WO2019003703A1 - 診断装置及び診断方法 - Google Patents

診断装置及び診断方法 Download PDF

Info

Publication number
WO2019003703A1
WO2019003703A1 PCT/JP2018/019238 JP2018019238W WO2019003703A1 WO 2019003703 A1 WO2019003703 A1 WO 2019003703A1 JP 2018019238 W JP2018019238 W JP 2018019238W WO 2019003703 A1 WO2019003703 A1 WO 2019003703A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnostic device
data
operation data
cluster
diagnostic
Prior art date
Application number
PCT/JP2018/019238
Other languages
English (en)
French (fr)
Inventor
孝朗 関合
嘉成 堀
林 喜治
山本 浩貴
光浩 丹野
勝秀 北川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201880024345.7A priority Critical patent/CN110506245A/zh
Publication of WO2019003703A1 publication Critical patent/WO2019003703A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a diagnostic device and a diagnostic method for diagnosing the state of a diagnostic target using driving data acquired from the diagnostic target.
  • thermal power plants have not only a role as conventional load adjustment but also a role as base load power source. Therefore, thermal power plants are required to operate in consideration of key performance indicators (KPIs) such as operation rate, environmental performance, and efficiency.
  • KPIs key performance indicators
  • Patent Document 1 discloses a diagnostic device using Adaptive Resonance Theory (ART).
  • ART is a theory that classifies multi-dimensional time-series data into categories according to their degree of similarity.
  • Patent Document 1 In the technique of Patent Document 1, first, operation data at normal time is classified into a plurality of categories (normal categories) using ART. Next, current driving data is input to ART and classified into categories. When this time series data can not be classified as a normal category, a new category (new category) is generated. The occurrence of a new category means that the state to be diagnosed has changed to a new state (new state). Therefore, in the diagnostic device of Patent Document 1, the occurrence of an abnormal symptom is determined by the occurrence of a new category. Further, in the technology of Patent Document 2, a method of automatically extracting data items that have affected the detection of a new state is described.
  • a new state is detected as the occurrence of an abnormal symptom.
  • the operating state may be normal. In this case, false detection occurs in which it is determined to be abnormal despite the normal state.
  • An object of the present invention is to provide a diagnostic device that suppresses the occurrence of false detection in view of the above situation.
  • the present invention classifies operation data in a normal state into a plurality of clusters based on a predetermined degree of similarity in a diagnostic device that performs abnormality determination based on operation data to be monitored.
  • the present invention is characterized by comprising an operation unit that performs the abnormality determination based on a change direction of time-series data in the operation data, when the operation data that does not belong is newly detected.
  • the diagnostic device By using the diagnostic device according to the present invention, it is possible to suppress the occurrence of false alarm and make a diagnosis with high accuracy.
  • ART adaptive resonance theory
  • FIG. 1 is a block diagram for explaining a diagnostic device 200 which is an embodiment of the present invention.
  • the diagnostic device 200 is connected to the plant 100 to be monitored and the external device 900.
  • the diagnosis device 200 includes an abnormality diagnosis unit 300 and a data change direction evaluation unit 600 as calculation devices.
  • the abnormality diagnosis unit 300 includes a clustering unit 400 and an abnormality determination unit 500 as an arithmetic device.
  • the clustering means 400 incorporates the technique using the adaptive resonance theory disclosed in Patent Document 1.
  • the clustering unit 400 is not limited to the unit described in the present embodiment, and may be configured by mounting another clustering technology. The operation of each arithmetic unit will be described with reference to FIG.
  • the abnormality diagnosis means 300 includes an operation data database 310 and a diagnosis result database 320 as databases.
  • the database is abbreviated as DB.
  • the database stores electronic information, and the information is generally stored in a form called electronic file (electronic data).
  • the diagnostic device 200 includes an external input interface 210 and an external output interface 220 as an interface with the outside. Then, the operation data 1 collected by the plant 100 via the external input interface 210 and the external input signal 2 generated by operating the external input device 910 (keyboard 910 and mouse 920) provided in the external device 900. Are taken into the diagnostic device 200.
  • the driving data 3 taken into the diagnostic device 200 is stored in the driving data database 310. Also, the image display information 9 is output to the screen display device 940 via the external output interface 220.
  • the clustering unit 400 classifies the driving data stored in the driving data database 310 into clusters according to the degree of similarity.
  • the clustering result 5 is stored in the diagnostic result database 320.
  • the data change direction evaluation means evaluates, based on the operation data 11 and the external input information 10, whether the change direction of the operation data is the danger direction or the safety direction.
  • the data change direction evaluation results 13 and 14 are transmitted to the diagnostic result database and the abnormality determination means 500, respectively.
  • the abnormality determination means 500 diagnoses the occurrence of an abnormality in the plant 100 based on the clustering result 7, the diagnosis result database information 6 stored in the diagnosis result database 320 and the data change direction evaluation result 14.
  • the abnormality determination result 8 is transmitted to the external output interface 220, and is transmitted to the image display device 940 as the image display information 9 through the external output interface 220.
  • the image display device 940 On the image display device 940, the result of diagnosing the operating state of the plant 100 by the diagnostic device 200 is displayed.
  • the arithmetic device and the database are provided inside the diagnostic device 200. However, some of these devices are disposed outside the diagnostic device 200, and only data is available. You may communicate between them. Also, the signal database information 50, which is a signal stored in each database, can display all the information on the screen display device 940 through the external output interface 220, and these information can be manipulated by operating the external input device 910. It can be corrected by the external input signal 2 to be generated.
  • the external input device 910 is configured of the keyboard 920 and the mouse 930, but any device for inputting data, such as a microphone for voice input, a touch panel or the like may be used.
  • the arithmetic unit includes a CPU, a processor, and the like
  • the database includes a hard disk, a memory, and the like.
  • the embodiment of the present invention can be implemented as an apparatus for analyzing operation data off-line.
