JP2014229554A - 二次電池およびその製造方法 - Google Patents

二次電池およびその製造方法 Download PDF

Info

Publication number
JP2014229554A
JP2014229554A JP2013110087A JP2013110087A JP2014229554A JP 2014229554 A JP2014229554 A JP 2014229554A JP 2013110087 A JP2013110087 A JP 2013110087A JP 2013110087 A JP2013110087 A JP 2013110087A JP 2014229554 A JP2014229554 A JP 2014229554A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
carbon black
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013110087A
Other languages
English (en)
Inventor
小山 裕
Yutaka Koyama
裕 小山
慶一 高橋
Keiichi Takahashi
慶一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013110087A priority Critical patent/JP2014229554A/ja
Publication of JP2014229554A publication Critical patent/JP2014229554A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】電流遮断機構が適切に作動しうる二次電池の提案【解決手段】ここで提案される二次電池は、正極および負極を含む電極体を備える。正極は、正極集電体221と、該正極集電体221上に形成された少なくとも正極活物質610を含む正極活物質層223と、を備える。正極活物質層223は、導電材として黒鉛化カーボンブラック620を含み、正極活物質層223に含まれる黒鉛化カーボンブラック620の(002)面の面間隔d002が、d002≰0.34nmである。【選択図】図3

Description

本発明は二次電池に関し、詳しくは、内圧上昇により作動する電流遮断機構を備えた二次電池とその製造方法に関する。
近年、リチウムイオン二次電池、ニッケル水素電池その他の二次電池(例えば特許文献1)は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。リチウムイオン二次電池の電極体を構成する正極は、一般に、Liイオンを可逆的に挿入および脱離し得る粉末材料(正極活物質粉末材料)がアルミニウム箔などの集電体上に固着されて形成されている。正極に用いられる正極活物質粉末材料としては、Liイオンを含む遷移金属酸化物(典型的にはリチウムと一種または二種以上の遷移金属元素とを構成金属元素として含むリチウム遷移金属複合酸化物)が挙げられる。正極活物質としてリチウム遷移金属複合酸化物を用いる場合、リチウム遷移金属酸化物自体は電子伝導性が低いため、導電材を混ぜ合わせて使用する。この場合、正極活物質と導電材との密着性(接点)を高める必要があるため、正極活物質層を形成する際の圧延工程において正極活物質層のつぶし率を大きくする(正極活物質層の多孔度を小さくする)ことが考えられる。これにより、正極活物質と導電材との密着性を高めることができ正極の導電性が向上する。
特開2012―109219号公報
ところで、この種のリチウムイオン二次電池は、過充電状態になると、正極からリチウムが過剰に放出され、負極ではリチウムが過剰に挿入される。このため、正極と負極の両極が熱的に不安定になる。正極と負極の両極が熱的に不安定になると、やがては電解液の有機溶媒が分解され、急激な発熱反応が生じて電池が異常に発熱し、電池の安全性が損なわれる。かかる問題に対処すべく、電池ケース内の圧力が所定値以上になると充電電流を遮断する電流遮断機構が広く用いられている。例えば特許文献1には、電流遮断機構を備えたリチウムイオン二次電池が開示されている。特許文献1では、電解液中に予め定められた過充電状態に達するとガスを発生させるガス発生剤が添加されている。ガス発生剤は、電池が過充電状態になると正極表面において速やかに反応し、水素イオン(H)を生じる。そして、該水素イオンが電解液中に拡散し負極上で還元されることにより、水素ガス(H)が発生する。電流遮断機構はこのガス発生に基づいて電池の充電経路を切断し、それ以上の過充電を防止し得るようになっている。
ここで、前記のように導電性の比較的低いリチウム遷移金属複合酸化物を含む正極の導電性を高めるために、正極活物質層を圧延するときのつぶし率を大きくする(正極活物質層の多孔度を小さくする)と、正極活物質層中の細孔が減少する(特に比較的大きな細孔が減少する傾向にある)。ガス発生剤が反応すると該ガス発生剤由来の膜(例えば重合膜)が正極活物質層中の細孔を塞ぐことがあるため、正極活物質層中に十分な大きさの細孔が形成されていないと、過充電時に電池ケース内で発生し得るガス量が減少し、電流遮断機構の作動が遅れる要因となり得る。電流遮断機構は、予め定められた条件になると短時間で作動することが望ましい。本発明は上記課題を解決するものである。
上記課題を解決するべく、ここで提案される二次電池は、正極および負極を含むと、前記電極体を収容する電池ケースと、前記電池ケースに設けられ、前記電極体に接続された外部端子と、前記電池ケースに収容され、予め定められた電圧以上の電圧で反応し、ガスを発生させるガス発生剤を含む非水電解液と、前記電池ケースの内圧が予め定められた圧力以上に高くなると、前記電極体と前記外部端子との電気的な接続を遮断する電流遮断機構とを備える。前記正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質を含む正極活物質層とを備える。前記正極活物質層は、導電材として黒鉛化カーボンブラックを含む。そして、前記正極活物質層に含まれる黒鉛化カーボンブラックの(002)面の面間隔d002が、d002≦0.34nm(好ましくはd002<0.336nm)であることを特徴とする。
本発明の構成によると、正極活物質層が少なくとも正極活物質および黒鉛化カーボンブラックを含有し、かつ、正極活物質層に含有される黒鉛化カーボンブラックの面間隔d002が0.34nm以下(好ましくは0.336nm未満)となるように設定されているので、黒鉛化カーボンブラックと正極活物質との接触性を十分に確保することができる。そのため、電池抵抗の低減が実現される。また、黒鉛化カーボンブラックの端部(エッジ面)を起点としてガス発生剤の反応が促進されるので、過充電時に電池ケース内で発生し得るガス量が増加し、電流遮断機構を迅速に作動させることができる。したがって、本発明によれば、出力特性を高く保ちつつ、過充電時において十分なガス量の発生が確保された信頼性の高い二次電池を提供することができる。
ここで開示される二次電池の好ましい一態様では、前記黒鉛化カーボンブラックが、17nm〜25nmの平均一次粒子径を有する。このような平均一次粒子径を有する黒鉛化カーボンブラックを用いることにより、カーボンブラックと正極活物質との接点がさらに増え、電池抵抗の低減がより良く実現される。
ここで開示される二次電池の好ましい一態様では、前記黒鉛化カーボンブラックが、0.11g/cm〜0.17g/cmのかさ密度を有する。このようなかさ密度を有する黒鉛化カーボンブラックを用いることにより、過充電時において電池ケース内で発生し得るガス量が増加し、電流遮断機構を迅速に作動させることができる。
ここで開示される二次電池の好ましい一態様では、前記ガス発生剤として、シクロヘキシルベンゼン(CHB)およびビフェニル(BP)を含む。かかる構成によると、黒鉛化カーボンブラックの端部(エッジ面)を起点としてCHB−BPの共重合反応が進行して、水素イオン(H)ひいては水素ガス(H)が効率よく発生すると推定される。かかるガスの発生によって電池ケース内の圧力が上昇するため、電流遮断機構を迅速に作動させることができる。
ここで開示される二次電池の好ましい一態様では、前記シクロヘキシルベンゼンの添加量をAとし、前記ビフェニルの添加量をBとしたときの比の値(A/B)が1〜4である。このような比の値(A/B)とすることにより、CHB−BPの共重合に基づくガスが良好に発生するため、電流遮断機構を迅速に作動させることができる。
また、本発明によると、上記目的を実現する他の側面として、二次電池の製造方法が提供される。即ちここで開示される製造方法は、黒鉛化処理されたカーボンブラックであって該カーボンブラックの(002)面の面間隔d002がd002≦0.34nm(好ましくはd002<0.336nm)である黒鉛化カーボンブラックを得る工程と、前記黒鉛化カーボンブラックと正極活物質とを溶媒中で混合して正極活物質層形成用組成物を調製する組成物調製工程と、前記組成物調製工程で調製した組成物を正極集電体に塗布し乾燥する塗布乾燥工程と、前記塗布乾燥工程で得られた正極活物質層を圧延する圧延工程と、前記圧延工程で得られた正極を用いて電極体を作製する工程と、前記作製された電極体と、予め定められた電圧以上の電圧で反応してガスを発生させるガス発生剤を含む非水電解液とを電池ケース内に収容する工程と、を包含する。かかる二次電池の製造方法によると、電池抵抗の低減を実現すると共に、過充電時においてガス発生剤における十分なガス量の発生が確保された信頼性の高い二次電池(例えばリチウムイオン二次電池)を製造することができる。
