JP2014207396A - p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造 - Google Patents

p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造 Download PDF

Info

Publication number
JP2014207396A
JP2014207396A JP2013085380A JP2013085380A JP2014207396A JP 2014207396 A JP2014207396 A JP 2014207396A JP 2013085380 A JP2013085380 A JP 2013085380A JP 2013085380 A JP2013085380 A JP 2013085380A JP 2014207396 A JP2014207396 A JP 2014207396A
Authority
JP
Japan
Prior art keywords
layer
zno
single crystal
type
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013085380A
Other languages
English (en)
Other versions
JP6100590B2 (ja
Inventor
有香 佐藤
Yuka Sato
有香 佐藤
加藤 裕幸
Hiroyuki Kato
裕幸 加藤
佐野 道宏
Michihiro Sano
道宏 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013085380A priority Critical patent/JP6100590B2/ja
Publication of JP2014207396A publication Critical patent/JP2014207396A/ja
Application granted granted Critical
Publication of JP6100590B2 publication Critical patent/JP6100590B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Led Devices (AREA)

Abstract

【課題】 p型ZnO系半導体層の新規な製造方法を提供する。
【解決手段】 (a)第1のMgZn1−xO(0≦x≦0.6)単結晶層を形成する。(b)第1のMgZn1−xO(0≦x≦0.6)単結晶層上に、Cuまたは/及びAgであるIB族元素を含むIB族元素層を形成する。(c)IB族元素層上に、第2のMgZn1−xO(0≦x≦0.6)単結晶層を形成する。(d)第2のMgZn1−xO(0≦x≦0.6)単結晶層上に、B、Ga、Al、及びInからなる群より選択される一以上のIIIB族元素を含むIIIB族元素層を形成する。(e)工程(a)〜(d)を繰り返して積層構造を形成する。(f)積層構造をアニールして、IB族元素とIIIB族元素が共ドープされたp型MgZn1−xO(0≦x≦0.6)層を形成する。
【選択図】 図7