  • the monitoring target of the diagnostic device 200 is a plant in the present embodiment, it goes without saying that the monitoring target can also be implemented as equipment other than the plant.
  • FIG. 2 is a flowchart for explaining the operation of the diagnostic device 200.
  • the flowcharts of FIGS. 2A and 2B operate independently of one another.
  • FIG. 2A is a flowchart related to the process of learning the normal state of the plant 100.
  • the clustering means 400 is operated.
  • the clustering unit 400 classifies the normal operation data stored in the operation data database 310 into clusters according to the degree of similarity, and stores the clusters in the diagnosis result database 320.
  • FIG. 2 (b) is a flowchart relating to the process of diagnosing the operating state of the plant 100.
  • the clustering means is operated to classify the operation data collected in real time into clusters according to the degree of similarity, and store it in the diagnosis result database 320.
  • step 1110 based on the result of operating the clustering means, it is determined whether the operating condition of the plant has been experienced in the past or is in a new condition which has not been experienced. If it is a new state, the process proceeds to step 1120; otherwise, it proceeds to step 1130.
  • the data change direction evaluation means 600 is operated, and the data change direction evaluation results 13, 14 are transmitted to the diagnosis result database 320 and the abnormality determination means 500.
  • the data change direction evaluation means 600 extracts data items affecting the detection of a new state, and the data stored in the diagnostic result database 320 as to whether the change direction of the data is a dangerous direction or a safe direction. Based on
  • the technique described in Patent Document 2 may be mentioned.
  • the technique is not limited as long as it is a technique for extracting data items related to detection of a new state. Further, the number of data items related to detection of a new state can be arbitrarily set, and there is no limitation on the number.
  • the abnormality determination means 500 is operated.
  • the abnormality determination means 500 when the result of the new state detection is NO, the normal state, when the result of the new state detection is YES and the data change direction is the safe direction, the normal state, the result of the new state detection is YES, the data change direction If there is a danger direction, diagnose as an abnormal condition.
  • step 1140 an end determination is performed. If the determination is YES, the process ends, and if NO, the process returns to step 1100.
  • the condition of the end determination can be set arbitrarily. For example, when an end instruction is input from the external input device 910, the end determination is satisfied when the process of step 1100 is repeated a predetermined number of times.
  • the false notification is made by determining that the data change direction is normal when the data change direction is the safety direction, as compared with the case where the clustering unit 400 detects a new state. Can be suppressed.
  • FIG. 3 is a diagram for explaining a block diagram when adaptive resonance theory (ART) is used as an example of the clustering means 400.
  • ART adaptive resonance theory
  • the ART module 410 comprises an F0 layer 411, an F1 layer 412, an F2 layer 413, a memory 414 and a selection subsystem 415, which are coupled to one another.
  • the F1 layer 412 and the F2 layer 413 are connected via weighting factors.
  • the weighting factor represents a prototype of the category into which the input data is classified.
  • a prototype is a representative value of a category.
  • the outline of the algorithm when input data is input to the ART 410 is as shown in the following processes 1 to 5.
  • Process 1 The input vector is normalized by the F0 layer 411 to remove noise.
  • a candidate of an appropriate category is selected by comparing the input data input to the F1 layer 412 with the weighting factor.
  • Process 3 The validity of the category selected in the selection subsystem 415 is evaluated by the ratio to the parameter ⁇ . If it is determined that the data is valid, the input data is classified into the category, and the process proceeds to processing 4. On the other hand, if it is not determined that the category is determined to be valid, the category is reset, and a candidate of an appropriate category is selected from other categories (the process 2 is repeated). As the value of the parameter ⁇ is increased, the classification of categories becomes finer. That is, the category size becomes smaller. Conversely, the smaller the value of ⁇ ⁇ ⁇ , the coarser the classification. Category size increases. This parameter ⁇ is called a vigilance parameter.
  • Process 4 When all existing categories are reset in Process 2, it is determined that the input data belongs to a new category, and a new weighting factor representing a prototype of the new category is generated.
  • Kw is a learning rate parameter (0 ⁇ Kw ⁇ 1), which is a value for determining the degree of reflecting the input vector on a new weighting factor.
  • Equations 1 and Equations 2 to 12 described later are incorporated in the ART 410.
  • the feature of the ART 410 data classification algorithm is in the process 4 described above.
  • process 4 when input data different from the learned pattern is input, a new pattern can be recorded without changing the recorded pattern. For this reason, it is possible to record a new pattern while recording a pattern learned in the past.
  • the ART 410 learns the given pattern. Therefore, when new input data is input to the learned ART 410, the above algorithm can determine which pattern is close to the past. Moreover, if it is a pattern which has not experienced in the past, it will be classified into a new category.
  • FIG. 3B is a block diagram showing the configuration of the F0 layer 411.
  • the input data I i is normalized again at each time to create a normalized input vector u i 0 to be input to the F 1 layer 412 and the selection subsystem 415.
  • W i 0 is calculated from the input data I i according to Equation 2.
  • a is a constant.
  • X i 0 obtained by normalizing W i 0 is calculated using Equation 3.
  • represents the norm of W 0 .
  • Equation 4 Since the minute value is 0, the noise of the input data is removed.
  • u i 0 is an input of the F1 layer.
  • FIG. 3C is a block diagram showing the configuration of the F1 layer 412.
  • the F 1 layer 412 holds u i 0 obtained in Equation 5 as short-term memory, and calculates P i to be input to the F 2 layer 413.
  • Formulas for the F1 layer are summarized in Equations 6 to 12.
  • a and b are constants
  • f ( ⁇ ) is the function shown in equation 4
  • T j is the fitness calculated by the F 2 layer 413.
  • FIG. 4 is a view for explaining classification results of data in the clustering unit 400.
  • FIG. 4A shows an example of classification results obtained by classifying driving data into categories.
  • FIG. 4A shows, as an example, two items of the operation data, and is represented by a two-dimensional graph. Further, the vertical axis and the horizontal axis are shown by normalizing the operation data of each item.