好ましくは、前記黒鉛化カーボンブラックが、17nm〜25nmの平均一次粒径を有する。このような平均一次粒径の範囲内とすることにより、電池抵抗の低減がより良く実現される。また好ましくは、前記黒鉛化カーボンブラックが、0.11g/cm〜0.17g/cmのかさ密度を有する。このようなかさ密度の範囲内とすることにより、過充電時において電池ケース内で発生し得るガス量が増加し、電流遮断機構を迅速に作動させることができる。
ここで開示される製造方法の好ましい一態様では、前記黒鉛化処理は、カーボンブラックを2500℃〜2800℃の温度域で焼成することにより行われる。焼成温度が低すぎると黒鉛化が十分に進行しにくくなり、一方、焼成温度が高すぎると、加熱温度のエネルギーの無駄となるとともに、黒鉛化が進みすぎるために反って性能が低下する場合があり得る。
ここで開示される製造方法の好ましい一態様では、前記圧延工程は、前記乾燥工程後かつ前記圧延工程前の前記正極活物質層の厚みDと、前記圧延工程後の前記正極活物質層の厚みdとから求められるつぶし率X=[(D−d)/D]が、0.18≦X≦0.22となるように行われる。圧延工程時のつぶし率Xを上記範囲内とすることにより、正極活物質とカーボンブラックとの接触性を良好に保ちつつ、より大きい細孔径(例えば0.1μm〜1μm、好ましくは0.5μm〜1μm)を有する細孔を正極活物質層中に形成することができる。したがって、出力特性をより高く保ちつつ、ガス発生量をより多くすることができる。
本発明の一実施形態に係るリチウムイオン二次電池の断面図である。 リチウムイオン二次電池に内装される捲回電極体を示す図である。 本発明の一実施形態に係る正極シートの構造を示す断面図である。 (a)圧延工程前における正極活物質層、及び(b)圧延工程後における正極活物質層の構造を示す断面図である。 黒鉛化カーボンブラックの平均一次粒子径と電池特性との関係を示すグラフである。 黒鉛化カーボンブラックのかさ密度と電池特性との関係を示すグラフである。 二次電池を搭載した車両を示す側面図である。
以下、本発明の一実施形態に係る二次電池を説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化する。
なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイスをいい、「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動によって充放電が実現される二次電池をいう。一般にリチウムイオン電池、リチウムイオンキャパシタ等と称される二次電池は、本明細書におけるリチウムイオン二次電池に包含される典型例である。また、「活物質」とは、正極側又は負極側において電荷担体となる化学種(リチウムイオン二次電池ではリチウムイオン)を可逆的に吸蔵および放出し得る物質(化合物)をいう。また、本明細書において「過充電状態」とは、充電深度(SOC:State of Charge)が100%を超えた状態をいう。ここでSOCとは、可逆的に充放電可能な作動電圧の範囲において、その上限となる電圧が得られる充電状態(即ち、満充電状態)を100%とし、下限となる電圧が得られる充電状態(即ち、充電されていない状態)を0%としたときの充電状態を示すものである。
以下では捲回タイプの電極体(以下「捲回電極体」という。)と非水電解液とを角形(ここでは、直方体の箱形状)のケースに収容した形態のリチウムイオン二次電池を例に挙げる。なお、電池構造は、図示例に限定されず、特に、角形電池に限定されない。
図1は本発明の一実施形態に係るリチウムイオン二次電池100の断面図である。図2は、当該リチウムイオン二次電池100に内装される捲回電極体200を示す図である。
本発明の一実施形態に係るリチウムイオン二次電池100は、図1に示すような扁平な角形の電池ケース(即ち外装容器)300に構成されている。リチウムイオン二次電池100は、図2に示すように、扁平形状の捲回電極体200が、図示しない液状電解質(電解液)とともに、電池ケース300に収容されている。
《電池ケース300》
電池ケース300は、一端(電池100の通常の使用状態における上端部に相当する。)に開口部を有する箱形(すなわち有底直方体状)のケース本体320と、その開口部に取り付けられて該開口部を塞ぐ矩形状プレート部材からなる封口板(蓋体)340とから構成される。
電池ケース300の材質は、従来の密閉型電池で使用されるものと同じであればよく、特に制限はない。軽量で熱伝導性の良い金属材料を主体に構成された電池ケース300が好ましく、このような金属製材料としてアルミニウム、ステンレス鋼、ニッケルめっき鋼等が例示される。本実施形態に係る電池ケース300(ケース本体320および封口板340)はアルミニウム若しくはアルミニウムを主体とする合金によって構成されている。
図1に示すように、封口板340には外部接続用の正極端子420および負極端子440が形成されている。封口板340の両端子420、440の間には、電池ケース300の内圧が所定レベル(例えば設定開弁圧0.3〜1.0MPa程度)以上に上昇した場合に該内圧を開放するように構成された薄肉の安全弁360と、注液口350が形成されている。なお、図1では、当該注液口350が注液後に封止材352によって封止されている。
《捲回電極体200(電極体)》
捲回電極体200は、図2に示すように、長尺なシート状正極(正極シート220)と、該正極シート220と同様の長尺シート状負極(負極シート240)とを計二枚の長尺シート状セパレータ(セパレータ262,264)とを備えている。
《正極シート220》
正極シート220は、帯状の正極集電体221と正極活物質層223とを備えている。正極集電体221には、例えば、正極に適する金属箔が好適に使用され得る。この実施形態では、正極集電体221として、厚さが凡そ15μmの帯状のアルミニウム箔が用いられている。正極集電体221の幅方向片側の縁部に沿って未塗工部222が設定されている。図示例では、正極活物質層223は、正極集電体221に設定された未塗工部222を除いて、正極集電体221の両面に保持されている。正極活物質層223には、正極活物質粒子と導電材とバインダが含まれている。導電材については後述する。
≪正極活物質≫
正極活物質には、リチウム二次電池の正極活物質として用いられる物質を使用することができる。正極活物質の例を挙げると、LiNiCoMnO(リチウムニッケルコバルトマンガン複合酸化物)、LiNiO(ニッケル酸リチウム)、LiCoO(コバルト酸リチウム)、LiMn(マンガン酸リチウム)、LiFePO(リン酸鉄リチウム)などのリチウム遷移金属酸化物が挙げられる。ここで、LiMnは、例えば、スピネル構造を有している。また、LiNiOやLiCoOは層状の岩塩構造を有している。また、LiFePOは、例えば、オリビン構造を有している。オリビン構造のLiFePOには、例えば、ナノメートルオーダーの粒子がある。また、オリビン構造のLiFePOは、さらにカーボン膜で被覆することができる。
≪バインダ≫
バインダは、正極活物質層に含まれる正極活物質粒子と導電材の各粒子を結着させたり、これらの粒子と正極集電体221とを結着させたりする。かかるバインダとしては、使用する溶媒に溶解または分散可能なポリマーを用いることができる。例えば、水性溶媒を用いた正極合剤組成物においては、セルロース系ポリマー(カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)など)、フッ素系樹脂(例えば、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)など)、ゴム類(酢酸ビニル共重合体、スチレンブタジエン共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)など)などの水溶性または水分散性ポリマーを好ましく採用することができる。また、非水溶媒を用いた正極合剤組成物においては、ポリマー(ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリアクリルニトリル(PAN)など)を好ましく採用することができる。
≪増粘剤、溶媒≫
正極活物質層223は、例えば、上述した正極活物質粒子と導電材とバインダを溶媒にペースト状(スラリ状)に混ぜ合わせた正極合剤を作製し、正極集電体221に塗布し、乾燥させ、圧延することによって形成されている。この際、正極合剤の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN−メチル−2−ピロリドン(NMP)が挙げられる。上記バインダとして例示したポリマー材料は、バインダとしての機能の他に、正極合剤の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
《負極シート240》
負極シート240は、図2に示すように、帯状の負極集電体241と負極活物質層243とを備えている。負極集電体241には、例えば、負極に適する金属箔が好適に使用され得る。この実施形態では、負極集電体241には、厚さが凡そ10μmの帯状の銅箔が用いられている。負極集電体241の幅方向片側には、縁部に沿って未塗工部242が設定されている。負極活物質層243は、負極集電体241に設定された未塗工部242を除いて、負極集電体241の両面に保持されている。負極活物質層243には、負極活物質粒子が含まれている。ここでは、負極活物質層243は、負極活物質粒子を含む負極合剤を負極集電体241に塗布し、乾燥させ、予め定められた厚さにプレスすることによって形成されている。
《負極活物質粒子》
負極活物質層243に含まれる負極活物質粒子としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボンなどの炭素系材料、リチウム遷移金属酸化物、リチウム遷移金属窒化物などが挙げられる。また、上記セパレータの好適例としては、多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。
《セパレータ262、264》