Description

本発明は、p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造に関する。
酸化亜鉛(ZnO)は、室温で3.37eVのバンドギャップエネルギーを持つ直接遷移型の半導体で、励起子の束縛エネルギーが60meVと比較的大きい。また原材料が安価であるとともに、環境や人体への影響が少ないという特徴を有する。このためZnOを用いた高効率、低消費電力で環境性に優れた発光素子の実現が期待されている。
しかしZnO系半導体は、強いイオン性に起因する自己補償効果のために、p型の導電型制御が困難である。たとえばアクセプタ不純物として、N、P、As、SbなどのVA族元素、Li、Na、KなどのIA族元素、Cu、Ag、AuなどのIB族元素を用い、実用的な性能をもつp型ZnO系半導体の研究が行われている(たとえば特許文献1〜5参照)。
特開2001−48698号公報 特開2001−68707号公報 特開2004−221132号公報 特開2009−256142号公報 特許第4365530号公報
本発明の目的は、新規なp型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造を提供することである。
本発明の一観点によれば、(a)第1のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、(b)前記第1のMgZn1−xO(0≦x≦0.6)単結晶層上に、Cuまたは/及びAgであるIB族元素を含むIB族元素層を形成する工程と、(c)前記IB族元素層上に、第2のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、(d)前記第2のMgZn1−xO(0≦x≦0.6)単結晶層上に、B、Ga、Al、及びInからなる群より選択される一以上のIIIB族元素を含むIIIB族元素層を形成する工程と、(e)前記工程(a)〜(d)を繰り返して積層構造を形成する工程と、(f)前記積層構造をアニールして、前記IB族元素と前記IIIB族元素が共ドープされたp型MgZn1−xO(0≦x≦0.6)層を形成する工程とを有するp型ZnO系半導体層の製造方法が提供される。
また、本発明の他の観点によれば、基板上方に、n型ZnO系半導体層を形成する工程と、前記n型ZnO系半導体層上方に、p型ZnO系半導体層を形成する工程とを有し、前記p型ZnO系半導体層を形成する工程は、(a)第1のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、(b)前記第1のMgZn1−xO(0≦x≦0.6)単結晶層上に、Cuまたは/及びAgであるIB族元素を含むIB族元素層を形成する工程と、(c)前記IB族元素層上に、第2のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、(d)前記第2のMgZn1−xO(0≦x≦0.6)単結晶層上に、B、Ga、Al、及びInからなる群より選択される一以上のIIIB族元素を含むIIIB族元素層を形成する工程と、(e)前記工程(a)〜(d)を繰り返して積層構造を形成する工程と、(f)前記積層構造をアニールして、前記IB族元素と前記IIIB族元素が共ドープされたp型MgZn1−xO(0≦x≦0.6)層を形成する工程とを備えるZnO系半導体素子の製造方法が提供される。
更に、本発明の他の観点によれば、第1のMgZn1−xO(0≦x≦0.6)単結晶層と、前記第1のMgZn1−xO(0≦x≦0.6)単結晶層上に形成された、Cuまたは/及びAgであるIB族元素を含むIB族元素層と、前記IB族元素層上に形成された、第2のMgZn1−xO(0≦x≦0.6)単結晶層と、前記第2のMgZn1−xO(0≦x≦0.6)単結晶層上に形成された、B、Ga、Al、及びInからなる群より選択される一以上のIIIB族元素を含むIIIB族元素層とを有し、前記第1のMgZn1−xO(0≦x≦0.6)単結晶層、前記IB族元素層、前記第2のMgZn1−xO(0≦x≦0.6)単結晶層、及び、前記IIIB族元素層が、この順に繰り返して積層されたn型ZnO系半導体積層構造が提供される。
本発明によれば、新規なp型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造を提供することができる。
図1は、MBE装置を示す概略的な断面図である。 図2Aは、アニール前試料の概略的な断面図であり、図2Bは、交互積層構造54を形成する際のZnセル、Oセル、Cuセル、及びGaセルのシャッタシーケンスを示すタイムチャートであり、図2Cは、交互積層構造54の概略的な断面図であり、図2Dは、ZnO単結晶層54a、Cu層54b、及びGa層54cの概略的な断面図である。 図3A、図3Bは、それぞれサンプル1のアニール前試料の交互積層構造54について、CV特性、不純物濃度のデプスプロファイルを示すグラフであり、図3Cは、サンプル1のアニール前試料の交互積層構造54における、Cuの絶対濃度[Cu]及びGaの絶対濃度[Ga]の、SIMSによるデプスプロファイルを示すグラフであり、図3Dは、サンプル1の交互積層構造54の[11−20]方向から見たRHEED像である。 図4A、図4Bは、それぞれサンプル1のアニール後試料の交互積層構造54形成位置における、CV特性、不純物濃度のデプスプロファイルを示すグラフである。 図5A、図5Bは、それぞれサンプル2のアニール前試料の交互積層構造54について、CV特性、不純物濃度のデプスプロファイルを示すグラフであり、図5Cは、サンプル2のアニール前試料の交互積層構造54における、Cuの絶対濃度[Cu]及びGaの絶対濃度[Ga]の、SIMSによるデプスプロファイルを示すグラフであり、図5Dは、サンプル2の交互積層構造54の[11−20]方向から見たRHEED像である。 図6A、図6Bは、それぞれサンプル2のアニール後試料の交互積層構造54形成位置における、CV特性、不純物濃度のデプスプロファイルを示すグラフであり、図6Cは、サンプル2のアニール後試料の交互積層構造54形成位置における、Cuの絶対濃度[Cu]及びGaの絶対濃度[Ga]の、SIMSによるデプスプロファイルを示すグラフである。 図7A〜図7Cは、実施例によるZnO系半導体発光素子の製造方法の概略を示すフローチャートである。 図8Aは、第1実施例による製造方法で製造されるZnO系半導体発光素子の概略的な断面図であり、図8Bは、交互積層構造5Aの概略的な断面図である。 図9は、Cu、Ga共ドープp型MgZn1−xO(0<x≦0.6)単結晶層形成時、交互積層構造を作製する際のZnセル、Mgセル、Oセル、Cuセル、及びGaセルのシャッタシーケンスの一例を示すタイムチャートである。 図10Aは、第2実施例による製造方法で製造されるZnO系半導体発光素子の概略的な断面図であり、図10Bは、活性層15の他の例を示す概略的な断面図であり、図10Cは、交互積層構造16Aの概略的な断面図である。 図11は、第3実施例による製造方法で製造されるZnO系半導体発光素子の概略的な断面図である。 図12は、第1実施例〜第3実施例の工程(a)及び(c)における成膜条件をまとめた表である。
まず、ZnO系半導体層等の成長に用いられる結晶製造装置について説明する。以下に説明する実験及び実施例では、結晶製造方法として分子線エピタキシー(molecular beam epitaxy; MBE)を用いる。ここでZnO系半導体は、少なくともZnとOを含む。
図1は、MBE装置を示す概略的な断面図である。真空チャンバ71内に、Znソースガン72、Oソースガン73、Mgソースガン74、Cuソースガン75、及びGaソースガン76が備えられている。
Znソースガン72、Mgソースガン74、Cuソースガン75、Gaソースガン76は、それぞれZn(7N)、Mg(6N)、Cu(9N)、及びGa(7N)の固体ソースを収容するクヌーセンセルを含み、セルを加熱することにより、Znビーム、Mgビーム、Cuビーム、Gaビームを出射する。
Oソースガン73は、たとえば13.56MHzのラジオ周波数を用いる無電極放電管を含み、無電極放電管内でOガス(6N)をプラズマ化して、Oラジカルビームを出射する。放電管材料として、アルミナまたは高純度石英を使用することができる。
基板ヒータを備えるステージ77が基板78を保持する。ソースガン72〜76は、それぞれセルシャッタを含む。各セルシャッタの開閉により、基板78上に各ビームが照射される状態と照射されない状態とを切り替え可能である。基板78上に所望のタイミングで所望のビームを照射し、所望の組成のZnO系化合物半導体層を成長させることができる。
ZnOにMgを添加することにより、バンドギャップを広げることができる。しかしZnOはウルツ鉱構造(六方晶)であり、MgOは岩塩構造(立方晶)であることから、Mg組成が高すぎると相分離を起こす。MgZnOのMg組成をxと明示するMgZn1−xOにおいて、Mg組成xは、ウルツ鉱構造を保つため0.6以下とするのが好ましい。なお、MgZn1−xOという表記は、x=0の場合としてMgの添加されないZnOを含む。
ZnO系半導体のn型導電性は、不純物のドープを行わなくても得られる。Ga等の不純物をドープし、n型導電性を高めることができる。ZnO系半導体のp型導電性は、p型不純物のドープにより得られる。
真空チャンバ71内に、水晶振動子を用いた膜厚計79が備えられている。膜厚計79で測定される付着速度から、各ビームのフラックス強度が求められる。
真空チャンバ71に、反射高速電子回折(reflection high energy electron diffraction; RHEED)用のガン80、及び、RHEED像を映すスクリーン81が取り付けられている。RHEED像から、基板78上に形成された結晶層の表面平坦性や成長モードを評価することができる。
結晶が2次元成長し表面が平坦なエピタキシャル成長(単結晶成長)である場合、RHEED像はストリークパターンを示し、結晶が3次元成長し表面が平坦でないエピタキシャル成長(単結晶成長)の場合、RHEED像はスポットパターンを示す。多結晶成長の場合は、RHEED像がリングパターンとなる。
次に、MgZn1−xO(0≦x≦0.6)結晶成長におけるVI/IIフラックス比について説明する。Znビームのフラックス強度をJZn、Mgビームのフラックス強度をJMg、Oラジカルビームのフラックス強度をJと表す。金属材料であるZnあるいはMgのビームは、原子、または複数個の原子を含むクラスターのZnあるいはMgを含む。原子とクラスターのいずれも結晶成長に有効である。ガス材料であるOのビームは、原子ラジカルや中性分子を含むが、ここでは結晶成長に有効な原子ラジカルのフラックス強度を考える。
結晶へのZnの付着しやすさを示す付着係数をkZn、Mgの付着しやすさを示す付着係数をkMg、Oの付着しやすさを示す付着係数をkと表す。Znの付着係数kZnとフラックス強度JZnの積kZnZn、Mgの付着係数kMgとフラックス強度JMgの積kMgMg、及び、Oの付着係数kとフラックス強度Jの積kは、それぞれ基板の単位面積に単位時間当たりに付着するZn原子、Mg原子、及びO原子の個数に対応する。
ZnZnとkMgMgの和に対するkの比であるk/(kZnZn+kMgMg)を、VI/IIフラックス比と定義する。VI/IIフラックス比が1より小さい場合をII族リッチ条件(Mgを含まない場合は単にZnリッチ条件)、VI/IIフラックス比が1に等しい場合をストイキオメトリ条件、VI/IIフラックス比が1より大きい場合をVI族リッチ条件(あるいはOリッチ条件)と呼ぶ。
なお、Zn面(+c面)での結晶成長においては、基板表面温度850℃以下であれば、付着係数kZn、kMg及びkを1とみなすことができ、VI/IIフラックス比をJ/(JZn+JMg)と表すことが可能である。