  • the driving data is divided by the ART module 410 into a plurality of categories 419 (circles shown in FIG. 4A). One circle corresponds to one category.
  • the operation data is classified into four categories.
  • Category number 1 is a group in which the value of item A is large and the value in item B is small.
  • Category number 2 is a group in which the values of item A and item B are both small.
  • Category number 3 is small in the value of item A, item B
  • the category number 4 is a group in which the values of item A and item B are both large.
  • FIG. 4B is a diagram for explaining an example of the result of classifying the driving data into categories and the driving data.
  • the horizontal axis is time, and the vertical axis is a measurement signal and a category number.
  • the operation data was classified into categories 1 to 4.
  • the category 4 is a new state not experienced at the normal time, and in step 1110 of FIG. 2, the presence or absence of the new state is determined based on the category number.
  • FIG. 5 is a diagram for explaining an aspect of data stored in the driving data database 310 and the diagnosis result database 320. As shown in FIG.
  • FIG. 5A is a view for explaining an aspect of data stored in the driving data database 310. As shown in FIG. As shown in FIG. 5A, operation data measured by the sensor is stored for each sampling cycle.
  • FIGS. 5 (b), (c) and (d) are diagrams for explaining the aspect of data stored in the diagnostic result database 320.
  • the attributes of each cluster and the weighting factors of the clusters are stored.
  • the attribute is information for defining whether each cluster is a normal cluster or an abnormal cluster.
  • the weighting factor is coefficient information for defining the center coordinates of each cluster.
  • FIG. 5C it is judged whether the change direction is the danger direction or the safety direction for the case where the change direction of the data increases or decreases for each data item.
  • the alarm generation condition of each data item is stored in the diagnosis result database.
  • the data change direction evaluation means 600 of the present invention can also automatically generate the data shown in FIG. 5 (c) based on the alarm generation condition shown in FIG. 5 (d).
  • the upper limit is set as the alarm generation condition
  • the direction in which the data value increases is set as the danger direction
  • the direction in which the data value decreases is set as the danger direction.
  • the upper limit is not set as the alarm condition
  • the direction in which the data value increases is set as the safe direction
  • the lower limit is not set, the direction in which the data value decreases is set as the safe direction.
  • the attribute of the generated new cluster may be automatically set as normal.
  • FIG. 6 is a diagram for explaining a method of changing data stored in the diagnosis result database 320 according to the determination result of the operator.
  • the data shown in FIGS. 5B and 5C are changed according to the contents described in FIG.
  • FIG. 6A is a flowchart for changing data.
  • a rule is extracted from the change contents of the cluster attribute.
  • the operator can change the attribute of the cluster from the screen shown in FIG. 6B displayed on the image display device 940 of the external device 900.
  • information on the data change direction is extracted from the changed cluster information. If the attribute is changed from normal to abnormal, the change direction of the data is regarded as dangerous and the attribute is changed from abnormal to normal. Makes the change direction of the data the safe direction.
  • step 1210 the rule extracted in step 1200 is displayed to the operator through the screen shown in FIG. 6C.
  • execution is selected on the screen of FIG. 6C
  • the process proceeds to step 1220, and the information of the diagnosis result database 320 is changed.
  • cancel is selected on the screen of FIG. 6C, it is determined that the rule is not added and the process ends.
  • FIG. 7 is a view for explaining an embodiment of a power generation plant as a diagnosis target of the diagnosis device 200, and showing an equipment configuration of a combined cycle plant.
  • the gas turbine 2080 includes a compressor 2010, an expander 2020, and a combustor 2030.
  • the compressor 2010 takes in and compresses air
  • the combustor 2030 takes in compressed air and fuel to generate combustion gas
  • the expander 2020 takes in combustion gas to obtain motive power.
  • the output of the gas turbine 2080 is the difference between the power output from the expander 2020 and the power used by the compressor 2010.
  • the exhaust heat recovery boiler 2050 is provided with a heat exchanger 2060 and generates high temperature steam using high temperature exhaust gas from the gas turbine 2080.
  • the steam turbine 2070 takes in the high temperature steam generated by the exhaust heat recovery boiler 2050 to obtain motive power.
  • the condenser 2090 the exhaust of the steam turbine 2070 is taken in, and heat exchange is performed with the cooling water to condense the steam into water.
  • the generator 2040 generates power using the outputs of the gas turbine 2080 and the steam turbine 2070.
  • FIG. 8 is a view for explaining the diagnostic result by the diagnostic device 200 of the present invention.
  • FIG. 8A shows an example of the diagnosis result in the case where the temperature spread is to be monitored.
  • gas temperatures are measured at a plurality of locations in the circumferential direction in order to monitor the combustion state of fuel.
  • the temperature spread is the difference between the maximum value and the minimum value of the gas temperatures measured at multiple points.
  • the temperature spread has a low value, and when a combustion-related abnormality occurs, the temperature spread rises.
  • the temperature spread is to be monitored, if the temperature spread deviates from the learning range, a new category is generated to detect a new state. However, when the temperature spread is lowered and the combustion state is stabilized in a more stable direction, that is, in the safe direction, it may be falsely detected that the new state is abnormal.
  • FIG. 8B is a diagram for explaining the diagnosis result displayed on the image display device 940.
  • the detection result of the new state and information indicating whether the change direction of the data is the safe direction or the dangerous direction are displayed.
  • the operator can accurately grasp the state of the plant.
  • the diagnosis apparatus 200 As described above, in the diagnosis apparatus 200 according to the present invention, only the clustering unit 400 or only the data change direction evaluation unit 600 is used to judge abnormality by the abnormality judgment unit 500 using the clustering unit 400 and the data change direction evaluation unit 600. Compared with the case where diagnosis is performed based on the result of the above, the effect of improving the diagnostic accuracy is obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本発明では誤検知を抑制し、診断精度の高い診断装置を提供することを目的とする。 上記課題を解決する為に本発明は、監視対象の運転データに基づいて異常判定を行う診断装置において、正常時の運転データを所定の類似度に基づいて複数のクラスタに分類し、前記クラスタに属さない運転データを新たに検知した場合に、前記運転データにおける時系列データの変化方向に基づいて前記異常判定を行う演算部を備えることを特徴とする。

