WO2019082491A1 - プラントの運転支援装置及び運転支援方法 - Google Patents
プラントの運転支援装置及び運転支援方法Info
- Publication number
- WO2019082491A1 WO2019082491A1 PCT/JP2018/031088 JP2018031088W WO2019082491A1 WO 2019082491 A1 WO2019082491 A1 WO 2019082491A1 JP 2018031088 W JP2018031088 W JP 2018031088W WO 2019082491 A1 WO2019082491 A1 WO 2019082491A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- abnormality
- cost
- driving support
- support apparatus
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
- G05B23/0245—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a qualitative model, e.g. rule based; if-then decisions
- G05B23/0251—Abstraction hierarchy, e.g. "complex systems", i.e. system is divided in subsystems, subsystems are monitored and results are combined to decide on status of whole system
Definitions
- the present invention relates to a plant operation support apparatus and a plant operation support method, and more particularly to a plant operation support apparatus and a plant support method for avoiding an increase in damage cost.
- ICT Information and Communication Technology
- IoT Internet of Things
- data collected at local sites such as measurement data and inspection / maintenance data of power generation plants and business management and assets have been focused on utilization of data accumulated in large amounts in many industries.
- the integration of information management systems is required to develop more efficient management policies.
- thermal power plants as a backup power source is considered to be due to concern that fluctuations in the amount of power generation due to increased use of renewable energy such as wind power and solar power will reduce the stability of the power system. It is increasing.
- thermal power plants have not only a role as conventional load adjustment but also a role as base load power source. Therefore, thermal power plants are required to operate in consideration of key performance indicators (KPIs) such as operation rate, environmental performance, and efficiency.
- KPIs key performance indicators
- Patent Document 1 discloses a diagnostic device using Adaptive Resonance Theory (ART).
- ART is a theory that classifies multi-dimensional time-series data into clusters according to their degree of similarity.
- Patent Document 2 discloses a technology for predicting the risk cost due to damage, performance deterioration, and outage of equipment constituting a plant, selecting an optimal operation method while comparing with the gain by operation, and instructing it. .
- Patent document 1 JP-A-2004-096431 Japanese Patent Application Publication 2015-7509
- Patent Document 1 By using the technology of Patent Document 1, it is possible to detect the occurrence of abnormal signs in a plant. If an abnormal symptom is detected, the plant operator continues the plant operation to analyze and confirm the cause. However, if analysis of causes of abnormality, confirmation, etc. is performed, it may be necessary to have time for that separately.
- Patent Document 2 a probability model of abnormal occurrence and abnormal spread is used to predict the risk cost. In order to construct such a probabilistic model, it is necessary to collect cases of anomalies that occurred in the past.
- the driving support apparatus is an abnormality based on a physical model based on diagnosis means for diagnosing the operation state of a plant based on operation data, and a diagnosis result obtained by the diagnosis means.
- Abnormal propagation prediction means for predicting equipment and time to which it spreads, cost calculation means for predicting change over time of damage cost based on the result of the abnormal spread prediction means, and emergency of the plant for which the damage cost is predetermined.
- a plant stop determination means for generating a signal for stopping the plant if the cost of damage caused by the stop or more is exceeded.
- the present invention it is possible to stop the plant at an early stage when an abnormality occurs and to avoid an increase in the damage cost due to the spread of the abnormality.
- ART adaptive resonance theory
- FIG. 1 is a block diagram for explaining a driving support apparatus 200 which is an embodiment of the present invention.
- the driving support device 200 is connected to the plant 100 that is the driving support target and the external device 900.
- the plant 100 includes an apparatus 110 and a control device 120.
- the control device 120 receives the measurement signal 2 transmitted from the device 110 and transmits the control signal 1.
- the driving support apparatus 200 includes a clustering unit 400, a diagnosis unit 500, an abnormal propagation prediction unit 600, a cost calculation unit 700, and a plant stop determination unit 800 as operation devices.
- the driving support device 200 includes a driving data database 310, a cost information database 320, and a calculation result database 330 as databases.
- the calculation result database 330 stores the result calculated by the arithmetic device of the driving support device 200.
- the database is abbreviated as DB.
- the database stores electronic information, and the information is generally stored in a form called electronic file (electronic data).
- the driving device 200 includes an external input interface 210 and an external output interface 220 as an interface with the outside. Then, the operation data 3 collected by the plant 100 via the external input interface 210, and the external input signal 4 generated by the operation of the external input device 910 (keyboard 910 and mouse 920) provided in the external device 900. Are taken into the driving support device 200.
- the driving data 3 taken into the driving support device 200 is stored in the driving data database 310 via the external input interface.
- the cost information 6 included in the external input signal 4 is stored in the cost information database 320.
- the image display information 16 is output to the screen display device 940 and the plant stop signal 15 to the control device 120 via the external output interface 220.
- the clustering unit 400 classifies the driving data stored in the driving data database 310 into clusters according to the degree of similarity.
- the clustering means 400 incorporates the technique using the adaptive resonance theory disclosed in Patent Document 1.
- the clustering technology 400 is not limited to the means described in the present embodiment, and other clustering technology may be installed.
- the clustering result 8 is transmitted to the cause estimating means 500.
- the diagnosis unit 500 diagnoses the operating state of the plant 100 based on the clustering result 8. As disclosed in Patent Document 1, the diagnosis unit 500 first classifies normal operation data into a plurality of clusters (normal clusters). Next, the current driving data is classified into clusters. When this time series data can not be classified as a normal cluster, a new cluster (new cluster) is generated. The generation of a new cluster means that the state to be diagnosed has changed to a new state (new state). Therefore, the occurrence of abnormal symptoms is judged by the occurrence of new clusters.
- the diagnosis means 500 estimates the cause of the abnormality. As disclosed in Patent Document 1, the diagnosis unit 500 estimates an event associated with a cluster number as an abnormal cause.
- the diagnostic means 500 is not limited to the means described in the present embodiment, and may be configured to be equipped with another abnormality cause estimation technique.
- the cause estimation result 9 is transmitted to the abnormal propagation prediction unit 600.
- the anomaly spread prediction unit 600 analyzes and predicts how the anomaly spreads using the physical model based on the cause estimation result 9.
- the physical model is a model constructed based on physical formulas such as mass conservation law and momentum conservation law. Further, using the cause estimation result 9 and the scenario information 14 generated by the plant stop determination means 800, the abnormal spread prediction means 600 calculates the temporal change of the damage degree for each scenario. The abnormal propagation prediction result 10 is transmitted to the cost calculation means 700.
- the cost calculation means 700 calculates a loss cost using the abnormal propagation prediction result 10 and the cost information 11. Further, the cost calculation means 700 calculates a loss cost for each scenario using the abnormal propagation prediction result 10, the cost information 11, and the scenario information 14 generated by the plant stop determination means 800. The cost calculation means 700 calculates cost information by adding the cost required for replacement for the parts whose abnormal spread degree exceeds the threshold. The cost calculation result 12 is transmitted to the plant stop determination means 800.
- the plant stop determination means 800 calculates whether to stop the plant 100 based on the cost calculation result 12.
- the plant stop determination result 13 is transmitted to the external output interface 220, and the plant stop signal 15 is transmitted to the control device 120 when it is the determination result of stopping the plant.
- the arithmetic device and the database are provided inside the driving assistance device 200, but some of these devices are arranged outside the driving assistance device 200, and data Only may be communicated between the devices.
- the signal database information 50 which is a signal stored in each database, can display all the information on the screen display device 940 through the external output interface 220, and these information can be manipulated by operating the external input device 910. It can be corrected by the external input signal 2 to be generated.
- the external input device 910 is configured of the keyboard 920 and the mouse 930, but any device for inputting data, such as a microphone for voice input, a touch panel or the like may be used.
- the embodiment of the present invention can be implemented as an apparatus for analyzing operation data off-line.