VI/IIフラックス比は、たとえばZnOの成長においては、以下の手順で算出することができる。Znフラックスは、水晶振動子を用いた膜厚モニタにより、室温でのZnの蒸着速度FZn(nm/s)として測定される。ZnフラックスはFZn(nm/s)からJZn(atoms/cms)に換算される。
一方、Oラジカルフラックスは、以下のように求められる。Oラジカルビーム照射条件一定(たとえばRFパワー300W、O流量2.0sccm)のもとで、Znフラックスを変化させてZnOを成長させ、ZnO成長速度のZnフラックス依存性を実験的に求める。その結果を、ZnO成長速度GZnOの近似式:GZnO=[(kZnZn−1+(k−1−1を用いてフィッティングすることにより、その条件におけるOラジカルフラックスJが算出される。こうして得られたZnフラックスJZn及びOラジカルフラックスJから、VI/IIフラックス比を算出することができる。
本願発明者らは、先に行った第1の出願(特願2012−41096号)において、たとえばZnO系半導体にCuをドープする新規な技術を提案した。これはZn、O及びCuを同時に供給し、MBE法でCuドープZnO膜を成長させた場合、3次元成長が生じ、表面の粗い多結晶膜が得られ、Cuが膜厚方向に均一にドープされないという実験結果等に基づいてなされた提案である。
本願発明者らは、Zn、O及びCuを同時に供給したことによって、活性なOラジカルとCuの反応が促進され、CuがZnサイトを置換する以上に、CuOが別の結晶相として形成される結果、ZnOの成長阻害が起こり多結晶化が生じたと考えた。
Zn、Oラジカル、及びCuを同時に供給してCuドープZnO膜を成長させると、Cuが活性なOラジカルと容易に反応することに起因して、CuO(II)が形成されやすくなる、すなわち2価のCu2+の形成が支配的になると考えられる。また、CuO(II)がCuO(I)に熱分解する温度は、CuドープZnO膜の成長温度よりも高いため、2価のCu2+は1価のCuになりにくく、ZnO中でアクセプタとして機能しないCuが支配的になると考えられる。
本願発明者らは、2価のCu2+よりも1価のCuが生じやすく、CuがZnサイトを置換しやすいCuドープZnO層の形成方法であれば、2次元成長やp型導電性が得られやすいであろうと考え、たとえばMgZn1−xO(0≦x≦0.6)単結晶膜を形成する工程と、MgZn1−xO(0≦x≦0.6)単結晶膜上にCuを供給する工程を交互に繰り返す、Cuドープp型MgZn1−xO(0≦x≦0.6)層の製造方法を、第1の出願において提案した。第1の出願に係る製造方法によれば、平坦性が高く、結晶性の良好なCuドープp型MgZn1−xO単結晶層を得ることができる。
更に、本願発明者らは、層上にCuが供給されたGaドープZnO単結晶層がアニールによりp型化することを発見し、先に行った第2の出願(特願2012−166837号)において、たとえばCuとGaが共ドープされたp型MgZn1−xO(0≦x≦0.6)層の製造方法を提案した。第2の出願に係るp型MgZn1−xO(0≦x≦0.6)単結晶層は、高い平坦性と良好な結晶性を備え、第1の出願に係る製造方法で得られるp型MgZn1−xO(0≦x≦0.6)単結晶層よりも、アクセプタとして有効に機能する1価のCuを多く含む。
本願に係る発明は、先に行った第1及び第2の出願に係る提案とは異なるp型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造に関する。
まず本願発明者らが行った実験について説明する。本願発明者らは、鋭意研究の結果、層上にCuが供給されたZnO単結晶層と、層上にGaが供給されたZnO単結晶層とが交互に積層されたn型の積層構造(交互積層構造)が、アニールによりp型化することを発見した。以下、サンプル1及びサンプル2に沿って説明を行う。なお、説明においては、アニール前の試料をアニール前試料、アニール開始後の試料をアニール後試料と記載する。
サンプル1のアニール前試料の作製方法について説明する。図2Aに、アニール前試料の概略的な断面図を示す。
n型導電性を有するZn面ZnO(0001)基板(以下、本明細書においてZnO基板)51に900℃で30分間のサーマルクリーニングを施した後、基板51温度を300℃まで下げた。その温度(成長温度300℃)で、ZnフラックスFZnを0.13nm/s(JZn=8.5×1014atoms/cms)、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccm(J=8.1×1014atoms/cms)とし、ZnO基板51上に厚さ30nmのZnOバッファ層52を成長させた。ZnOバッファ層52の結晶性及び表面平坦性の改善のため、900℃で10分間のアニールを行った。
ZnOバッファ層52上に、成長温度を900℃、ZnフラックスFZnを0.13nm/s(JZn=8.5×1014atoms/cms)、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccm(J=8.1×1014atoms/cms)として、厚さ100nmのアンドープZnO層53を成長させた。アンドープZnO層53はn型ZnO層である。アンドープZnO層53上に、Zn及びOの供給期間、Cuの供給期間、Gaの供給期間を互いに異ならせ、交互積層構造54を形成した。交互積層構造54の形成温度は250℃とした。
図2Bは、交互積層構造54を形成する際のZnセル、Oセル、Cuセル、及びGaセルのシャッタシーケンスを示すタイムチャートである。
交互積層構造54の形成に当たっては、(P)ZnセルシャッタとOセルシャッタを開き、CuセルシャッタとGaセルシャッタを閉じるZnO単結晶層成長工程、(P)Znセルシャッタ、Oセルシャッタ、及びGaセルシャッタを閉じ、Cuセルシャッタを開くCu付着工程(Cu層形成工程)、(P)Znセルシャッタ、Oセルシャッタ、及びCuセルシャッタを閉じ、Gaセルシャッタを開くGa付着工程(Ga層形成工程)を、たとえば(P)、(P)、(P)、(P)の順に繰り返す。(P)及び(P)で、層上にCuが供給されたZnO単結晶層が形成され、(P)及び(P)で、層上にGaが供給されたZnO単結晶層が形成される。
(P)〜(P)の工程を別々に設け、Oセルシャッタの開期間とCuセルシャッタの開期間とを重複させないため、OラジカルとCuとは同時に供給されない。
工程(P)においては、Oセルシャッタの開期間の前後に、Znセルシャッタの開期間を延長する。すなわちZnセルシャッタの開期間は、Oセルシャッタの開期間を含む。OラジカルとCuを同時に供給しないことに加え、Cu付着工程の前に、ZnO単結晶層表面をZnで覆うことにより(Oの露出を抑制することにより)、OラジカルとCuの直接の反応を抑制する。
サンプル1のアニール前試料の作製においては、Oセルシャッタの1回当たりの開期間を10秒とし、Oセルシャッタの開期間の前後にZnセルシャッタの開期間を1秒ずつ延長した。Znセルシャッタの1回当たりの開期間は12秒である。ZnセルシャッタとOセルシャッタとがともに開状態となる10秒間が、1回当たりのZnO単結晶層成長期間である。Cuセルシャッタの1回当たりの開期間は100秒、Gaセルシャッタの1回当たりの開期間は16秒とした。
(P)、(P)、(P)、及び(P)をこの順に実施する工程を30セット繰り返し、厚さ約100nmの交互積層構造54を得た。工程(P)におけるZnフラックスFZnは0.13nm/s(JZn=8.5×1014atoms/cms)、Oラジカルビーム照射条件はRFパワー300W、O流量2.0sccm(J=8.1×1014atoms/cms)とした。VI/IIフラックス比は0.95(Znリッチ条件)である。工程(P)におけるCuのセル温度TCuは950℃とし、工程(P)におけるGaのセル温度TGaは540℃とした。
図2Cは、交互積層構造54の概略的な断面図である。交互積層構造54は、ZnO単結晶層54a、Cu層54b、ZnO単結晶層54a、Ga層54cがこの順に繰り返して、30層ずつ積層された構造を有する。この積層構造は、層上にCuが供給されたZnO単結晶層と、層上にGaが供給されたZnO単結晶層とが、交互に厚さ方向に30層ずつ積層されたものと考えることも可能である。
ZnO単結晶層54aの厚さは1.7nm程度、Cu層54bの厚さ(Cuの付着厚さ)は1原子層以下、たとえば約1/3原子層、Ga層54cの厚さ(Gaの付着厚さ)は1原子層以下、たとえば約1/5原子層である。ZnO単結晶層54a表面のCu被覆率は33%程度、Ga被覆率は20%程度となる。
図2Dに、ZnO単結晶層54a、Cu層54b、及びGa層54cの概略的な断面図を示す。本図に示すように、たとえば約1/3原子層の厚さをもつCu層54bは、ZnO単結晶層54a表面の一部に付着するCuで形成される。また、たとえば約1/5原子層の厚さをもつGa層54cは、ZnO単結晶層54a表面の一部に付着するGaで形成される。以後、図面の簡略化のため、このようなCu及びGaの付着態様も含め、交互積層構造54を図2Cの層構造で表す。
図3A、図3Bは、それぞれサンプル1のアニール前試料の交互積層構造54について、CV特性、不純物濃度のデプスプロファイルを示すグラフである。測定は、電解液をショットキー電極に用いたエレクトロケミカルCV測定(ECV)法により行った。グラフは並列モデルで解析した結果を示す。図3Aのグラフの横軸は、電圧を単位「V」で表し、縦軸は、「1/C」を単位「cm/F」で表す。両軸ともリニアスケールを用いている。また、図3Bのグラフの横軸は、試料の深さ(厚さ)方向の位置を単位「nm」で表し、縦軸は、不純物濃度を単位「cm−3」で表す。横軸はリニアスケール、縦軸は対数スケールを用いている。
図3Aのグラフを参照すると、右上がりの曲線(電圧が増加すると1/Cが増加する関係)が得られ、交互積層構造54(層上にCuが供給されたZnO単結晶層54a、及び、層上にGaが供給されたZnO単結晶層54a)がn型導電性を備えることが示されている。なお、傾きが抵抗値と対応する。
図3Bのグラフを参照すると、交互積層構造54の不純物濃度(ドナー濃度)Nは1.0×1021cm−3程度であることがわかる。
図3Cは、サンプル1のアニール前試料の交互積層構造54における、Cuの絶対濃度[Cu]及びGaの絶対濃度[Ga]の、2次イオン質量分析法(secondary ion mass spectrometry; SIMS)によるデプスプロファイルを示すグラフである。グラフの横軸は、試料の深さ方向の位置を、単位「μm」で表し、縦軸は、Cu濃度[Cu]及びGa濃度[Ga]を、単位「cm−3」で表す。横軸はリニアスケール、縦軸は対数スケールを用いている。
交互積層構造54におけるCu濃度[Cu]は1.0×1021cm−3、Ga濃度[Ga]は6.0×1020cm−3であることがわかる。[Cu]/[Ga]の値は1.7である。
図3Dは、交互積層構造54の[11−20]方向から見たRHEED像である。RHEED像はストリークパターンを示し、表面が平坦で良好な結晶性を有する単結晶層が形成されていることがわかる。
次に、サンプル1にアニール処理を施した。流量1L/minの酸素雰囲気中で600℃、10分間のアニールを行った。
図4A、図4Bは、それぞれサンプル1のアニール後試料の交互積層構造54形成位置における、CV特性、不純物濃度のデプスプロファイルを示すグラフである。グラフの両軸の意味するところは、各々図3A、図3Bに示すグラフのそれらに等しい。
図4Aのグラフにおいて、右下がりの曲線(電圧が増加すると1/Cが減少する関係)が得られ、交互積層構造54の形成位置がp型導電性を備えることが示されている。
図4Bのグラフを参照すると、サンプル1のアニール後試料における交互積層構造54形成位置(p型層形成位置)の不純物濃度(アクセプタ濃度)Nは1.0×1018cm−3程度であることがわかる。
