JP2014512554A - 機械層を支持するための装置および方法 - Google Patents

機械層を支持するための装置および方法 Download PDF

Info

Publication number
JP2014512554A
JP2014512554A JP2013552553A JP2013552553A JP2014512554A JP 2014512554 A JP2014512554 A JP 2014512554A JP 2013552553 A JP2013552553 A JP 2013552553A JP 2013552553 A JP2013552553 A JP 2013552553A JP 2014512554 A JP2014512554 A JP 2014512554A
Authority
JP
Japan
Prior art keywords
layer
mechanical
substrate
stress
electromechanical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013552553A
Other languages
English (en)
Inventor
ジョン、ファン
ヒールド、デイビッド
スン、ウェンユ
プ、チュアン
トゥペリー、チャンドラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm MEMS Technologies Inc
Original Assignee
Qualcomm MEMS Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm MEMS Technologies Inc filed Critical Qualcomm MEMS Technologies Inc
Publication of JP2014512554A publication Critical patent/JP2014512554A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

本開示は、機械層を支持するためのシステムと、方法と、装置とを提供する。一態様では、電気機械システムデバイスは、基板(20)と、機械層(14)と、機械層を支持するために基板上に置かれたポスト(18)とを含む。機械層は、基板から離隔され、機械層と基板との間のギャップ(19)の1つの側面を画定し、機械層は、ギャップ内で作動位置と緩和位置との間で移動可能である。ポストは、ギャップと機械層との間に置かれた、機械層の一部と接触した翼部(124)を含む。翼部は、機械層の曲率を制御するように構成された複数の層を含むことができる。