Description

診断装置及び診断方法
 本発明は、診断対象から取得した運転データを用いて、診断対象の状態を診断する診断装置及び診断方法に関する。
 近年、ICT (Information and Communication Technology)、IoT(Internet of Thing)の技術革新に伴い、高速な計算機やネットワーク通信、大容量なデータ保存装置を利用できる環境が整いつつある。多くの産業分野で大量に蓄積したデータの利活用に注目が集まるなか、発電事業の分野でも、発電プラントの計測データや点検・保全データなどの現地サイトで収集したデータと、企業の経営及び資産情報を管理するシステムの統合により、より効率的な経営方針の策定が求められている。発電事業の分野では、風力発電や太陽光発電などの再生可能エネルギーの利用増加に伴う発電量の変動が電力系統の安定性を低下させるという懸念から、バックアップ電源としての火力発電プラントの重要性が増している。また、東日本大震災以後から、国内における原子力発電の比率が減少した結果、火力発電プラントは従来からの負荷調整としての役割だけでなく、ベースロード電源としての役割も担っているのが実態である。そのため火力発電プラントには稼働率、環境性能、効率などの重要業績評価指標(KPI:Key Performance Indicators)を考慮した運用が求められている。
 火力発電プラントのKPIを改善するため、診断対象に異常状態が発生する前の異常兆候を検知する装置やその方法が多数検討されている。特許文献1には、適応共鳴理論(Adaptive Resonance Theory:ART)を用いた診断装置が開示されている。ここでARTとは、多次元の時系列データをその類似度に応じてカテゴリに分類する理論である。
 特許文献1の技術においては、まずARTを用いて正常時の運転データを複数のカテゴリ(正常カテゴリ)に分類する。次に、現在の運転データをARTに入力してカテゴリに分類する。この時系列データが正常カテゴリに分類できない時は、新しいカテゴリ(新規カテゴリ)を生成する。新規カテゴリの発生は、診断対象の状態が新しい状態(新状態)に変化したことを意味する。そこで、特許文献1の診断装置では、異常兆候の発生を新規カテゴリの発生で判断している。また、特許文献2の技術においては、新状態の検知に影響したデータ項目を自動的に抽出する手法が記載されている。
 尚、データを分類して診断する手法としては、上記で述べた手法に限らず、多数の手法が提案されている。
特開2011-070334号公報 特許第5292477号公報
 先行技術では、新状態を異常兆候の発生として検知している。しかし、新状態であっても、例えばデータの値が安全方向に変化した場合には、運転状態が正常である可能性がある。この場合、正常状態であるにも関わらず異常と判定する誤検知が発生する。
 本発明では上記状況を鑑み、誤検知の発生を抑制する診断装置を提供することを目的とする。
 上記課題を解決する為に本発明は、監視対象の運転データに基づいて異常判定を行う診断装置において、正常時の運転データを所定の類似度に基づいて複数のクラスタに分類し、前記クラスタに属さない運転データを新たに検知した場合に、前記運転データにおける時系列データの変化方向に基づいて前記異常判定を行う演算部を備えることを特徴とする。
 本発明による診断装置を用いることで、誤報の発生を抑制し、精度の高い診断が可能となる。
本発明の実施例である診断装置を説明するブロック図である。 診断装置の動作を説明するフローチャート図である。 クラスタリング手段の実施例として、適応共鳴理論(ART)を用いた場合のブロック図を説明する図である。 クラスタリング手段におけるデータの分類結果を説明する図である。 運転データデータベースと診断情報データベースに保存されるデータの態様を説明する図である。 運転員の判定結果に従って診断情報データベースに保存されているデータの変更方法を説明する図である。 診断装置の診断対象として、発電プラントの実施例を説明する図である。 本発明の診断装置による診断結果を説明する図である。
 図1は本発明の実施例である診断装置200を説明するブロック図である。本実施例では、診断装置200は監視対象であるプラント100と外部装置900と接続している。
 診断装置200は、演算装置として異常診断手段300、データ変化方向評価手段600を備えている。異常診断手段300は、演算装置としてクラスタリング手段400、異常判定手段500を備える。
 クラスタリング手段400では、特許文献1に開示されている適応共鳴理論を用いた技術を搭載している。尚、クラスタリング手段400は本実施例で述べた手段に限定されず、他のクラスタリング技術を搭載して構成しても良い。各演算装置の動作については、図2以降で説明する。
 また、異常診断手段300は、データベースとして運転データデータベース310、診断結果データベース320を備える。尚、図1ではデータベースをDBと略記している。データベースには、電子化された情報が保存されており、通常電子ファイル(電子データ)と呼ばれる形態で情報が保存される。
 診断装置200は、外部とのインターフェイスとして外部入力インターフェイス210及び外部出力インターフェイス220を備えている。そして、外部入力インターフェイス210を介してプラント100にて収集している運転データ1と、外部装置900に備えられている外部入力装置910(キーボード910及びマウス920)の操作で作成する外部入力信号2が診断装置200に取り込まれる。
 診断装置200に取り込まれた運転データ3は運転データデータベース310に保存する。また、外部出力インターフェイス220を介して、画像表示情報9を画面表示装置940に出力する。
 クラスタリング手段400では、運転データデータベース310に保存されている運転データを、その類似度に応じてクラスタに分類する。クラスタリング結果5は、診断結果データベース320に保存する。また、データ変化方向評価手段では、運転データ11と外部入力情報10に基づいて、運転データの変化方向が危険方向か安全方向であるかを評価する。データ変化方向評価結果13、14はそれぞれ診断結果データベース、異常判定手段500に送信する。
 異常判定手段500では、クラスタリング結果7、診断結果データベース320に保存されている診断結果データベース情報6とデータ変化方向評価結果14に基づいてプラント100における異常の発生有無を診断する。
 異常判定結果8は外部出力インターフェイス220に送信し、外部出力インターフェイス220を介して画像表示情報9として画像表示装置940に送信する。画像表示装置940には、診断装置200でプラント100の運転状態を診断した結果が表示される。
 なお、本実施例の診断装置200においては、演算装置、およびデータベースが診断装置200の内部に備えられているが、これらの一部の装置を診断装置200の外部に配置し、データのみを装置間で通信するようにしてもよい。また、各データベースに保存されている信号である信号データベース情報50は、その全ての情報を外部出力インターフェイス220を介して画面表示装置940に表示でき、これらの情報は外部入力装置910を操作して生成する外部入力信号2で修正できる。本実施例では、外部入力装置910をキーボード920とマウス930で構成しているが、音声入力のためのマイク、タッチパネルなど、データを入力するための装置であれば良い。また、演算装置には、CPU、プロセッサ等が含まれ、データベースには、ハードディスク、メモリ等が含まれる。
 また、本発明の実施形態として、オフラインで運転データを解析する装置として実施可能であることは言うまでもない。また、本実施例では診断装置200の監視対象をプラントとしているが、監視対象をプラント以外の設備としても実施可能であることは言うまでもない。