- the application target of the driving assistance device 200 is a plant in this embodiment, it is needless to say that the application target can also be implemented as equipment other than the plant.
- FIG. 2 is a flow chart for explaining the operation of the driving support device 200.
- operation data 3 is fetched from the control device 120 and stored in the operation data database 310.
- step 1010 it is determined whether the operation mode is a learning mode or a diagnostic mode.
- the process proceeds to step 1020, and in the case of the diagnosis mode, the process proceeds to step 1030.
- the learning mode operates when the number of repetitions of this flowchart is one time (the first time), and the diagnostic mode operates after the second time.
- step 1020 the learning data is processed by the clustering unit 400 to generate clusters in a normal state. Thereafter, the process returns to step 1000.
- the clustering means 400 processes diagnostic data.
- step 1040 it is determined based on the clustering result 8 whether or not an abnormality has occurred in the plant 100. If an abnormality is detected, the process proceeds to step 1050. If no abnormality is detected, the process returns to step 1000.
- the diagnosis means 500 estimates the cause of the abnormality.
- the abnormal propagation prediction unit 600 predicts the parts and time of the abnormality propagation using the physical model.
- the cost calculation means 700 is operated to calculate the cost associated with the anomaly and the anomaly.
- step 1080 determination of plant stop is performed. The contents of step 1080 will be described later with reference to FIG.
- step 1090 a plant stop signal 15 is transmitted to the control device 120.
- step 1100 the image display information 16 is transmitted to the image display device 940.
- step 1110 if the operator gives an instruction to stop the operation, the process proceeds to end. If there is no instruction, the process returns to step 1000.
- FIGS. 3 and 4 are diagrams for explaining an aspect of data stored in a database installed in the driving support device 200.
- FIG. 3 is a diagram for explaining an aspect of data stored in a database installed in the driving support device 200.
- FIG. 3A is a view for explaining an aspect of data stored in the driving data database 310. As shown in FIG. As shown in FIG. 3A, the operation data measured by the sensor is stored for each sampling cycle.
- FIG. 3B is a view for explaining an aspect of data stored in the cost information database 320.
- cost information required for component replacement is stored as cost information regarding the loss caused by the abnormality and the abnormal spread.
- FIGS. 3C, 3D, 4A, 4B, 4C are diagrams for explaining the aspect of data stored in the calculation result database 330.
- FIG. 3C, 3D, 4A, 4B, 4C are diagrams for explaining the aspect of data stored in the calculation result database 330.
- FIGS. 3C and 3D show data obtained by operating the clustering means 400, which is the relationship between time and cluster number (FIG. 3C), the attribute of each cluster, and the weight coefficient of each cluster. is there.
- the attribute is information for defining whether each cluster is a normal cluster or an abnormal cluster.
- the weighting factor is coefficient information for defining the center coordinates of each cluster.
- abnormal events defined for each cluster are stored.
- the diagnosis means 500 collates the cluster number at each time shown in FIG. 3C with the event name defined in FIG. 3D to estimate an abnormal event.
- FIG. 4A shows the relationship between the degree of spread of the abnormality for each part and the time obtained by operating the abnormal spread prediction unit 600.
- the abnormal spread degree is, for example, a reduction width of the wall thickness in the piping, and is a digitization of the degree of damage received with the abnormality for each part.
- FIG. 4B shows the relationship between time and cost information obtained by operating the cost calculation means 700.
- a value obtained by adding the cost required for replacement is stored as cost information for a part whose anomaly spread degree exceeds the threshold.
- FIG. 4C shows the relationship between the stop determination result obtained by operating the plant stop determination means 800 and the time. “0” means that the operation is continued, and “1” means that the operation is stopped.
- FIG. 5 is a diagram for explaining a block diagram when adaptive resonance theory (ART) is used as an example of the clustering means 400.
- ART adaptive resonance theory
- the ART module 410 comprises an F0 layer 411, an F1 layer 412, an F2 layer 413, a memory 414 and a selection subsystem 415, which are coupled to one another.
- the F1 layer 412 and the F2 layer 413 are connected via weighting factors.
- the weighting factors represent prototypes of clusters into which input data is classified.
- a prototype represents a representative value of a cluster.
- Process 1 The input vector is normalized by the F0 layer 411 to remove noise.
- Process 2 The candidate of the suitable cluster is selected by the comparison with the input data and weighting coefficient which were input into the F1 layer 412.
- Process 3 The validity of the cluster selected in the selection subsystem 415 is evaluated by the ratio to the parameter ⁇ . If it is determined that the data is valid, the input data is classified into the cluster, and the process proceeds to processing 4. On the other hand, if it is not determined that the cluster is determined to be valid, the cluster is reset, and a candidate of a suitable cluster is selected from other clusters (process 2 is repeated). As the value of the parameter ⁇ is increased, the classification of clusters becomes finer. That is, the cluster size becomes smaller. Conversely, the smaller the value of ⁇ ⁇ ⁇ , the coarser the classification. Cluster size increases. This parameter ⁇ is called a vigilance parameter.
- Process 4 When all existing clusters are reset in Process 2, it is determined that the input data belongs to a new cluster, and a new weighting factor representing a prototype of the new cluster is generated.
- Kw is a learning rate parameter (0 ⁇ Kw ⁇ 1), which is a value for determining the degree of reflecting the input vector on a new weighting factor.
- Equations 1 and Equations 2 to 12 described later are incorporated in the ART 410.
- the feature of the ART 410 data classification algorithm is in the process 4 described above.
- process 4 when input data different from the learned pattern is input, a new pattern can be recorded without changing the recorded pattern. For this reason, it is possible to record a new pattern while recording a pattern learned in the past.
- the ART 410 learns the given pattern. Therefore, when new input data is input to the learned ART 410, the above algorithm can determine which pattern is close to the past. Also, if a pattern has not been experienced in the past, it is classified into a new cluster.
- FIG. 5 (b) is a block diagram showing the configuration of the F0 layer 411.
- the input data I i is normalized again at each time to create a normalized input vector u i 0 to be input to the F 1 layer 412 and the selection subsystem 415.
- W i 0 is calculated from the input data I i according to Equation 2.
- a is a constant.
- X i 0 obtained by normalizing W i 0 is calculated using Equation 3.
- represents the norm of W 0 .
- Equation 4 Since the minute value is 0, the noise of the input data is removed.
- u i 0 is an input of the F1 layer.
- FIG. 5C is a block diagram showing the configuration of the F1 layer 412. As shown in FIG. The F 1 layer 412 holds u i 0 obtained in Equation 5 as short-term memory, and calculates P i to be input to the F 2 layer 413. Formulas for the F2 layer are summarized in Equations 6 to 12. Here, a and b are constants, f ( ⁇ ) is the function shown in equation 4, and T j is the fitness calculated by the F 2 layer 413.
- FIG. 6 is a view for explaining classification results of data in the clustering unit 400.
- FIG. 6A is a diagram showing an example of classification results obtained by classifying driving data into clusters.
- FIG. 6A shows, as an example, two items of the operation data, which are expressed as a two-dimensional graph. Further, the vertical axis and the horizontal axis are shown by normalizing the operation data of each item.
- the operation data is divided by the ART module 410 into a plurality of clusters 419 (circles shown in FIG. 4A). One circle corresponds to one cluster.
- the operation data is classified into four clusters.
- Cluster number 1 is a group in which the value of item A is large and the value in item B is small.
- Cluster number 2 is a group in which the values of item A and item B are both small.
- Cluster number 3 is small in the value of item A, item B
- the cluster number 4 is a group in which the values of item A and item B are both large.
- FIG. 6 (b) is a diagram for explaining an example of the operation data as a result of classifying the operation data into clusters.
- the horizontal axis is time, and the vertical axis is a measurement signal and a cluster number.
- the operation data was classified into clusters 1 to 4.