Description

本開示は電気機械システムに関する。
電気機械システムは、電気的および機械的要素と、アクチュエータと、トランスデューサと、センサーと、光学的構成要素(たとえば、ミラー)と、電子回路とを有するデバイスを含む。電気機械システムは、限定はしないが、マイクロスケールおよびナノスケールを含む、様々なスケールで製造され得る。たとえば、マイクロ電気機械システム(MEMS:microelectromechanical system)デバイスは、約1ミクロンから数百ミクロン以上に及ぶサイズを有する構造を含むことができる。ナノ電気機械システム(NEMS:nanoelectromechanical system)デバイスは、たとえば、数百ナノメートルよりも小さいサイズを含む、1ミクロンよりも小さいサイズを有する構造を含むことができる。電気および電気機械デバイスを形成するために、堆積、エッチング、リソグラフィを使用して、ならびに/あるいは、基板および/または堆積された材料層の部分をエッチング除去するかまたは層を追加する、他の微細加工プロセスを使用して、電気機械要素が作成され得る。
1つのタイプの電気機械システムデバイスは干渉変調器(IMOD:interferometric modulator)と呼ばれる。本明細書で使用する干渉変調器または干渉光変調器という用語は、光学干渉の原理を使用して光を選択的に吸収および/または反射するデバイスを指す。いくつかの実装形態では、干渉変調器は伝導性プレートのペアを含み得、そのペアの一方または両方は、全体的にまたは部分的に、透明でおよび/または反射性であり、適切な電気信号の印加時の相対運動が可能であり得る。一実装形態では、一方のプレートは、基板上に堆積された固定層を含み得、他方のプレートは、エアギャップによって固定層から分離された反射膜を含み得る。別のプレートに対するあるプレートの位置は、干渉変調器に入射する光の光学干渉を変化させることがある。干渉変調器デバイスは、広範囲の適用例を有しており、特にディスプレイ能力がある製品の場合、既存の製品を改善し、新しい製品を作成する際に使用されることが予期される。
干渉デバイスの製造中に、犠牲層が、反射膜と固定相との間のギャップ高さを決定するために使用され得る。しかしながら、犠牲層を除去して反射膜を立ち上げる(launch)と、機械的応力によって、反射膜が、犠牲層の厚さと異なる間隔だけ固定層から離隔されることになり得る。改善された立ち上げ制御を有する干渉デバイスが必要とされている。
本開示のシステム、方法およびデバイスは、それぞれいくつかの発明的態様を有し、それらのうちの単一の態様だけが、本明細書で開示する望ましい属性に関与するとは限らない。
本開示で説明する主題の一つの発明的態様は、基板、機械層およびポストを含む、電気機械システムデバイスにおいて実装され得る。機械層は、基盤の上に置かれ、基盤と離隔され、機械層と基板との間のギャップの1つの側面を画定する。機械層は、作動位置と緩和位置との間のギャップ内で移動可能である。ポストが基板の上に置かれて機械層を支持し、ポストは、機械層の一部と接触している翼部を含む。翼部は、ギャップの一部と機械層との間に置かれ、機械層の曲率を制御するように構成された複数の層を含む。
いくつかの実装形態では、複数の層は、第1の層と、第2の層と、第3の層とを含み、第2の層は第1の層と第3の層との間に配設される。
いくつかの実装形態では、第1の層、第2の層および第3の層は、それぞれ第1の厚さ、第2の厚さおよび第3の厚さを有し、第1、第2および第3の厚さは、機械層の曲率を制御するように選択される。
いくつかの実装形態によれば、第1の層、第2の層および第3の層は、それぞれ第1の応力、第2の応力および第3の応力を有するように構成され、第1、第2および第3の層の応力は、機械層の曲率を制御するように選択される。加えて、第1および第3の層の応力は圧縮であってよく、第2の層は引っ張りであってよい。
様々な実装形態では、第1の層の少なくとも一部が第2の層とギャップとの間に配設され、第1の層は犠牲層のエッチャントに対して耐性がある。第1の層および第3の層はSiOを含んでよく、第2の層はSiONを含んでよい。
別の実装形態は、電気機械システムデバイスにおいて機械層の曲率を制御する方法であり、機械層は、作動位置と緩和位置とを有する。方法は、支持ポストの複数の層の各々について厚さ特性、組成特性および応力特性のうちの1つまたは複数を選択することを含む。方法は、1つまたは複数の選択された厚さ特性、組成特性および応力特性を含む複数の層を含む支持層を、基板の上に堆積させることをさらに含む。方法は、翼部を備える支持ポストを複数の支持層から形成することと、基板から離隔され、ギャップの1つの側面を画定する機械層を形成することとをさらに含む。機械層は、支持ポストの翼部の上に、翼部と接触して形成され、機械層は、作動位置と緩和位置との間で移動可能であるように形成される。機械層の曲率は、緩和位置にあるとき、複数の層の選択された1つまたは複数の厚さ特性、組成特性および応力特性によって制御される。
いくつかの実装形態では、基板に対する翼部のたわみが、選択された1つまたは複数の厚さ特性、組成特性および応力特性によって制御される。翼部は犠牲層と重複してよく、機械層の曲率は、緩和位置にあるとき、翼部と犠牲層との重複によってさらに制御され得る。
別の実装形態は、基板と、機械層と、機械層を支持するための手段とを含む、電気機械システムデバイスである。機械層は、基盤の上に置かれ、基盤と離隔され、機械層と基板との間のギャップの1つの側面を画定する。機械層は、ギャップ内で作動位置と緩和位置との間で移動可能である。機械層を支持するための手段は基板上に置かれ、機械層の曲率を指示するための手段を含む。曲率修正手段は、機械層の一部と接触しており、ギャップの一部と機械層との間に置かれる。曲率指示手段は、機械層の曲率を指示するように構成された複数の層を含む。
本明細書で説明する主題の1つまたは複数の実装形態の詳細が、添付の図面および以下の説明において示されている。他の特徴、態様、および利点は、説明、図面、および特許請求の範囲から明らかになるであろう。以下の図の相対寸法は一定の縮尺で描かれていないことがあることに留意されたい。
干渉変調器(IMOD)ディスプレイデバイスの一連のピクセル中の2つの隣接ピクセルを示す一例の等角図。 3×3干渉変調器ディスプレイを組み込んだ電子デバイスを示す一例のシステムブロック図。 図1の干渉変調器についての可動反射層位置対印加電圧を示す一例の図。 様々なコモン電圧およびセグメント電圧が印加されたときの干渉変調器の様々な状態を示す一例の表。 図2の3×3干渉変調器ディスプレイにおけるディスプレイデータのフレームを示す一例の図。 図5Aに示すディスプレイデータのフレームを書き込むために使用され得るコモン信号およびセグメント信号についての一例のタイミング図。 図1の干渉変調器ディスプレイの一例の部分断面図。 干渉変調器のある実装形態を示す一例の断面図。 干渉変調器の別の実装形態を示す一例の断面図。 干渉変調器のさらに別の実装形態を示す一例の断面図。 干渉変調器のさらに別の実装形態を示す一例の断面図。 干渉変調器のための製造プロセスを示す一例のフロー図。 干渉変調器を製作する方法におけるある段階を示す一例の断面概略図。 干渉変調器を製作する方法における別の段階を示す一例の断面概略図。 干渉変調器を製作する方法におけるさらに別の段階を示す一例の断面概略図。 干渉変調器を製作する方法におけるさらに別の段階を示す一例の断面概略図。 干渉変調器を製作する方法におけるさらに別の段階を示す一例の断面概略図。 干渉変調器のための製造プロセスを示す一例のフロー図。 一実装形態による、干渉変調器のための製造プロセスを作成する方法におけるある段階を示す一例の断面概略図。 一実装形態による、干渉変調器のための製造プロセスを作成する方法における別の段階を示す一例の断面概略図。 一実装形態による、干渉変調器のための製造プロセスを作成する方法におけるさらに別の段階を示す一例の断面概略図。 一実装形態による、干渉変調器のための製造プロセスを作成する方法におけるさらに別の段階を示す一例の断面概略図。 一実装形態による、干渉変調器のための製造プロセスを作成する方法におけるさらに別の段階を示す一例の断面概略図。 一実装形態による、干渉変調器のための製造プロセスを作成する方法におけるさらに別の段階を示す一例の断面概略図。 一実装形態による、干渉変調器のための製造プロセスを作成する方法におけるさらに別の段階を示す一例の断面概略図。 一実装形態による、干渉変調器のための製造プロセスを作成する方法におけるさらに別の段階を示す一例の断面概略図。 一実装形態による、干渉変調器のための製造プロセスを作成する方法におけるさらに別の段階を示す一例の断面概略図。 機械層の曲率を制御する方法を示す一例のフロー図。 複数の干渉変調器を含むディスプレイデバイスを示す一例のシステムブロック図。 複数の干渉変調器を含むディスプレイデバイスを示す一例のシステムブロック図。
詳細な説明
様々な図において、同様の参照番号および参照記号は同様の要素を示し、同様の要素は、いくつかの実装形態に応じていくつかの構造上または特性上の差を有する可能性がある。
以下の詳細な説明は、発明的態様について説明する目的で、いくつかの実装形態を対象とする。しかしながら、本明細書の教示は、多数の異なる方法で適用され得る。説明する実装形態は、動いていようと(たとえば、ビデオ)、静止していようと(たとえば、静止画像)、およびテキストであろうと、グラフィックであろうと、絵であろうと、画像を表示するように構成された任意のデバイスにおいて実装され得る。より詳細には、実装形態は、限定はしないが、携帯電話、マルチメディアインターネット対応セルラー電話、モバイルテレビジョン受信機、ワイヤレスデバイス、スマートフォン、Bluetooth(登録商標)デバイス、携帯情報端末(PDA)、ワイヤレス電子メール受信機、ハンドヘルドまたはポータブルコンピュータ、ネットブック、ノートブック、スマートブック、プリンタ、コピー機、スキャナ、ファクシミリデバイス、GPS受信機/ナビゲータ、カメラ、MP3プレーヤ、カムコーダ、ゲーム機、腕時計、クロック、計算器、テレビジョンモニタ、フラットパネルディスプレイ、電子リーディングデバイス(たとえば、電子リーダー)、コンピュータモニタ、自動車ディスプレイ(たとえば、オドメータディスプレイなど)、コックピットコントロールおよび/またはディスプレイ、カメラビューディスプレイ(たとえば、車両における後部ビューカメラのディスプレイ)、電子写真、電子ビルボードまたは標示、プロジェクタ、アーキテクチャ構造物、電子レンジ、冷蔵庫、ステレオシステム、カセットレコーダーまたはプレーヤ、DVDプレーヤ、CDプレーヤ、VCR、ラジオ、ポータブルメモリチップ、洗濯機、乾燥機、洗濯機/乾燥機、パーキングメーター、パッケージング(たとえば、MEMSおよび非MEMS)、審美構造物(たとえば、1つの宝飾品上の画像のディスプレイ)、ならびに様々な電気機械システムデバイスなど、様々な電子デバイス中に実装されるかまたはそれらに関連付けられ得ると考えられる。また、本明細書の教示は、限定はしないが、電子スイッチングデバイス、無線周波フィルタ、センサー、加速度計、ジャイロスコープ、動き感知デバイス、磁力計、コンシューマーエレクトロニクスのための慣性構成要素、コンシューマーエレクトロニクス製品の部品、バラクタ、液晶デバイス、電気泳動デバイス、駆動方式、製造プロセス、電子テスト機器など、非ディスプレイ適用例において使用され得る。したがって、本教示は、単に図に示す実装形態に限定されるものではなく、代わりに、当業者に直ちに明らかになるであろう広い適用性を有する。
多層支持ポストを有する電気機械デバイスを開示する。多層支持ポストは、基板の上の機械層を支持してギャップを画定するために、多層のよくまたはフランジを含むことができる。機械層の立ち上げは、多層翼のいくつかの特徴、たとえば層の数、材料、厚さ、応力、および/または多層翼の層の形状を選択することによって制御され得る。多層翼のいくつかの設計上の選択を通して、機械層の立ち上げおよび曲率が制御され得、そのことが、そのようなデバイスを含むディスプレイのコントラスト比、色域(gamut)、および彩度の改善につながり得る。
本開示で説明する主題の特定の実装形態は、犠牲層を除去した後の機械層の曲率および/または形状を制御するために実装され得る。加えて、いくつかの実装形態は、機械層と基板との間の静摩擦を低減し、かつ/またはポストを犠牲開放化学作用(sacrificial release chemistry)から保護することができる。さらに、いくつかの実装形態によれば、ディスプレイの光学的特性が、たとえば、暗状態、コントラスト比、色域、および/または彩度の改善を含めて改善され得る。
説明する実装形態が適用され得る好適なMEMSデバイスの一例は反射型ディスプレイデバイスである。反射型ディスプレイデバイスは、光学干渉の原理を使用してそれに入射する光を選択的に吸収および/または反射するために干渉変調器(IMOD)を組み込むことができる。IMODは、吸収器、吸収器に対して可動である反射体、ならびに吸収器と反射体との間に画定された光共振キャビティを含むことができる。反射体は、2つ以上の異なる位置に移動され得、これは、光共振キャビティのサイズを変化させ、それにより干渉変調器の反射率に影響を及ぼすことがある。IMODの反射スペクトルは、かなり広いスペクトルバンドをもたらすことができ、そのスペクトルバンドは、異なる色を生成するために可視波長にわたってシフトされ得る。スペクトルバンドの位置は、光共振キャビティの厚さを変更することによって、すなわち、反射体の位置を変更することによって調整され得る。
図1は、干渉変調器(IMOD)ディスプレイデバイスの一連のピクセル中の2つの隣接ピクセルを示す等角図の一例を示している。IMODディスプレイデバイスは、1つまたは複数の干渉MEMSディスプレイ要素を含む。これらのデバイスでは、MEMSディスプレイ要素のピクセルが、明状態または暗状態のいずれかにあることがある。明(「緩和」、「開」または「オン」)状態では、ディスプレイ要素は、たとえば、ユーザに、入射可視光の大部分を反射する。逆に、暗(「作動」、「閉」または「オフ」)状態では、ディスプレイ要素は入射可視光をほとんど反射しない。いくつかの実装形態では、オン状態の光反射特性とオフ状態の光反射特性は逆にされ得る。MEMSピクセルは、黒および白に加えて、主に、カラーディスプレイを可能にする特定の波長において、反射するように構成され得る。
IMODディスプレイデバイスは、IMODの行/列アレイを含むことができる。各IMODは、(光ギャップまたはキャビティとも呼ばれる)エアギャップを形成するように互いから可変で制御可能な距離をおいて配置された反射層のペア、すなわち、可動反射層と固定部分反射層とを含むことができる。可動反射層は少なくとも2つの位置の間で移動され得る。第1の位置、すなわち、緩和位置では、可動反射層は、固定部分反射層から比較的大きい距離をおいて配置され得る。第2の位置、すなわち、作動位置では、可動反射層は、部分反射層により近接して配置され得る。それら2つの層から反射する入射光は、可動反射層の位置に応じて、強め合うようにまたは弱め合うように干渉し、各ピクセルについて全反射状態または無反射状態のいずれかを引き起こすことがある。いくつかの実装形態では、IMODは、作動していないときに反射状態にあり、可視スペクトル内の光を反射し得、また、作動していないときに暗状態にあり、可視範囲外の光(たとえば、赤外光)を反射し得る。ただし、いくつかの他の実装形態では、IMODは、作動していないときに暗状態にあり、作動しているときに反射状態にあり得る。いくつかの実装形態では、印加電圧の導入が、状態を変更するようにピクセルを駆動することができる。いくつかの他の実装形態では、印加電荷が、状態を変更するようにピクセルを駆動することができる。
図1中のピクセルアレイの図示の部分は、2つの隣接する干渉変調器12を含む。(図示のような)左側のIMOD12では、可動反射層14が、部分反射層を含む光学スタック16からの所定の距離における緩和位置に示されている。左側のIMOD12の両端間に印加された電圧V0は、可動反射層14の作動を引き起こすには不十分である。右側のIMOD12では、可動反射層14は、光学スタック16の近くの、またはそれに隣接する作動位置に示されている。右側のIMOD12の両端間に印加された電圧Vbiasは、可動反射層14を作動位置に維持するのに十分である。
図1では、ピクセル12の反射特性が、概して、ピクセル12に入射する光を示す矢印13と、左側のピクセル12から反射する光15とを用いて示されている。詳細に示していないが、ピクセル12に入射する光13の大部分は透明基板20を透過され、光学スタック16に向かうことになることを、当業者なら理解されよう。光学スタック16に入射する光の一部分は光学スタック16の部分反射層を透過されることになり、一部分は反射され、透明基板20を通って戻ることになる。光学スタック16を透過された光13の部分は、可動反射層14において反射され、透明基板20に向かって(およびそれを通って)戻ることになる。光学スタック16の部分反射層から反射された光と可動反射層14から反射された光との間の(強め合うまたは弱め合う)干渉が、ピクセル12から反射される光15の(1つまたは複数の)波長を決定することになる。
光学スタック16は、単一の層またはいくつかの層を含むことができる。その(1つまたは複数の)層は、電極層と、部分反射および部分透過層と、透明な誘電体層とのうちの1つまたは複数を含むことができる。いくつかの実装形態では、光学スタック16は、電気伝導性であり、部分的に透明で、部分的に反射性であり、たとえば、透明基板20上に上記の層のうちの1つまたは複数を堆積させることによって、作製され得る。電極層は、様々な金属、たとえば酸化インジウムスズ(ITO)など、様々な材料から形成され得る。部分反射層は、様々な金属、たとえば、クロム(Cr)、半導体、および誘電体など、部分的に反射性である様々な材料から形成され得る。部分反射層は、材料の1つまたは複数の層から形成され得、それらの層の各々は、単一の材料または材料の組合せから形成され得る。いくつかの実装形態では、光学スタック16は、光吸収体と導体の両方として働く、金属または半導体の単一の半透明の膜(thickness)を含むことができるが、(たとえば、光学スタック16の、またはIMODの他の構造の)異なる、より伝導性の高い層または部分が、IMODピクセル間で信号をバスで運ぶ(bus)ように働くことができる。光学スタック16は、1つまたは複数の伝導性層または伝導性/吸収層をカバーする、1つまたは複数の絶縁層または誘電体層をも含むことができる。
いくつかの実装形態では、光学スタック16の(1つまたは複数の)層は、以下でさらに説明するように、平行ストリップにパターニングされ得、ディスプレイデバイスにおける行電極を形成し得る。当業者によって理解されるように、「パターニング」という用語は、本明細書では、マスキングプロセスならびにエッチングプロセスを指すために使用される。いくつかの実装形態では、アルミニウム(Al)などの高伝導性および反射性材料が可動反射層14のために使用され得、これらのストリップはディスプレイデバイスにおける列電極を形成し得る。可動反射層14は、(光学スタック16の行電極に直交する)1つまたは複数の堆積された金属層の一連の平行ストリップとして形成されて、ポスト18の上に堆積された列とポスト18間に堆積された介在する犠牲材料とを形成し得る。犠牲材料がエッチング除去されると、画定されたギャップ19または光キャビティが可動反射層14と光学スタック16との間に形成され得る。いくつかの実装形態では、ポスト18間の間隔は1〜1000μm程度であり得、一方、ギャップ19は約1〜1000μmであり得、一方、ギャップ19は1000〜10,000オングストローム(Å)程度であり得る。
いくつかの実装形態では、IMODの各ピクセルは、作動状態にあろうと緩和状態にあろうと、本質的に、固定反射層および可動反射層によって形成されるキャパシタである。電圧が印加されないとき、可動反射層14は、図1中の左側のピクセル12によって示されるように、機械的に緩和した状態にとどまり、可動反射層14と光学スタック16との間のギャップ19がある。しかしながら、電位差、たとえば、電圧が、選択された行および列のうちの少なくとも1つに印加されたとき、対応するピクセルにおける行電極と列電極との交差部に形成されたキャパシタは帯電し、静電力がそれらの電極を引き合わせる。印加された電圧がしきい値を超える場合、可動反射層14は、変形し、光学スタック16の近くにまたはそれに対して移動することができる。光学スタック16内の誘電体層(図示せず)が、図1中の右側の作動ピクセル12によって示されるように、短絡を防ぎ、層14と層16との間の分離距離を制御し得る。その挙動は、印加電位差の極性にかかわらず同じである。いくつかの事例ではアレイ中の一連のピクセルが「行」または「列」と呼ばれることがあるが、ある方向を「行」と呼び、別の方向を「列」と呼ぶことは恣意的であることを、当業者は容易に理解されよう。言い換えれば、いくつかの配向では、行は列と見なされ得、列は行であると見なされ得る。さらに、ディスプレイ要素は、直交する行および列に一様に配置されるか(「アレイ」)、または、たとえば、互いに対して一定の位置オフセットを有する、非線形構成で配置され得る(「モザイク」)。「アレイ」および「モザイク」という用語は、いずれかの構成を指し得る。したがって、ディスプレイは、「アレイ」または「モザイク」を含むものとして言及されるが、その要素自体は、いかなる事例においても、互いに直交して配置される必要がなく、または一様な分布で配設される必要がなく、非対称形状および不均等に分布された要素を有する配置を含み得る。