なお、交互積層構造54形成位置(p型層形成位置)におけるCu濃度[Cu]は8.0×1020cm−3程度、Ga濃度[Ga]は5.0×1020cm−3程度、[Cu]/[Ga]の値は1.6程度であると予想される。
次に、サンプル2について説明する。サンプル2は、サンプル1と比較したとき、ZnO単結晶層54a、Cu層54b、及びGa層54cの厚さを約1/2としたサンプルである。交互積層構造54以外は、サンプル1のアニール前試料と等しい成長条件で層形成を行った。
サンプル2のアニール前試料の作製においては、(P)、(P)、(P)、及び(P)をこの順に実施する工程を60セット繰り返し、厚さ約110nmの交互積層構造54を得た。工程(P)におけるZnフラックスFZnは0.12nm/s(JZn=7.9×1014atoms/cms)、Oラジカルビーム照射条件はRFパワー300W、O流量2.0sccm(J=8.1×1014atoms/cms)とした。VI/IIフラックス比は1.0(ストイキオメトリ条件)である。工程(P)におけるCuのセル温度TCuは950℃とし、工程(P)におけるGaのセル温度TGaは540℃とした。
Oセルシャッタの1回当たりの開期間を5秒とし、Oセルシャッタの開期間の前後にZnセルシャッタの開期間を1秒ずつ延長した。Znセルシャッタの1回当たりの開期間は7秒である。ZnセルシャッタとOセルシャッタとがともに開状態となる5秒間が、1回当たりのZnO単結晶層成長期間である。Cuセルシャッタの1回当たりの開期間は50秒、Gaセルシャッタの1回当たりの開期間は8秒とした。
サンプル2の交互積層構造54は、ZnO単結晶層54a、Cu層54b、ZnO単結晶層54a、Ga層54cがこの順に繰り返して、60層ずつ積層された構造を有する。
ZnO単結晶層54aの厚さは0.9nm程度、Cu層54bの厚さ(Cuの付着厚さ)は1原子層以下、たとえば約1/5原子層、Ga層54cの厚さ(Gaの付着厚さ)は1原子層以下、たとえば約1/15原子層である。ZnO単結晶層54a表面のCu被覆率は21%程度、Ga被覆率は6.7%程度となる。
図5A、図5Bは、それぞれサンプル2のアニール前試料の交互積層構造54について、CV特性、不純物濃度のデプスプロファイルを示すグラフである。各グラフの両軸の意味するところは、図3A、図3Bのそれに等しい。
図5Aのグラフを参照すると、右上がりの曲線(電圧が増加すると1/Cが増加する関係)が得られ、交互積層構造54(層上にCuが供給されたZnO単結晶層54a、及び、層上にGaが供給されたZnO単結晶層54a)がn型導電性を備えることが示されている。
図5Bのグラフを参照すると、交互積層構造54の不純物濃度(ドナー濃度)Nは1.7×1021cm−3程度であることがわかる。
図5Cは、サンプル2のアニール前試料の交互積層構造54における、Cuの絶対濃度[Cu]及びGaの絶対濃度[Ga]の、SIMSによるデプスプロファイルを示すグラフである。グラフの両軸の意味するところは、図3Cのそれに等しい。
交互積層構造54におけるCu濃度[Cu]は1.1×1021cm−3、Ga濃度[Ga]は3.5×1020cm−3であることがわかる。[Cu]/[Ga]の値は3.14である。
図5Dは、交互積層構造54の[11−20]方向から見たRHEED像である。スポットストリークパターンを示している。単結晶層が形成されているが、たとえば図3Dに示すRHEED像と比べるとスポット的であり、表面に凹凸を有することがわかる。
次に、サンプル2にアニール処理を施した。流量1L/minの酸素雰囲気中で600℃、10分間のアニールを行った。
図6A、図6Bは、それぞれサンプル2のアニール後試料の交互積層構造54形成位置における、CV特性、不純物濃度のデプスプロファイルを示すグラフである。グラフの両軸の意味するところは、各々図3A、図3Bに示すグラフのそれらに等しい。
図6Aのグラフにおいて、右下がりの曲線(電圧が増加すると1/Cが減少する関係)が得られ、交互積層構造54の形成位置がp型導電性を備えることが示されている。
図6Bのグラフを参照すると、サンプル2のアニール後試料における交互積層構造54形成位置(p型層形成位置)の不純物濃度(アクセプタ濃度)Nは8.0×1017cm−3程度であることがわかる。
図6Cは、サンプル2のアニール後試料の交互積層構造54形成位置(p型層形成位置)における、Cuの絶対濃度[Cu]及びGaの絶対濃度[Ga]の、SIMSによるデプスプロファイルを示すグラフである。グラフの両軸の意味するところは、図3Cのそれに等しい。
交互積層構造54形成位置(p型層形成位置)におけるCu濃度[Cu]は8.0×1020cm−3、Ga濃度[Ga]は5.0×1020cm−3、ともにp型層の厚さ方向の全体にわたり、ほぼ一定であることがわかる。なお本明細書において、濃度に関し「ほぼ一定」とは、濃度の平均値(たとえば本図の[Cu]の場合、8.0×1020cm−3)の50%〜150%の範囲をいう。Cu及びGaは均一に拡散している。[Cu]/[Ga]の値は1.6である。
本願発明者らが行った以上の実験より、サンプル1及びサンプル2の交互積層構造54(層上にCuが供給されたZnO単結晶層54a、及び、層上にGaが供給されたZnO単結晶層54a)は、アズグロウンでn型であり(図3A及び図5A参照)、アニールにより、p型化する(図4A及び図6A参照)ことが理解される。アニール処理を行うことで、Cu層54bのCu及びGa層54cのGaがZnO単結晶層54a内に均一に拡散する。CuとGaの拡散に伴って、交互積層構造54はCuとGaが共ドープされたp型ZnO単結晶層となる(p型化する)と考えられる。p型ZnO単結晶層においては、Cuが1価の状態で、Gaが3価の状態で、Znサイトを置換し、CuとGaとが相互に電気的引力を及ぼし合っていると思われる。
p型化のためのアニール条件(温度、時間、雰囲気等)は、交互積層構造54やZnO単結晶層54aの厚さ、交互積層構造54におけるCu濃度[Cu]、Ga濃度[Ga]、[Ga]に対する[Cu]の比[Cu]/[Ga]等によって異なるであろう。
また実験においては、図6Cに示すように、層の厚さ方向の全体にわたり、Cu濃度[Cu]及びGa濃度[Ga]がほぼ一定のp型層が得られた。p型層におけるCu濃度[Cu]は、たとえばサンプル2の場合、8.0×1020cm−3であった。
この結果から、層上にCuが供給されたZnO単結晶層54aと、層上にGaが供給されたZnO単結晶層54aとが交互に積層されたn型の積層構造(交互積層構造54)をアニールする方法によって、Cuを、高濃度といえる1.0×1019cm−3以上の濃度に、少なくとも1.0×1021cm−3未満の濃度までは、厚さ方向に均一にドープすることができると考えられる。また、この方法によれば、たとえば先に行った第2の出願に係るp型層の製造方法(一例として、層上にCuが供給されたGaドープZnO単結晶層をアニールし、Cu、Ga共ドープp型ZnO単結晶層を製造する方法)と比較したとき、ZnO単結晶層54aにGaを直接ドープしないため、Ga及びCuがより高濃度にドープされたp型ZnO半導体単結晶層を製造することが容易である。更に、Ga及びCuの濃度を、セルシャッタの開期間で制御可能である。
本願発明者らは鋭意研究により、ZnO系半導体層において、Cuの不純物濃度(アクセプタ濃度)は、Cuの絶対濃度[Cu]より約2桁小さいという知見を得ている。この知見を加味すると、交互積層構造54をアニールする方法によって、アクセプタ濃度が1.0×1017cm−3以上、1.0×1019cm−3未満のp型層が得られるということができる。実験においては、アクセプタ濃度が1.0×1018cm−3(サンプル1の場合)及び8.0×1017cm−3(サンプル2の場合)のp型層が得られている。
p型層は、アクセプタ濃度が1.0×1017cm−3以上であれば実用的ということが可能である。したがって実験で得られたp型層は、実用的なp型導電性を有するp型ZnO系半導体単結晶層である。
交互積層構造54をアニールする方法によれば、Cuが高濃度に、かつ、CuとGaが層の厚さ方向の全体にわたって均一にドープされ、実用的なp型導電性を有するCu、Ga共ドープZnO単結晶層を製造することができる。
本願発明者らは、p型化した交互積層構造54を更にアニールすると、再びn型導電性をもちうることを発見した。したがってアニール処理は、たとえば交互積層構造54がp型化した後、再びn型層となる前に終了すればよい。
続いて、Cu、Ga共ドープZnO層をp型半導体層に用い、ZnO系半導体発光素子を製造する第1実施例について説明する。
図7A〜図7Cは、実施例によるZnO系半導体発光素子の製造方法の概略を示すフローチャートである。なお、実施例においては半導体発光素子について説明するが、本発明は、発光素子に限らず広く半導体素子について適用することができる。
図7Aに示すように、実施例によるZnO系半導体発光素子の製造方法は、基板上方にn型ZnO系半導体層を形成する工程(ステップS101)と、ステップS101で形成されたn型ZnO系半導体層上方に、p型ZnO系半導体層を形成する工程(ステップS102)を含む。
また、図7Bに示すように、ステップS102のp型ZnO系半導体層形成工程は、ステップS102a、ステップS102b、ステップS102c、及びステップS102dの4工程を含む。
p型ZnO系半導体層形成工程(ステップS102)においては、まず、層上にCuが供給されたn型MgZn1−xO(0≦x≦0.6)単結晶層を形成する(ステップS102a)。次に、その上に、層上にGaが供給されたn型MgZn1−xO(0≦x≦0.6)単結晶層を形成する(ステップS102b)。ステップS102aとステップS102bを交互に繰り返して積層構造を形成する(ステップS102c)。そしてステップS102cで形成された積層構造をアニールして、CuとGaが共ドープされたp型MgZn1−xO(0≦x≦0.6)層を形成する(ステップS102d)。
より具体的には、図7Cに示すように、p型ZnO系半導体層形成工程(ステップS102)において、まず、Zn、O、及び、必要に応じてMgを供給し、n型MgZn1−xO(0≦x≦0.6)単結晶層を形成する(ステップS102a)。次に、ステップS102aで形成されたn型MgZn1−xO(0≦x≦0.6)単結晶層上に、Cu層を形成する(ステップS102a)。続いて、Zn、O、及び、必要に応じてMgを供給し、Cu層上にn型MgZn1−xO(0≦x≦0.6)単結晶層を形成する(ステップS102b)。更に、ステップS102bで形成されたn型MgZn1−xO(0≦x≦0.6)単結晶層上に、Ga層を形成する(ステップS102b)。ステップS102a〜ステップS102bを繰り返して積層構造を形成する(ステップS102c)。そしてステップS102cで形成された積層構造をアニールして、CuとGaが共ドープされたp型MgZn1−xO(0≦x≦0.6)層を形成する(ステップS102d)。
なお、実施例によるn型ZnO系半導体積層構造は、図7BのステップS102a〜ステップS102c(図7CのステップS102a〜ステップS102c)の工程により作製される。
図8A及び図8Bを参照し、ホモ構造のZnO系半導体発光素子を製造する第1実施例について詳細に説明する。図8Aは、第1実施例による製造方法で製造されるZnO系半導体発光素子の概略的な断面図である。
ZnO基板1上に、成長温度300℃で、ZnフラックスFZnを0.15nm/s(JZn=9.9×1014atoms/cms)とし、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccm(J=8.1×1014atoms/cms)として、厚さ30nmのZnOバッファ層2を成長させた。ZnOバッファ層2の結晶性及び表面平坦性の改善のため、900℃で10分間のアニールを行った。