- the cluster 4 is a new state which has not experienced at the normal time, and in step 1140 of FIG. 2, the occurrence of abnormality is judged based on the cluster number.
- FIG. 7 is a flow chart for explaining the operation of step 1080 of FIG. 2. In this flow chart, the operation is performed using the cost calculation means 700 and the plant stop determination means 800.
- the urgency of the plant shutdown is determined.
- step 1070 The amount of loss due to the abnormality occurrence and the abnormal spread calculated in step 1070 is compared with the amount of opportunity loss due to plant stoppage, and if the former value is high, the process proceeds to step 1210. Otherwise, the process proceeds to step 1220.
- step 1210 it is determined that the plant 100 needs to be stopped, and the process proceeds to end.
- step 1220 the plant stop determination means 800 creates an operation scenario.
- the operation scenario is a scenario that assumes that the plant operation is continued after abnormality detection, or that the operation is stopped and repaired.
- the operation scenario 14 created in step 1220 is transmitted to the cost calculation means 700 and the abnormal spread prediction means 600, and the temporal change of cost and abnormal spread degree is calculated.
- the plant stop recommendation time for each scenario is calculated, and the process proceeds to end.
- an appropriate stop mode may be selected to reduce the spread of the abnormality in accordance with the detected abnormal event.
- FIG. 8 is a diagram for explaining an example of calculation results of cost and damage degree over time of each scenario obtained by operating step 1230 in FIG. 7.
- Scenario 1 assumes that the plant operation is continued. In this case, the degree of damage exceeds a threshold at time T3 and the plant needs to be stopped and repaired. Since repair is performed from time T3 to time T5, sales do not increase.
- Scenario 2 assumes that the operation load is reduced and the operation is continued. Although sales per unit time will decrease, the progress of damage will be slower than in scenario 1 and it will be possible to continue operation until periodic inspections.
- scenario 3 the plant is stopped at time T2 and repaired from time T2 to time T4.
- the repair period is shorter than scenario 1.
- the sales amount at time T6 is the highest.
- the present invention it is possible to determine the timing to shut down the plant by comparing the sales, maintenance costs, and the time course of the degree of damage for each scenario. It is also possible to automatically determine when to shut down the plant.
- FIG. 9 shows an example of a screen displayed on the image display device 940.
- the calculation results such as sales, maintenance costs, and damage degree described in FIG. 8 can be displayed in any format such as a graph or a table format. As described above, it is possible to provide the operator with information on the diagnosis result, the abnormal propagation prediction result, and the cost.
- the driving support device As described above, by using the driving support device according to the present invention, it is possible to stop the plant at an early stage when an abnormality occurs and to avoid an increase in the damage cost due to the spread of the abnormality.
- FIG. 10 is a block diagram for explaining the configuration when the equipment 110 in the plant 100 to be applied is a coal-fired boiler.
- FIG. 10 is a diagram showing an embodiment of the plant 100. As shown in FIG. 10
- This embodiment is a thermal power plant including a boiler 2200 and a steam turbine 2300 driven by steam generated by the boiler 2200 as main components (generator is not shown).
- the plant 100 controls to a specified load (power generation output) based on the load request command.
- the valve opening degree of the steam control valve 2290 By adjusting the valve opening degree of the steam control valve 2290, the steam flow rate 2261 guided to the turbine 2300 changes, and the power generation output changes.
- a condenser 2310 that cools the steam coming out of the steam turbine 2300 into a liquid
- a feed water pump 2320 that feeds the water cooled by the condenser 2310 back to the boiler 2200 as boiler feed water.
- the actual plant also has a feed water heater which preheats the boiler feed water by using a part of the steam extracted from the middle stage of the steam turbine 2300 as a heating source.
- Coal 2381 which is a fuel is sent to a coal crusher (mill) 2350 through a fuel supply amount adjustment valve 2380. Further, the air 2382 used for coal transportation and combustion adjustment is supplied to the coal crusher 2350 and the burner 2310 through the air amount adjusting valve 2370. The coal that has been turned into powder (pulverized coal) by the coal crusher 2350 is transported by air and supplied to the burner 2210. An after-air port 2220 is disposed above the burner 2210, and the after-air port 2220 is supplied with air 2383 through an air amount adjusting valve 2360.
- a furnace having a burner 2210 for burning fuel has a high temperature in the furnace, so there is a cooling wall called a water wall 2230 for cooling the entire wall and recovering the heat of the combustion gas.
- a cooling wall called a water wall 2230 for cooling the entire wall and recovering the heat of the combustion gas.
- a heat exchanger consisting of an economizer 2280, a primary superheater 2270, a secondary superheater 2240, a tertiary superheater 2250, and a quaternary superheater 2260.
- the measurement result is transmitted from the data transmission device 2390 to the boiler tube leak detection device 2400 as measurement information 1. Also, although not shown, it is general to install a plurality of burners 2210 in the horizontal direction before and after the furnace and a plurality of stages in the height direction, and a plurality of after-air ports in the horizontal direction before and after the furnace. is there.
- the boiler feed water is first led to the economizer 2290, then the water wall 2230, the primary superheater 2270, the secondary superheater 2240, the tertiary superheater 2250, the quaternary superheater 2260
- the temperature is raised in the order of, and flows into the steam turbine 2300 as the main steam 2261.
- the steam that has been worked in the high pressure steam turbine 2300 becomes liquid in the condenser 2310 and is again sent to the boiler by the feed water pump 2320.
- FIG. 10C is a top view of the third heater 2250.
- a plurality of tubes 2251 constituting the superheater are disposed in the width direction and the depth direction of the boiler.
- a tube metal temperature measuring instrument 2252 is attached to the superheater. Generally, several to several tens of metal temperature measuring devices are attached.
- feed water is heated by a plurality of heat exchangers to generate steam using high-temperature gas generated by the combustion of coal. Since the heat exchanger comes in contact with a high temperature and highly corrosive gas, the metal material may be damaged due to creep, thermal fatigue, corrosion and the like. If the metal material is damaged, steam leaks from the damaged area. This event is called tube leak.
- Patent Document 3 As a technique for detecting the occurrence of tube leak, the technique described in Patent Document 3 is disclosed.
- the diagnostic means 500 of the present embodiment may be equipped with a technique for estimating the leak position from the change width of the metal temperature as described in Patent Document 3 as a method of estimating the cause of abnormality.
- the clustering unit 400 divides data into a plurality of groups, performs clustering processing for each group, and the plant stop determination unit 800 stops the plant when the number of groups in which an abnormality is detected is larger than a threshold. You may decide to
- Equation 13 As a physical model mounted on the abnormal propagation prediction unit 600, for example, the equations of Finnie and Bitter for calculating the wear amount as shown in Equation 13 are mounted.
- W is a total wear amount
- Wc is a cutting wear amount
- Wd is a deformation wear amount.
- Wc and Wd are calculated by Equations 14 and 15, respectively.
- M is the total particle collision amount (kg)
- ⁇ is the density
- ⁇ is the particle collision angle
- V is the particle collision velocity
- mp is the particle mass
- rp is the particle radius
- Ip is the particle completion moment
- K is the ratio of vertical force to horizontal force when particles collide
- K ′ is the collision velocity at which the stress generated in the item to be worn reaches the elastic limit
- P is the vertical component of the maximum contact stress
- ⁇ is the cutting wear constant
- ⁇ is The energy required to strip a unit volume of a worn article
- C is an experimental constant
- the subscript t is a worn article
- p is a particle.