図2は、3×3干渉変調器ディスプレイを組み込んだ電子デバイスを示すシステムブロック図の一例を示している。電子デバイスは、1つまたは複数のソフトウェアモジュールを実行するように構成され得るプロセッサ21を含む。オペレーティングシステムを実行することに加えて、プロセッサ21は、ウェブブラウザ、電話アプリケーション、電子メールプログラム、または他のソフトウェアアプリケーションを含む、1つまたは複数のソフトウェアアプリケーションを実行するように構成され得る。
プロセッサ21は、アレイドライバ22と通信するように構成され得る。アレイドライバ22は、たとえば、ディスプレイアレイまたはパネル30に、信号を与える行ドライバ回路24と列ドライバ回路26とを含むことができる。図2には、図1に示したIMODディスプレイデバイスの断面が線1−1によって示されている。図2は明快のためにIMODの3×3アレイを示しているが、ディスプレイアレイ30は、極めて多数のIMODを含んでいることがあり、列におけるIMODの数とは異なる数のIMODを行において有し得、その逆も同様である。
図3は、図1の干渉変調器についての可動反射層位置対印加電圧を示す図の一例を示している。MEMS干渉変調器の場合、行/列(すなわち、コモン/セグメント)書込みプロシージャが、図3に示すこれらのデバイスのヒステリシス特性を利用し得る。干渉変調器は、可動反射層またはミラーに緩和状態から作動状態に変更させるために、たとえば、約10ボルトの電位差を必要とし得る。電圧がその値から低減されると、電圧が低下して、たとえば、10ボルトより下に戻ったとき、可動反射層はそれの状態を維持するが、電圧が2ボルトより下に低下するまで、可動反射層は完全には緩和しない。したがって、図3に示すように、印加電圧のウィンドウがある電圧の範囲、約3〜7ボルトが存在し、そのウィンドウ内でデバイスは緩和状態または作動状態のいずれかで安定している。これは、本明細書では「ヒステリシスウィンドウ」または「安定性ウィンドウ」と呼ばれる。図3のヒステリシス特性を有するディスプレイアレイ30の場合、行/列書込みプロシージャは、一度に1つまたは複数の行をアドレス指定するように設計され得、その結果、所与の行のアドレス指定中に、作動されるべきアドレス指定された行におけるピクセルは、約10ボルトの電圧差にさらされ、緩和されるべきピクセルは、ほぼ0ボルトの電圧差にさらされる。アドレス指定後に、それらのピクセルは、それらが前のストローブ状態にとどまるような、約5ボルトの定常状態またはバイアス電圧差にさらされる。この例では、アドレス指定された後に、各ピクセルは、約3〜7ボルトの「安定性ウィンドウ」内の電位差を経験する。このヒステリシス特性の特徴は、たとえば、図1に示した、ピクセル設計が、同じ印加電圧条件下で作動または緩和のいずれかの既存の状態で安定したままであることを可能にする。各IMODピクセルは、作動状態にあろうと緩和状態にあろうと、本質的に、固定反射層および可動反射層によって形成されるキャパシタであるので、この安定状態は、電力を実質的に消費するかまたは失うことなしに、ヒステリシスウィンドウ内の定常電圧において保持され得る。その上、印加電圧電位が実質的に固定のままである場合、電流は本質的にほとんどまたはまったくIMODピクセルに流れ込まない。
いくつかの実装形態では、所与の行におけるピクセルの状態の所望の変化(もしあれば)に従って、列電極のセットに沿って「セグメント」電圧の形態のデータ信号を印加することによって、画像のフレームが作成され得る。次に、フレームが一度に1行書き込まれるように、アレイの各行がアドレス指定され得る。第1の行におけるピクセルに所望のデータを書き込むために、第1の行におけるピクセルの所望の状態に対応するセグメント電圧が列電極上に印加され得、特定の「コモン」電圧または信号の形態の第1の行パルスが第1の行電極に印加され得る。次いで、セグメント電圧のセットは、第2の行におけるピクセルの状態の所望の変化(もしあれば)に対応するように変更され得、第2のコモン電圧が第2の行電極に印加され得る。いくつかの実装形態では、第1の行におけるピクセルは、列電極に沿って印加されたセグメント電圧の変化による影響を受けず、第1のコモン電圧行パルス中にそれらのピクセルが設定された状態にとどまる。このプロセスは、画像フレームを生成するために、一連の行全体、または代替的に、一連の列全体について、連続方式で繰り返され得る。フレームは、何らかの所望の数のフレーム毎秒でこのプロセスを断続的に反復することによって、新しい画像データでリフレッシュおよび/または更新され得る。
各ピクセルの両端間に印加されるセグメント信号とコモン信号の組合せ(すなわち、各ピクセルの両端間の電位差)は、各ピクセルの得られる状態を決定する。図4は、様々なコモン電圧およびセグメント電圧が印加されたときの干渉変調器の様々な状態を示す表の一例を示している。当業者によって容易に理解されるように、「セグメント」電圧は、列電極または行電極のいずれかに印加され得、「コモン」電圧は、列電極または行電極のうちの他方に印加され得る。
図4に(ならびに図5Bに示すタイミング図に)示すように、開放電圧(release voltage)VCRELがコモンラインに沿って印加されたとき、コモンラインに沿ったすべての干渉変調器要素は、セグメントラインに沿って印加された電圧、すなわち、高いセグメント電圧VSおよび低いセグメント電圧VSにかかわらず、代替的に開放または非作動状態と呼ばれる、緩和状態に入れられることになる。特に、開放電圧VCRELがコモンラインに沿って印加されると、そのピクセルのための対応するセグメントラインに沿って高いセグメント電圧VSが印加されたときも、低いセグメント電圧VSが印加されたときも、変調器の両端間の潜在的な電圧(代替的にピクセル電圧と呼ばれる)は緩和ウィンドウ(図3参照。開放ウィンドウとも呼ばれる)内にある。
高い保持電圧VCHOLD または低い保持電圧VCHOLD などの保持電圧がコモンライン上に印加されたとき、干渉変調器の状態は一定のままであることになる。たとえば、緩和IMODは緩和位置にとどまることになり、作動IMODは作動位置にとどまることになる。保持電圧は、対応するセグメントラインに沿って高いセグメント電圧VSが印加されたときも、低いセグメント電圧VSが印加されたときも、ピクセル電圧が安定性ウィンドウ内にとどまることになるように、選択され得る。したがって、セグメント電圧スイング(voltage swing)、すなわち、高いVSと低いセグメント電圧VSとの間の差は、正または負のいずれかの安定性ウィンドウの幅よりも小さい。
高いアドレス指定電圧VCADD または低いアドレス指定電圧VCADD などのアドレス指定または作動電圧がコモンライン上に印加されたとき、それぞれのセグメントラインに沿ったセグメント電圧の印加によって、データがそのコモンラインに沿った変調器に選択的に書き込まれ得る。セグメント電圧は、作動が印加されたセグメント電圧に依存するように選択され得る。アドレス指定電圧がコモンラインに沿って印加されたとき、一方のセグメント電圧の印加は、安定性ウィンドウ内のピクセル電圧をもたらし、ピクセルが非作動のままであることを引き起こすことになる。対照的に、他方のセグメント電圧の印加は、安定性ウィンドウを越えるピクセル電圧をもたらし、ピクセルの作動をもたらすことになる。作動を引き起こす特定のセグメント電圧は、どのアドレス指定電圧が使用されるかに応じて変動することができる。いくつかの実装形態では、高いアドレス指定電圧VCADD がコモンラインに沿って印加されたとき、高いセグメント電圧VSの印加は、変調器がそれの現在位置にとどまることを引き起こすことがあり、低いセグメント電圧VSの印加は、変調器の作動を引き起こすことがある。当然の結果として、低いアドレス指定電圧VCADD が印加されたとき、セグメント電圧の影響は反対であり、高いセグメント電圧VSは変調器の作動を引き起こし、低いセグメント電圧VSは変調器の状態に影響しない(すなわち、安定したままである)ことがある。
いくつかの実装形態では、常に変調器の両端間で同じ極性電位差を引き起こす保持電圧、アドレス電圧、およびセグメント電圧が使用され得る。いくつかの他の実装形態では、変調器の電位差の極性を交番する信号が使用され得る。変調器の両端間の極性の交番(すなわち、書込みプロシージャの極性の交番)は、単一の極性の反復書込み動作後に起こることがある電荷蓄積を低減または抑止し得る。
図5Aは、図2の3×3干渉変調器ディスプレイにおけるディスプレイデータのフレームを示す図の一例を示している。図5Bは、図5Aに示すディスプレイデータのフレームを書き込むために使用され得るコモン信号およびセグメント信号についてのタイミング図の一例を示している。それらの信号は、たとえば、図2の3×3アレイに印加され得、これは、図5Aに示すライン時間60eディスプレイ配置を最終的にもたらすことになる。図5A中の作動変調器は暗状態にあり、すなわち、その状態では、反射光の実質的部分が、たとえば、閲覧者に、暗いアピアランスをもたらすように可視スペクトルの外にある。図5Aに示すフレームを書き込むより前に、ピクセルは任意の状態にあることがあるが、図5Bのタイミング図に示す書込みプロシージャは、各変調器が、第1のライン時間60aの前に、開放されており、非作動状態に属すると仮定する。
第1のライン時間60a中に、開放電圧70がコモンライン1上に印加され、コモンライン2上に印加される電圧が、高い保持電圧72において始まり、開放電圧70に移動し、低い保持電圧76がコモンライン3に沿って印加される。したがって、コモンライン1に沿った変調器(コモン1、セグメント1)、(1、2)および(1、3)は、第1のライン時間60aの持続時間の間、緩和または非作動状態にとどまり、コモンライン2に沿った変調器(2、1)、(2、2)および(2、3)は、緩和状態に移動することになり、コモンライン3に沿った変調器(3、1)、(3、2)および(3、3)は、それらの前の状態にとどまることになる。図4を参照すると、コモンライン1、2または3のいずれも、ライン時間60a中に作動を引き起こす電圧レベルにさらされていないので(すなわち、VCREL−緩和、およびVCHOLD −安定)、セグメントライン1、2および3に沿って印加されたセグメント電圧は、干渉変調器の状態に影響しないことになる。
第2のライン時間60b中に、コモンライン1上の電圧は高い保持電圧72に移動し、コモンライン1に沿ったすべての変調器は、アドレス指定または作動電圧がコモンライン1上に印加されなかったので、印加されたセグメント電圧にかかわらず、緩和状態にとどまる。コモンライン2に沿った変調器は、開放電圧70の印加により、緩和状態にとどまり、コモンライン3に沿った変調器(3、1)、(3、2)および(3、3)は、コモンライン3に沿った電圧が開放電圧70に移動するとき、緩和することになる。
第3のライン時間60c中に、コモンライン1は、コモンライン1上に高いアドレス電圧74を印加することによってアドレス指定される。このアドレス電圧の印加中に低いセグメント電圧64がセグメントライン1および2に沿って印加されるので、変調器(1、1)および(1、2)の両端間のピクセル電圧は変調器の正の安定性ウィンドウの上端よりも大きく(すなわち、電圧差は、あらかじめ定義されたしきい値を超えた)、変調器(1、1)および(1、2)は作動される。逆に、高いセグメント電圧62がセグメントライン3に沿って印加されるので、変調器(1、3)の両端間のピクセル電圧は、変調器(1、1)および(1、2)のピクセル電圧よりも小さく、変調器の正の安定性ウィンドウ内にとどまり、したがって変調器(1、3)は緩和したままである。また、ライン時間60c中に、コモンライン2に沿った電圧は低い保持電圧76に減少し、コモンライン3に沿った電圧は開放電圧70にとどまり、コモンライン2および3に沿った変調器を緩和位置のままにする。
第4のライン時間60d中に、コモンライン1上の電圧は、高い保持電圧72に戻り、コモンライン1に沿った変調器を、それらのそれぞれのアドレス指定された状態のままにする。コモンライン2上の電圧は低いアドレス電圧78に減少される。高いセグメント電圧62がセグメントライン2に沿って印加されるので、変調器(2、2)の両端間のピクセル電圧は、変調器の負の安定性ウィンドウの下端を下回り、変調器(2、2)が作動することを引き起こす。逆に、低いセグメント電圧64がセグメントライン1および3に沿って印加されるので、変調器(2、1)および(2、3)は緩和位置にとどまる。コモンライン3上の電圧は、高い保持電圧72に増加し、コモンライン3に沿った変調器を緩和状態のままにする。
最後に、第5のライン時間60e中に、コモンライン1上の電圧は高い保持電圧72にとどまり、コモンライン2上の電圧は低い保持電圧76にとどまり、コモンライン1および2に沿った変調器を、それらのそれぞれのアドレス指定された状態のままにする。コモンライン3上の電圧は、コモンライン3に沿った変調器をアドレス指定するために、高いアドレス電圧74に増加する。低いセグメント電圧64がセグメントライン2および3上に印加されるので、変調器(3、2)および(3、3)は作動するが、セグメントライン1に沿って印加された高いセグメント電圧62は、変調器(3、1)が緩和位置にとどまることを引き起こす。したがって、第5のライン時間60eの終わりに、3×3ピクセルアレイは、図5Aに示す状態にあり、他のコモンライン(図示せず)に沿った変調器がアドレス指定されているときに起こり得るセグメント電圧の変動にかかわらず、保持電圧がコモンラインに沿って印加される限り、その状態にとどまることになる。
図5Bのタイミング図では、所与の書込みプロシージャ(すなわち、ライン時間60a〜60e)は、高い保持およびアドレス電圧、または低い保持およびアドレス電圧のいずれかの使用を含むことができる。書込みプロシージャが所与のコモンラインについて完了されると(また、コモン電圧が、作動電圧と同じ極性を有する保持電圧に設定されると)、ピクセル電圧は、所与の安定性ウィンドウ内にとどまり、開放電圧がそのコモンライン上に印加されるまで、緩和ウィンドウを通過しない。さらに、各変調器が、変調器をアドレス指定するより前に書込みプロシージャの一部として開放されるので、開放時間ではなく変調器の作動時間が、必要なライン時間を決定し得る。詳細には、変調器の開放時間が作動時間よりも大きい実装形態では、開放電圧は、図5Bに示すように、単一のライン時間よりも長く印加され得る。いくつかの他の実装形態では、コモンラインまたはセグメントラインに沿って印加される電圧が、異なる色の変調器など、異なる変調器の作動電圧および開放電圧の変動を相殺するように変動し得る。
上記に記載した原理に従って動作する干渉変調器の構造の詳細は大きく異なり得る。たとえば、図6A〜図6Eは、可動反射層14とそれの支持構造とを含む、干渉変調器の異なる実装形態の断面図の例を示している。図6Aは、金属材料のストリップ、すなわち、可動反射層14が、基板20から直角に延在する支持体18上に堆積される、図1の干渉変調器ディスプレイの部分断面図の一例を示している。図6Bでは、各IMODの可動反射層14は、概して形状が正方形または長方形であり、コーナーにおいてまたはその近くでテザー32に接して支持体に取り付けられる。図6Cでは、可動反射層14は、概して形状が正方形または長方形であり、フレキシブルな金属を含み得る変形可能層34から吊るされる。変形可能層34は、可動反射層14の外周の周りで基板20に直接または間接的に接続することがある。これらの接続は、本明細書では支持ポストと呼ばれる。図6Cに示す実装形態は、変形可能層34によって行われる可動反射層14の機械的機能からのそれの光学的機能の分離から派生する追加の利益を有する。この分離は、反射層14のために使用される構造設計および材料と、変形可能層34のために使用される構造設計および材料とが、互いとは無関係に最適化されることを可能にする。
図6Dは、可動反射層14が反射副層14aを含む、IMODの別の例を示している。可動反射層14は、支持ポスト18などの支持構造上に載る。支持ポスト18は、たとえば、可動反射層14が緩和位置にあるとき、可動反射層14と光学スタック16との間にギャップ19が形成されるように、下側静止電極(すなわち、図示のIMODにおける光学スタック16の一部)からの可動反射層14の分離を可能にする。可動反射層14は、電極として働くように構成され得る伝導性層14cと、支持層14bとをも含むことができる。この例では、伝導性層14cは、基板20から遠位にある支持層14bの一方の面に配設され、反射副層14aは、基板20の近位にある支持層14bの他方の面に配設される。いくつかの実装形態では、反射副層14aは、伝導性であることがあり、支持層14bと光学スタック16との間に配設され得る。支持層14bは、誘電材料、たとえば、酸窒化ケイ素(SiON)または二酸化ケイ素(SiO)の、1つまたは複数の層を含むことができる。いくつかの実装形態では、支持層14bは、たとえば、SiO/SiON/SiO3層スタックなど、複数の層のスタックであり得る。反射副層14aと伝導性層14cのいずれかまたは両方は、たとえば、約0.5%の銅(Cu)または別の反射金属材料を用いた、アルミニウム(Al)合金を含むことができる。誘電支持層14bの上および下で伝導性層14a、14cを採用することは、応力のバランスをとり、伝導の向上を与えることができる。いくつかの実装形態では、反射副層14aおよび伝導性層14cは、可動反射層14内の特定の応力プロファイルを達成することなど、様々な設計目的で、異なる材料から形成され得る。
図6Dに示すように、いくつかの実装形態はブラックマスク(black mask)構造23をも含むことができる。ブラックマスク構造23は、周辺光または迷光を吸収するために、光学不活性領域において(たとえば、ピクセル間にまたはポスト18の下に)形成され得る。黒いマスク構造23はまた、光がディスプレイの不活性部分から反射されることまたはそれを透過されることを抑止し、それによりコントラスト比を増加させることによって、ディスプレイデバイスの光学的特性を改善することができる。さらに、ブラックマスク構造23は、伝導性であり、電気的バス層として機能するように構成され得る。いくつかの実装形態では、行電極は、接続された行電極の抵抗を低減するために、ブラックマスク構造23に接続され得る。ブラックマスク構造23は、堆積およびパターニング技法を含む様々な方法を使用して形成され得る。ブラックマスク構造23は1つまたは複数の層を含むことができる。たとえば、いくつかの実装形態では、黒いマスク構造23は、光吸収器として働くモリブデンクロム(MoCr)層と、二酸化ケイ素(SiO)層と、反射体およびバス層として働く、アルミニウム合金とを含み、それぞれ、約30〜80Å、500〜1000Å、および500〜6000Åの範囲内の厚さである。1つまたは複数の層は、たとえば、MoCr層およびSiO層の場合は、四フッ化物(CF)および/または酸素(O)、ならびにアルミニウム合金層の場合は、塩素(Cl)および/または三塩化ホウ素(BCL)を含む、フォトリソグラフィおよびドライエッチングを含む、様々な技法を使用してパターニングされ得る。いくつかの実装形態では、ブラックマスク23はエタロン(etalon)または干渉スタック(interferometric stack)構造であり得る。そのような干渉スタックブラックマスク構造23では、伝導性吸収体は、各行または列の光学スタック16における下側静止電極間で信号を送信するかまたは信号をバスで運ぶために使用され得る。いくつかの実装形態では、スペーサ層35が、ブラックマスク23中の伝導性層から吸収層16aを概して電気的に絶縁するのに、役立つことができる。
図6Eは、可動反射層14が自立している、IMODの別の例を示している。図6Dとは対照的に、図6Eの実装形態は支持ポスト18を含まない。代わりに、可動反射層14は、複数のロケーションにおいて、下にある光学スタック16に接触し、可動反射層14の湾曲は、干渉変調器の両端間の電圧が作動を引き起こすには不十分であるとき、可動反射層14が図6Eの非作動位置に戻るという、十分な支持を与える。複数のいくつかの異なる層を含んでいることがある光学スタック16は、ここでは明快のために、光吸収体16aと誘電体16bとを含む状態で示されている。いくつかの実装形態では、光吸収体16aは、固定電極としても、部分反射層としても働き得る。