セパレータ262、264は、図2に示すように、正極シート220と負極シート240とを隔てる部材である。この例では、セパレータ262、264は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ262、264には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造のセパレータ或いは積層構造のセパレータを用いることができる。この例では、図2に示すように、負極活物質層243の幅b1は、正極活物質層223の幅a1よりも少し広い。さらにセパレータ262、264の幅c1、c2は、負極活物質層243の幅b1よりも少し広い(c1、c2>b1>a1)。
なお、図2に示す例では、セパレータ262、264は、シート状の部材で構成されている。セパレータ262、264は、正極活物質層223と負極活物質層243とを絶縁するとともに、電解質の移動を許容する部材であればよい。従って、シート状の部材に限定されない。セパレータ262、264は、シート状の部材に代えて、例えば、正極活物質層223または負極活物質層243の表面に形成された絶縁性を有する粒子の層で構成してもよい。ここで、絶縁性を有する粒子としては、絶縁性を有する無機フィラー(例えば、金属酸化物、金属水酸化物などのフィラー)、或いは、絶縁性を有する樹脂粒子(例えば、ポリエチレン、ポリプロピレンなどの粒子)で構成してもよい。
《電解液(非水電解液)》
電解液(非水電解液)としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,3−ジオキソラン等からなる群から選択された一種または二種以上を用いることができる。また、上記支持塩としては、例えば、LiPF,LiBF,LiAsF,LiCFSO,LiCSO,LiN(CFSO,LiC(CFSO等のリチウム塩を用いることができる。一例として、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば質量比1:1)にLiPFを約1mol/Lの濃度で含有させた非水電解液が挙げられる。
《ガス発生剤》
この実施形態では、非水電解液には、例えば、電池電圧が予め定められた電圧以上になると反応し、ガスを発生させるガス発生剤が含まれている。かかるガス発生剤としては、例えば、シクロヘキシルベンゼン(CHB)やビフェニル(BP)などを用いることができる。シクロヘキシルベンゼン(CHB)とビフェニル(BP)は、例えば、凡そ4.35Vから4.6V程度の過充電時において、以下のような重合反応が活性化し、ガス(ここでは、水素ガス)を発生させる。
・シクロヘキシルベンゼン(CHB)
n[C1216]→(C1214+nH
・ビフェニル(BP)
n[C1210]→(C12+nH
非水電解液に対するガス発生剤の添加量は、例えば、凡そ0.05wt%以上4.0wt%以下にするとよい。なお、ガス発生剤の添加量は、これに限定されず、予め定めた条件で所定量のガスが生じるように調整するとよい。好ましくは、ガス発生剤として、シクロヘキシルベンゼン(CHB)およびビフェニル(BP)の両方を含んでいるとよい。この場合、シクロヘキシルベンゼンの添加量をAとし、ビフェニルの添加量をBとしたときの比の値(A/B)が1〜4であることが好ましい。A/Bが上記範囲にある場合には、過充電時にはシクロヘキシルベンゼンおよびビフェニルの共重合に基づくガスが良好に発生するため、電流遮断機構を迅速に作動させることができる。なお、ガス発生剤は、シクロヘキシルベンゼン(CHB)とビフェニル(BP)に限定されない。ここで、(C1214または(C12は、ガスが発生する重合反応において重合膜として生成されうる。
《捲回電極体200の取り付け》
この実施形態では、捲回電極体200は、図2に示すように、捲回軸WLに直交する一の方向において扁平に押し曲げられている。図2に示す例では、正極集電体221の未塗工部222と負極集電体241の未塗工部242は、それぞれセパレータ262、264の両側においてらせん状に露出している。この実施形態では、図1に示すように、未塗工部222(242)の中間部分は、寄せ集められ、電池ケース300の内部に配置された電極端子420、440(内部端子)の集電タブ420a、440aに溶接されている。このような捲回電極体200では、捲回軸WLの軸方向から電解液が捲回電極体200の内部に浸入する。
《電流遮断機構460》
また、このリチウムイオン二次電池100は、上述のように、電解液にガス発生剤が添加されており、例えば、凡そ4.35Vから4.6V程度の過充電時にガスが発生し、電池ケース内の圧力が高くなる。電流遮断機構460は、電池ケース内の圧力が異常に高くなった場合に、電流経路を遮断する機構である。この実施形態では、電流遮断機構460は、図1に示すように、正極における電池電流の導通経路が遮断されるように、正極端子420の内側に構築されている。なお、電流遮断機構460の具体的な構造は、例えば、特許文献1に開示されている。ここで開示される電流遮断機構は、適宜に、リチウムイオン二次電池100の電流遮断機構460として採用されうる。このため、ここでは、電流遮断機構460について、具体的な構造には、特段言及しない。なお、電流遮断機構460の具体的な構造は、上述した特許文献に開示された構造に限定されず、種々の機構を採用し得る。
以下、本発明の一実施形態に係るリチウムイオン二次電池100の正極シート220について、より詳細に説明する。図3は、リチウムイオン二次電池100の正極シート220の断面図である。なお、図3において、正極活物質層223の構造が明確になるように、正極活物質層223中の正極活物質610と導電材620を大きく模式的に表している。この実施形態では、正極シート220は、図3に示すように、正極集電体221の両面にそれぞれ正極活物質層223が形成されている。かかる正極活物質層223には、正極活物質610と導電材620とバインダ630が含まれている。
≪正極活物質610≫
ここでは、正極活物質610はリチウム遷移金属複合酸化物の一次粒子(図示省略)が複数集合した二次粒子で構成されている。かかる二次粒子の粒径は、約3μm〜12μmであり、より好ましくは約3μm〜8μmである。リチウム遷移金属複合酸化物の性状が上記範囲にある場合、緻密で導電性の高い正極活物質層223を作製し得る。また該正極活物質層223内に適度な空隙を保持することができるため、電解液が浸透し易く、過充電時にガス発生剤との反応場を広く確保し得る。なお、正極活物質の平均粒径とは、市販されている種々のレーザー回折・散乱法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出せるメジアン径(D50:50%体積平均粒子径)をいう。正極活物質層223全体に占める正極活物質(リチウム遷移金属複合酸化物)の割合は特に限定されないが、80質量%以上(典型的には80質量%以上100質量%未満、例えば90質量%以上95質量%以下)であることが好ましい。かかるリチウム遷移金属複合酸化物を主たる成分とする正極活物質610自体には導電性がない。この実施形態では、正極集電体221と正極活物質610との間の電子の行き来を確保することができる程度に、正極活物質層223に適当な量の導電材620が含まれている。
≪カーボンブラック620≫
ここで開示される正極活物質層223は、導電材620として黒鉛化処理されたカーボンブラック(以下、黒鉛化カーボンブラックという。)を含んでいる。ここで、本明細書において「カーボンブラック」とは、微粉末状(典型的には一次粒子径が100nm以下、好ましくは1nm〜50nm、特に好ましくは10nm〜30nm)の炭素材料であって、原料によって特に限定されるものではない。例えば、天然ガス、石油、タールなどの不完全燃焼によって製造される微粉末状の炭素粉末がその典型例である。ここで開示される正極活物質層223は、導電材620として黒鉛化カーボンブラックを含んでいる。正極活物質層223に含有される黒鉛化カーボンブラックの好適例として、(002)面の面間隔d002がd002≦0.34nmのものが挙げられる。
≪カーボンブラック620の面間隔d002
正極活物質層223に含有される黒鉛化カーボンブラック620の(002)面の面間隔d002は、黒鉛化カーボンブラックのX線回折スペクトルを測定することにより求めることができる。具体的には、CuKα線を用いた粉末X線回折パターンにおいて、ミラー指数(002)の回折面により得られるピークの位置および半値幅から学振法に基づき算出することができる。ここで、CuKα線を用いた粉末X線回折(XRD:X-ray diffraction)測定は、X線発生源から照射されX線(CuKα線)を試料の試料面に入射することにより行うとよい。試料面は、黒鉛化カーボンブラック620の粉体からなる面であってもよく、該黒鉛化カーボンブラック620を正極活物質610とともにバインダ630で結着させて実際に正極を形成した面(正極活物質層223の表面)であってもよい。この際、試料を所定の走査軸で回転走査しながら試料に対する入射角度をステップ的または連続的に変化させてX線を照射し、試料によって回析されたX線を検査器でとらえるとよい。そして、X線の回析方向と入射方向の角度差(回折角2θ)と、回析X線強度を測定する。かかるX線回折測定は、種々の測定装置メーカーから市販されているX線回折測定装置を用いて行うことができる。また、ピーク位置および半値幅の算出は、種々の測定装置メーカーから市販されているX線回折測定装置付属の解析ソフトを用いて行うことができる。