- the driving support device As described above, by using the driving support device according to the present invention, it is possible to stop the plant at an early stage when an abnormality occurs and to avoid an increase in the damage cost due to the spread of the abnormality.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
異常発生時には早期にプラントを停止し異常の波及に伴う損害コストの増加を回避することを目的とする。 運転データ3に基づいてプラント100の運転状態を診断する診断手段500と、診断手段500によって得られた診断結果をもとに物理モデルに基づいて異常が波及する機器と時間とを予測する異常波及予測手段600と、異常波及予測手段600結果に基づいて損害コストの経時変化を予測するコスト計算手段700と、損害コストが予め定められたプラント100の緊急停止に伴う損害コスト以上の場合にプラント100を停止する信号を生成するプラント停止判定手段800と、を備える運転支援装置200。
Description
本発明はプラントの運転支援装置及び運転支援方法に関するものであり、特に損害コスト増加を回避するプラントの運転支援装置及び運転支援方法に関する。
近年、ICT (Information and Communication Technology )、IoT(Internet of Thing)の技術革新に伴い、高速な計算機やネットワーク通信、大容量なデータ保存装置を利用できる環境が整いつつある。多くの産業分野で大量に蓄積したデータの利活用に注目が集まるなか、発電事業の分野でも、発電プラントの計測データや点検・保全データなどの現地サイトで収集したデータと、企業の経営及び資産情報を管理するシステムの統合により、より効率的な経営方針の策定が求められている。発電事業の分野では、風力発電や太陽光発電などの再生可能エネルギーの利用増加に伴う発電量の変動が電力系統の安定性を低下させるという懸念から、バックアップ電源としての火力発電プラントの重要性が増している。また、東日本大震災以後から、国内における原子力発電の比率が減少した結果、火力発電プラントは従来からの負荷調整としての役割だけでなく、ベースロード電源としての役割も担っているのが実態である。そのため火力発電プラントには稼働率、環境性能、効率などの重要業績評価指標(KPI:Key Performance Indicators)を考慮した運用が求められている。
火力発電プラントのKPIを改善するため、診断対象に異常状態が発生する前の異常兆候を検知する装置やその方法が多数検討されている。特許文献1には、適応共鳴理論(Adaptive Resonance Theory:ART)を用いた診断装置が開示されている。ここでARTとは、多次元の時系列データをその類似度に応じてクラスタに分類する理論である。
特許文献1の技術においては、まずARTを用いて正常時の運転データを複数のクラスタ(正常クラスタ)に分類する。次に、現在の運転データをARTに入力してクラスタに分類する。この時系列データが正常クラスタに分類できない時は、新しいクラスタ(新規クラスタ)を生成する。新規クラスタの発生は、診断対象の状態が新しい状態(新状態)に変化したことを意味する。そこで、特許文献1の診断装置では、異常兆候の発生を新規クラスタの発生で判断している。
また、特許文献2にはプラントを構成する機器の破損・性能低下・機能停止によるリスクコストを予測し、運用による利得と比較しながら最適な運用方法を選択し、指示する技術が開示されている。
特許文献1の技術を用いることで、プラントにおける異常兆候の発生を検知することが可能である。異常兆候を検知した場合、プラントの運転員はその原因の分析と確認のためにプラントの運転を継続する。但し、異常の原因分析、確認等を実施することで別途そのための時間が必要となる可能性がある。
また、特許文献2の技術ではリスクコストの予測に異常発生及び異常波及の確率モデルを用いる。このような確率モデルを構築するためには、過去に発生した異常の事例を収集する必要がある。
そこで本発明では、異常発生時には早期にプラントを停止し異常の波及に伴う損害コストの増加を回避することを目的とする。
上記目的を達成するため、本発明に係る運転支援装置は運転データに基づいてプラントの運転状態を診断する診断手段と、前記診断手段によって得られた診断結果をもとに物理モデルに基づいて異常が波及する機器と時間とを予測する異常波及予測手段と、前記異常波及予測手段結果に基づいて損害コストの経時変化を予測するコスト計算手段と、前記損害コストが予め定められた前記プラントの緊急停止に伴う損害コスト以上の場合に前記プラントを停止する信号を生成するプラント停止判定手段と、を備える。
本発明によれば、異常発生時には早期にプラントを停止し異常の波及に伴う損害コストの増加を回避できる。
図1は本発明の実施例である運転支援装置200を説明するブロック図である。本実施例では、運転支援装置200は運転支援対象であるプラント100と外部装置900に接続している。プラント100は機器110と制御装置120で構成する。制御装置120では、機器110から送信される計測信号2を受信し、制御信号1を送信する。
運転支援装置200は、演算装置としてクラスタリング手段400、診断手段500、異常波及予測手段600、コスト計算手段700、プラント停止判定手段800を備えている。
また、運転支援装置200は、データベースとして運転データデータベース310、コスト情報データベース320、計算結果データベース330を備える。計算結果データベース330には、運転支援装置200の演算装置で計算した結果が保存される。尚、図1ではデータベースをDBと略記している。データベースには、電子化された情報が保存されており、通常電子ファイル(電子データ)と呼ばれる形態で情報が保存される。
運転装置200は、外部とのインターフェイスとして外部入力インターフェイス210及び外部出力インターフェイス220を備えている。そして、外部入力インターフェイス210を介してプラント100にて収集している運転データ3と、外部装置900に備えられている外部入力装置910(キーボード910及びマウス920)の操作で作成する外部入力信号4が運転支援装置200に取り込まれる。
運転支援装置200に取り込まれた運転データ3は外部入力インターフェイスを介して運転データデータベース310に保存する。外部入力信号4に含まれるコスト情報6はコスト情報データベース320に保存する。また、外部出力インターフェイス220を介して、画像表示情報16を画面表示装置940に、プラント停止信号15を制御装置120に出力する。
クラスタリング手段400では、運転データデータベース310に保存されている運転データを、その類似度に応じてクラスタに分類する。クラスタリング手段400では、特許文献1に開示されている適応共鳴理論を用いた技術を搭載している。尚、クラスタリング技術400は本実施例で述べた手段に限定されず、他のクラスタリング技術を搭載して構成しても良い。クラスタリング結果8は、原因推定手段500に送信する。
診断手段500では、クラスタリング結果8に基づいてプラント100の運転状態を診断する。特許文献1に開示されている通り、診断手段500ではまず正常時の運転データを複数のクラスタ(正常クラスタ)に分類する。次に、現在の運転データをクラスタに分類する。この時系列データが正常クラスタに分類できない時は、新しいクラスタ(新規クラスタ)を生成する。新規クラスタの発生は、診断対象の状態が新しい状態(新状態)に変化したことを意味する。そこで、異常兆候の発生を新規クラスタの発生で判断している。
異常兆候の発生を検知した場合は、診断手段500にて異常原因を推定する。診断手段500では、特許文献1に開示されているように、クラスタ番号に対応付けられた事象を異常原因として推定する。尚、診断手段500は本実施例で述べた手段に限定されず、他の異常原因推定技術を搭載して構成しても良い。原因推定結果9は、異常波及予測手段600に送信する。
異常波及予測手段600では、原因推定結果9に基づいて、異常が波及する様子を物理モデルを用いて解析し、予測する。ここで物理モデルとは質量保存則、運動量保存則などの物理式に基づいて構築するモデルである。また、異常波及予測手段600では、原因推定結果9、プラント停止判定手段800で生成されるシナリオ情報14を用いて、シナリオ毎の損傷度合の経時変化を計算する。異常波及予測結果10は、コスト計算手段700に送信する。
コスト計算手段700では、異常波及予測結果10、コスト情報11を用いて、損失コストを計算する。また、コスト計算手段700では、異常波及予測結果10、コスト情報11、プラント停止判定手段800で生成されたシナリオ情報14を用いて、シナリオ毎の損失コストを計算する。コスト計算手段700では、異常波及度合いが閾値を超えた部品について、交換に要する費用を加算してコスト情報を計算する。コスト計算結果12は、プラント停止判定手段800に送信する。
プラント停止判定手段800では、コスト計算結果12に基づいて、プラント100を停止するか否かを計算する。
プラント停止判定結果13は外部出力インターフェイス220に送信し、プラントを停止する判定結果である場合にはプラント停止信号15が制御装置120に送信される。