図6A〜図6Eに示す実装形態などの実装形態では、IMODは直視型デバイスとして機能し、直視型デバイスでは、画像が、透明基板20の正面、すなわち、変調器が配置された面の反対の面から、閲覧される。これらの実装形態では、デバイスの背面部分(すなわち、たとえば、図6Cに示す変形可能層34を含む、可動反射層14の背後のディスプレイデバイスの任意の部分)は、反射層14がデバイスのそれらの部分を光学的に遮蔽するので、ディスプレイデバイスの画質に影響を及ぼすことまたは悪影響を及ぼすことなしに、構成され、作用され得る。たとえば、いくつかの実装形態では、バス構造(図示せず)が可動反射層14の背後に含まれ得、これは、電圧アドレス指定およびそのようなアドレス指定に起因する移動など、変調器の電気機械的特性から変調器の光学的特性を分離する能力を与える。さらに、図6A〜図6Eの実装形態は、たとえば、パターニングなどの処理を簡略化することができる。
図7は、干渉変調器のための製造プロセス80を示すフロー図の一例を示しており、図8A〜図8Eは、そのような製造プロセス80の対応する段階の断面概略図の例を示している。いくつかの実装形態では、製造プロセス80は、図7に示されていない他のブロックに加えて、たとえば、図1および図6に示す一般的なタイプの干渉変調器を製造するために実装され得る。図1、図6および図7を参照すると、プロセス80はブロック82において開始し、基板20上への光学スタック16の形成を伴う。図8Aは、基板20上で形成されたそのような光学スタック16を示している。基板20は、ガラスまたはプラスチックなどの透明基板であり得、それは、フレキシブルであるかまたは比較的固く曲がらないことがあり、光学スタック16の効率的な形成を可能にするために、事前準備プロセス、たとえば、洗浄にかけられていることがある。上記で説明したように、光学スタック16は、電気伝導性であり、部分的に透明で、部分的に反射性であることがあり、たとえば、透明基板20上に、所望の特性を有する1つまたは複数の層を堆積させることによって、作製され得る。図8Aに示す実装形態では、光学スタック16は、副層16aおよび16bを有する多層構造を含むが、いくつかの他の実装形態では、より多いまたはより少ない副層が含まれ得る。いくつかの実装形態では、副層16a、16bのうちの1つは、組み合わせられた導体/吸収体副層16aなど、光吸収特性と伝導特性の両方で構成され得る。さらに、副層16a、16bのうちの1つまたは複数は、平行ストリップにパターニングされ得、ディスプレイデバイスにおける行電極を形成し得る。そのようなパターニングは、当技術分野で知られているマスキングおよびエッチングプロセスまたは別の好適なプロセスによって実行され得る。いくつかの実装形態では、副層16a、16bのうちの1つは、1つまたは複数の金属層(たとえば、1つまたは複数の反射層および/または伝導性層)上に堆積された副層16bなど、絶縁層または誘電体層であり得る。さらに、光学スタック16は、ディスプレイの行を形成する個々の平行ストリップにパターニングされ得る。
プロセス80はブロック84において続き、光学スタック16上への犠牲層25の形成を伴う。犠牲層25は、キャビティ19を形成するために後で(たとえば、ブロック90において)除去され、したがって、犠牲層25は、図1に示した得られた干渉変調器12には示されていない。図8Bは、光学スタック16上で形成された犠牲層25を含む、部分的に作製されたデバイスを示している。光学スタック16上での犠牲層25の形成は、後続の除去後に、所望の設計サイズを有するギャップまたはキャビティ19(図1および図8Eも参照)を与えるように選択された厚さの、モリブデン(Mo)またはアモルファスシリコン(Si)など、フッ化キセノン(XeF)エッチング可能材料の堆積を含み得る。犠牲材料の堆積は、物理蒸着(PVD、たとえば、スパッタリング)、プラズマ強化化学蒸着(PECVD)、熱化学蒸着(熱CVD)、またはスピンコーティングなど、堆積技法を使用して行われ得る。
プロセス80はブロック86において続き、支持構造、たとえば、図1、図6および図8Cに示すポスト18の形成を伴う。ポスト18の形成は、支持構造開口を形成するために犠牲層25をパターニングすることと、次いで、PVD、PECVD、熱CVD、またはスピンコーティングなど、堆積方法を使用して、ポスト18を形成するために開口中に材料(たとえば、ポリマーまたは無機材料、たとえば、酸化ケイ素)を堆積させることとを含み得る。いくつかの実装形態では、犠牲層中に形成された支持構造開口は、ポスト18の下側端部が図6Aに示すように基板20に接触するように、犠牲層25と光学スタック16の両方を通って、下にある基板20まで延在することがある。代替的に、図8Cに示すように、犠牲層25中に形成された開口は、犠牲層25は通るが、光学スタック16は通らないで、延在することがある。たとえば、図8Eは、光学スタック16の上側表面(upper surface)と接触している支持ポスト18の下側端部を示している。ポスト18、または他の支持構造は、犠牲層25上に支持構造材料の層を堆積させることと、犠牲層25中の開口から離れて配置された支持構造材料の部分をパターニングすることとによって形成され得る。支持構造は、図8Cに示すように開口内に配置され得るが、少なくとも部分的に、犠牲層25の一部分の上で延在することもある。上述のように、犠牲層25および/または支持ポスト18のパターニングは、パターニングおよびエッチングプロセスによって実行され得るが、代替エッチング方法によっても実行され得る。
プロセス80はブロック88において続き、図1、図6および図8Dに示す可動反射層14などの可動反射層または膜の形成を伴う。可動反射層14は、1つまたは複数のパターニング、マスキング、および/またはエッチングステップとともに、1つまたは複数の堆積ステップ、たとえば、反射層(たとえば、アルミニウム、アルミニウム合金)堆積を採用することによって、形成され得る。可動反射層14は、電気伝導性であり、電気伝導性層(electrically conductive layer)と呼ばれることがある。いくつかの実装形態では、可動反射層14は、図8Dに示すように複数の副層14a、14b、14cを含み得る。いくつかの実装形態では、副層14a、14cなど、副層のうちの1つまたは複数は、それらの光学的特性のために選択された高反射性副層を含み得、別の副層14bは、それの機械的特性のために選択された機械的副層を含み得る。犠牲層25は、ブロック88において形成された部分的に作製された干渉変調器中に依然として存在するので、可動反射層14は、一般にこの段階では可動でない。犠牲層25を含んでいる部分的に作製されたIMODは、本明細書では「非開放(unreleased)」IMODと呼ばれることもある。図1に関して上記で説明したように、可動反射層14は、ディスプレイの列を形成する個々の平行ストリップにパターニングされ得る。
プロセス80はブロック90において続き、キャビティ、たとえば、図1、図6および図8Eに示すキャビティ19の形成を伴う。キャビティ19は、(ブロック84において堆積された)犠牲材料25をエッチャントにさらすことによって形成され得る。たとえば、モリブデン(Mo)またはアモルファスシリコン(Si)などのエッチング可能犠牲材料が、ドライ化学エッチングによって、たとえば、一般に、キャビティ19を囲む構造に対して選択的に除去される、所望の量の材料を除去するのに有効である時間期間の間、固体二フッ化キセノン(XeF)から派生した蒸気などの気体または蒸気エッチャントに犠牲層25をさらすことによって、除去され得る。他のエッチング方法、たとえば、ウェットエッチングおよび/またはプラズマエッチングも使用され得る。犠牲層25がブロック90中に除去されるので、可動反射層14は、一般に、この段階後に可動となる。犠牲材料25の除去後に、得られた完全にまたは部分的に作製されたIMODは、本明細書では「開放」IMODと呼ばれることがある。
緩和位置において、可動反射層14または機械層の曲率を制御することが望ましい。たとえば、緩和状態にある干渉デバイスは、デバイスの光学的特性を改善するために、バイアスを受けているときに実質的に平坦であることが望ましい。加えて、機械層が開放されているときに機械層の立ち上げ高さを制御することが、同様に望ましい。機械層を平坦化するのを助けるために、バイアス電圧が機械層と光学スタックとの間に印加され得るが、バイアスが加えられた後でも、機械層は、およそ犠牲層の厚さと立ち上げ高さとの和に等しい間隔だけ、基板から離れて変位したままであり得る。干渉変調器(IMOD)の実装形態では、ギャップ高さは特定の反射色に対応し得る。したがって、特定のギャップサイズに必要な犠牲層厚さが作製および光学性能の立場を満たすように開放時の立ち上げ高さを制御することが、同様に望ましい。
図9は、干渉変調器のための製造プロセス100を示すフロー図の一例を示す。
プロセス100は、102において開始する。ブロック104で、光学スタックなどの静止電極が、基板の上に形成される。基板は、たとえば、ガラスまたはプラスチックを含む透明基板であってよい。プロセス100は、ブロック102において開始するように示されているが、基板は、たとえば、光学スタックの効率的な形成を容易にするための洗浄ステップなど、1つまたは複数の事前準備ステップを受けてもよい。加えて、いくつかの実装形態では、光学スタックを基板の上に形成する前に、1つまたは複数の層が設けられる。たとえば、ブラックマスクが、光学スタックを形成する前に設けられてよい。
上記で説明したように、干渉変調器の光学スタックは、電気伝導性で、部分的に透明でかつ部分的に反射性であり得、たとえば、透明基板上に1つまたは複数の層を堆積させることによって作製され得る。いくつかの実装形態では、層は、平行ストリップにパターニングされ、ディスプレイデバイス内に行電極を形成することができる。本明細書で使用するように、また当業者によって理解されるように、「パターニング」という用語は、本明細書では、マスキングプロセスならびにエッチングプロセスを指すために使用される。いくつかの実装形態では、光学スタックは、導電層を覆う絶縁層または誘電体層を含む。
図9に示すプロセス100は、犠牲層が光学スタックの上に形成されるブロック106において継続する。以下で論じるように、犠牲層は後で除去されてギャップを形成する。光学スタックの上の犠牲層の形成は、後続の除去後に、所望のサイズを有するギャップを与えるように選択された厚さの中に、モリブデン(Mo)またはアモルファスシリコン(Si)など、フッソ系エッチング可能(fluorine-etchable)材料の堆積を含み得る。複数の犠牲層が、複数のギャップサイズを達成するように堆積され得る。たとえば、IMODアレイに対して、各ギャップサイズは、異なる反射色を表すことができる。
図9に示すプロセス100は、多層支持ポストの形成に関するブロック108において継続する。各支持ポストは、犠牲層の一部の上に延在する翼部を含み得る。多層支持ポストの形成は、支持構造開口を形成するために犠牲層をパターニングするステップと、次いで、PECVD、熱CVD、またはスピンコーティングなどの堆積方法を使用して、開口内に材料(たとえば、酸化ケイ素)を堆積させるステップとを含み得る。いくつかの実装形態では、犠牲層内に形成された支持構造開口は、犠牲層と光学スタックの両方を通って下にある基板またはブラックマスクまで延在し、それにより支持ポストの下端が基板またはブラックマスクと接触する。いくつかの他の実装形態では、犠牲層内に形成された開口は、犠牲層は通るが、光学スタックは通らないで延在する。
以下で詳細に説明するように、多層ポスト構造は、機械層が緩和位置にあるときに、機械層の立ち上げと曲率とを制御することができる。
図9に示すプロセス100は、図6Dに示す機械層14などの機械層の形成に関するブロック110において継続する。機械層は、ブロック108で形成された多層支持ポストの翼部と接触することができる。機械層は、1つまたは複数のパターニング、マスキング、および/またはエッチングステップとともに、1つまたは複数の堆積ステップ、たとえば反射層(たとえば、アルミニウム、アルミニウム合金)堆積を使用することによって、形成され得る。犠牲層は、ブロック110において形成された部分的に作製された干渉変調器内に依然として存在するので、機械層は一般にこの段階では可動でない。犠牲層を含む部分的に作製された干渉変調器は、本明細書では「非開放(unreleased)」干渉変調器と呼ばれることもある。
図9に示すプロセス100は、キャビティまたはギャップの形成に関するブロック112において継続する。ギャップは、ブロック106において堆積された犠牲材料などの犠牲材料をエッチャントにさらすことによって形成され得る。たとえば、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、または多結晶もしくはアモルファスのシリコン(Si)などのエッチング可能な犠牲材料は、ドライ化学エッチングによって、たとえば、固体二フッ化キセノン(XeF2)から派生した蒸気など、フッ素ベースの気体エッチャントまたは蒸気エッチャントに犠牲層をさらすことによって、除去され得る。犠牲層は、一般に、ギャップを取り囲む構造に対して選択的に、材料を除去するのに効果的な時間期間の間、さらされてよいことは、当業者には認識されよう。他の選択的エッチング方法、たとえば、ウェットエッチングおよび/またはプラズマエッチングも使用され得る。犠牲層はプロセス100のブロック112の間に除去されるので、機械層はこの段階で開放され、機械的応力による立ち上げ高さだけ基板から離れて変位することができるようになる。加えて、機械層は、この時点で形状または曲率を変えることができる。得られた完全にまたは部分的に作製された干渉変調器は、本明細では、「開放された」または「立ち上げられた」干渉変調器と呼ばれ得る。
上述のように、各多層ポスト構造は、基板の上の機械層を支持してギャップを画定するための多層翼を含み得る。機械層の立ち上げは、たとえば、多層翼の層の材料、厚さ、応力、および/または形状を選択して所望の立ち上げを達成することによって制御され得る。犠牲層を除去する前に、犠牲層は、多層翼内の残留応力および/または機械層の1つまたは複数の副層内の残留応力など、残留応力の影響下で翼がたわむのを防ぎ得る反力(counterforce)を与えることができる。しかしながら、犠牲層を開放すると、翼および機械層の応力が引き起こす力によって、翼は、基板に対してたわむようになり、それにより機械層の立ち上げと曲率とが影響を受ける。たとえば、多層翼の最上層および最下層の各々が、中間層の応力と比較してより高い圧縮応力を有する場合、最上層の厚さを最下層の厚さより小さくなるように選択することで、多層翼は上方にたわまされ得、それにより機械層の立ち上げと曲率とが増大する。反対に、多層翼の最上層および最下層の各々が、中間層の応力と比較してより高い圧縮応力を有する場合、最上層の厚さを最下層の厚さより大きくなるように選択することで、多層翼は下方にたわまされ得、それにより機械層の立ち上げと曲率とが減少する。応力特性など、多層翼の他の特性もまた、機械層の立ち上げと曲率とを調整するために選択され得る。たとえば、最上層の圧縮応力が最下層の圧縮応力より低い場合、多層翼は上方にたわみ得、それにより機械層の立ち上げと曲率とが増大する。同様に、最上層の圧縮応力が最下層の圧縮応力より高い場合、多層翼は下方にたわみ得、それにより機械層の立ち上げと曲率とが減少する。
いくつかの実装形態では、多層ポストは、第1の層と、第2の層と、第3の層とを有し、第2の層は第1の層と第3の層との間に配設され、それらは実質的に同じ組成物を含む。第1および第3の層が実質的に同じ材料である対称構造を生成することによって、第1および第3の層は、等しい厚さでありそれ以外は実質的に同じ方法で処理されるとき、平衡した応力を有し得る。したがって、第1の層と第3の層との間に応力不平衡を生み出すために、第1の層の厚さおよび/または任意の他の適切な特性が、第3の層に対して変更されることがある。応力不平衡は、機械層の立ち上げに対する比較的精密に調整される制御をもたらすために使用され得る。加えて、対称的な多層翼構造をもたらすことで、温度にわたるギャップ高さの変動を低減することができる。たとえば、対称的な多層翼は、非対称的な翼より、温度にわたってより少ないギャップ高さの変動を示すことができる。というのは、非対称的な翼は、層の間で熱膨張係数が異なるため、温度にわたって曲げの変動を示し得るからである。
多層ポストは、追加の機能を助けることができる。たとえば、多層ポストは、開放前に犠牲層と物理的に接触する第1の層を含むことができる。第1の層は、機械層を開放するために使用される処理の化学作用に対して耐性があるように構成され得る。したがって、第1の層は、機械層の立ち上げと、結果的に生じた曲率とを調整することと、開放処理の間にポストが損傷するのを防ぐこととの両方に役立つことができる。二フッ化キセノン(XeF)開放処理に対して、第1の層は、たとえば二酸化ケイ素(SiO)、アルミナ(Al)、または二フッ化キセノン(XeF)エッチングに対して耐性がある任意の他の材料であってよい。しかしながら、異なる犠牲開放化学作用を使用するときは、第1の層は他の材料を含んでよい。
図9に示すプロセス100は、114において終了する。多くの追加のステップが、図示のシーケンスの前、途中、または後に使用され得るが、簡単のために省略されていることは、当業者には諒解されよう。
図10A〜図10Iは、様々な実装形態による、干渉変調器のための製造プロセスを作成する方法における様々な段階の断面概略図の例を示す。特定の部品およびステップが、干渉変調器の実装形態に適切であるように説明するが、他の電気機械システムの実装形態またはマイクロ電気機械システムの実装形態に対して、異なる材料が使用されてよく、または部品が修正、省略、もしくは追加されてもよいことは、当業者には容易に理解されよう。
図10Aでは、ブラックマスク構造23が、基板20上に設けられ、パターニングされている。基板20は、基板20を通して像を見ることを可能にするガラス、プラスチック、または任意の透明な高分子材料を含めて、様々な材料を含むことができる。ブラックマスク構造23は、コントラスト比を増大することによってディスプレイデバイスの光学的特性を改善するために、光学不活性領域(たとえば、支持体の下またはピクセルの間)内の周辺光または迷光を吸収するように構成され得る。加えて、ブラックマスク構造23は、導電性であり、電気的バス層として機能するように構成され得る。
ブラックマスク構造23は、図9を参照して上記で説明したように、堆積およびパターニングの技法を含めて、様々な方法を使用して形成され得る。ブラックマスク構造23は、フォトリソグラフィとドライエッチングを含めて、様々な技法を使用してパターニングされ得る1つまたは複数の層を含むことができる。
図10A〜図10Gは、ブラックマスク構造23を含むように示すが、これは説明のためだけであり、本明細で説明するように曲率を制御して機械層を成形する方法は、ブラックマスク構造23がないプロセスに対して同等に適用可能であり得ることは、当業者には認識されよう。
図10Bは、スペーサまたは誘電体構造35を設けてパターニングすることを示す。誘電体構造35は、たとえば、酸窒化ケイ素(SiON)および/または窒化ケイ素もしくは酸化ケイ素など、別の誘電体材料を含むことができる。いくつかの実装形態では、誘電体構造35の厚さは、約3000〜5000Åの範囲内にある。しかしながら、誘電体構造35は、所望の光学的特性に応じて様々な厚さを有することができる。いくつかの実装形態では、ブラックマスク構造23が信号をバスで運ぶように働く実装形態などにおいて、ルーティングと行電極層とがブラックマスク構造23に達することを可能にするためなどで、誘電体構造35が、ブラックマスク構造23の上の部分を除去されることがある。
図10Cは、誘電体構造35の上に光学スタック16を設けてパターニングすることを示す。上述のように、光学スタック16は、たとえば、酸化インジウムスズ(ITO)などの透明導電体、クロムなどの部分反射の光吸収層、および透明誘電体を含めて、いくつかの層を含むことができる。したがって、光学スタック16は、電気伝導性、半透明、および部分反射であり得る。図10Cに示すように、光学スタック16のうちの1つまたは複数の層は、物理的かつ電気的にブラックマスク構造23と接触することができる。