正極活物質層223に含有される黒鉛化カーボンブラック620は、上記粉末X線回折パターンにより求められる(002)面の面間隔d002が0.34nm以下(すなわちd002≦0.34nm)であることが適当であるが、0.336nm未満(すなわちd002<0.336nm)が好ましく、0.3358nm以下(すなわちd002≦0.3358nm)がより好ましく、0.3357nm以下(すなわちd002≦0.3357nm)が特に好ましい。このように上記(002)面の面間隔d002が0.34nm以下である黒鉛化カーボンブラック620は、上記面間隔d002が0.34nmを上回る従来のカーボンブラックと比較して、適度な弾性を有するものとなり、剛性が従来に比して向上する。そのため、正極活物質層223を形成する際の圧延工程においてカーボンブラック620と正極活物質610とが強固に密着し、カーボンブラック620と正極活物質610との接触性が良好になると考えられる。このことにより、正極活物質610とカーボンブラック620との導電パスがより強固に形成され、正極活物質層223の導電性がより高く、かつ、正極活物質層223の内部抵抗がより低くなる。このため、高出力なリチウム二次電池を得ることができる。面間隔d002の下限値としては特に限定されないが、0.335nm≦d002であることが適当であり、好ましくは0.3352nm≦d002であり、特に好ましくは0.3355nm≦d002である。
≪黒鉛化処理≫
ここで開示される黒鉛化カーボンブラック620は、従来のカーボンブラックに黒鉛化処理を施すことによって調製することができる。黒鉛化処理方法としては、黒鉛化カーボンブラックの基体となるカーボンブラックを非酸性化雰囲気下で焼成する方法を好ましく採用することができる。黒鉛化処理を施すと、カーボンブラックの結晶構造が黒鉛に近づくため、該カーボンブラックの端部(黒鉛のエッジ面)を起点としてガス発生剤の反応(例えばCHBとBPとの共重合)が促進され、ガス発生剤によるガス発生量を多くすることができる。そのため、出力特性を高く保ちつつ、ガス発生量をより適切に確保することができ、電流遮断機構460を適切に作動させ得る。
≪焼成温度≫
黒鉛化カーボンブラックの(002)面の面間隔の調整は、黒鉛化時の温度(最高焼成温度)を2000℃以上(例えば2500℃以上、さらには2600℃以上、特には2700℃以上)の温度域に設定することで行うことが好ましい。上記焼成温度が低すぎると、黒鉛化が十分に進行せず、所望の効果が得られない場合があり得る。その一方で、上記焼成温度が高すぎると、黒鉛化カーボンブラックの弾性が上がりすぎるため、正極活物質層を電解液に含浸したときの膨張および緩和によってカーボンブラックと正極活物質との接点が途切れやすく、接点不良が起こる原因となり得る。接点不良を回避する観点からは、上記焼成温度は2800℃以下にすることが好ましく、2700℃以下にすることがより好ましい。例えば、上記焼成温度が2000℃以上2800℃以下(さらには2200℃以上2800℃以下、特には2500℃以上2800℃以下、例えば2500℃以上2700℃以下)の範囲内であると、上記接点不良を回避しつつ、上述した面間隔d002をここに開示される好ましい範囲に適切に制御することができる。
≪カーボンブラック620の一次粒子径≫
ここで開示される黒鉛化カーボンブラック620は、平均一次粒子径が25nm以下であることが好ましく、22nm以下であることがより好ましく、20nm以下であることが特に好ましい。ここで黒鉛化カーボンブラックの平均一次粒子径は、一般的な透過型電子顕微鏡(Transmission Electron Microscope:TEM)観察に基づいて得られる一次粒子径の値(平均値)を示す。平均一次粒子径が大きすぎると、正極活物質610との接点が減るため、電池抵抗が増加する虞がある。その一方、平均一次粒子径が小さすぎると、カーボンブラック同士が凝集し、正極活物質層中にカーボンブラックを均一に分散させることが難しくなる場合がある。カーボンブラックを均一分散させる観点からは、黒鉛化カーボンブラックの平均一次粒子径は17nm以上にすることが適当であり、好ましくは18nm以上であり、特に好ましくは20nm以上である。
≪カーボンブラック620のかさ密度≫
ここで開示される黒鉛化カーボンブラック620は、かさ密度が0.11g/cm〜0.17g/cmであることが好ましく、0.13g/cm〜0.17g/cmであることがより好ましく、0.15g/cm〜0.17g/cmであることが特に好ましい。ここでかさ密度とは、タッピング式の粉体減少度測定装置によって、タッピングさせ、その衝撃で固めた後、測定される密度(タップ密度ともいう。)である。かさ密度は、カーボンブラックの粒子のつながりの大きさ(ストラクチャ)を示す指標となり得る。かさ密度が上記範囲内にある黒鉛化カーボンブラックは、ストラクチャ構造が比較的小さく、該ストラクチャ構造が形成する微細孔(例えば0.1μm以下の細孔)の体積が小さい。そのため、正極活物質層中の微細孔の占有体積が減り、比較的大きな細孔の占有体積が増える。その結果、ガス発生剤を含む電解液が正極活物質層223に浸み込みやすくなり、電池ケース内で発生し得るガス量が増加する。
ここで開示される正極活物質層223のピーク細孔径は、0.5μm〜1.5μm(例えば0.5μm〜1μm)である。正極活物質層223のピーク細孔径とは、正極活物質層223に存在する微小空孔(空隙)の細孔径分布における最大頻度を示す細孔径をいう。正極活物質層223のピーク細孔径の測定は、水銀ポロシメータ(例えば株式会社島津製作所製オートポアIV9500)を用い、水銀圧入法によって正極活物質層223中の0.01μm〜10μmの間の細孔径分布を測定し、その最大頻度の細孔径をピーク細孔径として求めるとよい。
正極活物質層223全体に占める黒鉛化カーボンブラックの割合は特に限定されないが、例えば0.1質量%以上5質量%以下(典型的には1質量%以上3質量%以下)であることが好ましい。これにより、電池抵抗を低減しつつ、より大きい細孔径を有する細孔を正極活物質層223中に多量に形成することができる。
なお、正極活物質層223は、前述した黒鉛化カーボンブラック以外の導電材を含んでもよい。黒鉛化カーボンブラック以外の導電材としては、例えば、黒鉛(グラファイト)粉末などの炭素材料が例示される。正極活物質層全体に占める黒鉛化カーボンブラック以外の導電材(例えば黒鉛)の割合は特に限定されないが、例えば0.1質量%以上5質量%以下(典型的には1質量%以上3質量%以下)であることが好ましい。黒鉛化カーボンブラック以外の導電材として黒鉛を使用する場合、該黒鉛は膨張化黒鉛であってもよい。ここで膨張化黒鉛は、従来公知の方法によって天然黒鉛の層間(グラフェンシートとグラフェンシートの間)にイオンや他の分子を挿入し、これらに対して加熱処理を施すことによって作製することができる。該膨張化黒鉛の平均細孔径は、0.2μm〜0.5μm(例えば0.2μm〜0.4μm、好ましくは0.3μm〜0.35μm)である。平均細孔径が上記範囲内にある膨張化黒鉛は、導電性に優れると共に十分な量の細孔を有している。平均細孔径が0.2μmより小さすぎる場合には、膨張化黒鉛自体に細孔が十分に形成されていないため、これを用いて形成された正極活物質層中には十分な量の細孔が形成されない場合がある。平均細孔径が0.5μmより大きすぎる場合には、膨張化黒鉛の電子伝導性が低下してしまい電池抵抗が増加する場合がある。
≪リチウム二次電池の製造方法≫
続いて、上述したリチウム二次電池の製造方法について説明する。ここで開示されるリチウム二次電池の製造方法は、黒鉛化工程と、組成物調製工程と、塗布乾燥工程と、圧延工程と、電極体作製工程と、収容工程とを包含する。黒鉛化工程は、黒鉛化処理されたカーボンブラックであって該カーボンブラックの(002)面の面間隔d002がd002≦0.34nmである黒鉛化カーボンブラックを得る工程である。組成物調製工程は、黒鉛化処理工程で得られた黒鉛化カーボンブラックと正極活物質とを溶媒中で混合して正極活物質層形成用組成物を調製する工程である。塗布乾燥工程は、組成物調製工程で調製した組成物を正極集電体に塗布し乾燥する工程である。圧延工程は、塗布乾燥工程で得られた正極活物質層を圧延する工程である。電極体作製工程は、圧延工程で得られた正極を用いて電極体を作製する工程である。収容工程は、電極体作製工程で作製された電極体と、予め定められた電圧以上の電圧で反応してガスを発生させるガス発生剤を含む非水電解液とを電池ケース内に収容する工程である。
黒鉛化工程では、例えば、黒鉛化カーボンブラックの基体となるカーボンブラックが用意し、該カーボンブラックを非酸性化雰囲気下で焼成する。基体のカーボンブラックとしては、従来公知の手法、例えば、チャンネル法、サーマル法、ファーネス法などで製造されたカーボンブラックを用いることができる。黒鉛化処理は、基体のカーボンブラックを加熱炉に入れ、非酸性化雰囲気下で2500℃以上(例えば2500℃〜2800℃)の温度域で焼成することにより行うとよい。
組成物調製工程では、例えば、上述した黒鉛化カーボンブラックと正極活物質とその他の正極活物質層構成成分(例えばバインダ)とを溶媒中で混ぜ合わせ、正極活物質層形成用組成物を調整する。黒鉛化カーボンブラックと正極活物質とその他の正極活物質層構成成分とを溶媒中で混ぜ合わせる操作は、例えば、適当な混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を用いて行うことができる。上記組成物の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適例として、N−メチル−2−ピロリドン(NMP)が挙げられる。
塗布乾燥工程では、正極活物質層形成用組成物をシート状集電体221に塗布する。塗布処理には、従来公知の適当な塗布装置、例えば、スリットコーター、ダイコーター、コンマコーター、グラビアコーターなどを用いることができる。この場合、長尺帯状のシート状集電体を用いることによって、組成物を集電体に連続して塗布することができる。塗布後、シート状集電体に塗布された組成物を乾燥させる。この際、マイグレーションを防止するべく、適当な乾燥条件を設定するとよい。この場合、長尺帯状のシート状集電体を用い、乾燥炉内に設けた走行路に沿って集電体を通すことによって、集電体に塗布された組成物を連続して乾燥させることができる。