なお、本実施例の運転支援装置200においては、演算装置、およびデータベースが運転支援装置200の内部に備えられているが、これらの一部の装置を運転支援装置200の外部に配置し、データのみを装置間で通信するようにしてもよい。また、各データベースに保存されている信号である信号データベース情報50は、その全ての情報を外部出力インターフェイス220を介して画面表示装置940に表示でき、これらの情報は外部入力装置910を操作して生成する外部入力信号2で修正できる。本実施例では、外部入力装置910をキーボード920とマウス930で構成しているが、音声入力のためのマイク、タッチパネルなど、データを入力するための装置であれば良い。
また、本発明の実施形態として、オフラインで運転データを解析する装置として実施可能であることは言うまでもない。また、本実施例では運転支援装置200の適用対象をプラントとしているが、適用対象をプラント以外の設備としても実施可能であることは言うまでもない。
図2は運転支援装置200の動作を説明するフローチャート図である。
ステップ1000では、制御装置120から運転データ3を取り込み、運転データデータベース310に保存する。
ステップ1010では、動作モードが学習モードであるか、診断モードであるかを判定する。学習モードである場合はステップ1020に進み、診断モードである場合はステップ1030に進む。学習モードは本フローチャートの繰り返し回数が1回(初回)の時に動作し、2回目以降は診断モードが動作する。
ステップ1020では、クラスタリング手段400にて学習データを処理し、正常状態におけるクラスタを生成する。その後、ステップ1000に戻る。
ステップ1030では、クラスタリング手段400にて、診断データを処理する。ステップ1040では、クラスタリング結果8に基づいて、プラント100に異常が発生しているか否かを判定する。異常を検知した場合はステップ1050に進み、異常を検知しなかった場合はステップ1000に戻る。 ステップ1050では、診断手段500にて、異常原因を推定する。ステップ1060では、異常波及予測手段600にて、物理モデルを用いて異常の波及する部品と時刻を予測する。ステップ1070では、コスト計算手段700を動作させ、異常及び異常の波及に伴うコストを計算する。ステップ1080では、プラント停止の判定を実施する。ステップ1080の内容は、図7を用いて後述する。ステップ1090では、プラント停止信号15を制御装置120に送信する。ステップ1100では、画像表示情報16を画像表示装置940に送信する。ステップ1110では、運転員から停止の指示があった場合は終了に進み、指示がない場合はステップ1000に戻る。
図3、4は運転支援装置200に搭載されているデータベースに保存されるデータの態様を説明する図である。
図3(a)は運転データデータベース310に保存されるデータの態様を説明する図である。図3(a)に示すようにセンサで計測した運転データがサンプリング周期毎に保存される。
図3(b)はコスト情報データベース320に保存されるデータの態様を説明する図である。図3(b)に示す通り、異常及び異常波及に伴う損失に関するコスト情報として、例えば部品交換に要するコスト情報が保存されている。
図3(c)(d)図4(a)(b)(c)は、計算結果データベース330に保存されるデータの態様を説明する図である。
図3(c)(d)は、クラスタリング手段400を動作させることで得られるデータであり、時刻とクラスタ番号の関係(図3(c))と、クラスタ毎の属性、クラスタ毎の重み係数である。ここで、属性とは、各クラスタが正常クラスタであるか、異常クラスタであるかを定義するための情報である。また、重み係数とは、各クラスタの中心座標を定義するための係数情報である。
さらに、属性が異常のクラスタについては、クラスタ毎に定義されている異常事象が保存されている。尚、診断手段500では、図3(c)に示した各時刻のクラスタ番号と、図3(d)で定義されている事象名称を照合し、異常事象を推定する。
図4(a)は、異常波及予測手段600を動作させて得られる部品毎の異常の波及度合いと時刻の関係である。ここで異常波及度合いとは、例えば配管では肉厚の低減幅をであり、部品毎に異常に伴って受ける損傷の度合いを数値化したものである。
図4(b)は、コスト計算手段700を動作させて得られるコスト情報と時刻の関係である。異常波及度合いが閾値を超えた部品について、交換に要する費用を加算した値をコスト情報として保存される。
図4(c)は、プラント停止判定手段800を動作させて得られる停止判定結果と時刻の関係である。「0」は運転継続、「1」は運転停止と判定したことを意味する。
図5は、クラスタリング手段400の実施例として、適応共鳴理論(ART)を用いた場合のブロック図を説明する図である。以下の説明において、クラスタとクラスターは同じ意味である。
ARTには、運転データ、及び原料情報データを設定した正規化範囲に基づいて0から1の範囲に正規化したデータNxi(n)及び正規化したデータの補数CNxi(n)(=1-Nxi(n))を含むデータを入力データIi(n)として入力する。
ARTモジュール410は、F0レイヤー411、F1レイヤー412、F2レイヤー413、メモリ414及び選択サブシステム415を備え、これらは相互に結合している。F1レイヤー412及びF2レイヤー413は、重み係数を介して結合している。重み係数は、入力データが分類されるクラスタのプロトタイプ(原型)を表している。ここで、プロトタイプとは、クラスタの代表値を表すものである。
次に、ART410のアルゴリズムについて説明する。
ART410に入力データが入力された場合のアルゴリズムの概要は、下記の処理1~ 処理5のようになる。
処理1:F0レイヤー411により入力ベクトルを正規化し、ノイズを除去する。
処理2:F1レイヤー412に入力された入力データと重み係数との比較により、ふさわしいクラスタの候補を選択する。
処理3:選択サブシステム415で選択したクラスタの妥当性がパラメータρとの比により評価される。妥当と判断されれば、入力データはそのクラスタに分類され、処理4に進む。一方、妥当と判断されなければ、そのクラスタはリセットされ、他のクラスタからふさわしいクラスタの候補を選択する(処理2を繰り返す)。パラメータρの値を大きくするとクラスタの分類が細かくなる。すなわち、クラスタサイズが小さくなる。逆に、ρの値を小さくすると分類が粗くなる。クラスタサイズが大きくなる。このパラメータρをビジランス(vigilance)パラメータと呼ぶ。
処理4:処理2において全ての既存のクラスタがリセットされると、入力データが新規クラスタに属すると判断され、新規クラスタのプロトタイプを表す新しい重み係数を生成する。
処理5:入力データがクラスタJに分類されると、クラスタJに対応する重み係数WJ(new)は、過去の重み係数WJ(old)及び入力データp(又は入力データから派生したデータ)を用いて数1により更新される。
ここで、Kwは、学習率パラメータ(0<Kw<1)であり、入力ベクトルを新しい重み係数に反映させる度合いを決定する値である。
尚、数1及び後述する数2乃至数12の各演算式は前記ART410に組み込まれている。
ART410のデータ分類アルゴリズムの特徴は、上記の処理4にある。
処理4においては、学習した時のパターンと異なる入力データが入力された場合、記録されているパターンを変更せずに新しいパターンを記録することができる。このため、過去に学習したパターンを記録しながら、新たなパターンを記録することが可能となる。
このように、入力データとして予め与えた運転データを与えると、ART410は与えられたパターンを学習する。したがって、学習済みのART410に新たな入力データが入力されると、上記アルゴリズムにより、過去におけるどのパターンに近いかを判定することができる。また、過去に経験したことのないパターンであれば、新規クラスタに分類される。
図5(b)は、F0レイヤー411の構成を示すブロック図である。F0レイヤー411では、入力データIiを各時刻で再度正規化し、F1レイヤー412、及び選択サブシステム415に入力する正規化入力ベクトルui
0作成する。
始めに、入力データIiから、数2に従ってWi 0を計算する。ここでaは定数である。
始めに、入力データIiから、数2に従ってWi 0を計算する。ここでaは定数である。
次に、Wi
0を正規化したXi
0を、数3を用いて計算する。ここで、||W0||は、W0のノルムを表す。
そして、数4を用いて、Xi
0からノイズを除去したVi
0を計算する。ただし、θはノイズを除去するための定数である。数4の計算により、微小な値は0となるため、入力データのノイズが除去される。
最後に、数5を用いて正規化入力ベクトルui
0を求める。ui
0はF1レイヤーの入力となる。
図5(c)は、F1レイヤー412の構成を示すブロック図である。F1レイヤー412では、数5で求めたui
0を短期記憶として保持し、F2レイヤー413に入力するPiを計算する。F2レイヤーの計算式をまとめて数6乃至数12に示す。ただし、a、bは定数、f(・)は数4で示した関数、TjはF2レイヤー413で計算する適合度である。
図6はクラスタリング手段400におけるデータの分類結果を説明する図である。
図6(a)は、運転データをクラスタに分類した分類結果の一例を示す図である。
図6(a)は、運転データをクラスタに分類した分類結果の一例を示す図である。
図6(a)は、一例として、運転データのうちの2項目を表示したものであり、2次元のグラフで表記した。また、縦軸及び横軸は、それぞれの項目の運転データを規格化して示した。