図10Dは、光学スタック16の上に犠牲層25を設けてパターニングすることを示す。犠牲層25は、一般に、後で除去されてギャップが形成される。光学スタック16の上に犠牲層25を形成することは、図9を参照して上記で説明したように、堆積ステップを含むことができる。加えて、犠牲層25は、多数の共振光学ギャップを有するディスプレイデバイスの形成を助けるために、2つ以上の層を含むように、または可変厚さの層を含むように選択され得る。IMODアレイに対して、各ギャップサイズは、異なる反射色を表すことができる。その上、いくつかの実装形態では、異なる機能の多層が、犠牲層の上または間に設けられてよい。図10Dに示すように、犠牲層25は、以下で説明するように、多層支持ポストの形成を助け得る支持ポスト開口119を形成するために、ブラックマスク構造23の上をパターニングされ得る。
次に、図10Eと図10Fとを参照する。図10Eは、多層支持ポスト18を形成するために、第1の支持層120と、第2の支持層121と、第3の支持層122とを設けてパターニングすることを示す。図10Fは、犠牲層25および多層支持ポスト18の上に機械層14を設けてパターニングすることを示す。
図示のように、各多層支持ポスト18は、少なくとも1つの翼124を含むことができる。各翼124は、機械層14と接触し得、犠牲層25が除去された後、基板20の上の機械層14を支持するために使用され得る。翼124および犠牲層25は、長さLだけ重複し得る。
ポスト構造の翼124は、機械層14が開放されるとき、すなわち犠牲層25を除去することによって翼124が基板20に対して曲がるように、正味機械応力を有するように構成され得る。いくつかの実装形態では、犠牲層25(または開放後のギャップ)の上の翼124の重複Lは、立ち上げ高さを制御するように選択される。たとえば、翼124が開放時に上方に曲がるように構成されると、翼長Lを増加することで、立ち上げが増加する。立ち上げの増加は、様々な要因によって引き起こされ得る。たとえば、翼長Lが増加するにつれて、応力差が、増大する力を作用させ得、それにより、翼が上方により大きく曲がり得る。加えて、より長い翼長は、翼端により大きな垂直変位を有し得る。いくつかの実装形態では、翼長Lは、約1ミクロン〜約3ミクロンの範囲内にあるように選択される。
各翼124は、第1の支持層120、第2の支持層121、および第3の支持層122など、複数の層を含むことができる。3つの層の場合の翼124を示すが、より多くのまたはより少ない層が使用されてよい。
機械層14の立ち上げは、たとえば、第1、第2および第3の支持層、120〜122の材料、厚さ、応力、および/または形状を選択して所望の立ち上げを達成することによって制御され得る。たとえば、第2の支持層121が引張応力を有するように構成され得、第1および第3の支持層120、122が圧縮応力を有するように構成され得、第1、第2および第3の支持層、120〜122の相対厚さが機械層14の立ち上げを調整して、それにより機械層14の立ち上げと曲率とを所望の程度に増加または減少させるように選択され得る。たとえば、第1、第2および第3の支持層、120〜122の厚さ、応力、および/または形状を選択することで、翼の正味内部応力に影響を与えることができる。犠牲層25を除去すると、内部応力が翼に力を及ぼし、それにより翼がたわんで機械層14の立ち上げが影響を受ける。上記で説明したように、一実装形態では、第3の層122の厚さが低減され、および/または第3の層122が、機械層14の立ち上げと曲率とを増加させるために圧縮応力を有するように選択される。
いくつかの実装形態では、第1および第3の支持層120、122が、それぞれ、たとえば約100Åから約600Åに及ぶ厚さを有し、第2の支持層121が、たとえば約2000Åから約7000Åに及ぶ厚さを有する。
いくつかの実装形態では、同じ材料が、第1および第3の支持層120、122のために選択される。たとえば、第1および第3の支持層120、122が二酸化ケイ素(SiO)を含み、第2の支持層121が酸窒化ケイ素(SiON)を含むことができる。第1および第3の支持層120、122が実質的に等しい厚さであり、それ以外は類似の方法で作製されるとき、第1および第3の支持層120、122に対して同じ材料を選択することで、翼124が平衡応力を有する結果がもたらされ得る。したがって、第1の支持層120の厚さまたは任意の他の適切な特性を、第3の支持層122の厚さまたは特性に対して変更することで、立ち上げおよび/または曲率に対する比較的精密に調整される制御がもたらされ得る。このようにして対称的な構造を使用することで、プロセス変動など、様々な要因によってデバイスごとに達成することが困難であることがある、特定の値の絶対応力を有する第1および第3の支持層を作製する必要が回避される。したがって、第1の支持層120の厚さまたは任意の他の適切な特性を、第3の支持層122の厚さまたは特性に対して変更することで、機械層14の立ち上げおよび/または曲率に対して精密に調整される制御をもたらすために使用され得る、応力における相対的な差がもたらされ得る。
第1、第2および第3の支持層、120〜122の応力は、材料および/または任意の適切な処理技法の選択によって制御され得る。たとえば、二酸化ケイ素(SiO)およびアルミニウム(Al)を含むいくつかの材料は、圧縮応力を有し得る一方で、たとえば酸窒化ケイ素(SiON)と窒化ケイ素(SiN)とを含むいくつかの材料は、引張応力または圧縮応力のいずれかを有することができる。さらに、たとえばプラズマ出力、圧力、プロセスガス組成、プラズマガス比、および/または温度を含めて、いくつかの処理パラメータを制御することで、層の応力が制御され得る。
いくつかの実装形態では、第1および第3の支持層120、122が第1のタイプの応力を有し、第2の支持層121が反対のタイプの応力を有する。たとえば、第1および第3の支持層120、122が圧縮応力を有し、第2の支持層121が引張応力を有することができる。第2の支持層121と反対の応力を有する第1および第3の支持層120、122を設けることで、翼124の正味応力に対して精密に調整された制御を得ることが助けられうる。たとえば、第1、第2および第3の支持層、120〜122は、翼124の正味応力が約−50MPaから約+50MPaまでの範囲内にあるように構成され得る。いくつかの実装形態では、第1の支持層120の応力が、約−300MPaから約0MPaまでの範囲内にあるように選択され、第2の支持層121の応力が、約0MPaから約+200MPaまでの範囲内にあるように選択され、第3の支持層122の応力が、約−300MPaから約0MPaまでの範囲内にあるように選択される。正の応力が引張応力であってよく、負の応力が圧縮応力であってよいことは、当業者には諒解されよう。
機械層14は、たとえば酸窒化ケイ素(SiON)を含めて、任意の適切な材料を含むことができる。機械層14は単一の層を有するように示されているが、追加の層が利用されてもよい。多層機械層のそのような一実装形態を、図10Hを参照して以下で説明する。いくつかの実装形態では、機械層14は、約1,000Åと約1ミクロンとの間に及ぶ厚さを有する。
図10Gは、ギャップ19を形成するために図10Fの犠牲層25を除去した後の干渉デバイスを示す。犠牲層25は、図9を参照して上記で説明したように、様々な方法を使用してこの時点で除去され得る。開放後、機械層14は、立ち上げ高さだけ基板20から離れて変位するようになり得、この時点で形状または曲率を変えることができる。翼124の第1、第2および第3の支持層120〜122の特性を選択することによって、翼124のたわみが基板20に対して制御され得、それにより開放後の機械層14の立ち上げと曲率とが制御される。翼124のたわみは、基板20に対して角度θを有することができる。いくつかの実装形態では、翼124のたわみは、角度θが約0°から約5°の推定範囲内にあるように制御される。
いくつかのアプリケーションでは、ピクセル立ち上げが望ましい。たとえば、干渉変調器において、約500Åから約1000Åの範囲内で基板20から離れるように立ち上げを選択することで、機械層14と光学スタック16との間のピクセルの静摩擦が低減され得る。しかしながら、比較的大きなピクセル立ち上げは、作動中に機械層14の一部分を光学スタック16と接触しなくなるまで増加することがあり、したがってデバイスの暗状態が劣化することがある。したがって、機械層14の立ち上げを制御するために多層翼124を使用することは、ピクセル静摩擦を低減し、干渉変調器の暗状態を改善するために使用され得る。
第1、第2および第3の支持層、120〜122は、立ち上げおよび/または曲率の制御の機能に加えて、諸機能を実行することができる。たとえば、第1の支持層120は、機械層を開放するために使用される処理の化学作用に対して耐性があるように構成され得る。したがって、第1の支持層120は、機械層の立ち上げと、結果的に生じた曲率とを調整することと、開放処理の間にポストが損傷するのを防ぐこととの両方に役立つことができる。犠牲層25に対する二フッ化キセノン(XeF)開放処理に対して、第1の支持層120は、たとえば二酸化ケイ素(SiO)、アルミナ(Al)、または二フッ化キセノン(XeF)エッチングに対して耐性がある任意の他の材料であってよい。しかしながら、異なる犠牲開放化学作用を使用するときは、第1の支持層120は他の材料を含んでよい。第1の支持層120を犠牲開放保護層として使用することで、本来なら使用不可能な広範囲にわたる材料の使用を可能にすることによって、支持ポスト18の設計フレキシビリティが増大し得る。たとえば、XeF開放プロセスを使用するとき、第2の支持層121は、酸窒化ケイ素(SiON)、または本来ならXeF開放プロセスによって損傷され得る任意の他の材料を含むことができる。
図10Gは、第1、第2および第3の支持層、120〜122が、それぞれ、実質的に同じ長さLだけギャップ19と重複する一実装形態を示しているが、いくつかの実装形態では、第1、第2および第3の支持層、120〜122は、それぞれ、異なる長さでギャップ19と重複してよい。たとえば、第1および第3の支持層120、122が、第2の支持層121とギャップ19との重複より大きい長さでギャップ19と重複することができる。
図10Hは、別の実装形態による干渉デバイスを示す。図10Hの干渉デバイスが複数のギャップ高さと、複数の層を有する機械層14とを含むこと以外、図10Hの干渉デバイスは図10Gの干渉デバイスに類似する。
色干渉ディスプレイシステムでは、たとえば赤色、緑色、および青色を干渉法によって(interferometrically)強化するために、複数の干渉キャビティが異なるギャップサイズを有してよい。したがって、図10Hに示すように、干渉デバイスは、異なる高さの第1のギャップ19aと第2のギャップ19bとを含むことができる。同じ作動電圧が、各ギャップサイズに対して機械層14を崩壊させることを可能にするために、機械層14は、異なる材料、層の数、または各ギャップの上の厚さを含むことができる。したがって、図10Hに示すように、第1のギャップ19aの上の機械層14の一部は、第1の層14aと第2の層14bとを含み得る一方で、第2のギャップ19bの上の機械層14の一部は、第1の層14aだけを含むことができる。
図10Hに示すように、多層ポスト18は、干渉デバイスが複数のギャップ高さを含む実装形態、または機械層14が、機械層14の異なる部分において変化する材料、層の数、または厚さを有する実装形態において使用され得る。
図10Iは、別の実装形態による干渉デバイスを示す。図10Iの干渉デバイスが2つの層を有する多層ポスト18を含むこと以外、図10Iの干渉デバイスは図10Gの干渉デバイスに類似する。機械層14の立ち上げは、たとえば、第1および第2の支持層120、121の材料、厚さ、応力、および/または形状を、上記で説明したものと類似の方法で選択することによって制御され得る。図10Iの干渉デバイスは、図10Gの干渉変調器より少ない処理ステップを含み得、したがってより少ない製造コストを有することができる。いくつかの実装形態では、多層翼は、非対称であってよく、したがって対称的な構造に対して、温度にわたって増大したギャップ高さの変化を有することができる。そのような実装形態は、たとえば、第1および第2の支持層120、121が異なる組成の材料である実装形態を含むことができる。たとえば、異なる組成の材料の支持層を使用する2つの層翼は、材料間の熱膨張係数における差により、対称的な構造に対して温度にわたって比較的高いギャップ高さの変化を示すことがある。
いくつかの2層翼の実装形態では、第1および第2の支持層120、121は、翼124の正味応力が約−50MPaから約+50MPaまでの範囲内にあるような応力を有する。いくつかの実装形態では、第1の支持層120の応力が、約−300から約0MPaまでの範囲内にあるように選択され、第2の支持層121の応力が、約0MPaから約+200MPaまでの範囲内にあるように選択される。
図11は、機械層の曲率を制御する方法130を示すフロー図の一例を示す。方法130は、ブロック131において開始する。ブロック132では、複数の支持層に対する厚さ特性、組成特性および応力特性のうちの1つまたは複数が選択される。以下で説明するように、選択された特性を有する複数の支持層が後で堆積され得、支持層は、機械層を支持するために多層翼を形成するために使用され得る。多層翼は、ブロック132において選択される特性によって制御されるたわみを有することができる。
複数の支持層は、翼に対する所望の構造的剛性を達成するように選択された合計厚さを有することができる。複数の支持層は、第1の層と、第2の層と、第3の層とを含み得、第1の支持層の厚さは、犠牲層が除去されると翼をたわませるための機械的応力を生成し得る、第1および第3の支持層間に非対称性を生成するように、第3の支持層の厚さに対して選択され得る。
複数の支持層の組成特性もまた、多層翼のたわみを制御するために使用され得る。たとえば、複数の支持層は、第1の層と、第2の層と、第3の層とを含み得、第1および第3の支持層が二酸化ケイ素(SiO)を含み得、第2の支持層が酸窒化ケイ素(SiON)を含むことができる。SiOは圧縮応力を有し得、SiONは引張応力(またはゼロに近い応力)を有しうるので、第1、第2、および第3の支持層のための材料の選択が、多層翼のたわみに影響を与え得る。たとえば、第3の層が第1の層に対して低減された厚さおよび/または応力を有する場合、翼は上方にたわみ、それにより機械層の立ち上げと曲率とが増加する。反対に、第3の層が第1の層に対して増加された厚さおよび/または応力を有する場合、翼は下方にたわみ、それにより機械層の立ち上げと曲率とが減少する。
加えて、機械層と、機械層に接触する多層翼の層との間の組成差によって、犠牲層が除去されるときの機械層の立ち上げに影響を与え得る残留応力が生成され得る。第1、第2、および第3の支持層の組成特性は、曲率制御のほかに追加の機能をはたすように選択され得る。たとえば、上記で説明したように、第1の支持層が犠牲層と接触し得、犠牲層の開放化学作用に対して耐性を有するように選択され得る。
方法130は、ブロック132で選択された特性を有する複数の支持層が堆積されるブロック134において継続する。ブロック136では、支持ポストが複数の支持層から形成され、支持ポストは翼部を含む。前に説明したように、ポストに対する開口が犠牲層内に形成され得、複数の支持層が、たとえば堆積を含めて任意の適切な技法を使用して犠牲層と開口との上に形成され得る。複数の支持層は、多層支持ポストを形成するためにパターニングされ得る。支持ポストの一部が、翼を形成するために犠牲層と重複することができる。ブロック134の追加の詳細は、図10Eを参照して上記で説明したようなものであり得る。
ブロック138では、機械層が、支持ポストの翼部を含めて、ピクセルの上部構造の一部として形成される。機械層を開放すると、支持ポストの翼が基板に対してたわむようになり得、機械層の曲率が、ブロック132で複数の支持層に対して選択された特性に基づいて制御され得る。方法130は、140において終了する。
図12Aおよび図12Bは、複数の干渉変調器を含むディスプレイデバイス40を示すシステムブロック図の例を示している。ディスプレイデバイス40は、たとえば、セルラー電話または携帯電話であり得る。ただし、ディスプレイデバイス40の同じ構成要素またはディスプレイデバイス40の軽微な変形が、テレビジョン、電子リーダーおよびポータブルメディアプレーヤなど、様々なタイプのディスプレイデバイスを示す。
ディスプレイデバイス40は、ハウジング41と、ディスプレイ30と、アンテナ43と、スピーカー45と、入力デバイス48と、マイクロフォン46とを含む。ハウジング41は、射出成形および真空成形を含む様々な製造プロセスのうちのいずれかから形成され得る。さらに、ハウジング41は、限定はしないが、プラスチック、金属、ガラス、ゴム、およびセラミック、またはそれらの組合せを含む、様々な材料のうちのいずれかから製作され得る。ハウジング41は、異なる色の、または異なるロゴ、ピクチャ、またはシンボルを含んでいる、他の取外し可能な部分と交換され得る、取外し可能な部分(図示せず)を含むことができる。
ディスプレイ30は、本明細書で説明する、双安定またはアナログディスプレイを含む様々なディスプレイのうちのいずれかであり得る。ディスプレイ30はまた、プラズマ、EL、OLED、STN LCD、またはTFT LCDなど、フラットパネルディスプレイ、あるいはCRTまたは他の管デバイスなど、非フラットパネルディスプレイを含むように構成され得る。さらに、ディスプレイ30は、本明細書で説明する干渉変調器ディスプレイを含むことができる。
ディスプレイデバイス40の構成要素は図12Bに概略的に示されている。ディスプレイデバイス40は、ハウジング41を含み、それの中に少なくとも部分的に密閉された追加の構成要素を含むことができる。たとえば、ディスプレイデバイス40は、トランシーバ47に結合されたアンテナ43を含むネットワークインターフェース27を含む。トランシーバ47はプロセッサ21に接続され、プロセッサ21は調整ハードウェア52に接続される。調整ハードウェア52は、信号を調整する(たとえば、信号をフィルタ処理する)ように構成され得る。調整ハードウェア52は、スピーカー45およびマイクロフォン46に接続される。プロセッサ21は、入力デバイス48およびドライバコントローラ29にも接続される。ドライバコントローラ29は、フレームバッファ28に、およびアレイドライバ22に結合され、アレイドライバ22は次にディスプレイアレイ30に結合される。電源50が、特定のディスプレイデバイス40設計によって必要とされるすべての構成要素に電力を与えることができる。
ネットワークインターフェース27は、ディスプレイデバイス40がネットワークを介して1つまたは複数のデバイスと通信することができるように、アンテナ43とトランシーバ47とを含む。ネットワークインターフェース27はまた、たとえば、プロセッサ21のデータ処理要件を軽減するための、何らかの処理能力を有し得る。アンテナ43は信号を送信および受信することができる。いくつかの実装形態では、アンテナ43は、IEEE16.11(a)、(b)、または(g)を含むIEEE16.11規格、あるいはIEEE802.11a、b、gまたはnを含むIEEE802.11規格に従って、RF信号を送信および受信する。いくつかの他の実装形態では、アンテナ43は、BLUETOOTH(登録商標)標準によるRF信号を送信および受信する。セルラー電話の場合、アンテナ43は、3Gまたは4G技術を利用するシステムなどのワイヤレスネットワーク内で通信するために使用される、符号分割多元接続(CDMA)、周波数分割多元接続(FDMA)、時分割多元接続(TDMA)、モバイル通信のためのグローバルシステム(GSM(登録商標):Global System for Mobile communications)、GSM/ジェネラル・パケット・ラジオ・サービス(GPRS:General Packet Radio Service)、強調データGSM環境(EDGE:Enhanced Data GSM Environment)、テレスティアル・トランクド・ラジオ(TETRA:Terrestrial Trunked Radio)、広帯域CDMA(W−CDMA)、エボリューション・データ・オプティマイズド(EV−DO: Evolution Data Optimized)、1xEV−DO、EV−DO Rev A、EV−DO Rev B、高速パケットアクセス(HSPA)、高速ダウンリンクパケットアクセス(HSDPA)、高速アップリンクパケットアクセス(HSUPA)、発展型高速パケットアクセス(HSPA+)、ロング・ターム・エボルーション(LTE:Long Term Evolution)、AMPS、または他の知られている信号を受信するように設計される。トランシーバ47は、アンテナ43から受信された信号がプロセッサ21によって受信され、プロセッサ21によってさらに操作され得るように、その信号を前処理することができる。トランシーバ47はまた、プロセッサ21から受信された信号がアンテナ43を介してディスプレイデバイス40から送信され得るように、その信号を処理することができる。