≪つぶし率X≫
圧延工程では、図4(a)および(b)に示すように、塗布乾燥工程で得られた正極活物質層225を厚み方向にプレスする。これにより、目的とする性状のシート状正極(正極シート)が得られる。上記プレスを行う方法としては、従来公知のロールプレス法、平板プレス法などを適宜採用することができる。圧延工程は、例えばつぶし率Xが0.18≦X≦0.2の範囲内となるように圧延量が調整されているとよい。ここで圧延工程におけるつぶし率X(圧延量)は、正極シート220を作成する際の圧延工程において、塗布乾燥工程後かつ圧延工程前の正極活物質層225の厚みをDとし、圧延工程後の正極活物質層223の厚みをdとした場合に、正極活物質層の厚さが変化した変化量(D−d)を、圧延工程前の正極活物質層225の厚さDで割った値(つぶし率X=(D−d)/D)である。圧延工程前の正極活物質層225の厚さDと、圧延工程後の正極活物質層223の厚さdは、例えば、正極シート220の所定幅(例えば、1000mm)における、正極活物質層の厚さの平均値を採用するとよい。
上記圧延工程におけるつぶし率Xが大きくなるほど、正極活物質610とカーボンブラック620とが密に集合すると考えられる。その一方で、つぶし率を大きくしすぎると、正極活物質層223中の比較的大きな細孔が減少する傾向にある。ガス発生剤が反応すると該ガス発生剤由来の膜(例えば重合膜)が正極活物質層中の細孔を塞ぐことがあるため、正極活物質層223中に十分な大きさの細孔が形成されていないと、過充電時に電池ケース内で発生し得るガス量が減少し、電流遮断機構の作動が遅れる要因となり得る。
これに対し、ここで開示される技術によると、正極活物質層223が少なくとも正極活物質610および黒鉛化カーボンブラック620を含有し、かつ、正極活物質層223に含有される黒鉛化カーボンブラック620の面間隔d002が0.34nm以下(好ましくは0.336nm未満)となるように設定されているので、正極活物質層を形成する際の圧延工程において正極活物質層のつぶし率を大きくしなくとも黒鉛化カーボンブラック620と正極活物質610との接触性を十分に確保することができる。すなわち、黒鉛化カーボンブラック620は従来のカーボンブラックに比べて正極活物質610との間で導電経路を形成しやすいため、正極活物質層のつぶし率を大きくして正極活物質610とカーボンブラックとの接触性を高めなくとも、十分な導電経路が形成され得る。
また、正極活物質層のつぶし率は正極活物質層中に黒鉛化カーボンブラック620を含まない場合と比較して小さくてすむため、正極活物質層223には比較的大きい細孔径(例えば0.5μm〜1μm)を有する細孔が多量に形成されている。そのため、ガス発生剤由来の膜(例えば重合膜)が正極活物質層中の細孔を塞ぐような事態が緩和され、ガス発生剤を含む電解液が正極活物質層223に浸み込みやすい。その結果、正極活物質層223内に予め存在しているガス発生剤が消費された後、新たなガス発生剤が正極活物質層223内に速やかに供給され、ガス発生剤によるガス発生量をより適切に確保できる。例えば、黒鉛化カーボンブラック620の面間隔d002を0.34nm以下(好ましくは0.336nm未満)とし、かつ、正極活物質層のつぶし率Xを0.18≦X≦0.22(さらには0.19≦X≦0.22、特には0.2≦X≦0.22)の範囲内にすることが、電池抵抗低減およびガス量増大を両立させる観点からは好適である。
圧延工程後における正極活物質層223の多孔度Cは特に限定されないが、概ね25%≦C≦35%とすることが適当であり、好ましくは28%≦C≦32%である。圧延後において正極活物質層223の多孔度Aが大きすぎると、正極活物質610とカーボンブラック620の粒子間の接触が少なくなり出力特性が低下することがあり、また、正極活物質層223の強度が不足することがある。一方、圧延後の正極活物質層223の多孔度Aが小さすぎると、正極活物質層223の内部に浸み込む電解液の量が少なくなり、正極活物質と電解液との間でリチウムイオン(Li)の行き来が難しくなる。このため、電池抵抗が上がる要因となる。
電極体作製工程では、上記圧延工程において作製された正極と負極とセパレータとを備えた電極体が作製される。ここでは、図2に示すように、シート状に形成された上記正極シート220と、シート状に形成された負極シート240とがセパレータ262、264を介して捲回された捲回電極体200が作製される。積層の際には、正極シート220の未塗工部222と、負極シート240の未塗工部242とがセパレータ262、264の幅方向の両側からそれぞれはみ出すように、正極シート220と負極シート240とを幅方向にややずらして重ね合わせるとよい。かかる積層体を長手方向に捲回して、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平形状の捲回電極体200を作製することができる。
収容工程では、図1に示すように、電池ケース300内に、上記電極体作製工程において作製された電極体200と所定の電池電圧を超えた際に分解してガスを発生し得るガス発生剤を含む非水電解液とを収容する。例えば、電極体200をケース本体320に収容した後、蓋体340とケース本体320との合わせ目をレーザー溶接等により接合するとよい。次いで、注液口350から電解液を注入して、注液口350を封止材352によって封止する。その後、所定の充放電処理(コンディショニング処理)を行うことによってリチウムイオン二次電池100が作製され得る。
《試験例1》
以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。ここでは黒鉛化カーボンブラックの面間隔d002を変えて、正極シートを作製した。さらに、当該正極シートを用いて評価試験用のリチウムイオン二次電池を作製した。そして、当該評価試験用のリチウムイオン二次電池を用いて出力特性試験および過充電試験を行い、上述した面間隔d002が電池性能に与える影響を評価した。以下、サンプル1について説明し、他のサンプルについては、サンプル1との相違点を説明する。
《サンプル1》
市販のカーボンブラック(ティムカル社製:KS4)を用意し、非酸性化雰囲気下で、2000℃で焼成することにより、(002)面の面間隔d002が0.3375nmである黒鉛化カーボンブラックを得た。ここではカーボンブラックとして、平均一次粒子径が25μmでかさ密度が0.16g/cmのカーボンブラックを用いた。
正極活物質としてのLiNi1/3Co1/3Mn1/3粉末と、導電材としての上記黒鉛化カーボンブラックと、導電材としての黒鉛粉末と、バインダとしてのポリフッ化ビニリデン(PVDF)とを、これら材料の質量比率が91:3:3:3となるようにN−メチルピロリドン(NMP)中で混練し、正極活物質層形成用組成物を調製した。この組成物を、厚み凡そ15μmの長尺状アルミニウム箔(正極集電体)の両面に、目付量(固形分換算の塗付量、すなわち正極活物質層の乾燥質量)が両面の合計で30mg/cmとなるように塗布し、120℃の熱風で乾燥させて正極活物質層を形成した。次いで、該正極活物質層の密度が2.8g/cmとなるように圧延(プレス)して、正極シートを作製した。上記圧延時における正極活物質層のつぶし率は0.195とした。
負極活物質としてのグラファイト粉末と、バインダとしてのスチレンブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)とを、これら材料の質量比が98:1:1となるようにイオン交換水と混合して、負極活物質層形成用組成物を調製した。この組成物を、厚み凡そ10μmの長尺状銅箔(負極集電体)の両面に、正極に対する対向容量比が1.4となるように塗布し、乾燥させて負極活物質層を形成した。次いで、該負極活物質層の密度が1.3g/cmとなるように圧延(プレス)して、負極シートを作製した。
上記作製した正極シートと負極シートとを2枚のセパレータ(多孔質ポリエチレンシート(PE)を使用した。)を介して重ね合わせて捲回し、電極体を作製した。この電極体を非水電解液とともに円筒型の電池ケースに収容した。非水電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で含む混合溶媒に凡そ1mol/Lの濃度でLiPFを凡そ1mol/Lの濃度で溶解した溶液を使用した。また、非水電解液には、ガス発生剤(過充電時にガスを発生させる添加剤)を添加した。ガス発生剤には、シクロヘキシルベンゼン(CHB)とビフェニル(BP)とを用いた。ガス発生剤の添加量は、電解液に対して質量比でCHB2質量%、BP1質量%とした。次いで、コンディショニング処理を行うことにより、18650型(直径18mm、高さ65mm)のリチウムイオン二次電池を構築した。
《サンプル2》
サンプル2では、焼成温度を2200℃とした黒鉛化カーボンブラックを用いた。その他の構成は、サンプル1と同じとした。この場合、黒鉛化カーボンブラックの面間隔d002は0.3360nmであった。
《サンプル3》
サンプル3では、焼成温度を2500℃とした黒鉛化カーボンブラックを用いた。その他の構成は、サンプル1と同じとした。この場合、黒鉛化カーボンブラックの面間隔d002は0.3357nmであった。
《サンプル4》
サンプル4では、焼成温度を2800℃とした黒鉛化カーボンブラックを用いた。その他の構成は、サンプル1と同じとした。この場合、黒鉛化カーボンブラックの面間隔d002は0.3358nmであった。
《サンプル5》
サンプル5では、焼成温度を3000℃とした黒鉛化カーボンブラックを用いた。その他の構成は、サンプル1と同じとした。この場合、黒鉛化カーボンブラックの面間隔d002は0.3357nmであった。
《サンプル6》