運転データは、ARTモジュール410によって複数のクラスタ419(図4(a)に示す円)に分割される。1つの円が、1つのクラスタに相当する。
本実施例では、運転データは4つのクラスタに分類されている。クラスタ番号1は、項目Aの値が大きく、項目Bの値が小さいグループ、クラスタ番号2は、項目A、項目Bの値が共に小さいグループ、クラスタ番号3は項目Aの値が小さく、項目Bの値が大きいグループ、クラスタ番号4は項目A、項目Bの値が共に大きいグループである。
図6(b)は、運転データをクラスタに分類した結果、及び運転データの例を説明する図である。横軸は、時間、縦軸は計測信号、クラスタ番号である。
図6(b)に示すように、運転データはクラスタ1~4に分類された。
クラスタ4は正常時に経験していない新状態であり、図2のステップ1140では異常の発生をクラスタ番号に基づいて判定する。
図7は、図2のステップ1080の動作を説明するフローチャート図であり、本フローチャートではコスト計算手段700とプラント停止判定手段800を使用して動作させる。
ステップ1200では、プラント停止の緊急性を判断する。
ステップ1070で算出した異常発生及び異常波及による損失額とプラント停止による機会損失額とを比較し、前者の値が高額である場合はステップ1210に進む。それ以外の場合はステップ1220に進む。
ステップ1210では、プラント100の停止が必要であると判定し、終了に進む。
ステップ1220では、プラント停止判定手段800にて運用シナリオを作成する。ここで運用シナリオとは異常検知後にプラント運転を継続する、運転を停止して補修することなどを想定したシナリオである。ステップ1230では、ステップ1220で作成した運用シナリオ14を、コスト計算手段700、異常波及予測手段600に送信し、コストと異常波及度合の経時変化を計算する。ステップ1240では、シナリオ毎のプラント停止推奨時刻を算出し、終了に進む。
また、プラントを停止させる際、プラントを停止させるモードが複数ある場合には、検知した異常事象に合わせて、異常の波及が少なくなるように適切な停止モードを選択するように構成しても良い。
図8は、図7におけるステップ1230を動作して得られるシナリオ毎のコスト、損傷度合の経時変化の計算結果例を説明する図である。
本プラントでは、異常を時刻T1に検知し、定期検査を時刻T6に実施することを予定している。本実施例では、シナリオ1~3の3種類のシナリオを比較している。
シナリオ1は、プラントの運転を継続した場合を想定している。この場合、時刻T3で損傷度合いが閾値を超えて、プラントを停止して補修する必要がある。時刻T3から時刻T5の間補修しているため、売上は増加しない。
シナリオ2は、プラントの運転負荷を下げて運転を継続した場合を想定している。単位時間あたりの売上は減少するが、損傷度合いの進み方がシナリオ1よりも遅くなり、定期検査まで運転を継続することが可能となる。
シナリオ3では、時刻T2にプラントを停止し、時刻T2から時刻T4まで補修する。補修期間は、シナリオ1よりも短い。シナリオ3では、時刻T6における売上額が一番高額となる。
このように、本発明ではシナリオ毎の売上、保守費、損傷度合の経時変化を比較してプラントを停止するタイミングを決定することが可能である。また、自動的にプラントを停止するタイミングを決定することもできる。
図9は、画像表示装置940に表示される画面の実施例である。図8で述べた売上、保守費、損傷度合いなどの計算結果をグラフ、テーブル形式など、任意の形式で表示できる。このように、診断結果、異常波及予測結果、コストの情報を運転員に提供することが可能である。
以上述べたように、本発明による運転支援装置を用いることで、異常発生時には早期にプラントを停止し、異常の波及に伴う損害コストの増加を回避できる。
図10は、適用対象のプラント100における機器110が石炭焚きボイラである場合の構成を説明するブロック図である。
図10はプラント100の実施形態を示した図である。
本実施例はボイラ2200、ボイラ2200で発生させた蒸気により駆動する蒸気タービン2300を主構成要素とする火力発電プラントである(発電機は図示していない)。プラント100は、負荷要求指令に基づいて、指定された負荷(発電出力)に制御する。蒸気加減弁2290の弁開度を調節することで、タービン2300へ導かれる蒸気流量2261が変化し発電出力が変化する。
その他にも水・蒸気系統には、蒸気タービン2300から出た蒸気を冷却して液体にする復水器2310、復水器2310で冷却された水をボイラ給水として再びボイラ2200へ送り込む給水ポンプ2320がある。また、図示していないが、実際のプラントには蒸気タービン2300の途中段から抜き出した一部の蒸気を加熱源としてボイラ給水を予熱する給水加熱器もある。
一方、ボイラから排出される燃焼ガス2201の系統には、排ガスを浄化するための排ガス処理装置2330、浄化したガス2331を放出する煙突2340がある。
燃料である石炭2381は燃料供給量調整弁2380を介して、石炭粉砕機(ミル)2350に送られる。また、石炭搬送と燃焼調整にもちいる空気2382は空気量調整弁2370を介して、石炭粉砕機2350とバーナ2310に供給される。石炭粉砕機2350で粉末(微粉炭)となった石炭は、空気で搬送されてバーナ2210に供給される。バーナ2210の上部にはアフタエアポート2220が配置され、アフタエアポート2220には空気2383が空気量調整弁2360を介して供給される。
次にボイラ2200の構成について説明する。
燃料を燃焼させるバーナ2210がある火炉は炉内が高温になるため、壁面全体を冷却すると共に燃焼ガスの熱を回収する水壁2230と呼ばれる冷却壁がある。ボイラ2200内には他にも節炭器2280、1次過熱器2270、2次過熱器2240、3次過熱器2250、4次過熱器2260からなる熱交換器があり、これらによって燃焼ガスの熱を回収して高温蒸気を生成する。
尚、図中には記載していないが、プラントには、ガスの組成、温度、圧力や、蒸気の温度、圧力、熱交換器のメタル温度などを計測するためのセンサーが多数配置されており、この計測結果はデータ送信装置2390から計測情報1としてボイラチューブリーク検出装置2400に送信される。また、図示していないが、ボイラのバーナ2210は火炉前後に水平方向に複数本、高さ方向に複数段設置し、アフタエアポートは、火炉前後に水平方向に複数本配置するのが一般的である。
図10(b)に示すように、ボイラ給水はまず節炭器2290に導かれ、その後水壁2230、1次過熱器2270、2次過熱器2240、3次過熱器2250、4次過熱器2260の順に通って昇温され、主蒸気2261となって蒸気タービン2300へ流入する。高圧蒸気タービン2300で仕事をした蒸気は復水器2310で液体となり、給水ポンプ2320で再びボイラへ送られる。
図10(c)は、3次過熱器2250の上面図である。過熱器を構成するチューブ2251は、ボイラの幅方向および奥行き方向に複数本配置される。また、過熱器にはチューブメタル温度の計測器2252が取り付けられている。一般に、メタル温度計測器は数本~数十本おきに取り付けられている。
このように、ボイラプラントでは、石炭の燃焼によって生成した高温のガスを用いて、給水を複数の熱交換器にて加熱して蒸気を生成する。熱交換器は高温・高腐食性のガスと接触するため、クリープ、熱疲労、腐食などが原因で、金属材料が損傷する場合がある。金属材料が損傷すると、その損傷個所から蒸気が漏れる。この事象をチューブリークと呼ぶ。
チューブリークの発生を検知する技術として、特許文献3に記載されている技術が公開されている。
本実施例の診断手段500では、異常原因推定方法として、特許文献3に記載されているようメタル温度の変化幅からリーク位置を推定する技術を搭載しても良い。
また、前記クラスタリング手段400ではデータを複数のグループに分け、グループ毎にクラスタリング処理を実施し、前記プラント停止判定手段800では、異常を検知したグループ数が閾値よりも多い場合にプラントを停止するように判定しても良い。
異常波及予測手段600に搭載される物理モデルとしては、例えば数13に示すような摩耗量を計算するFinnieとBitterの式を搭載する。
ここで、Wは総摩耗量、Wcは切削摩耗量、Wdは変形摩耗量である。Wc、Wdはそれぞれ数14、15で計算する。
ここで、Mは総粒子衝突量(kg)、ρは密度、αは粒子の衝突角度、Vは粒子の衝突速度、mpは粒子の質量、rpは粒子の半径、Ipは粒子の完成モーメント、Kは粒子が衝突する際の垂直力と水平力の比、K‘は被摩耗財に生ずる応力が弾性限界に達する衝突速度、Pは最大接触応力の垂直成分、Ψは切削摩耗定数、εは単位体積の被摩耗財をはぎ取るのに必要なエネルギー、Cは実験定数、添え字のtは被摩耗財、pは粒子である。
本モデルを用いることで、リーク蒸気が周辺のチューブに衝突し、チューブが減肉する速度(mm/min)を予測することが可能となる。チューブの肉厚が運転限界値以下となる時刻を、リーク波及予測時刻として出力する。
また、正常状態における肉厚の経時変化を本モデルを用いて計算し、異常検知時の肉厚を設定することも可能である。
以上述べたように、本発明による運転支援装置を用いることで、異常発生時には早期にプラントを停止し、異常の波及に伴う損害コストの増加を回避できる。
1 制御信号
2 計測信号
3 運転データ
4 外部入力情報
5 運転データ
6 コスト情報
7 運転データ
8 クラスタリング結果
9 原因推定結果
10 異常波及予測結果
11 コスト情報
12 損失コスト計算結果
13 プラント停止判定結果
