測信号データベースから第一の計測信号データが入力され、前記データ項目の一部を監視グループとしてグループ化した監視グループデータを出力する監視データ抽出部と、
    前記監視グループデータが入力され、前記監視グループデータを元に前記ボイラプラントの運転パターンを識別し、運転パターン評価結果データを出力する運転パターン評価部と 、
    前記運転パターン評価結果データと前記監視グループデータが入力され、前記運転パターン毎かつ前記監視グループ毎に、前記グループ化されたデータ項目に属する第一の計測信号データを分類して診断モデルを出力する分類部と、
    前記計測信号データベースに保存され、前記監視データ抽出部でグループ化され、前記運転パターン評価部で識別された第二の計測信号データが入力され、さらに前記診断モデルが入力され、前記診断モデルと第二の計測信号を比較することで運転状態が変化したことを検知し、前記診断結果データを出力する検知部が備えられ、
    前記監視データ抽出部がグループ化するデータ項目に前記ボイラプラントの前記複数ある熱交換器のメタル温度が含まれる
    ことを特徴としたボイラプラント。
JP2013133278A 2013-06-26 2013-06-26 ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。 Active JP6037954B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013133278A JP6037954B2 (ja) 2013-06-26 2013-06-26 ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。
PCT/JP2014/063635 WO2014208227A1 (ja) 2013-06-26 2014-05-23 ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133278A JP6037954B2 (ja) 2013-06-26 2013-06-26 ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。

Publications (2)

Publication Number Publication Date
JP2015007509A true JP2015007509A (ja) 2015-01-15
JP6037954B2 JP6037954B2 (ja) 2016-12-07

Family

ID=52141579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133278A Active JP6037954B2 (ja) 2013-06-26 2013-06-26 ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。

Country Status (2)

Country Link
JP (1) JP6037954B2 (ja)
WO (1) WO2014208227A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191635A (ja) * 2015-03-31 2016-11-10 中国電力株式会社 プラントの漏洩検出システムとその方法
JP2018190246A (ja) * 2017-05-09 2018-11-29 株式会社日立製作所 熱交換器の異常診断方法、異常診断システム、及びその制御装置
KR20180131239A (ko) * 2017-05-31 2018-12-10 주식회사 지오네트 화력발전 운영 방법 및 시스템
JP2019049391A (ja) * 2017-09-11 2019-03-28 三菱日立パワーシステムズ株式会社 プラント異常箇所推定システム
WO2019082491A1 (ja) 2017-10-25 2019-05-02 株式会社日立製作所 プラントの運転支援装置及び運転支援方法
JP2019095836A (ja) * 2017-11-17 2019-06-20 株式会社デンソー 診断システム
JP2019114168A (ja) * 2017-12-26 2019-07-11 宇部興産株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
JP2020057165A (ja) * 2018-10-01 2020-04-09 株式会社椿本チエイン 異常判定装置、信号特徴量予測器、異常判定方法、学習モデルの生成方法及び学習モデル
JP2020071196A (ja) * 2018-11-02 2020-05-07 東京電力ホールディングス株式会社 チューブ式熱交換器のリーク判断方法
JP2020133962A (ja) * 2019-02-15 2020-08-31 株式会社Ihi 伝熱管損傷検出装置、ボイラシステム及び伝熱管損傷検出方法
JP2021011992A (ja) * 2019-07-09 2021-02-04 株式会社日立製作所 ボイラチューブリーク早期検知システム及びその方法
JP2022069608A (ja) * 2017-12-26 2022-05-11 Ube株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
JP2022129722A (ja) * 2021-02-25 2022-09-06 株式会社ミヤワキ 測定診断装置
WO2022195890A1 (ja) * 2021-03-19 2022-09-22 日本電気株式会社 時系列データ処理方法
WO2023036926A1 (en) * 2021-09-09 2023-03-16 Sumitomo SHI FW Energia Oy A method for determining a leakage in a heat transfer fluid channel of a heat transferring reactor system, and a heat transferring reactor
FR3138530A1 (fr) * 2022-08-01 2024-02-02 Liebherr-Aerospace Toulouse Sas Procédé de localisation d’une fuite d’air dans un réseau d’alimentation en air pressurisé, produit programme d’ordinateur et système associés