いくつかの実装形態では、トランシーバ47は受信機によって置き換えられ得る。さらに、ネットワークインターフェース27は、プロセッサ21に送られるべき画像データを記憶または生成することができる画像ソースによって置き換えられ得る。プロセッサ21は、ディスプレイデバイス40の全体的な動作を制御することができる。プロセッサ21は、ネットワークインターフェース27または画像ソースから圧縮された画像データなどのデータを受信し、そのデータを生画像データに、または生画像データに容易に処理されるフォーマットに、処理する。プロセッサ21は、処理されたデータをドライバコントローラ29に、または記憶のためにフレームバッファ28に送ることができる。生データは、一般に、画像内の各ロケーションにおける画像特性を識別する情報を指す。たとえば、そのような画像特性は、色、飽和、およびグレースケールレベルを含むことができる。
プロセッサ21は、ディスプレイデバイス40の動作を制御するためのマイクロコントローラ、CPU、または論理ユニットを含むことができる。調整ハードウェア52は、スピーカー45に信号を送信するための、およびマイクロフォン46から信号を受信するための、増幅器およびフィルタを含み得る。調整ハードウェア52は、ディスプレイデバイス40内の個別構成要素であり得、あるいはプロセッサ21または他の構成要素内に組み込まれ得る。
ドライバコントローラ29は、プロセッサ21によって生成された生画像データをプロセッサ21から直接、またはフレームバッファ28から取ることができ、アレイドライバ22への高速送信のために適宜に生画像データを再フォーマットすることができる。いくつかの実装形態では、ドライバコントローラ29は、生画像データを、ラスタ様フォーマットを有するデータフローに再フォーマットすることができ、その結果、そのデータフローは、ディスプレイアレイ30にわたって走査するのに好適な時間順序を有する。次いで、ドライバコントローラ29は、フォーマットされた情報をアレイドライバ22に送る。LCDコントローラなどのドライバコントローラ29は、しばしば、スタンドアロン集積回路(IC)としてシステムプロセッサ21に関連付けられるが、そのようなコントローラは多くの方法で実装され得る。たとえば、コントローラは、ハードウェアとしてプロセッサ21中に埋め込まれるか、ソフトウェアとしてプロセッサ21中に埋め込まれるか、またはハードウェアにおいてアレイドライバ22と完全に一体化され得る。
アレイドライバ22は、ドライバコントローラ29からフォーマットされた情報を受信することができ、ビデオデータを波形の並列セットに再フォーマットすることができ、波形の並列セットは、ディスプレイのピクセルのx−y行列から来る、数百の、および時には数千の(またはより多くの)リード線に毎秒何回も適用される。
いくつかの実装形態では、ドライバコントローラ29、アレイドライバ22、およびディスプレイアレイ30は、本明細書で説明するディスプレイのタイプのうちのいずれにも適している。たとえば、ドライバコントローラ29は、従来のディスプレイコントローラまたは双安定ディスプレイコントローラ(たとえば、IMODコントローラ)であり得る。さらに、アレイドライバ22は、従来のドライバまたは双安定ディスプレイドライバ(たとえば、IMODディスプレイドライバ)であり得る。その上、ディスプレイアレイ30は、従来のディスプレイアレイまたは双安定ディスプレイアレイ(たとえば、IMODのアレイを含むディスプレイ)であり得る。いくつかの実装形態では、ドライバコントローラ29はアレイドライバ22と一体化され得る。そのような実装形態は、セルラーフォン、ウォッチおよび他の小面積ディスプレイなどの高集積システムでは一般的である。
いくつかの実装形態では、入力デバイス48は、たとえば、ユーザがディスプレイデバイス40の動作を制御することを可能にするように、構成され得る。入力デバイス48は、QWERTYキーボードまたは電話キーパッドなどのキーパッド、ボタン、スイッチ、ロッカー、タッチセンシティブスクリーン、あるいは感圧膜または感熱膜を含むことができる。マイクロフォン46は、ディスプレイデバイス40のための入力デバイスとして構成され得る。いくつかの実装形態では、ディスプレイデバイス40の動作を制御するために、マイクロフォン46を介したボイスコマンドが使用され得る。
電源50は、当技術分野でよく知られている様々なエネルギー蓄積デバイスを含むことができる。たとえば、電源50は、ニッケルカドミウムバッテリーまたはリチウムイオンバッテリーなどの充電式バッテリーであり得る。電源50はまた、再生可能エネルギー源、キャパシタ、あるいはプラスチック太陽電池または太陽電池塗料を含む太陽電池であり得る。電源50はまた、壁コンセントから電力を受け取るように構成され得る。
いくつかの実装形態では、制御プログラマビリティがドライバコントローラ29中に存在し、これは電子ディスプレイシステム中のいくつかの場所に配置され得る。いくつかの他の実装形態では、制御プログラマビリティがアレイドライバ22中に存在する。上記で説明した最適化は、任意の数のハードウェアおよび/またはソフトウェア構成要素において、ならびに様々な構成において実装され得る。
本明細書で開示する実装形態に関して説明した様々な例示的な論理、論理ブロック、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、コンピュータソフトウェア、または両方の組合せとして実装され得る。ハードウェアとソフトウェアの互換性が、概して機能に関して説明され、上記で説明した様々な例示的な構成要素、ブロック、モジュール、回路およびステップにおいて示された。そのような機能がハードウェアで実装されるか、ソフトウェアで実装されるかは、特定の適用例および全体的なシステムに課された設計制約に依存する。
本明細書で開示する態様に関して説明した様々な例示的な論理、論理ブロック、モジュール、および回路を実装するために使用される、ハードウェアおよびデータ処理装置は、汎用シングルチップまたはマルチチッププロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブル論理デバイス、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいは本明細書で説明した機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行され得る。汎用プロセッサは、マイクロプロセッサ、あるいは任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態機械であり得る。プロセッサは、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つまたは複数のマイクロプロセッサ、あるいは任意の他のそのような構成として実装することもできる。いくつかの実装形態では、特定のステップおよび方法が、所与の機能に固有である回路によって実行され得る。
1つまたは複数の態様では、説明した機能は、本明細書で開示する構造を含むハードウェア、デジタル電子回路、コンピュータソフトウェア、ファームウェア、およびそれらの上記構造の構造的等価物において、またはそれらの任意の組合せにおいて実装され得る。また、本明細書で説明する主題の実装形態は、1つまたは複数のコンピュータプログラムとして、すなわち、データ処理装置が実行するためにコンピュータ記憶媒体上に符号化された、またはデータ処理装置の動作を制御するための、コンピュータプログラム命令の1つまたは複数のモジュールとして、実装され得る。
本開示で説明する実装形態への様々な修正は当業者には容易に明らかであり得、本明細書で定義した一般原理は、本開示の趣旨または範囲から逸脱することなく他の実装形態に適用され得る。したがって、本開示は、本明細書で示した実装形態に限定されるものではなく、本明細書で開示する特許請求の範囲、原理および新規の特徴に一致する、最も広い範囲を与られるべきである。「例示的」という単語は、本明細書ではもっぱら「例、事例、または例示の働きをすること」を意味するために使用される。本明細書に「例示的」と記載されたいかなる実施形態も、必ずしも他の実装形態よりも好ましいまたは有利であると解釈されるべきではない。さらに、「上側」および「下側」という用語は、図の説明を簡単にするために時々使用され、適切に配向されたページ上の図の配向に対応する相対位置を示すが、実装されたIMODの適切な配向を反映しないことがあることを、当業者は容易に諒解されよう。
また、別個の実装形態に関して本明細書で説明されたいくつかの特徴は、単一の実装形態において組み合わせて実装され得る。また、逆に、単一の実装形態に関して説明された様々な特徴は、複数の実装形態において別個に、あるいは任意の好適な部分組合せで実装され得る。その上、特徴は、いくつかの組合せで働くものとして上記で説明され、初めにそのように請求されることさえあるが、請求される組合せからの1つまたは複数の特徴は、場合によってはその組合せから削除され得、請求される組合せは、部分組合せ、または部分組合せの変形形態を対象とし得る。
同様に、動作は特定の順序で図面に示されているが、これは、望ましい結果を達成するために、そのような動作が、示される特定の順序でまたは順番に実行されることを、あるいはすべての図示の動作が実行されることを必要とするものとして理解されるべきでない。さらに、図面は、フロー図の形態で1つまたは複数の例示的なプロセスを概略的に示し得る。ただし、図示されていない他の動作が、概略的に示される例示的なプロセスに組み込まれ得る。たとえば、1つまたは複数の追加の動作が、図示の動作のうちのいずれかの前に、後に、同時に、またはそれの間で、実行され得る。いくつかの状況では、マルチタスキングおよび並列処理が有利であり得る。その上、上記で説明した実装形態における様々なシステム構成要素の分離は、すべての実装形態においてそのような分離を必要とするものとして理解されるべきでなく、説明するプログラム構成要素およびシステムは、概して、単一のソフトウェア製品において互いに一体化されるか、または複数のソフトウェア製品にパッケージングされ得ることを理解されたい。さらに、他の実装形態が以下の特許請求の範囲内に入る。場合によっては、特許請求の範囲に記載の行為は、異なる順序で実行され、依然として望ましい結果を達成することができる。
同様に、動作は特定の順序で図面に示されているが、これは、望ましい結果を達成するために、そのような動作が、示される特定の順序でまたは順番に実行されることを、あるいはすべての図示の動作が実行されることを必要とするものとして理解されるべきでない。さらに、図面は、フロー図の形態で1つまたは複数の例示的なプロセスを概略的に示し得る。ただし、図示されていない他の動作が、概略的に示される例示的なプロセスに組み込まれ得る。たとえば、1つまたは複数の追加の動作が、図示の動作のうちのいずれかの前に、後に、同時に、またはそれの間で、実行され得る。いくつかの状況では、マルチタスキングおよび並列処理が有利であり得る。その上、上記で説明した実装形態における様々なシステム構成要素の分離は、すべての実装形態においてそのような分離を必要とするものとして理解されるべきでなく、説明するプログラム構成要素およびシステムは、概して、単一のソフトウェア製品において互いに一体化されるか、または複数のソフトウェア製品にパッケージングされ得ることを理解されたい。さらに、他の実装形態が以下の特許請求の範囲内に入る。場合によっては、特許請求の範囲に記載の行為は、異なる順序で実行され、依然として望ましい結果を達成することができる。
以下に本件出願当初の特許請求の範囲に記載された発明を付記する。
[1]基板と、
前記基板の上に置かれ、前記基板から離隔され、機械層と前記基板との間のギャップの1つの側面を画定する前記機械層であって、前記ギャップ内で作動位置と緩和位置との間で移動可能である機械層と、
前記機械層の一部と接触した翼部を有する、前記機械層を支持する前記基板上に置かれたポストであって、前記翼部が前記ギャップの一部と前記機械層との間に置かれる、ポストとを備え、
前記ポストの前記翼部が、前記機械層の曲率を制御するように構成された複数の層を含む、電気機械システムデバイス。
[2]前記複数の層が、第1の層と、第2の層と、第3の層とを含み、前記第2の層が前記第1の層と前記第3の層との間に配設される、[1]に記載の電気機械システムデバイス。
[3]前記第1の層、前記第2の層および前記第3の層が、それぞれ第1の厚さ、第2の厚さおよび第3の厚さを有し、前記第1、前記第2、および前記第3の厚さが、前記機械層の前記曲率を制御するように選択される、[2]に記載の電気機械システムデバイス。
[4]前記第1の層が約100Åと約2,000Åとの間に及ぶ厚さを有し、前記第2の層が約2,000Åと約10,000Åとの間に及ぶ厚さを有し、前記第3の層が約100Åと約2,000Åとの間に及ぶ厚さを有する、[3]に記載の電気機械システムデバイス。
[5]前記第1の層および前記第3の層が第1の材料を含み、前記第2の層が、前記第1の材料と異なる第2の材料を含む、[2]に記載の電気機械システムデバイス。
[6]前記第1の材料がSiO を含み、前記第2の材料がSiONを含む、[5]に記載の電気機械システムデバイス。
[7]前記第1の層、前記第2の層および前記第3の層が、それぞれ第1の応力、第2の応力、および第3の応力を有するように構成され、前記第1、前記第2、および前記第3の層の前記応力が、前記機械層の前記曲率を制御するように選択される、[2]に記載の電気機械システムデバイス。
[8]前記第1の層および前記第3の層の前記応力が圧縮であり、前記第2の層の前記応力が引っ張りである、[7]に記載の電気機械システムデバイス。
[9]前記第1の応力が約−300MPaから約0MPaまでの範囲内にあるように選択され、前記第2の応力が約0MPaから約+200MPaまでの範囲内にあるように選択され、前記第3の応力が約−300MPaから約0MPaまでの範囲内にあるように選択される、[7]に記載の電気機械システムデバイス。
[10]前記第1の層が前記第2の層と前記ギャップとの間に配設され、前記第1の層が、前記機械層の犠牲開放エッチング化学作用に対して耐性がある、[2]に記載の電気機械システムデバイス。
[11]前記犠牲開放エッチング化学作用がフッ素ベースの化学作用である、[10]に記載の電気機械システムデバイス。
[12]前記機械層が前記緩和位置にあるときに前記基板から離れて湾曲するように、前記機械層の前記曲率が制御される、[2]に記載の電気機械システムデバイス。
[13]前記基板と前記ギャップとの間に置かれた静止電極をさらに備える、[2]に記載の電気機械システムデバイス。
[14]前記静止電極が光学スタックであり、前記機械層が、前記ギャップに面する下部反射表面をさらに含み、前記光学スタックと前記機械層の前記下部反射表面とが干渉変調器を形成する、[13]に記載の電気機械システムデバイス。
[15]バイアス電圧を印加するように構成されたバイアス回路をさらに備え、前記バイアス電圧が印加されるとき、前記機械層の少なくとも一部が前記基板に実質的に平行になる、[14]に記載の電気機械システムデバイス。
[16]ディスプレイと、
前記ディスプレイと通信するように構成され、画像データを処理するように構成されたプロセッサと、
前記プロセッサと通信するように構成されたメモリデバイスと
をさらに備える、[1]に記載の電気機械システムデバイス。
[17]少なくとも1つの信号を前記ディスプレイに送るように構成されたドライバ回路をさらに備える、[16]に記載の電気機械システムデバイス。
[18]前記画像データの少なくとも一部を前記ドライバ回路に送るように構成されたコントローラをさらに備える、[17]に記載の電気機械システムデバイス。
[19]前記画像データを前記プロセッサに送るように構成された画像ソースモジュールをさらに備える、[18]に記載の電気機械システムデバイス。
[20]作動位置と緩和位置とを有する機械層の曲率を電気機械システムデバイスにおいて制御する方法であって、
支持ポストの複数の層の各々について厚さ特性、組成特性および応力特性のうちの1つまたは複数を選択することと、
前記1つまたは複数の選択された厚さ特性と、組成特性と、応力特性とを含む前記複数の層を含む支持層を、基板の上に堆積させることと、
翼部を含む支持ポストを、前記複数の支持層から形成することと、
前記基板から離隔された、ギャップの1つの側面を画定する機械層を形成することであって、前記機械層が、前記支持ポストの前記翼部の上に前記翼部と接触して形成され、前記機械層が、作動位置と緩和位置との間で移動可能であるように形成されることとを備え、
前記機械層の曲率が、前記緩和位置にあるとき、前記複数の層の前記選択された1つまたは複数の厚さ特性、組成特性および応力特性によって制御される、方法。
[21]前記基板に対する前記翼部のたわみが、前記選択された1つまたは複数の厚さ特性、組成特性および応力特性によって制御される、[20]に記載の方法。
[22]前記支持層が、第1の層と、第2の層と、第3の層とを含み、前記第2の層が前記第1の層と前記第3の層との間に配設される、[20]に記載の方法。
[23]前記機械層を形成する前に犠牲層を前記基板の上に設けることと、前記ギャップを形成するためにエッチャントを使用して前記犠牲層を除去することとをさらに備える、[22]に記載の方法。
[24]前記第1の層の少なくとも一部が前記第2の層と前記ギャップとの間に配設され、前記第1の層が前記犠牲層の前記エッチャントに対して耐性がある、[23]に記載の方法。
[25]前記翼部が前記犠牲層と重複し、前記機械層の前記曲率が、前記緩和位置にあるとき、前記翼部と前記犠牲層との重複によってさらに制御される、[22]に記載の方法。
[26]前記機械層の前記曲率が、前記緩和位置にあるとき、前記機械層が前記基板から離れて湾曲するように、前記選択された1つまたは複数の厚さ特性、組成特性および応力特性によって制御される、[22]に記載の方法。
[27]前記支持ポストの前記複数の層の各々について前記厚さ特性、前記組成特性、および前記応力特性のうちの1つまたは複数を選択することが、前記第1の層の厚さと、前記第2の層の厚さと、前記第3の層の厚さとを選択することを含み、前記機械層の前記曲率が、前記緩和位置にあるとき、前記第1、前記第2、および前記第3の層の前記選択された厚さによって制御される、[22]に記載の方法。
[28]前記第1の層および前記第3の層が二酸化ケイ素(SiO )を含み、前記第2の層が酸窒化ケイ素(SiON)を含む、[22]に記載の方法。
[29]光学スタックを前記基板の上に形成することをさらに備え、前記光学スタック、前記機械層、および前記ギャップが干渉キャビティを形成する、[20]に記載の方法。
[30]前記機械層の少なくとも一部が前記基板に実質的に平行になるように、バイアス電圧を前記光学スタックに印加することをさらに備える、[29]に記載の方法。
[31]基板と、
前記基板の上に置かれ、前記基板から離隔され、機械層と前記基板との間のギャップの1つの側面を画定する前記機械層であって、前記ギャップ内で作動位置と緩和位置との間で移動可能である機械層と、
前記基板上に置かれた前記機械層を支持するための手段であって、前記機械層の一部と接触しており、前記ギャップの一部と前記機械層との間に置かれた、前記機械層の曲率を指示するための手段を含む、手段とを備え、
前記曲率を指示する手段が、前記機械層の前記曲率を指示するように構成された複数の層を含む、電気機械システムデバイス。
[32]前記曲率を指示する手段が、第1の層と、第2の層と、第3の層とを含み、前記第2の層が前記第1の層と前記第3の層との間に配設される、[31]に記載の電気機械システムデバイス。
[33]前記曲率を指示する手段が、前記第1の層の厚さと、前記第2の層の厚さと、前記第3の層の厚さとに少なくとも部分的に基づいて、前記機械層の前記曲率を指示するように構成される、[32]に記載の電気機械システムデバイス。
[34]前記第1の層および前記第3の層が第1の材料を含み、前記第2の層が、前記第1の材料と異なる第2の材料を含む、[32]に記載の電気機械システムデバイス。
[35]前記曲率を指示する手段が、前記第1の層の応力と、前記第2の層の応力と、前記第3の層の応力とに少なくとも部分的に基づいて、前記機械層の前記曲率を指示するように構成される、[32]に記載の電気機械システムデバイス。
[36]前記第1の層が前記第2の層と前記ギャップとの間に配設され、前記第1の層が、前記機械層の犠牲開放エッチング化学作用に対して耐性がある、[32]に記載の電気機械システムデバイス。
[37]前記曲率を指示する手段が、前記基板から離れるように前記機械層の手段の前記曲率を指示するように構成される、[32]に記載の電気機械システムデバイス。
[38]前記基板と前記ギャップとの間に置かれた電極をさらに備える、[32]に記載の電気機械システムデバイス。