 図2は診断装置200の動作を説明するフローチャート図である。図2(a)(b)の各フローチャートは、各々独立して動作する。
 まず、図2(a)のフローチャートについて説明する。図2(a)は、プラント100の正常状態を学習する処理に関するフローチャートである。ステップ1000では、クラスタリング手段400を動作させる。クラスタリング手段400では、運転データデータベース310に保存されている正常時の運転データをその類似度に応じてクラスタに分類し、診断結果データベース320に保存する。
 次に、図2(b)のフローチャートについて説明する。図2(b)は、プラント100の運転状態を診断する処理に関するフローチャートである。ステップ1100では、クラスタリング手段を動作させて、リアルタイムに収集した運転データを類似度に応じてクラスタに分類し、診断結果データベース320に保存する。
 ステップ1110では、クラスタリング手段を動作させた結果に基づいて、プラントの運転状態が過去に経験したことのある状態か、経験のしたことのない新しい状態であるかを判定する。新状態である場合はステップ1120、それ以外の場合はステップ1130に進む。
 ステップ1120では、データ変化方向評価手段600を動作させ、データ変化方向評価結果13、14を診断結果データベース320、異常判定手段500に送信する。
 データ変化方向評価手段600では、新状態の検知に影響したデータ項目を抽出し、そのデータの変化方向が危険方向であるか、安全方向であるのかについて、診断結果データベース320に保存されているデータに基づいて判定する。
 ここで、新状態の検知に影響したデータ項目を自動的に抽出する技術としては、例えば特許文献2に記載されている技術が挙げられる。尚、新状態の検知に関係するデータ項目を抽出する技術であれば、手法に限定はない。また、新状態の検知に関係するデータ項目の数については任意に設定可能であり、数についての限定はない。
 また、データ変化方向評価手段600にて参照する診断結果データベース320に保存されているデータについては、図5を用いて後述する。
 ステップ1130では、異常判定手段500を動作させる。異常判定手段500では、新状態検知の結果がNOの場合は正常状態、新状態検知の結果がYESでデータ変化方向が安全方向の場合は正常状態、新状態検知の結果がYESでデータ変化方向が危険方向の場合は異常状態であると診断する。
 ステップ1140では、終了判定を実施し、YESの場合は終了し、NOの場合はステップ1100に戻る。終了判定の条件は任意に設定することが可能であり、例えば外部入力装置910から終了指示が入力された場合、所定の回数ステップ1100の処理を繰り返した場合に終了判定を満足する。
 このように、本発明の診断装置200では、クラスタリング手段400で新状態を検知した場合に異常と診断する場合と比較して、データ変化方向が安全方向の場合は正常と判定することで、誤報の発生を抑制できる。
 図3は、クラスタリング手段400の実施例として、適応共鳴理論(ART)を用いた場合のブロック図を説明する図である。以下の説明において、クラスタとカテゴリは同じ意味である。
 ARTには、運転データ、及び原料情報データを設定した正規化範囲に基づいて0から1の範囲に正規化したデータNxi(n)及び正規化したデータの補数CNxi(n)(=1-Nxi(n))を含むデータを入力データIi(n)として入力する。
 ARTモジュール410は、F0レイヤー411、F1レイヤー412、F2レイヤー413、メモリ414及び選択サブシステム415を備え、これらは相互に結合している。F1レイヤー412及びF2レイヤー413は、重み係数を介して結合している。重み係数は、入力データが分類されるカテゴリのプロトタイプ(原型)を表している。ここで、プロトタイプとは、カテゴリの代表値を表すものである。
 次に、ART410のアルゴリズムについて説明する。
 ART410に入力データが入力された場合のアルゴリズムの概要は、下記の処理1~処理5のようになる。
 処理1:F0レイヤー411により入力ベクトルを正規化し、ノイズを除去する。
 処理2:F1レイヤー412に入力された入力データと重み係数との比較により、ふさわしいカテゴリの候補を選択する。
 処理3:選択サブシステム415で選択したカテゴリの妥当性がパラメータρとの比により評価される。妥当と判断されれば、入力データはそのカテゴリに分類され、処理4に進む。一方、妥当と判断されなければ、そのカテゴリはリセットされ、他のカテゴリからふさわしいカテゴリの候補を選択する(処理2を繰り返す)。パラメータρの値を大きくするとカテゴリの分類が細かくなる。すなわち、カテゴリサイズが小さくなる。逆に、ρの値を小さくすると分類が粗くなる。カテゴリサイズが大きくなる。このパラメータρをビジランス(vigilance)パラメータと呼ぶ。
 処理4:処理2において全ての既存のカテゴリがリセットされると、入力データが新規カテゴリに属すると判断され、新規カテゴリのプロトタイプを表す新しい重み係数を生成する。
 処理5:入力データがカテゴリJに分類されると、カテゴリJに対応する重み係数WJ(new)は、過去の重み係数WJ(old)及び入力データp(又は入力データから派生したデータ)を用いて数1により更新される。
〔数1〕
WJ(new)=Kw・p+(1-Kw)・WJ(old)         
 ここで、Kwは、学習率パラメータ(0<Kw<1)であり、入力ベクトルを新しい重み係数に反映させる度合いを決定する値である。
 尚、数1及び後述する数2乃至数12の各演算式は前記ART410に組み込まれている。
 ART410のデータ分類アルゴリズムの特徴は、上記の処理4にある。
 処理4においては、学習した時のパターンと異なる入力データが入力された場合、記録されているパターンを変更せずに新しいパターンを記録することができる。このため、過去に学習したパターンを記録しながら、新たなパターンを記録することが可能となる。
 このように、入力データとして予め与えた運転データを与えると、ART410は与えられたパターンを学習する。したがって、学習済みのART410に新たな入力データが入力されると、上記アルゴリズムにより、過去におけるどのパターンに近いかを判定することができる。また、過去に経験したことのないパターンであれば、新規カテゴリに分類される。
 図3(b)は、F0レイヤー411の構成を示すブロック図である。F0レイヤー411では、入力データIiを各時刻で再度正規化し、F1レイヤー412、及び選択サブシステム415に入力する正規化入力ベクトルui 0作成する。
始めに、入力データIから、数2に従ってWi 0を計算する。ここでaは定数である。
Figure JPOXMLDOC01-appb-M000001
 次に、Wi 0を正規化したXi 0を、数3を用いて計算する。ここで、||W||は、Wのノルムを表す。
Figure JPOXMLDOC01-appb-M000002
 そして、数4を用いて、Xi 0からノイズを除去したVi 0を計算する。ただし、θはノイズを除去するための定数である。数4の計算により、微小な値は0となるため、入力データのノイズが除去される。
Figure JPOXMLDOC01-appb-M000003
 最後に、数5を用いて正規化入力ベクトルui 0を求める。ui 0はF1レイヤーの入力となる。
Figure JPOXMLDOC01-appb-M000004
 図3(c)は、F1レイヤー412の構成を示すブロック図である。F1レイヤー412では、数5で求めたui 0を短期記憶として保持し、F2レイヤー413に入力するPiを計算する。F1レイヤーの計算式をまとめて数6乃至数12に示す。ただし、a、bは定数、f(・)は数4で示した関数、TjはF2レイヤー413で計算する適合度である。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 但し、