サンプル6では、未焼成のカーボンブラックを用いた。その他の構成は、サンプル1と同じとした。この場合、未焼成のカーボンブラックの面間隔d002は0.3442nmであった。
《評価試験用リチウムイオン二次電池の評価》
上記各サンプル1〜6のリチウムイオン二次電池について、出力特性としてのIV抵抗と過充電時のガス発生量によって、高出力特性と電流遮断機構の適切な作動を評価した。
《IV抵抗》
IV抵抗の測定は、次の手順により実施した。
手順1:25℃の温度条件下、3.0Vまで1Cの定電流で放電した後、1Cで定電流定電圧充電を行い、SOC(State of Charge)20%の充電状態にする。
手順2:手順1の後、10A(10Cに相当)のパルス電流を通電して10秒間放電処理する。
ここでは、手順2で測定された測定電流値を、手順2での初期電圧値から10秒時点での電圧値を引いた値である電圧ドロップ値で、除算する。その値をIV抵抗値として求めた。
《過充電ガス発生量》
過充電ガス発生量は、円筒型電池に用いた極板群(正極シート、負極シート、セパレータの積層体)と同一の極板群を、ガス発生剤が添加された電解液とともにラミネート袋に入れて、真空封止し、電池容量20mAのラミネートセルを作製する。かかるラミネートセルにコンディショニング工程を施す。過充電試験の前にラミネートセルの水中重量をあらかじめ測っておき、その後、ラミネートセルを60℃の試験槽中で、1Cの定電流で充電し、SOC140%の過充電状態とした。その後、3Vまで放電処理を行い、試験槽から取り出し、再度水中重量を測定して、ラミネートセルの体積変化をアルキメデス法に基づき測定し、これを1C容量で徐算する。この値を過充電ガスの発生量として算出した。
つまり、ラミネートセルの体積変化ΔVは、次式で求められる。
ΔV=ρw×(W−W1)
ここで、ρwは水の密度であり、Wは過充電前のラミネートセルの水中重量であり、W1は過充電後のラミネートセルの水中重量である。
各サンプル1〜6について、上記試験の結果を表1に示す。表1は、各サンプルについて、構成と評価を纏めた表である。
Figure 2014229554
表1に示すように、黒鉛化カーボンブラック(すなわちd002≦0.34nmのもの)を用いたサンプル1〜5は、未焼成のカーボンブラックを用いたサンプル6に比べて、IVは低くなり、高出力特性が高いレベルで発揮されうる。また、黒鉛化カーボンブラックを用いたサンプル1〜5は、未焼成のカーボンブラックを用いたサンプル6に比べて、ガス発生量を多くすることができた。ここで供試した電池の場合、特に黒鉛化カーボンブラックの面間隔d002をd002<0.336nmとすることによって、45cm/Ah以上という極めて高いガス発生量を達成することができた(サンプル3〜5)。この結果から、黒鉛化カーボンブラックの面間隔d002はd002≦0.34nmとすることが適当であり、d002<0.336nmとすることが特に好ましい。また、カーボンブラックの焼成温度は2000℃以上とすることが適当であり、好ましくは2500℃以上(例えば2500℃〜3000℃、さらには2500℃〜2800℃)である。
《試験例2》
本例では、黒鉛化カーボンブラックの一次粒子径およびかさ密度を変えて、正極シートを作製した。さらに、当該正極シートを用いて評価試験用のリチウムイオン二次電池を作製した(サンプル7〜12)。そして、当該評価試験用のリチウムイオン二次電池を用いて出力特性試験および過充電試験を行い、上述した一次粒子径およびかさ密度が電池性能に与える影響を評価した。
《サンプル7》
サンプル7では、一次粒子径が17nmでかさ密度が0.17g/cmの黒鉛化カー
ボンブラックを用いた。その他の構成は、サンプル3(2500℃焼成品、面間隔d002:0.3357nm)と同じとした。
《サンプル8》
サンプル8では、一次粒子径が35nmでかさ密度が0.15g/cmの黒鉛化カーボンブラックを用いた。その他の構成は、サンプル3(2500℃焼成品、面間隔d002:0.3357nm)と同じとした。
《サンプル9》
サンプル9では、一次粒子径が46nmでかさ密度が0.17g/cmの黒鉛化カーボンブラックを用いた。その他の構成は、サンプル3(2500℃焼成品、面間隔d002:0.3357nm)と同じとした。
《サンプル10》
サンプル10では、一次粒子径が25nmでかさ密度が0.07g/cmの黒鉛化カーボンブラックを用いた。その他の構成は、サンプル3(2500℃焼成品、面間隔d002:0.3357nm)と同じとした。
《サンプル11》
サンプル11では、一次粒子径が25nmでかさ密度が0.11g/cmの黒鉛化カーボンブラックを用いた。その他の構成は、サンプル3(2500℃焼成品、面間隔d002:0.3357nm)と同じとした。
《サンプル12》
サンプル12では、一次粒子径が25nmでかさ密度が0.24g/cmの黒鉛化カーボンブラックを用いた。その他の構成は、サンプル3(2500℃焼成品、面間隔d002:0.3357nm)と同じとした。
サンプル3、7〜12について、上記試験の結果を表2に示す。表2は、サンプル3、7〜12について、構成と評価を纏めた表である。また、サンプル3、7〜9について、上記試験の結果を図5に纏めて示す。図5は、一次粒子径とIV抵抗およびガス発生量との関係を示すグラフである。また、サンプル3、10〜12について、上記試験の結果を図6に纏めて示す。図6は、かさ密度とIV抵抗およびガス発生量との関係を示すグラフである。
Figure 2014229554
表2のサンプル3、7〜9および図5に示すように、黒鉛化カーボンブラックの一次粒子径が小さいほど、IV抵抗は低下傾向を示すことが確かめられた。また、黒鉛化カーボンブラックの一次粒子径が小さいほど、ガス発生量が増大傾向を示すことが確かめられた。この結果から、黒鉛化カーボンブラックの一次粒子径は30nm以下(例えば15nm〜30nm)にすることが好ましく、25nm以下(例えば17nm〜25nm)にすることがより好ましい。
表2のサンプル3、10〜12および図6に示すように、黒鉛化カーボンブラックのかさ密度が大きいほど、IV抵抗は低下傾向を示すことが確かめられた。また、黒鉛化カーボンブラックのかさ密度が小さいほど、ガス発生量が増大傾向を示すことが確かめられた。この結果から、黒鉛化カーボンブラックのかさ密度は0.1g/cm以上(例えば0.1g/cm〜0.2g/cm)にすることが好ましく、0.11g/cm以上(例えば0.11g/cm〜0.17g/cm)にすることがより好ましい。
ここで供試した電池の場合、特に黒鉛化カーボンブラックの面間隔d002を0.336nm未満(焼成温度2500℃以上)とし、かつ、一次粒子径を25nm以下とし、かさ密度を0.11g/cm以上とすることによって、IV抵抗を低く保ちつつ、40cm/Ah以上という極めて高いガス発生量を達成し得ることが確かめられた。
《試験例3》
本例では、電解液に添加されるガス発生剤の種類を変えて、評価試験用のリチウムイオン二次電池を作製した(サンプル13、14)。そして、当該評価試験用のリチウムイオン二次電池を用いて過充電試験を行い、上述したガス発生剤が電池性能に与える影響を評価した。
《サンプル13》
サンプル13では、ガス発生剤として、ビフェニル(BP)を単独で用いた。ガス発生剤の添加量は、電解液に対して質量比で3質量%とした。その他の構成は、サンプル4(2800℃焼成品、面間隔d002:0.3358nm)と同じとした。
《サンプル14》
サンプル14では、ガス発生剤として、シクロヘキシルベンゼン(CHB)を単独で用いた。ガス発生剤の添加量は、電解液に対して質量比で3質量%とした。その他の構成は、サンプル4(2800℃焼成品、面間隔d002:0.3358nm)と同じとした。
サンプル4、13、14について、上記試験の結果を表2に示す。表2は、サンプル4、13、14について、構成と評価を纏めた表である。
Figure 2014229554
表3に示すように、ガス発生剤としてCHB/BPの共存系を用いたサンプル4は、CHBまたはBPの単独系を用いたサンプル13および14に比べて、ガス発生量を多くすることができた。これは、黒鉛化カーボンブラックの端部(黒鉛のエッジ面)を起点としてCHB−BPが共重合しながら水素イオン(H)を効率よく発生していくため、単独系に比べてガス発生量が増えたものと推測される。この結果から、黒鉛化カーボンブラックを用いる場合には、ガス発生剤としてCHB/BPの共存系を用いることが好ましい。
以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。例えば、二次電池の電極体は、捲回電極体を例示したが、正極シートと、負極シートとが、セパレータを介して交互に積層された、いわゆる積層型の電極体で構成してもよい。また、ここでは、リチウムイオン二次電池を例示したが、ここで提案される二次電池は、特に明示的に限定されない限りにおいて、リチウムイオン二次電池以外の二次電池の構造にも採用しうる。例えば、ナトリウムイオン二次電池にも好適に採用しうる。
ここで提案される二次電池は、ハイレートでの出力特性が高く維持されつつ、電流遮断機構を作動させるガス発生量が適当である。このため、ここで提案される二次電池は、特に、ハイレート特性と、安全性の確保が高いレベルで要求される、自動車用途における車載搭載用の電源として好適である。この場合、例えば、図7に示すように、二次電池の複数個を接続して組み合わせた組電池の形態で、自動車などの車両1のモータ(電動機)を駆動させる車両駆動用電源1000として好適に利用され得る。
1 車両
100 リチウムイオン二次電池
200 捲回電極体
220 正極シート
221 正極集電体
222 未塗工部
223 正極活物質層(圧延後)
225 正極活物質層(圧延前)
240 負極シート
241 負極集電体
242 未塗工部
243 負極活物質層
262,264 セパレータ
460 電流遮断機構
610 正極活物質
620 黒鉛化カーボンブラック
630 バインダ
1000 車両駆動用電源