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113916457A (zh) * 2021-08-25 2022-01-11 华能国际电力股份有限公司丹东电厂 一种用于预判锅炉装置漏水的系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11356094A (ja) * 1998-04-08 1999-12-24 Toshiba Corp 発電運転管理システム
JP2007509395A (ja) * 2003-10-16 2007-04-12 エービービー・インコーポレイテッド 連続プロセスの中のシステム・コンポーネントの異常の検知
JP2008064412A (ja) * 2006-09-11 2008-03-21 Chugoku Electric Power Co Inc:The ボイラーチューブリーク自動診断システム
JP2008144995A (ja) * 2006-12-07 2008-06-26 Chugoku Electric Power Co Inc:The プラントリーク検出システム
JP2013190228A (ja) * 2012-03-12 2013-09-26 Chugoku Electric Power Co Inc:The チューブリーク検査装置、及びチューブリーク検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11356094A (ja) * 1998-04-08 1999-12-24 Toshiba Corp 発電運転管理システム
JP2007509395A (ja) * 2003-10-16 2007-04-12 エービービー・インコーポレイテッド 連続プロセスの中のシステム・コンポーネントの異常の検知
JP2008064412A (ja) * 2006-09-11 2008-03-21 Chugoku Electric Power Co Inc:The ボイラーチューブリーク自動診断システム
JP2008144995A (ja) * 2006-12-07 2008-06-26 Chugoku Electric Power Co Inc:The プラントリーク検出システム
JP2013190228A (ja) * 2012-03-12 2013-09-26 Chugoku Electric Power Co Inc:The チューブリーク検査装置、及びチューブリーク検査方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191635A (ja) * 2015-03-31 2016-11-10 中国電力株式会社 プラントの漏洩検出システムとその方法
JP2018190246A (ja) * 2017-05-09 2018-11-29 株式会社日立製作所 熱交換器の異常診断方法、異常診断システム、及びその制御装置
KR20180131239A (ko) * 2017-05-31 2018-12-10 주식회사 지오네트 화력발전 운영 방법 및 시스템
KR101960754B1 (ko) * 2017-05-31 2019-03-25 주식회사 지오네트 화력발전 운영 방법 및 시스템
JP2019049391A (ja) * 2017-09-11 2019-03-28 三菱日立パワーシステムズ株式会社 プラント異常箇所推定システム
WO2019082491A1 (ja) 2017-10-25 2019-05-02 株式会社日立製作所 プラントの運転支援装置及び運転支援方法
JP2019095836A (ja) * 2017-11-17 2019-06-20 株式会社デンソー 診断システム
JP2022069608A (ja) * 2017-12-26 2022-05-11 Ube株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
JP2019114168A (ja) * 2017-12-26 2019-07-11 宇部興産株式会社 プラント管理システム、プラント管理サーバ、プラント管理装置、推定用モデルの生成方法、及び学習用データの生成方法
JP2020057165A (ja) * 2018-10-01 2020-04-09 株式会社椿本チエイン 異常判定装置、信号特徴量予測器、異常判定方法、学習モデルの生成方法及び学習モデル
JP7147486B2 (ja) 2018-11-02 2022-10-05 東京電力ホールディングス株式会社 チューブ式熱交換器のリーク判断方法
JP2020071196A (ja) * 2018-11-02 2020-05-07 東京電力ホールディングス株式会社 チューブ式熱交換器のリーク判断方法
JP2020133962A (ja) * 2019-02-15 2020-08-31 株式会社Ihi 伝熱管損傷検出装置、ボイラシステム及び伝熱管損傷検出方法
JP7206990B2 (ja) 2019-02-15 2023-01-18 株式会社Ihi 伝熱管損傷検出装置、ボイラシステム及び伝熱管損傷検出方法
JP2021011992A (ja) * 2019-07-09 2021-02-04 株式会社日立製作所 ボイラチューブリーク早期検知システム及びその方法
JP7438679B2 (ja) 2019-07-09 2024-02-27 株式会社日立製作所 ボイラチューブリーク早期検知システム及びその方法
JP2022129722A (ja) * 2021-02-25 2022-09-06 株式会社ミヤワキ 測定診断装置
JP7257060B2 (ja) 2021-02-25 2023-04-13 株式会社ミヤワキ 測定診断装置
WO2022195890A1 (ja) * 2021-03-19 2022-09-22 日本電気株式会社 時系列データ処理方法
WO2023036926A1 (en) * 2021-09-09 2023-03-16 Sumitomo SHI FW Energia Oy A method for determining a leakage in a heat transfer fluid channel of a heat transferring reactor system, and a heat transferring reactor
WO2023036428A1 (en) * 2021-09-09 2023-03-16 Sumitomo SHI FW Energia Oy A method for determining a tube leakage in a water-steam circuit of a combustion boiler system, and a combustion boiler
FR3138530A1 (fr) * 2022-08-01 2024-02-02 Liebherr-Aerospace Toulouse Sas Procédé de localisation d’une fuite d’air dans un réseau d’alimentation en air pressurisé, produit programme d’ordinateur et système associés
EP4317932A1 (fr) * 2022-08-01 2024-02-07 Liebherr-Aerospace Toulouse SAS Procédé de localisation d'une fuite d'air dans un réseau d'alimentation en air pressurisé, produit programme d'ordinateur et système associés

Also Published As

Publication number Publication date
WO2014208227A1 (ja) 2014-12-31
JP6037954B2 (ja) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6037954B2 (ja) ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。
JP6116466B2 (ja) プラントの診断装置及び診断方法
KR101427638B1 (ko) 보일러 튜브 누설들을 검출하기 위한 커넬 기반 방법
US8442853B2 (en) Targeted equipment monitoring system and method for optimizing equipment reliability
AU2012200296B2 (en) System and method for identifying likely geographical locations of anomalies in a water utility network
WO2018236855A1 (en) REMOTE CONTROL OF COMBUSTION HEATING ELEMENTS
US7933754B2 (en) System and method for damage propagation estimation
JP6884078B2 (ja) プラント異常監視システム
JP2018190245A (ja) 設備機器の異常診断システム
JP2017010232A (ja) プラント診断装置及びプラント診断方法
CN114484409B (zh) 一种火电厂炉管泄漏事故的预警方法及装置
EP3702861A1 (en) Plant operation assistance device and operation assistance method
JP6943698B2 (ja) プラント異常箇所推定システム
JP7142545B2 (ja) ボイラチューブリーク診断システム及びボイラチューブリーク診断方法
CN117441180A (zh) 一种用于检测热能交换系统中的运行异常的方法和系统,以及一种训练机器学习模型的方法
JP5355710B2 (ja) プロセス信号の抽出システムおよび方法
JP2017117034A (ja) 診断装置及び診断方法
WO2011148431A1 (ja) プラント診断装置及びこれを用いた診断方法
JP2003193808A (ja) 発電プラントの診断方法および診断システム
CN113836821B (zh) 一种锅炉水冷壁拉裂在线预测方法
Al Koussa et al. Fault detection in district heating substations: A cluster-based and an instance-based approach
KR20240139344A (ko) 열교환 튜브 손상도 평가 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R151 Written notification of patent or utility model registration

Ref document number: 6037954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151