Figure JPOXMLDOC01-appb-M000011
 図4はクラスタリング手段400におけるデータの分類結果を説明する図である。
図4(a)は、運転データをカテゴリに分類した分類結果の一例を示す図である。
 図4(a)は、一例として、運転データのうちの2項目を表示したものであり、2次元のグラフで表記した。また、縦軸及び横軸は、それぞれの項目の運転データを規格化して示した。
 運転データは、ARTモジュール410によって複数のカテゴリ419(図4(a)に示す円)に分割される。1つの円が、1つのカテゴリに相当する。
 本実施例では、運転データは4つのカテゴリに分類されている。カテゴリ番号1は、項目Aの値が大きく、項目Bの値が小さいグループ、カテゴリ番号2は、項目A、項目Bの値が共に小さいグループ、カテゴリ番号3は項目Aの値が小さく、項目Bの値が大きいグループ、カテゴリ番号4は項目A、項目Bの値が共に大きいグループである。
 図4(b)は、運転データをカテゴリに分類した結果、及び運転データの例を説明する図である。横軸は、時間、縦軸は計測信号、カテゴリ番号である。
 図4(b)に示すように、運転データはカテゴリ1~4に分類された。
 カテゴリ4は正常時に経験していない新状態であり、図2のステップ1110では新状態の有無をカテゴリ番号に基づいて判定する。
 図5は、運転データデータベース310と診断結果データベース320に保存されるデータの態様を説明する図である。
 図5(a)は運転データデータベース310に保存されるデータの態様を説明する図である。図5(a)に示すようにセンサで計測した運転データがサンプリング周期毎に保存される。
 図5(b)(c)(d)は診断結果データベース320に保存されるデータの態様を説明する図である。図5(b)に示す通り、各クラスタの属性とクラスタの重み係数が保存される。ここで、属性とは、各クラスタが正常クラスタであるか、異常クラスタであるかを定義するための情報である。また、重み係数とは、各クラスタの中心座標を定義するための係数情報である。診断結果データベース320には、図5(c)に示す通り、各データ項目についてデータの変化方向が増加する場合と減少する場合について、その変化が危険方向であるか、安全方向であるかを判断する際に参照するデータが保存される。また、診断結果データベースには図5(d)に示す通り、各データ項目の警報発生条件が保存される。
 本発明のデータ変化方向評価手段600では、図5(d)に示した警報発生条件に基づいて、図5(c)に示したデータを自動生成することもできる。警報発生条件として上限値が設定されている場合はデータ値が増加する方向を危険方向として設定し、また下限値が設定されている場合はデータ値が減少する方向を危険方向として設定する。さらに、警報発生条件として上限値が設定されていない場合はデータ値が増加する方向を安全方向として設定し、また下限値が設定されていない場合はデータ値が減少する方向を安全方向として設定する。また、新状態を検知し、データの変化方向が安全方向への変化である場合には、発生した新規クラスタの属性を正常と自動的に設定するようにしても良い。
 図6は、運転員の判定結果に従って診断結果データベース320に保存されているデータの変更方法を説明する図である。図6で説明する内容により、図5(b)(c)に示したデータを変更する。
 図6(a)は、データを変更するフローチャート図である。ステップ1200では、クラスタ属性の変更内容から、ルールを抽出する。運転員は、外部装置900の画像表示装置940に表示される図6(b)に示した画面から、クラスタの属性を変更できる。ステップ1200では、変更したクラスタの情報から、データの変化方向に関する情報を抽出し、属性を正常から異常に変更した場合はそのデータの変化方向を危険方向とし、属性を異常から正常に変更した場合はそのデータの変化方向を安全方向とする。
 ステップ1210では、図6(c)で示す画面を通して、運転員にステップ1200で抽出したルールを表示する。図6(c)の画面で「実行」が選択された場合、ルール追加要と判定してステップ1220に進み、診断結果データベース320の情報を変更する。図6(c)の画面で「キャンセル」が選択された場合はルール追加否と判定して終了する。
 図7は、診断装置200の診断対象として、発電プラントの実施例を説明する図であり、コンバインドサイクルプラントの機器構成を示す図である。ガスタービン2080は、圧縮機2010、膨張機2020、燃焼器2030で構成する。ガスタービン2080では、圧縮機2010が空気を取り込んで圧縮し、次いで、燃焼器2030が圧縮空気と燃料を取り込んで燃焼ガスを生成し、膨張機2020が燃焼ガスを取り込んで動力を得る。ガスタービン2080の出力は、膨張機2020が出力した動力と、圧縮機2010が使用した動力の差分である。排熱回収ボイラ2050には熱交換器2060が備えられており、ガスタービン2080からの高温排ガスを用いて高温蒸気を生成する。蒸気タービン2070では、排熱回収ボイラ2050が生成した高温蒸気を取り込み動力を得る。復水器2090では、蒸気タービン2070の排気を取り込んで、冷却水と熱交換させることにより、蒸気を水に凝縮させる。発電機2040では、ガスタービン2080と蒸気タービン2070の出力を用いて発電する。
 図8は本発明の診断装置200による診断結果を説明する図である。
 図8(a)は、温度スプレッドを監視対象とした場合の診断結果の実施例である。一般に、コンバインドサイクルプラントでは、燃料の燃焼状態を監視するため、ガス温度を円周方向に複数個所で計測している。温度スプレッドとは、複数個所で計測しているガス温度の最大値と最小値の差である。燃焼状態が安定している場合は、温度スプレッドは低い値となり、燃焼関係の異常が発生すると、温度スプレッドが上昇する。
 温度スプレッドを監視対象としている場合、温度スプレッドが学習時の範囲を逸脱すると新規カテゴリが発生して新状態を検知する。しかし、温度スプレッドが低下し、燃焼状態がより安定する方向、すなわち安全方向に変化した場合は、新状態を異常と判定することは誤検知となる。
 本発明では、安全方向に変化したことを考慮して異常判定手段500で診断するため、このような誤検知を回避できる。
 図8(b)は、画像表示装置940に表示される診断結果を説明する図である。
 新状態の検知結果と、データの変化方向が安全方向であるか、危険方向であるかの情報を表示する。これにより、運転員はプラントの状態を正確に把握できる。
 尚、本実施例では診断装置200を適用する対象がプラントである場合について述べたが、プラント以外の対象にも適用しても良い。
 以上述べた通り、本発明の診断装置200では、クラスタリング手段400とデータ変化方向評価手段600を用いて異常判定手段500にて異常判定するため、クラスタリング手段400のみ、もしくはデータ変化方向評価手段600のみの結果に基づいて診断する場合と比較して、診断精度を向上できる効果が得られる。
 1 運転データ
 2 外部入力情報
 3 運転データ
 4 運転データ
 5 クラスタリング結果
 6 診断結果データベース情報
 7 クラスタリング結果
 8 異常判定結果
 9 画像表示情報
 10 外部入力情報
 11 運転データ
 12 診断結果データベース情報
 13 データ変化方向評価結果
 14 データ変化方向評価結果
 15 データベース情報
 100 プラント
 200 診断装置
 210 外部入力インターフェイス
 220 外部出力インターフェイス
 300 異常診断手段
 310 運転データデータベース
 320 診断結果データベース
 400 クラスタリング手段
 500 異常判定手段
 600 データ変化方向評価手段
 900 外部装置
 910 外部入力装置
 920 キーボード
 930 マウス
 940 画像表示装置