Claims (10)

  1. 正極および負極を含む電極体と、
    前記電極体を収容する電池ケースと、
    前記電池ケースに設けられ、前記電極体に接続された外部端子と、
    前記電池ケースに収容され、予め定められた電圧以上の電圧で反応し、ガスを発生させるガス発生剤を含む非水電解液と、
    前記電池ケースの内圧が予め定められた圧力以上に高くなると、前記電極体と前記外部端子との電気的な接続を遮断する電流遮断機構と
    を備え、
    前記正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質を含む正極活物質層と、を備え、
    前記正極活物質層は、導電材として黒鉛化カーボンブラックを含み、
    前記正極活物質層に含まれる黒鉛化カーボンブラックの(002)面の面間隔d002が、d002≦0.34nmである、二次電池。
  2. 前記黒鉛化カーボンブラックが、17nm〜25nmの平均一次粒子径を有する、請求項1に記載の二次電池。
  3. 前記黒鉛化カーボンブラックが、0.11g/cm〜0.17g/cmのかさ密度を有する、請求項1または2に記載の二次電池。
  4. 前記ガス発生剤として、シクロヘキシルベンゼンおよびビフェニルを含む、請求項1〜3の何れか一つに記載の二次電池。
  5. 前記シクロヘキシルベンゼンの添加量をAとし、前記ビフェニルの添加量をBとしたときの比の値(A/B)が1〜4である、請求項4に記載の二次電池。
  6. 黒鉛化処理されたカーボンブラックであって該カーボンブラックの(002)面の面間隔d002がd002≦0.34nmである黒鉛化カーボンブラックを得る工程と、
    前記黒鉛化カーボンブラックと、正極活物質とを溶媒中で混合して正極活物質層形成用組成物を調製する組成物調製工程と、
    前記組成物調製工程で調製した組成物を正極集電体に塗布し乾燥する塗布乾燥工程と、
    前記塗布乾燥工程で得られた正極活物質層を圧延する圧延工程と、
    前記圧延工程で得られた正極を用いて電極体を作製する工程と、
    前記作製された電極体と、予め定められた電圧以上の電圧で反応してガスを発生させるガス発生剤を含む非水電解液とを電池ケース内に収容する工程と
    を包含する、二次電池の製造方法。
  7. 前記黒鉛化カーボンブラックが、17nm〜25nmの平均一次粒径を有する、請求項6に記載の製造方法。
  8. 前記黒鉛化カーボンブラックが、0.11g/cm〜0.17g/cmのかさ密度を有する、請求項6または7に記載の製造方法。
  9. 前記黒鉛化処理は、カーボンブラックを2500℃〜2800℃の温度域で焼成することにより行われる、請求項6〜8の何れか一つに記載の製造方法。
  10. 前記圧延工程は、前記塗布乾燥工程後かつ前記圧延工程前の前記正極活物質層の厚みDと、前記圧延工程後の前記正極活物質層の厚みdとから求められるつぶし率X=[(D−d)/D]が、0.18≦X≦0.22となるように行われる、請求項6〜9の何れか一つに記載の製造方法。