ZnOバッファ層2上に、成長温度900℃で、Zn、O及びGaを同時に供給し、厚さ150nmのn型ZnO層3を成長させた(たとえば図7AのステップS101)。ZnフラックスFZnは0.15nm/s(JZn=9.9×1014atoms/cms)、Oラジカルビーム照射条件はRFパワー250W、O流量1.0sccm(J=4.0×1014atoms/cms)、Gaのセル温度は460℃とした。n型ZnO層3のGa濃度は、たとえば1.5×1018cm−3である。
n型ZnO層3上に、成長温度900℃、ZnフラックスFZnを0.03nm/s(JZn=2.0×1014atoms/cms)、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccm(J=8.1×1014atoms/cms)として、厚さ15nmのアンドープZnO活性層4を成長させた。
続いて、アンドープZnO活性層4上に、Cu、Ga共ドープp型ZnO層5を形成した(図7AのステップS102)。
まず、基板温度を250℃とし、サンプル1のアニール前試料作製時と等しいシャッタシーケンス(図2B参照)で、交互積層構造を形成した。具体的には、Zn及びOを供給してZnO単結晶層を成長させる工程(図7CのステップS102a)、ZnO単結晶層上にCuを供給する工程(図7CのステップS102a)、Zn及びOを供給してZnO単結晶層を成長させる工程(図7CのステップS102b)、ZnO単結晶層上にGaを供給する工程(図7CのステップS102b)をこの順に30回ずつ繰り返し、厚さ約100nmの交互積層構造を形成した(図7CのステップS102c)。1回当たりのZnO単結晶層成長期間は10秒、1回当たりのCu供給期間は100秒、1回当たりのGa供給期間は16秒である。ZnO単結晶層成長工程でのZnフラックスFZnは0.13nm/s(JZn=8.5×1014atoms/cms)、Oラジカルビーム照射条件はRFパワー300W、O流量2.0sccm(J=8.1×1014atoms/cms)とした。VI/IIフラックス比は0.95である。Cu供給工程でのCuのセル温度TCuは950℃とし、Ga供給工程でのGaのセル温度TGaは540℃とした。
図8Bは、交互積層構造5Aの概略的な断面図である。交互積層構造5Aは、ZnO単結晶層5a、Cu層5b、ZnO単結晶層5a、Ga層5cがこの順に積層された積層構造を有する。ZnO単結晶層5aの厚さは1.7nm程度、Cu層5bの厚さは1原子層以下、たとえば約1/3原子層、Ga層5cの厚さは1原子層以下、たとえば約1/5原子層である。ZnO単結晶層5a表面のCu被覆率は33%程度、Ga被覆率は20%程度となる。交互積層構造5Aはn型導電性を示し、ドナー濃度Nは、たとえば1.0×1021cm−3である。
次に、交互積層構造5Aをアニールして、CuとGaが共ドープされたp型ZnO単結晶層を形成した(図7CのステップS102d)。たとえば流量1L/minの酸素雰囲気中で600℃、10分間のアニールを実施することにより、Cu層5bのCu、及び、Ga層5cのGaをZnO単結晶層5a内に拡散させ、n型導電性を示す交互積層構造5Aを、p型導電性をもつZnO単結晶層(Cu、Ga共ドープp型ZnO層5)とすることができる。
その後、ZnO基板1の裏面にn側電極6nを形成した。Cu、Ga共ドープp型ZnO層5上にはp側電極6pを形成し、p側電極6p上にボンディング電極7を形成した。n側電極6nは、厚さ10nmのTi層上に厚さ500nmのAu層を積層して形成することができる。p側電極6pは、サイズ300μm□で厚さ1nmのNi層上に、厚さ10nmのAu層を積層して形成し、ボンディング電極7は、サイズ100μm□で厚さ500nmのAu層で形成した。このようにして、第1実施例による方法でZnO系半導体発光素子が作製された。
第1実施例による製造方法で製造されるZnO系半導体発光素子のCu、Ga共ドープp型ZnO層5は、CuとGaが共ドープされたp型ZnO系半導体単結晶層である。Cu濃度[Cu]は1.0×1019cm−3以上、1.0×1021cm−3未満、たとえば8.0×1020cm−3であり、層の厚さ方向にほぼ一定である。Ga濃度[Ga]は、たとえば5.0×1020cm−3であり、層の厚さ方向にほぼ一定である。第1実施例のCu、Ga共ドープp型ZnO層5においては、[Cu]/[Ga]は1.6である。
第1実施例による製造方法によれば、たとえばCuが高濃度に、かつ、CuとGaが厚さ方向の全体にわたって均一にドープされ、実用的なp型導電性を有するCu、Ga共ドープp型ZnO層5を製造することができる。
実験及び第1実施例では、Cu、Ga共ドープp型ZnO層を形成した(たとえば図7CのステップS102a〜ステップS102dのMgZn1−xO表記においてx=0)が、n型MgZn1−xO(0<x≦0.6)単結晶層成長工程、Cu付着工程、n型MgZn1−xO(0<x≦0.6)単結晶層成長工程、Ga付着工程をこの順に繰り返して形成した交互積層構造をアニールすることにより、p型導電性を示すCu、Ga共ドープMgZn1−xO(0<x≦0.6)単結晶層を得ることができる(たとえば図7CのステップS102a〜ステップS102dのMgZn1−xO表記においてx≠0)。
図9は、Cu、Ga共ドープp型MgZn1−xO(0<x≦0.6)単結晶層形成時、交互積層構造を作製する際のZnセル、Mgセル、Oセル、Cuセル、及びGaセルのシャッタシーケンスの一例を示すタイムチャートである。
交互積層構造の形成においては、(Q)Znセルシャッタ、Mgセルシャッタ、及びOセルシャッタを開き、CuセルシャッタとGaセルシャッタを閉じるMgZn1−xO(0<x≦0.6)単結晶層成長工程、(Q)Znセルシャッタ、Mgセルシャッタ、Oセルシャッタ、及びGaセルシャッタを閉じ、Cuセルシャッタを開くCu付着工程(Cu層形成工程)、(Q)Znセルシャッタ、Mgセルシャッタ、Oセルシャッタ、及びCuセルシャッタを閉じ、Gaセルシャッタを開くGa付着工程(Ga層形成工程)を、たとえば(Q)、(Q)、(Q)、(Q)の順に繰り返す。工程(Q)及び工程(Q)で、層上にCuが供給されたMgZn1−xO(0<x≦0.6)単結晶層が形成され、工程(Q)及び工程(Q)で、層上にGaが供給されたMgZn1−xO(0<x≦0.6)単結晶層が形成される。
本図に示す例では、MgZn1−xO(0<x≦0.6)単結晶層成長工程におけるZnセルシャッタの開期間が、Mgセルシャッタ、及びOセルシャッタの開期間を含むように設定されている。具体的には、MgセルシャッタとOセルシャッタの開閉は同時に行われ、Mgセルシャッタ、及びOセルシャッタの開期間の前後に、Znセルシャッタの開期間が延長される。
たとえば、Mgセルシャッタ、及びOセルシャッタの1回当たりの開期間は10秒である。Mgセルシャッタ、及びOセルシャッタの開期間の前後にZnセルシャッタの開期間を1秒ずつ延長し、Znセルシャッタの1回当たりの開期間を12秒とする。Znセルシャッタ、Mgセルシャッタ、及びOセルシャッタがすべて開状態となる10秒間が、1回当たりのMgZn1−xO(0<x≦0.6)単結晶層成長期間である。Cuセルシャッタの1回当たりの開期間は100秒、Gaセルシャッタの1回当たりの開期間は16秒とした。
OラジカルとCuを同時に供給しないことに加え、Cu付着工程の前に、MgZn1−xO(0<x≦0.6)単結晶層表面をZnで覆うことにより、OラジカルとCuの直接の反応が抑制される。
なお、ZnとともにMgを供給する場合、OラジカルとCuの反応を抑制するという観点からは、たとえばZnセルシャッタの開期間とMgセルシャッタの開期間の少なくとも一方が、Oセルシャッタの開期間を含むようにすればよいであろう。MgZn1−xO(0<x≦0.6)単結晶層のMg組成の制御性を高める観点からは、たとえばZnセルシャッタの開期間が、Mgセルシャッタ及びOセルシャッタの開期間を含むようにすればよいと考えられる。
次に、Cu、Ga共ドープp型MgZn1−xO(0<x≦0.6)単結晶層を備える、ダブルへテロ構造のZnO系半導体発光素子を製造する第2実施例及び第3実施例について説明する。
図10Aは、第2実施例による製造方法で製造されるZnO系半導体発光素子の概略的な断面図である。
ZnO基板11上にZn及びOを同時に供給し、たとえば厚さ30nmのZnOバッファ層12を成長させた。一例として、成長温度を300℃、ZnフラックスFZnを0.15nm/s、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccmとすることができる。ZnOバッファ層12の結晶性及び表面平坦性の改善のため、900℃で10分間のアニールを行った。
ZnOバッファ層12上にZn、O及びGaを同時に供給し、たとえば成長温度900℃で、厚さ150nmのn型ZnO層13を成長させた。ZnフラックスFZnを0.15nm/s、Oラジカルビーム照射条件をRFパワー250W、O流量1.0sccm、Gaセル温度を460℃とした。n型ZnO層13のGa濃度は、たとえば1.5×1018cm−3となる。
n型ZnO層13上にZn、Mg及びOを同時に供給し、たとえば厚さ30nmのn型MgZnO層14を成長させた。成長温度を900℃、ZnフラックスFZnを0.1nm/s、MgフラックスFMgを0.025nm/s、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccmとすることができる。n型MgZnO層14のMg組成は、たとえば0.3である。
n型MgZnO層14上にZn及びOを同時に供給し、たとえば成長温度900℃で、厚さ10nmのZnO活性層15を成長させた。ZnフラックスFZnを0.1nm/s、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccmとした。
なお、図10Bに示すように、活性層15として、単層のZnO層ではなく、MgZnO障壁層15bとZnO井戸層15wが交互に積層された量子井戸構造を採用することができる。
基板温度をたとえば250℃まで下げ、Zn、Mg及びOを供給してMgZnO単結晶層を成長させる工程(図7CのステップS102a)、MgZnO単結晶層上にCuを供給する工程(図7CのステップS102a)、Zn、Mg及びOを供給してMgZnO単結晶層を成長させる工程(図7CのステップS102b)、MgZnO単結晶層上にGaを供給する工程(図7CのステップS102b)をこの順に30回ずつ繰り返し、活性層15上に厚さ約100nmの交互積層構造を形成した(図7CのステップS102c)。交互積層構造形成に当たってのZnセル、Mgセル、Oセル、Cuセル、及びGaセルのシャッタシーケンスは、たとえば図9に示すそれと同様である。
たとえば、1回当たりのMgZnO単結晶層成長工程での成長期間を10秒とし、1回当たりのCu供給工程におけるCu供給期間を100秒、1回当たりのGa供給工程におけるGa供給期間を16秒とした。MgZnO単結晶層成長工程でのZnフラックスFZnは0.13nm/s、MgフラックスFMgは0.03nm/s、Oラジカルビーム照射条件はRFパワー300W、O流量2.0sccmである。VI/IIフラックス比は0.82となる。Cu供給工程でのCuのセル温度TCuは950℃とし、Ga供給工程でのGaのセル温度TGaは540℃とした。
図10Cは、交互積層構造16Aの概略的な断面図である。交互積層構造16Aは、MgZnO単結晶層16a、Cu層16b、MgZnO単結晶層16a、Ga層16cがこの順に積層された積層構造を有する。MgZnO単結晶層16aの厚さは1.7nm程度、Cu層16bの厚さは1原子層以下、たとえば約1/3原子層、Ga層16cの厚さは1原子層以下、たとえば約1/5原子層である。MgZnO単結晶層16a表面のCu被覆率は33%程度、Ga被覆率は20%程度となる。交互積層構造16Aはn型導電性を示し、ドナー濃度Nは、たとえば8×1020cm−3である。