14 シナリオ情報
15 プラント停止信号
16 画像表示情報
50 DB情報
100 プラント
110 機器
120 制御装置
200 運転支援装置
210 外部入力インターフェイス
220 外部出力インターフェイス
310 運転データデータベース
320 コスト情報データベース
330 計算結果データベース
400 クラスタリング手段
500 診断手段
600 異常波及予測手段
700 コスト計算手段
800 プラント停止判定手段
900 外部装置
910 外部入力装置
920 キーボード
930 マウス
940 画像表示装置
2 計測信号
3 運転データ
4 外部入力情報
5 運転データ
6 コスト情報
7 運転データ
8 クラスタリング結果
9 原因推定結果
10 異常波及予測結果
11 コスト情報
12 損失コスト計算結果
13 プラント停止判定結果
14 シナリオ情報
15 プラント停止信号
16 画像表示情報
50 DB情報
100 プラント
110 機器
120 制御装置
200 運転支援装置
210 外部入力インターフェイス
220 外部出力インターフェイス
310 運転データデータベース
320 コスト情報データベース
330 計算結果データベース
400 クラスタリング手段
500 診断手段
600 異常波及予測手段
700 コスト計算手段
800 プラント停止判定手段
900 外部装置
910 外部入力装置
920 キーボード
930 マウス
940 画像表示装置
Claims (10)
- 運転データに基づいてプラントの運転状態を診断する診断手段と、
前記診断手段によって得られた診断結果をもとに物理モデルに基づいて異常が波及する機器と時間とを予測する異常波及予測手段と、
前記異常波及予測手段結果に基づいて損害コストの経時変化を予測するコスト計算手段と、
前記損害コストが予め定められた前記プラントの緊急停止に伴う損害コスト以上の場合に前記プラントを停止する信号を生成するプラント停止判定手段と、を備える運転支援装置。 - 請求項1に記載の運転支援装置であって、
前記運転データは前記プラントの前記運転データをデータ類似性に応じてクラスタに分類するクラスタリング手段の分類結果であることを特徴とする運転支援装置。 - 請求項2に記載の運転装置であって、
前記診断手段は前記分類結果に基づいて前記プラントの運転状態が正常であるか異常であるかを診断し、異常である場合には異常原因を推定することを特徴とする運転装置。 - 請求項1ないし3のいずれか1項に記載の運転支援装置であって、
前記プラント停止判定手段は、前記損害コストが予め定められた前記プラントの緊急停止に伴う前記損害コスト未満の場合には前記プラントの稼働に関する運用シナリオを作成し、前記運用シナリオ毎に前記プラント停止の推奨時刻を算出することを特徴とする運転支援装置。 - 請求項3または4に記載の運転支援装置であって、
前記物理モデルは前記異常原因に基づいて解析のための境界条件を設定し、物理法則に基づくことを特徴とする運転支援装置。 - 請求項1ないし5のいずれか1項に記載の運転支援装置であって、
前記プラント停止判定手段は検知した前記異常の事象に合わせて前記プラントの停止モードを選択することを特徴とする運転支援装置。 - 請求項1ないし6のいずれか1項に記載の運転支援装置であって、
前記コスト計算手段は、前記機器の前記異常波及予測手段の結果が所定の値を超えたとき、前記機器の交換に要する費用を加算してコストを計算することを特徴とする運転支援装置。 - 請求項1ないし7のいずれか1項に記載の運転支援装置であって、
前記診断結果、前記異常波及予測結果及び前記損害コストを表示するための画面表示手段に接続されていることを特徴とする運転支援装置。 - 請求項1ないし8のいすれか1項に記載の運転支援装置であって、
前記機器がボイラであり、前記異常がボイラチューブリークによる漏洩蒸気が周囲のチューブに衝突して破損することであることを特徴とする運転支援装置。 - 運転データに基づいてプラントの運転状態を診断する診断手段と、
前記診断手段によって得られた診断結果をもとに物理モデルに基づいて異常が波及する機器と時間とを予測する異常波及予測手段と、
前記異常波及予測手段結果に基づいて損害コストの経時変化を予測するコスト計算手段と、
前記損害コストが予め定められた前記プラントの緊急停止に伴う損害コスト以上の場合に前記プラントを停止する信号を生成するプラント停止判定手段と、を備える運転支援方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18870720.2A EP3702861A4 (en) | 2017-10-25 | 2018-08-23 | DEVICE AND PROCEDURE FOR AID TO THE OPERATION OF AN INSTALLATION |
CN201880064256.5A CN111183402A (zh) | 2017-10-25 | 2018-08-23 | 发电厂的运转辅助装置和运转辅助方法 |
PH12020550471A PH12020550471A1 (en) | 2017-10-25 | 2020-04-22 | Plant operation assistance device and operation assistance method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-205721 | 2017-10-25 | ||
JP2017205721A JP7042056B2 (ja) | 2017-10-25 | 2017-10-25 | プラントの運転支援装置及び運転支援方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019082491A1 true WO2019082491A1 (ja) | 2019-05-02 |
Family
ID=66246298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031088 WO2019082491A1 (ja) | 2017-10-25 | 2018-08-23 | プラントの運転支援装置及び運転支援方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3702861A4 (ja) |
JP (1) | JP7042056B2 (ja) |
CN (1) | CN111183402A (ja) |
PH (1) | PH12020550471A1 (ja) |
WO (1) | WO2019082491A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111428906A (zh) * | 2020-02-17 | 2020-07-17 | 浙江大学 | 一种基于图像变换的工业锅炉蒸汽量预测方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7363407B2 (ja) * | 2019-11-21 | 2023-10-18 | オムロン株式会社 | 追加学習装置、方法、及びプログラム |
WO2022102349A1 (ja) * | 2020-11-16 | 2022-05-19 | 住友重機械工業株式会社 | 表示装置、制御装置、制御方法及びコンピュータプログラム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59214915A (ja) * | 1983-05-20 | 1984-12-04 | Hitachi Ltd | 故障波及予測・診断方式 |
JPH08313685A (ja) * | 1995-05-23 | 1996-11-29 | Toshiba Corp | プラント制御装置 |
JP2004094631A (ja) | 2002-08-30 | 2004-03-25 | Toshiba Corp | プラント機器の運用支援装置 |
WO2009144780A1 (ja) * | 2008-05-27 | 2009-12-03 | 富士通株式会社 | システム運用管理支援プログラム,方法及び装置 |
JP2010237893A (ja) | 2009-03-31 | 2010-10-21 | Hitachi Ltd | プラントの異常診断装置及び異常診断方法 |
JP2015007509A (ja) | 2013-06-26 | 2015-01-15 | 株式会社日立製作所 | ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。 |
JP2017162327A (ja) * | 2016-03-11 | 2017-09-14 | 株式会社テイエルブイ | 配管系統における影響度表示システム及び影響度表示方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3147586B2 (ja) * | 1993-05-21 | 2001-03-19 | 株式会社日立製作所 | プラントの監視診断方法 |
JP3874110B2 (ja) * | 2002-08-30 | 2007-01-31 | 日本精工株式会社 | 異常診断システム |
JP4430384B2 (ja) * | 2003-11-28 | 2010-03-10 | 株式会社日立製作所 | 設備の診断装置及び診断方法 |