JP2013110087A 2013-05-24 2013-05-24 二次電池およびその製造方法 Pending JP2014229554A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110087A JP2014229554A (ja) 2013-05-24 2013-05-24 二次電池およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110087A JP2014229554A (ja) 2013-05-24 2013-05-24 二次電池およびその製造方法

Publications (1)

Publication Number Publication Date
JP2014229554A true JP2014229554A (ja) 2014-12-08

Family

ID=52129219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110087A Pending JP2014229554A (ja) 2013-05-24 2013-05-24 二次電池およびその製造方法

Country Status (1)

Country Link
JP (1) JP2014229554A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180183043A1 (en) * 2016-12-27 2018-06-28 Automotive Energy Supply Corporation Electrode for Lithium Ion Secondary Battery, and Lithium Ion Secondary Battery
JP2020017391A (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 非水電解液電池
CN111628135A (zh) * 2019-02-28 2020-09-04 丰田自动车株式会社 密闭型电池以及电池组

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180183043A1 (en) * 2016-12-27 2018-06-28 Automotive Energy Supply Corporation Electrode for Lithium Ion Secondary Battery, and Lithium Ion Secondary Battery
CN108242528A (zh) * 2016-12-27 2018-07-03 汽车能源供应公司 锂离子二次电池用电极和锂离子二次电池
EP3343676A1 (en) * 2016-12-27 2018-07-04 Automotive Energy Supply Corporation Electrode for lithium ion secondary battery, and lithium ion secondary battery
US10573883B2 (en) 2016-12-27 2020-02-25 Envision Aesc Japan Ltd. Electrode for lithium ion secondary battery, and lithium ion secondary battery
EP3343676B1 (en) 2016-12-27 2021-02-24 Envision AESC Japan Ltd. Electrode for lithium ion secondary battery, and lithium ion secondary battery
CN108242528B (zh) * 2016-12-27 2021-06-11 远景Aesc日本有限公司 锂离子二次电池用电极和锂离子二次电池
JP2020017391A (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 非水電解液電池
JP7142288B2 (ja) 2018-07-25 2022-09-27 パナソニックIpマネジメント株式会社 非水電解液一次電池
CN111628135A (zh) * 2019-02-28 2020-09-04 丰田自动车株式会社 密闭型电池以及电池组
CN111628135B (zh) * 2019-02-28 2023-07-04 丰田自动车株式会社 密闭型电池以及电池组

Similar Documents

Publication Publication Date Title
KR102237266B1 (ko) 비수전해질 이차 전지용 부극 및 비수전해질 이차 전지
KR102367610B1 (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
JP5924541B2 (ja) 二次電池
CN103872385B (zh) 非水电解质二次电池
JP6152825B2 (ja) 非水電解液二次電池
WO2013080379A1 (ja) リチウム二次電池とその製造方法
JP5598716B2 (ja) リチウム二次電池及びその製造方法
JP6210301B2 (ja) 非水電解質二次電池用のセパレータ及び該セパレータを備えた電池
JP5664932B2 (ja) 二次電池
JP2015115166A (ja) 非水電解質二次電池
JP5696904B2 (ja) リチウムイオン二次電池およびその製造方法
WO2016157735A1 (ja) 非水電解質二次電池
US9917296B2 (en) Nonaqueous electrolyte secondary battery
JP2013114848A (ja) リチウムイオン二次電池とその製造方法
JP7205717B2 (ja) 正極
KR101556486B1 (ko) 비수 전해질 2차 전지
JP2017111940A (ja) 非水電解質二次電池の製造方法
JP2013134923A (ja) リチウムイオン二次電池
JP5672501B2 (ja) 密閉型リチウム二次電池
JP2014229554A (ja) 二次電池およびその製造方法
JP2014130729A (ja) 非水電解液二次電池の製造方法
JP5418828B2 (ja) リチウム二次電池とその製造方法
KR101905061B1 (ko) 리튬 이온 이차 전지
JP6631535B2 (ja) リチウムイオン電池
JP2013243031A (ja) 非水電解液二次電池