次に、交互積層構造16Aをアニールし、活性層15上にCuとGaが共ドープされたp型MgZnO層16を形成した。たとえば流量1L/minの酸素雰囲気中で600℃、10分間のアニールを実施することにより、Cu層16bのCu、及び、Ga層16cのGaをMgZnO単結晶層16a内に拡散させ、n型導電性を示す交互積層構造16Aを、p型導電性をもつ単結晶層(Cu、Ga共ドープp型MgZnO層16)とすることができる。なお、Cu、Ga共ドープp型MgZnO層16のMg組成は、たとえば0.3である。
その後、ZnO基板11の裏面にn側電極17nを形成し、Cu、Ga共ドープp型MgZnO層16上にp側電極17pを形成する。また、p側電極17p上にボンディング電極18を形成する。たとえばn側電極17nは、厚さ10nmのTi層上に厚さ500nmのAu層を積層して形成し、p側電極17pは、大きさ300μm□で厚さ1nmのNi層上に、厚さ10nmのAu層を積層して形成することができる。ボンディング電極18は、大きさ100μm□で厚さ500nmのAu層で形成する。このようにして、第2実施例による方法でZnO系半導体発光素子が作製される。
第2実施例においてはZnO基板11を用いたが、MgZnO基板、GaN基板、SiC基板、Ga基板等の導電性基板を使用することが可能である。
第2実施例による製造方法で製造されるZnO系半導体発光素子のCu、Ga共ドープp型MgZnO層16は、CuとGaが共ドープされたp型ZnO系半導体単結晶層である。Cu濃度[Cu]は1.0×1019cm−3以上、1.0×1021cm−3未満、たとえば8.0×1020cm−3であり、層の厚さ方向にほぼ一定である。Ga濃度[Ga]は、たとえば5.0×1020cm−3であり、層の厚さ方向にほぼ一定である。第2実施例のCu、Ga共ドープp型MgZnO層16においては、[Cu]/[Ga]は1.6である。
第2実施例による製造方法によれば、たとえばCuが高濃度に、かつ、CuとGaが厚さ方向の全体にわたって均一にドープされ、実用的なp型導電性を有するCu、Ga共ドープp型MgZnO層16を製造することができる。
図11は、第3実施例による製造方法で製造されるZnO系半導体発光素子の概略的な断面図である。第1及び第2実施例においては導電性基板上に結晶成長し、層形成を行ったが、第3実施例では絶縁性基板上に結晶成長する。
絶縁性基板であるc面サファイア基板21上にMg及びOを同時に供給し、たとえば厚さ10nmのMgOバッファ層22を成長させる。一例として、成長温度を650℃、MgフラックスFMgを0.05nm/s、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccmとすることができる。MgOバッファ層22は、その上のZnO系半導体がZn面を表面として成長するように制御する極性制御層として機能する。
MgOバッファ層22上に、たとえば成長温度300℃、ZnフラックスFZnを0.15nm/s、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccmとして、Zn及びOを同時に供給し、厚さ30nmのZnOバッファ層23を成長させる。ZnOバッファ層23はZn面で成長する。ZnOバッファ層23の結晶性及び表面平坦性の改善のため、900℃で30分間のアニールを行う。
ZnOバッファ層23上にZn、O及びGaを同時に供給し、たとえば厚さ1.5μmのn型ZnO層24を成長させる。一例として成長温度を900℃、ZnフラックスFZnを0.05nm/s、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccm、Gaのセル温度を480℃とする。
n型ZnO層24上に、Zn、Mg及びOを同時に供給し、たとえば厚さ30nmのn型MgZnO層25を成長させる。成長温度を900℃、ZnフラックスFZnを0.1nm/s、MgフラックスFMgを0.025nm/s、Oラジカルビーム照射条件をRFパワー300W、O流量2.0sccmとすることができる。n型MgZnO層25のMg組成は、たとえば0.3である。
n型MgZnO層25上に、たとえば厚さ10nmのZnO活性層26を成長させる。成長条件は、第2実施例における活性層15の場合と等しくすることができる。単層のZnO層のかわりに、量子井戸構造を採用してもよい。
活性層26上にCu、Ga共ドープp型MgZnO層27を形成する。形成方法は、たとえば第2実施例におけるCu、Ga共ドープp型MgZnO層16のそれと等しい。
第3実施例のc面サファイア基板21は絶縁性基板であるため、基板21裏面側にn側電極を取ることができない。そこでCu、Ga共ドープp型MgZnO層27の上面から、n型ZnO層24が露出するまでエッチングを行い、露出したn型ZnO層24上にn側電極28nを形成する。また、Cu、Ga共ドープp型MgZnO層27上にp側電極28pを形成し、p側電極28p上にボンディング電極29を形成する。
n側電極28nは、厚さ10nmのTi層上に厚さ500nmのAu層を積層して形成し、p側電極28pは、厚さ0.5nmのNi層上に厚さ10nmのAu層を積層して形成することができる。ボンディング電極29は、厚さ500nmのAu層で形成する。このようにして、第3実施例による方法でZnO系半導体発光素子が作製される。
第3実施例によるZnO系半導体発光素子のCu、Ga共ドープp型MgZnO層27は、第2実施例のCu、Ga共ドープp型MgZnO層16と同様の性質を有するp型ZnO系半導体単結晶層である。
以上、実験及び実施例に沿って本発明を説明したが、本発明はこれらに制限されない。
たとえば実施例による製造方法においては、酸素源としてOラジカルを用いたが、オゾンやHO、アルコールなどの極性酸化剤等、酸化力の強い他のガスを使用することができる。
また、実施例による製造方法においては、アニールを酸素雰囲気中で行ったが、大気中等で行ってもよい。
更に、実験及び実施例では、層上にCuが供給されたn型MgZn1−xO(0≦x≦0.6)単結晶層と、層上にGaが供給されたn型MgZn1−xO(0≦x≦0.6)単結晶層とが交互に積層された構造をアニールし、p型導電性を示すCu、Ga共ドープMgZn1−xO(0≦x≦0.6)単結晶層を形成(p型化)した。Cu(IB族元素)とGa(IIIB族元素)を含む交互積層構造がアニールされることで、CuがVIB族元素であるOと1価(Cu)の状態で結合しやすくなり、アクセプタとして機能する1価のCuが2価のCu2+より生じやすくなる結果、交互積層構造がp型化すると考えられる。したがって、Cuにかえて、またはCuとともに、Cuと同様に複数の価数を形成しうるIB族元素であるAgを用いることができる。また、Gaに限らず、Gaと同じくIIIB族元素であるB、Al及びInを使用することができる。使用されるIIIB族元素は、B、Ga、Al及びInからなる群より選択される一以上のIIIB族元素であればよい。
その他、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
なお、先に行った第1の出願で本願発明者らが提案した、(α)MgZn1−xO(0≦x≦0.6)単結晶膜を形成する工程と、(β)MgZn1−xO(0≦x≦0.6)単結晶膜上にCuを供給する工程を交互に繰り返す、Cuドープp型MgZn1−xO(0≦x≦0.6)層の製造方法においては、以下の(1)〜(3)等の知見が得られている。
(1)結晶性の悪化を防止するために、1回の工程(α)当たり、厚さ10nm以下のMgZn1−xO(0≦x≦0.6)単結晶膜を形成することが望ましい。
(2)高い平坦性、良好な結晶性を得るために、工程(α)においては、ストイキオメトリ条件(VI/IIフラックス比が1)またはII族リッチ条件(VI/IIフラックス比が1未満)でMgZn1−xO(0≦x≦0.6)単結晶膜を形成することが望ましく、VI/IIフラックス比が0.5以上で1より小さいという条件のもとで形成することが一層望ましい。
(3)良好な結晶成長を実現するために、工程(α)において、成長温度(基板温度)を200℃程度以上350℃以下としてMgZn1−xO(0≦x≦0.6)単結晶膜を成長させることが望ましい。
本願において、たとえば(a)第1のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、(b)前記第1のMgZn1−xO(0≦x≦0.6)単結晶層上に、Cuまたは/及びAgであるIB族元素を含むIB族元素層を形成する工程と、(c)前記IB族元素層上に、第2のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、(d)前記第2のMgZn1−xO(0≦x≦0.6)単結晶層上に、B、Ga、Al、及びInからなる群より選択される一以上のIIIB族元素を含むIIIB族元素層を形成する工程と、(e)前記工程(a)〜(d)を繰り返して積層構造を形成する工程と、(f)前記積層構造をアニールして、前記IB族元素と前記IIIB族元素が共ドープされたp型MgZn1−xO(0≦x≦0.6)層を形成する工程とを用いてp型ZnO系半導体層を製造する場合にも、上記(1)〜(3)に示す条件で工程(a)及び(c)を実施することにより、平坦性が高く、良好な結晶性を有するp型MgZn1−xO(0≦x≦0.6)層を得ることが可能である。
図12は、第1実施例〜第3実施例の工程(a)及び(c)(第1、第2のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程)における成膜条件をまとめた表である。
本表に示されるように、第1実施例〜第3実施例のすべてにおいて、上記(1)〜(3)に示す条件は満たされている。このため実施例による製造方法で製造されたp型MgZn1−xO(0≦x≦0.6)層は、高い平坦性と良好な結晶性を備えるp型ZnO系半導体層である。
なお、本願発明者らが原子間力顕微鏡(atomic force microscope; AFM)の像等により表面観察を行った結果、p型MgZn1−xO(0≦x≦0.6)層の表面は、交互積層構造の表面より平坦であることがわかった。アニール処理を行うことにより、平坦性の向上されたp型MgZn1−xO層が製造される。
実施例による製造方法で製造されるp型ZnO系半導体層は、たとえば短波長(紫外〜青色波長領域)の光を発光する発光ダイオード(LED)やレーザダイオード(LD)に利用でき、また、これらの応用製品(各種インジケータ、LEDディスプレイ、CV/DVD用光源等)に利用可能である。更に、白色LEDやその応用製品(照明器具、各種インジケータ、ディスプレイ、各種表示器のバックライト等)に利用できる。また、紫外センサに利用可能である。
1 ZnO基板
2 ZnOバッファ層
3 n型ZnO層
4 アンドープZnO活性層
5 Cu、Ga共ドープp型ZnO層
5A 交互積層構造
5a ZnO単結晶層
5b Cu層
5c Ga層
6n n側電極
6p p側電極
7 ボンディング電極
11 ZnO基板
12 ZnOバッファ層
13 n型ZnO層
14 n型MgZnO層
15 活性層
15b MgZnO障壁層
15w ZnO井戸層
16 Cu、Ga共ドープp型MgZnO層
16A 交互積層構造
16a MgZnO単結晶層
16b Cu層
16c Ga層
17n n側電極
17p p側電極
18 ボンディング電極
21 c面サファイア基板
22 MgOバッファ層
23 ZnOバッファ層
24 n型ZnO層
25 n型MgZnO層
26 活性層
27 Cu、Ga共ドープp型MgZnO層
28n n側電極
28p p側電極
29 ボンディング電極
51 ZnO基板
52 ZnOバッファ層
53 アンドープZnO層
54 交互積層構造
54a ZnO単結晶層
54b Cu層
54c Ga層
71 真空チャンバ
72 Znソースガン
73 Oソースガン
74 Mgソースガン
75 Cuソースガン
76 Gaソースガン
77 ステージ
78 基板
79 膜厚計
80 RHEED用ガン
81 スクリーン