WO2013128557A1 (ja) * | 2012-02-27 | 2013-09-06 | 富士通株式会社 | 費用算出方法、費用算出プログラムおよび費用算出装置 |
CN103226737B (zh) * | 2013-04-15 | 2016-03-30 | 清华大学 | 基于卡尔曼滤波与灰色预测的化工异常工况趋势预测方法 |
JP6116466B2 (ja) * | 2013-11-28 | 2017-04-19 | 株式会社日立製作所 | プラントの診断装置及び診断方法 |
CN104484723B (zh) * | 2014-12-25 | 2018-06-19 | 国家电网公司 | 一种基于寿命数据的电力变压器经济寿命预测方法 |
JP6523815B2 (ja) * | 2015-06-22 | 2019-06-05 | 株式会社日立製作所 | プラント診断装置及びプラント診断方法 |
WO2017057427A1 (ja) * | 2015-09-29 | 2017-04-06 | 株式会社ニコン | 製造システム |
CN106203519A (zh) * | 2016-07-17 | 2016-12-07 | 合肥赑歌数据科技有限公司 | 基于分类聚类的故障预警算法 |
-
2017
- 2017-10-25 JP JP2017205721A patent/JP7042056B2/ja active Active
-
2018
- 2018-08-23 EP EP18870720.2A patent/EP3702861A4/en not_active Withdrawn
- 2018-08-23 CN CN201880064256.5A patent/CN111183402A/zh active Pending
- 2018-08-23 WO PCT/JP2018/031088 patent/WO2019082491A1/ja unknown
-
2020
- 2020-04-22 PH PH12020550471A patent/PH12020550471A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59214915A (ja) * | 1983-05-20 | 1984-12-04 | Hitachi Ltd | 故障波及予測・診断方式 |
JPH08313685A (ja) * | 1995-05-23 | 1996-11-29 | Toshiba Corp | プラント制御装置 |
JP2004094631A (ja) | 2002-08-30 | 2004-03-25 | Toshiba Corp | プラント機器の運用支援装置 |
WO2009144780A1 (ja) * | 2008-05-27 | 2009-12-03 | 富士通株式会社 | システム運用管理支援プログラム,方法及び装置 |
JP2010237893A (ja) | 2009-03-31 | 2010-10-21 | Hitachi Ltd | プラントの異常診断装置及び異常診断方法 |
JP2015007509A (ja) | 2013-06-26 | 2015-01-15 | 株式会社日立製作所 | ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。 |
JP2017162327A (ja) * | 2016-03-11 | 2017-09-14 | 株式会社テイエルブイ | 配管系統における影響度表示システム及び影響度表示方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3702861A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111428906A (zh) * | 2020-02-17 | 2020-07-17 | 浙江大学 | 一种基于图像变换的工业锅炉蒸汽量预测方法 |
CN111428906B (zh) * | 2020-02-17 | 2023-05-09 | 浙江大学 | 一种基于图像变换的工业锅炉蒸汽量预测方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3702861A1 (en) | 2020-09-02 |
EP3702861A4 (en) | 2021-07-14 |
CN111183402A (zh) | 2020-05-19 |
PH12020550471A1 (en) | 2021-03-15 |
JP2019079275A (ja) | 2019-05-23 |
JP7042056B2 (ja) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105992977B (zh) | 成套设备的诊断装置和诊断方法 | |
JP6037954B2 (ja) | ボイラチューブリーク検出装置、ボイラチューブリーク検出方法、並びにこれらを用いたデータ監視センタ、情報提供サービス、ボイラプラント。 | |
US8442853B2 (en) | Targeted equipment monitoring system and method for optimizing equipment reliability | |
JP5292477B2 (ja) | 診断装置及び診断方法 | |
WO2019082491A1 (ja) | プラントの運転支援装置及び運転支援方法 | |
US20080140360A1 (en) | System and method for damage propagation estimation | |
JP6523815B2 (ja) | プラント診断装置及びプラント診断方法 | |
CN108241360B (zh) | 在线监视装置以及在线监视方法 | |
CN108073145B (zh) | 运转支援装置以及记录介质 | |
JP2014052929A (ja) | 火力プラントの制御装置及び制御方法 | |
Gu et al. | Creep-fatigue reliability assessment for high-temperature components fusing on-line monitoring data and physics-of-failure by engineering damage mechanics approach | |
Zhou et al. | A dynamic reliability-centered maintenance analysis method for natural gas compressor station based on diagnostic and prognostic technology | |
Khalid et al. | Advances in fault detection and diagnosis for thermal power plants: A review of intelligent techniques | |
Patil et al. | Availability analysis of a steam boiler in textile process industries using failure and repair data: a case study | |
WO2019003703A1 (ja) | 診断装置及び診断方法 | |
Zhou et al. | A review on the progress, challenges and prospects in the modeling, simulation, control and diagnosis of thermodynamic systems | |
Sinha et al. | dClink: A data-driven based clinkering prediction framework with automatic feature selection capability in 500 MW coal-fired boilers | |
Tejedor et al. | Advanced gas turbine asset and performance management | |
JP6862104B2 (ja) | 原料選定支援装置、及び原料選定支援方法 | |
Yang et al. | PSO based LS-SVM approach for fault prediction of primary air fan | |
KR102063381B1 (ko) | 과열 저감기 정비 시기 예측 방법 및 시스템 | |
Gunnarsson | Maintenance of the steam turbines at Hellisheiði power plant | |
Affelt et al. | Hybrid Analytics Solution for Power Plant Operations | |
Valenti | Upgrading the Old Turbinee | |
CN118886300A (zh) | 基于数字孪生的工业锅炉故障诊断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18870720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018870720 Country of ref document: EP Effective date: 20200525 |