Claims (15)

  1.  監視対象の運転データに基づいて異常判定を行う診断装置において、
     正常時の運転データを所定の類似度に基づいて複数のクラスタに分類し、前記クラスタに属さない運転データを新たに検知した場合に、前記運転データにおける時系列データの変化方向に基づいて前記異常判定を行う演算部を備えること
     を特徴とする診断装置。
  2.  請求項1に記載の診断装置において、
     前記変化方向は、前記運転データの各データ項目における値の増加又は減少傾向に基づくこと
     を特徴とする診断装置。
  3.  請求項1に記載の診断装置において、
     前記演算部は、
     前記クラスタに属する運転データは正常データと判断すること
     を特徴とする診断装置。
  4.  請求項1に記載の診断装置において、
     前記演算部は、
     前記クラスタに属さない運転データであり、かつ前記変化方向が危険方向の変化である場合は、異常と判断すること
     を特徴とする診断装置。
  5.  請求項1に記載の診断装置において、
     前記演算部は、
     前記クラスタに属さない運転データであり、かつ前記変化方向が安全方向の変化である場合は、正常と判断すること
     を特徴とする診断装置。
  6.  請求項4又は5の何れか1項に記載の診断装置において、
     前記危険方向又は前記安全方向は、前記運転データにおける各データ項目の上下限値を定義する警報発生条件に基づいて判断すること
     を特徴とする診断装置。
  7.  請求項1に記載の診断装置において、
     前記演算部は、適応共鳴理論を用いて前記分類を行うこと
     を特徴とする診断装置。
  8.  請求項7に記載の診断装置において、
     前記演算部は、前記適応共鳴理論を用いて、運転データと各クラスタの代表値との比較により前記クラスタの候補を選択すること
     を特徴とする診断装置。
  9.  請求項8に記載の診断装置において、
     前記選択の妥当性をビジランスパラメータに基づいて決定すること
     を特徴とする診断装置。
  10.  請求項7に記載の診断装置において、
     前記演算部は、前記適応共鳴理論を用いて、過去に学習したクラスタとは異なるクラスタに属する運転データが入力された場合、新規のクラスタを作成し、そこに分類すること
     を特徴とする診断装置。
  11.  請求項1に記載の診断装置は、
     前記監視対象の運転データを格納するデータベースを更に備え、
     センサで計測した運転データがサンプリング周期毎に保存されていること
     を特徴とする診断装置。
  12.  請求項1に記載の診断装置は、
     前記クラスタの分類結果データを格納するデータベースを更に備え、
     前記データベースには、各クラスタが正常又は異常かを定義する属性情報、各クラスタの中心座標を定義するための係数情報、又は前記運転データにおける各データ項目の上下限値を定義する警報発生条件の内少なくとも一つが保存されていること
     を特徴とする診断装置。
  13.  請求項1に記載の診断装置は、
     前記クラスタの属性変更、又はデータの変化方向の変更の内少なくとも一つを行える入力部を更に備えること
     を特徴とする診断装置。
  14.  請求項1に記載の診断装置において、
     前記監視対象には、発電プラントにおける温度スプレッドが含まれること
     を特徴とする診断装置。
  15.  監視対象の運転データに基づいて異常判定を行う診断方法において、
     正常時の運転データを所定の類似度に基づいて複数のクラスタに分類し、前記クラスタに属さない運転データを新たに検知した場合に、前記運転データにおける時系列データの変化方向に基づいて前記異常判定を行うこと
     を特徴とする診断方法。
PCT/JP2018/019238 2017-06-28 2018-05-18 診断装置及び診断方法 WO2019003703A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880024345.7A CN110506245A (zh) 2017-06-28 2018-05-18 诊断装置以及诊断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-125752 2017-06-28
JP2017125752A JP6830414B2 (ja) 2017-06-28 2017-06-28 診断装置及び診断方法