Claims (7)

  1. (a)第1のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、
    (b)前記第1のMgZn1−xO(0≦x≦0.6)単結晶層上に、Cuまたは/及びAgであるIB族元素を含むIB族元素層を形成する工程と、
    (c)前記IB族元素層上に、第2のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、
    (d)前記第2のMgZn1−xO(0≦x≦0.6)単結晶層上に、B、Ga、Al、及びInからなる群より選択される一以上のIIIB族元素を含むIIIB族元素層を形成する工程と、
    (e)前記工程(a)〜(d)を繰り返して積層構造を形成する工程と、
    (f)前記積層構造をアニールして、前記IB族元素と前記IIIB族元素が共ドープされたp型MgZn1−xO(0≦x≦0.6)層を形成する工程と
    を有するp型ZnO系半導体層の製造方法。
  2. 前記工程(a)及び(c)を、MBE法により、350℃以下の基板温度で実施する請求項1に記載のp型ZnO系半導体層の製造方法。
  3. 前記工程(a)及び(c)を、VI/IIフラックス比が0.5以上1以下という条件のもとで実施する請求項1または2に記載のp型ZnO系半導体層の製造方法。
  4. 基板上方に、n型ZnO系半導体層を形成する工程と、
    前記n型ZnO系半導体層上方に、p型ZnO系半導体層を形成する工程と
    を有し、
    前記p型ZnO系半導体層を形成する工程は、
    (a)第1のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、
    (b)前記第1のMgZn1−xO(0≦x≦0.6)単結晶層上に、Cuまたは/及びAgであるIB族元素を含むIB族元素層を形成する工程と、
    (c)前記IB族元素層上に、第2のMgZn1−xO(0≦x≦0.6)単結晶層を形成する工程と、
    (d)前記第2のMgZn1−xO(0≦x≦0.6)単結晶層上に、B、Ga、Al、及びInからなる群より選択される一以上のIIIB族元素を含むIIIB族元素層を形成する工程と、
    (e)前記工程(a)〜(d)を繰り返して積層構造を形成する工程と、
    (f)前記積層構造をアニールして、前記IB族元素と前記IIIB族元素が共ドープされたp型MgZn1−xO(0≦x≦0.6)層を形成する工程と
    を備えるZnO系半導体素子の製造方法。
  5. 前記工程(a)及び(c)を、MBE法により、350℃以下の基板温度で実施する請求項4に記載のZnO系半導体素子の製造方法。
  6. 前記工程(a)及び(c)を、VI/IIフラックス比が0.5以上1以下という条件のもとで実施する請求項4または5に記載のZnO系半導体素子の製造方法。
  7. 第1のMgZn1−xO(0≦x≦0.6)単結晶層と、
    前記第1のMgZn1−xO(0≦x≦0.6)単結晶層上に形成された、Cuまたは/及びAgであるIB族元素を含むIB族元素層と、
    前記IB族元素層上に形成された、第2のMgZn1−xO(0≦x≦0.6)単結晶層と、
    前記第2のMgZn1−xO(0≦x≦0.6)単結晶層上に形成された、B、Ga、Al、及びInからなる群より選択される一以上のIIIB族元素を含むIIIB族元素層と
    を有し、
    前記第1のMgZn1−xO(0≦x≦0.6)単結晶層、前記IB族元素層、前記第2のMgZn1−xO(0≦x≦0.6)単結晶層、及び、前記IIIB族元素層が、この順に繰り返して積層されたn型ZnO系半導体積層構造。
JP2013085380A 2013-04-16 2013-04-16 p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造 Active JP6100590B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085380A JP6100590B2 (ja) 2013-04-16 2013-04-16 p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085380A JP6100590B2 (ja) 2013-04-16 2013-04-16 p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造