Claims (38)

  1. 基板と、
    前記基板の上に置かれ、前記基板から離隔され、機械層と前記基板との間のギャップの1つの側面を画定する前記機械層であって、前記ギャップ内で作動位置と緩和位置との間で移動可能である機械層と、
    前記機械層の一部と接触した翼部を有する、前記機械層を支持する前記基板上に置かれたポストであって、前記翼部が前記ギャップの一部と前記機械層との間に置かれる、ポストとを備え、
    前記ポストの前記翼部が、前記機械層の曲率を制御するように構成された複数の層を含む、電気機械システムデバイス。
  2. 前記複数の層が、第1の層と、第2の層と、第3の層とを含み、前記第2の層が前記第1の層と前記第3の層との間に配設される、請求項1に記載の電気機械システムデバイス。
  3. 前記第1の層、前記第2の層および前記第3の層が、それぞれ第1の厚さ、第2の厚さおよび第3の厚さを有し、前記第1、前記第2、および前記第3の厚さが、前記機械層の前記曲率を制御するように選択される、請求項2に記載の電気機械システムデバイス。
  4. 前記第1の層が約100Åと約2,000Åとの間に及ぶ厚さを有し、前記第2の層が約2,000Åと約10,000Åとの間に及ぶ厚さを有し、前記第3の層が約100Åと約2,000Åとの間に及ぶ厚さを有する、請求項3に記載の電気機械システムデバイス。
  5. 前記第1の層および前記第3の層が第1の材料を含み、前記第2の層が、前記第1の材料と異なる第2の材料を含む、請求項2に記載の電気機械システムデバイス。
  6. 前記第1の材料がSiOを含み、前記第2の材料がSiONを含む、請求項5に記載の電気機械システムデバイス。
  7. 前記第1の層、前記第2の層および前記第3の層が、それぞれ第1の応力、第2の応力、および第3の応力を有するように構成され、前記第1、前記第2、および前記第3の層の前記応力が、前記機械層の前記曲率を制御するように選択される、請求項2に記載の電気機械システムデバイス。
  8. 前記第1の層および前記第3の層の前記応力が圧縮であり、前記第2の層の前記応力が引っ張りである、請求項7に記載の電気機械システムデバイス。
  9. 前記第1の応力が約−300MPaから約0MPaまでの範囲内にあるように選択され、前記第2の応力が約0MPaから約+200MPaまでの範囲内にあるように選択され、前記第3の応力が約−300MPaから約0MPaまでの範囲内にあるように選択される、請求項7に記載の電気機械システムデバイス。
  10. 前記第1の層が前記第2の層と前記ギャップとの間に配設され、前記第1の層が、前記機械層の犠牲開放エッチング化学作用に対して耐性がある、請求項2に記載の電気機械システムデバイス。
  11. 前記犠牲開放エッチング化学作用がフッ素ベースの化学作用である、請求項10に記載の電気機械システムデバイス。
  12. 前記機械層が前記緩和位置にあるときに前記基板から離れて湾曲するように、前記機械層の前記曲率が制御される、請求項2に記載の電気機械システムデバイス。
  13. 前記基板と前記ギャップとの間に置かれた静止電極をさらに備える、請求項2に記載の電気機械システムデバイス。
  14. 前記静止電極が光学スタックであり、前記機械層が、前記ギャップに面する下部反射表面をさらに含み、前記光学スタックと前記機械層の前記下部反射表面とが干渉変調器を形成する、請求項13に記載の電気機械システムデバイス。
  15. バイアス電圧を印加するように構成されたバイアス回路をさらに備え、前記バイアス電圧が印加されるとき、前記機械層の少なくとも一部が前記基板に実質的に平行になる、請求項14に記載の電気機械システムデバイス。
  16. ディスプレイと、
    前記ディスプレイと通信するように構成され、画像データを処理するように構成されたプロセッサと、
    前記プロセッサと通信するように構成されたメモリデバイスと
    をさらに備える、請求項1に記載の電気機械システムデバイス。
  17. 少なくとも1つの信号を前記ディスプレイに送るように構成されたドライバ回路をさらに備える、請求項16に記載の電気機械システムデバイス。
  18. 前記画像データの少なくとも一部を前記ドライバ回路に送るように構成されたコントローラをさらに備える、請求項17に記載の電気機械システムデバイス。
  19. 前記画像データを前記プロセッサに送るように構成された画像ソースモジュールをさらに備える、請求項18に記載の電気機械システムデバイス。
  20. 作動位置と緩和位置とを有する機械層の曲率を電気機械システムデバイスにおいて制御する方法であって、
    支持ポストの複数の層の各々について厚さ特性、組成特性および応力特性のうちの1つまたは複数を選択することと、
    前記1つまたは複数の選択された厚さ特性と、組成特性と、応力特性とを含む前記複数の層を含む支持層を、基板の上に堆積させることと、
    翼部を含む支持ポストを、前記複数の支持層から形成することと、
    前記基板から離隔された、ギャップの1つの側面を画定する機械層を形成することであって、前記機械層が、前記支持ポストの前記翼部の上に前記翼部と接触して形成され、前記機械層が、作動位置と緩和位置との間で移動可能であるように形成されることとを備え、
    前記機械層の曲率が、前記緩和位置にあるとき、前記複数の層の前記選択された1つまたは複数の厚さ特性、組成特性および応力特性によって制御される、方法。
  21. 前記基板に対する前記翼部のたわみが、前記選択された1つまたは複数の厚さ特性、組成特性および応力特性によって制御される、請求項20に記載の方法。
  22. 前記支持層が、第1の層と、第2の層と、第3の層とを含み、前記第2の層が前記第1の層と前記第3の層との間に配設される、請求項20に記載の方法。
  23. 前記機械層を形成する前に犠牲層を前記基板の上に設けることと、前記ギャップを形成するためにエッチャント(etchant)を使用して前記犠牲層を除去することとをさらに備える、請求項22に記載の方法。
  24. 前記第1の層の少なくとも一部が前記第2の層と前記ギャップとの間に配設され、前記第1の層が前記犠牲層の前記エッチャントに対して耐性がある、請求項23に記載の方法。
  25. 前記翼部が前記犠牲層と重複し、前記機械層の前記曲率が、前記緩和位置にあるとき、前記翼部と前記犠牲層との重複によってさらに制御される、請求項22に記載の方法。
  26. 前記機械層の前記曲率が、前記緩和位置にあるとき、前記機械層が前記基板から離れて湾曲するように、前記選択された1つまたは複数の厚さ特性、組成特性および応力特性によって制御される、請求項22に記載の方法。
  27. 前記支持ポストの前記複数の層の各々について前記厚さ特性、前記組成特性、および前記応力特性のうちの1つまたは複数を選択することが、前記第1の層の厚さと、前記第2の層の厚さと、前記第3の層の厚さとを選択することを含み、前記機械層の前記曲率が、前記緩和位置にあるとき、前記第1、前記第2、および前記第3の層の前記選択された厚さによって制御される、請求項22に記載の方法。
  28. 前記第1の層および前記第3の層が二酸化ケイ素(SiO)を含み、前記第2の層が酸窒化ケイ素(SiON)を含む、請求項22に記載の方法。
  29. 光学スタックを前記基板の上に形成することをさらに備え、前記光学スタック、前記機械層、および前記ギャップが干渉キャビティを形成する、請求項20に記載の方法。
  30. 前記機械層の少なくとも一部が前記基板に実質的に平行になるように、バイアス電圧を前記光学スタックに印加することをさらに備える、請求項29に記載の方法。
  31. 基板と、
    前記基板の上に置かれ、前記基板から離隔され、機械層と前記基板との間のギャップの1つの側面を画定する前記機械層であって、前記ギャップ内で作動位置と緩和位置との間で移動可能である機械層と、
    前記基板上に置かれた前記機械層を支持するための手段であって、前記機械層の一部と接触しており、前記ギャップの一部と前記機械層との間に置かれた、前記機械層の曲率を指示するための手段を含む、手段とを備え、
    前記曲率を指示する手段が、前記機械層の前記曲率を指示するように構成された複数の層を含む、電気機械システムデバイス。
  32. 前記曲率を指示する手段が、第1の層と、第2の層と、第3の層とを含み、前記第2の層が前記第1の層と前記第3の層との間に配設される、請求項31に記載の電気機械システムデバイス。
  33. 前記曲率を指示する手段が、前記第1の層の厚さと、前記第2の層の厚さと、前記第3の層の厚さとに少なくとも部分的に基づいて、前記機械層の前記曲率を指示するように構成される、請求項32に記載の電気機械システムデバイス。
  34. 前記第1の層および前記第3の層が第1の材料を含み、前記第2の層が、前記第1の材料と異なる第2の材料を含む、請求項32に記載の電気機械システムデバイス。
  35. 前記曲率を指示する手段が、前記第1の層の応力と、前記第2の層の応力と、前記第3の層の応力とに少なくとも部分的に基づいて、前記機械層の前記曲率を指示するように構成される、請求項32に記載の電気機械システムデバイス。
  36. 前記第1の層が前記第2の層と前記ギャップとの間に配設され、前記第1の層が、前記機械層の犠牲開放エッチング化学作用に対して耐性がある、請求項32に記載の電気機械システムデバイス。
  37. 前記曲率を指示する手段が、前記基板から離れるように前記機械層の手段の前記曲率を指示するように構成される、請求項32に記載の電気機械システムデバイス。
  38. 前記基板と前記ギャップとの間に置かれた電極をさらに備える、請求項32に記載の電気機械システムデバイス。
JP2013552553A 2011-02-01 2012-01-24 機械層を支持するための装置および方法 Pending JP2014512554A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/019,159 US20120194496A1 (en) 2011-02-01 2011-02-01 Apparatus and method for supporting a mechanical layer
US13/019,159 2011-02-01
PCT/US2012/022423 WO2012106153A1 (en) 2011-02-01 2012-01-24 Apparatus and method for supporting a mechanical layer