Publications (1)

Publication Number Publication Date
WO2019003703A1 true WO2019003703A1 (ja) 2019-01-03

Family

ID=64741418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019238 WO2019003703A1 (ja) 2017-06-28 2018-05-18 診断装置及び診断方法

Country Status (3)

Country Link
JP (1) JP6830414B2 (ja)
CN (1) CN110506245A (ja)
WO (1) WO2019003703A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020155755A1 (zh) * 2019-01-28 2020-08-06 平安科技(深圳)有限公司 基于谱聚类的异常点比例优化方法、装置及计算机设备
CN112912807A (zh) * 2019-03-13 2021-06-04 株式会社日立制作所 异常诊断装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108577B2 (ja) * 2019-05-13 2022-07-28 株式会社日立製作所 診断装置と診断方法および加工装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242985A (ja) * 2011-05-18 2012-12-10 Hitachi-Ge Nuclear Energy Ltd 機器異常判定装置、及び機器異常判定方法
JP2013061695A (ja) * 2011-09-12 2013-04-04 Hitachi Ltd 発電プラントの診断装置、及び発電プラントの診断方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1799012B (zh) * 2003-05-29 2010-04-14 松下电器产业株式会社 异常处理系统
EP2450850B1 (en) * 2009-07-01 2020-12-23 Nec Corporation System and method for extracting representative feature
JP5164954B2 (ja) * 2009-09-30 2013-03-21 日立Geニュークリア・エナジー株式会社 機器診断方法及び機器診断装置
JP5810877B2 (ja) * 2011-12-08 2015-11-11 株式会社豊田中央研究所 異常診断システム及び異常診断方法
CN104865951A (zh) * 2015-03-19 2015-08-26 浙江中烟工业有限责任公司 一种卷烟制丝过程烟片预处理段在线监测和故障诊断方法
CN105938468A (zh) * 2016-06-07 2016-09-14 北京交通大学 一种滚动轴承的故障诊断方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242985A (ja) * 2011-05-18 2012-12-10 Hitachi-Ge Nuclear Energy Ltd 機器異常判定装置、及び機器異常判定方法
JP2013061695A (ja) * 2011-09-12 2013-04-04 Hitachi Ltd 発電プラントの診断装置、及び発電プラントの診断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020155755A1 (zh) * 2019-01-28 2020-08-06 平安科技(深圳)有限公司 基于谱聚类的异常点比例优化方法、装置及计算机设备
CN112912807A (zh) * 2019-03-13 2021-06-04 株式会社日立制作所 异常诊断装置

Also Published As

Publication number Publication date
CN110506245A (zh) 2019-11-26
JP2019008681A (ja) 2019-01-17
JP6830414B2 (ja) 2021-02-17

Similar Documents

Publication Publication Date Title
US10557719B2 (en) Gas turbine sensor failure detection utilizing a sparse coding methodology
JP6116466B2 (ja) プラントの診断装置及び診断方法
JP5292477B2 (ja) 診断装置及び診断方法
JP5501903B2 (ja) 異常検知方法及びそのシステム
US8566070B2 (en) Apparatus abnormality monitoring method and system
JP5778305B2 (ja) 異常検知方法及びそのシステム
WO2012073289A1 (ja) プラントの診断装置及びプラントの診断方法
WO2016208315A1 (ja) プラント診断装置及びプラント診断方法
JP2014032455A (ja) 設備状態監視方法およびその装置
EP3191905A1 (en) Gas turbine failure prediction utilizing supervised learning methodologies
WO2019167375A1 (ja) 診断装置および診断方法
JP6830414B2 (ja) 診断装置及び診断方法
JP6674033B2 (ja) プラント異常診断装置及びプラント異常診断システム
Martínez-Rego et al. Fault detection via recurrence time statistics and one-class classification
KR20190082715A (ko) 상관도를 고려한 데이터 분류 방법 및 이 방법을 수행하기 위한 프로그램이 저장된 컴퓨터 판독가능한 저장매체
JP7042056B2 (ja) プラントの運転支援装置及び運転支援方法
Surjandari et al. Fault detection system using machine learning on geothermal power plant
KR101997580B1 (ko) 상관도를 고려한 데이터 분류 방법 및 이 방법을 수행하기 위한 프로그램이 저장된 컴퓨터 판독가능한 저장매체
JP5647626B2 (ja) プラント状態監視装置、プラント状態監視方法
JP6685124B2 (ja) 診断装置及び診断方法
CN113095540A (zh) 数据整合方法及数据整合系统
KR102212022B1 (ko) 양수 수차의 건전성 자동 판정 방법 및 이를 위한 시스템
King et al. Probabilistic approach to the condition monitoring of aerospace engines
Qosim et al. Fault Detection System Using Machine Learning on Synthesis Loop Ammonia Plant
CN118517367A (zh) 基于深度学习和图神经网络的水轮机导叶故障自诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824201

Country of ref document: EP

Kind code of ref document: A1