Publications (2)

Publication Number Publication Date
JP2014207396A true JP2014207396A (ja) 2014-10-30
JP6100590B2 JP6100590B2 (ja) 2017-03-22

Family

ID=52120720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085380A Active JP6100590B2 (ja) 2013-04-16 2013-04-16 p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造

Country Status (1)

Country Link
JP (1) JP6100590B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073041A (ja) * 2013-10-04 2015-04-16 スタンレー電気株式会社 p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
WO2018011648A1 (ja) * 2016-07-11 2018-01-18 株式会社半導体エネルギー研究所 金属酸化物、および当該金属酸化物を有する半導体装置
CN109207925A (zh) * 2018-11-12 2019-01-15 河北北方学院 用于高效薄膜太阳电池的氧化锌透明导电薄膜的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104418748B (zh) * 2013-08-22 2016-03-23 中国科学院大连化学物理研究所 一种邻二甲苯液相氧化与酯化耦合制备邻苯二甲酸二酯的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048698A (ja) * 1999-08-13 2001-02-20 Japan Science & Technology Corp 低抵抗p型単結晶酸化亜鉛およびその製造方法
JP2003115609A (ja) * 2001-10-03 2003-04-18 Shin Etsu Handotai Co Ltd 発光素子及びその製造方法
JP2004193270A (ja) * 2002-12-10 2004-07-08 Sharp Corp 酸化物半導体発光素子
JP2004221132A (ja) * 2003-01-09 2004-08-05 Sharp Corp 酸化物半導体発光素子
JP2004296796A (ja) * 2003-03-27 2004-10-21 Shin Etsu Handotai Co Ltd 発光素子および発光素子の製造方法
JP2007128936A (ja) * 2005-11-01 2007-05-24 Stanley Electric Co Ltd ZnO結晶またはZnO系半導体化合物結晶の製造方法、及びZnO系発光素子の製造方法
JP2009021540A (ja) * 2007-06-13 2009-01-29 Rohm Co Ltd ZnO系薄膜及びZnO系半導体素子
JP2009506529A (ja) * 2005-08-23 2009-02-12 コリア インスティテュート オブ サイエンス アンド テクノロジー 酸化亜鉛を用いたp型−真性−n型構造の発光ダイオード製造方法
JP2009256142A (ja) * 2008-04-17 2009-11-05 Kyushu Institute Of Technology p型単結晶ZnO
US7723154B1 (en) * 2005-10-19 2010-05-25 North Carolina State University Methods of forming zinc oxide based II-VI compound semiconductor layers with shallow acceptor conductivities
JP2011134787A (ja) * 2009-12-22 2011-07-07 Stanley Electric Co Ltd ZnO系半導体装置及びその製造方法
JP2012164955A (ja) * 2011-01-20 2012-08-30 Stanley Electric Co Ltd ZnO系半導体層の製造方法及びZnO系半導体発光素子の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048698A (ja) * 1999-08-13 2001-02-20 Japan Science & Technology Corp 低抵抗p型単結晶酸化亜鉛およびその製造方法
JP2003115609A (ja) * 2001-10-03 2003-04-18 Shin Etsu Handotai Co Ltd 発光素子及びその製造方法
JP2004193270A (ja) * 2002-12-10 2004-07-08 Sharp Corp 酸化物半導体発光素子
JP2004221132A (ja) * 2003-01-09 2004-08-05 Sharp Corp 酸化物半導体発光素子
JP2004296796A (ja) * 2003-03-27 2004-10-21 Shin Etsu Handotai Co Ltd 発光素子および発光素子の製造方法
JP2009506529A (ja) * 2005-08-23 2009-02-12 コリア インスティテュート オブ サイエンス アンド テクノロジー 酸化亜鉛を用いたp型−真性−n型構造の発光ダイオード製造方法
US7723154B1 (en) * 2005-10-19 2010-05-25 North Carolina State University Methods of forming zinc oxide based II-VI compound semiconductor layers with shallow acceptor conductivities
JP2007128936A (ja) * 2005-11-01 2007-05-24 Stanley Electric Co Ltd ZnO結晶またはZnO系半導体化合物結晶の製造方法、及びZnO系発光素子の製造方法
JP2009021540A (ja) * 2007-06-13 2009-01-29 Rohm Co Ltd ZnO系薄膜及びZnO系半導体素子
JP2009256142A (ja) * 2008-04-17 2009-11-05 Kyushu Institute Of Technology p型単結晶ZnO
JP2011134787A (ja) * 2009-12-22 2011-07-07 Stanley Electric Co Ltd ZnO系半導体装置及びその製造方法
JP2012164955A (ja) * 2011-01-20 2012-08-30 Stanley Electric Co Ltd ZnO系半導体層の製造方法及びZnO系半導体発光素子の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073041A (ja) * 2013-10-04 2015-04-16 スタンレー電気株式会社 p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
WO2018011648A1 (ja) * 2016-07-11 2018-01-18 株式会社半導体エネルギー研究所 金属酸化物、および当該金属酸化物を有する半導体装置
CN109207925A (zh) * 2018-11-12 2019-01-15 河北北方学院 用于高效薄膜太阳电池的氧化锌透明导电薄膜的制备方法
CN109207925B (zh) * 2018-11-12 2020-12-29 河北北方学院 用于高效薄膜太阳电池的氧化锌透明导电薄膜的制备方法

Also Published As

Publication number Publication date
JP6100590B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6092586B2 (ja) ZnO系半導体層とその製造方法、及びZnO系半導体発光素子の製造方法
JP6100590B2 (ja) p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造
JP2009059813A (ja) ZnO系化合物半導体層の製造方法
JP6017243B2 (ja) ZnO系半導体素子、及び、ZnO系半導体素子の製造方法
JP6100591B2 (ja) p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造
JP6155118B2 (ja) p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造
JP6116989B2 (ja) Cuドープp型ZnO系半導体結晶層とその製造方法
JP6219089B2 (ja) p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
JP6387264B2 (ja) p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
JP6092657B2 (ja) p型ZnO系半導体層の製造方法、ZnO系半導体素子の製造方法、及び、n型ZnO系半導体積層構造
JP5912968B2 (ja) p型ZnO系半導体膜の製造方法、及び、ZnO系半導体素子の製造方法
JP6231841B2 (ja) p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
JP6334929B2 (ja) p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
JP5952120B2 (ja) p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
JP6092648B2 (ja) p型ZnO系半導体単結晶層、及び、ZnO系半導体素子
JP2014027134A (ja) p型ZnO系半導体単結晶層、及び、ZnO系半導体素子
JP6419472B2 (ja) p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
JP2015115566A (ja) p型ZnO系半導体層、ZnO系半導体素子、p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
JP2014027135A (ja) p型ZnO系半導体単結晶層、及び、ZnO系半導体素子
JP6267973B2 (ja) Agドープp型ZnO系半導体結晶層の製造方法
JP6470061B2 (ja) p型ZnO系半導体構造の製造方法、及び、ZnO系半導体素子の製造方法
JP2016033934A (ja) p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
JP2016033935A (ja) p型ZnO系半導体層の製造方法、及び、ZnO系半導体素子の製造方法
JP2013084859A (ja) ZnO系半導体層の製造方法、ZnO系半導体発光素子の製造方法、及びZnO系半導体発光素子
JP6572089B2 (ja) ZnO系半導体構造およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170223

R150 Certificate of patent or registration of utility model

Ref document number: 6100590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250