Publications (1)

Publication Number Publication Date
JP2014512554A true JP2014512554A (ja) 2014-05-22

Family

ID=45561143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013552553A Pending JP2014512554A (ja) 2011-02-01 2012-01-24 機械層を支持するための装置および方法

Country Status (6)

Country Link
US (1) US20120194496A1 (ja)
JP (1) JP2014512554A (ja)
KR (1) KR20140008358A (ja)
CN (1) CN103348277A (ja)
TW (1) TW201238880A (ja)
WO (1) WO2012106153A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US20130057558A1 (en) * 2011-09-07 2013-03-07 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
JP2014184513A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 電気部品およびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240413A (ja) * 2003-01-17 2004-08-26 Fuji Photo Film Co Ltd 光学機能膜及びその形成方法、並びにこの光学機能膜を用いた光変調素子、光変調素子アレイ、画像形成装置、平面表示装置
JP2006099068A (ja) * 2004-09-27 2006-04-13 Idc Llc Memsデバイスにおいて再生型保護塗料を提供するためのシステム及び装置
JP2006099104A (ja) * 2004-09-27 2006-04-13 Idc Llc Memsシステムのための事前構造を形成する方法
US20080094687A1 (en) * 2006-06-01 2008-04-24 Qualcomm Incorporated Process and structure for fabrication of mems device having isolated edge posts
JP2009503566A (ja) * 2005-07-22 2009-01-29 クアルコム,インコーポレイテッド 支持構造を有するmemsデバイス、およびその製造方法
WO2010111153A2 (en) * 2009-03-23 2010-09-30 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920421A (en) * 1997-12-10 1999-07-06 Daewoo Electronics Co., Ltd. Thin film actuated mirror array in an optical projection system and method for manufacturing the same
US7015624B1 (en) * 1999-10-22 2006-03-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-uniform thickness electroactive device
US6906847B2 (en) * 2000-12-07 2005-06-14 Reflectivity, Inc Spatial light modulators with light blocking/absorbing areas
US7436573B2 (en) * 2003-02-12 2008-10-14 Texas Instruments Incorporated Electrical connections in microelectromechanical devices
US7405863B2 (en) * 2006-06-01 2008-07-29 Qualcomm Mems Technologies, Inc. Patterning of mechanical layer in MEMS to reduce stresses at supports
US20090243011A1 (en) * 2008-03-26 2009-10-01 Texas Instruments Incorporated Manufacturing Optical MEMS with Thin-Film Anti-Reflective Layers
US8547626B2 (en) * 2010-03-25 2013-10-01 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of shaping the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240413A (ja) * 2003-01-17 2004-08-26 Fuji Photo Film Co Ltd 光学機能膜及びその形成方法、並びにこの光学機能膜を用いた光変調素子、光変調素子アレイ、画像形成装置、平面表示装置
JP2006099068A (ja) * 2004-09-27 2006-04-13 Idc Llc Memsデバイスにおいて再生型保護塗料を提供するためのシステム及び装置
JP2006099104A (ja) * 2004-09-27 2006-04-13 Idc Llc Memsシステムのための事前構造を形成する方法
JP2009503566A (ja) * 2005-07-22 2009-01-29 クアルコム,インコーポレイテッド 支持構造を有するmemsデバイス、およびその製造方法
US20080094687A1 (en) * 2006-06-01 2008-04-24 Qualcomm Incorporated Process and structure for fabrication of mems device having isolated edge posts
WO2010111153A2 (en) * 2009-03-23 2010-09-30 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same

Also Published As

Publication number Publication date
WO2012106153A1 (en) 2012-08-09
CN103348277A (zh) 2013-10-09
KR20140008358A (ko) 2014-01-21
TW201238880A (en) 2012-10-01
US20120194496A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5696216B2 (ja) Imodディスプレイのための誘電性の向上したミラー
TWI484218B (zh) 用於機電系統反射顯示器件之匹配層薄膜
JP2014508958A (ja) 電気機械干渉変調器デバイス
US20120188215A1 (en) Electromechanical devices with variable mechanical layers
JP2014514597A (ja) 単一のインダクタから正電圧と負電圧とを供給するためのシステムおよび方法
KR20140016347A (ko) 디스플레이 디바이스들을 위한 유전체 스페이서
JP2014531614A (ja) 干渉変調器のための機械層およびそれを製作する方法
JP5752334B2 (ja) 電気機械システムデバイス
JP2015522851A (ja) 電気機械システムデバイス用キャビティライナ
JP5687402B1 (ja) 色ノッチフィルタを有するアナログimod
JP2015501943A (ja) 伝導性ラインに沿った側壁スペーサ
JP2014510950A (ja) ライン時間低減のための方法および装置
JP2014519050A (ja) 機械層およびそれを製作する方法
JP2014512554A (ja) 機械層を支持するための装置および方法
US20130100090A1 (en) Electromechanical systems variable capacitance device
JP5792373B2 (ja) ピクセルビア(pixelvia)およびそれを形成する方法
TW201337326A (zh) 機電系統之儲存電容器及形成該系統之方法
KR20140026407A (ko) 비활성 더미 화소들
US20130100065A1 (en) Electromechanical systems variable capacitance device
JP2015507215A (ja) 電気機械システムデバイスのカプセル化されたアレイ
JP5745702B2 (ja) 複数のセグメントラインを含むディスプレイを駆動する方法および回路
JP2014534470A (ja) 垂直集積のためのスタックビア
JP2014531057A (ja) フレームレートを上げるための適応ライン時間
JP2015502571A (ja) 書込み波形のポーチ重複
US20130176657A1 (en) Electromechanical systems variable capacitance assembly

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303