JP2014186777A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2014186777A
JP2014186777A JP2013061125A JP2013061125A JP2014186777A JP 2014186777 A JP2014186777 A JP 2014186777A JP 2013061125 A JP2013061125 A JP 2013061125A JP 2013061125 A JP2013061125 A JP 2013061125A JP 2014186777 A JP2014186777 A JP 2014186777A
Authority
JP
Japan
Prior art keywords
potential
value
transistor
memory cell
threshold distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013061125A
Other languages
English (en)
Inventor
Katsumi Abe
克巳 阿部
Masahiro Yoshihara
正浩 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013061125A priority Critical patent/JP2014186777A/ja
Priority to TW102130321A priority patent/TWI534813B/zh
Priority to CN201310399688.0A priority patent/CN104064215A/zh
Priority to US14/022,729 priority patent/US20140286093A1/en
Publication of JP2014186777A publication Critical patent/JP2014186777A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • G11C16/3427Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】動作安定性が高い半導体記憶装置を提供する。
【解決手段】実施形態に係る半導体記憶装置は、3水準以上の値を保持可能なメモリセルトランジスタを含み、一端がビット線に、他端がソース線に接続されるNANDストリングと、前記メモリセルトランジスタに保持された値を読み出すことが可能なセンスアンプと、を備える。前記メモリセルトランジスタに保持された値が、閾値分布が最も低い値かそれ以外の値かを識別するときは、前記ソース線の電位を第1の電位とする。前記メモリセルトランジスタに保持された値が、閾値分布が最も高い値かそれ以外の値かを識別するときは、前記ソース線の電位を前記第1の電位よりも低い第2の電位とし、前記値が前記最も高い値以外の値であると識別されたときは、前記ビット線の電位を前記第2の電位とする。
【選択図】図2

Description

実施形態は、半導体記憶装置に関する。
近年のNANDフラッシュメモリは、例えば、1つのメモリセルに4水準の値を書き込み、2ビットのデータを記憶する。
特開2011−141944号公報
本実施形態は、動作安定性が高い半導体記憶装置を提供する。
実施形態に係る半導体記憶装置は、3水準以上の値を保持可能なメモリセルトランジスタを含み、一端がビット線に、他端がソース線に接続されるNANDストリングと、前記メモリセルトランジスタに保持された値を読み出すことが可能なセンスアンプと、を備える。前記メモリセルトランジスタに保持された値が、閾値分布が最も低い値かそれ以外の値かを識別するときは、前記ソース線の電位を第1の電位とする。前記メモリセルトランジスタに保持された値が、閾値分布が最も高い値かそれ以外の値かを識別するときは、前記ソース線の電位を前記第1の電位よりも低い第2の電位とし、前記値が前記最も高い値以外の値であると識別されたときは、前記ビット線の電位を前記第2の電位とする。
実施形態に係る半導体記憶装置を例示する回路図である。 横軸に閾値電圧をとり、縦軸に頻度をとって、実施形態における各メモリセルトランジスタの閾値分布を例示するグラフ図である。 (a)〜(c)は、メモリセルトランジスタに印加される電圧を例示する回路図であり、(a)はRead−Aを示し、(b)はRead−Bを示し、(c)はRead−Cを示す。 横軸に時間をとり、縦軸に各電位をとって、実施形態に係る半導体記憶装置の読出動作を例示するタイミングチャート図である。 (a)及び(b)は、n形トランジスタNT3に印加される電圧を例示する回路図であり、(a)はセルソース電位が電位V2である場合を示し、(b)はセルソース電位が電位V1である場合を示す。 横軸に閾値電圧をとり、縦軸に頻度をとって、第1の比較例における各メモリセルトランジスタの閾値分布を例示するグラフ図である。 横軸に閾値電圧をとり、縦軸に頻度をとって、第2の比較例における各メモリセルトランジスタの閾値分布を例示するグラフ図である。 横軸に閾値電圧をとり、縦軸に頻度をとって、第3の比較例における各メモリセルトランジスタの閾値分布を例示するグラフ図である。
以下、図面を参照しつつ、本発明の実施形態について説明する。
本実施形態に係る半導体記憶装置は、NANDフラッシュメモリである。
図1に示すように、本実施形態に係る半導体記憶装置1においては、それぞれ複数のNANDストリング10及びセンスアンプ20が設けられている。なお、図1においては、NANDストリング10及びセンスアンプ20は各1つのみ示している。センスアンプ20からはビット線BLが引き出されている。
先ず、NANDストリング10の構成について説明する。
NANDストリング10においては、複数個のメモリセルトランジスタ11が相互に直列に接続されており、その両端には、選択トランジスタ12がそれぞれ接続されている。メモリセルトランジスタ11は電荷蓄積層を備えたトランジスタであり、例えば、n形の浮遊ゲートトランジスタ又はMONOS(metal-oxide-nitride-oxide-silicon)構造のトランジスタである。選択トランジスタ12はn形のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金属酸化物半導体電界効果トランジスタ)である。NANDストリング10の一方の端部はビット線BLに接続されており、他方の端部にはセルソース電位CELSRCが印加される。メモリセルトランジスタ11のゲートにはワード線WLが接続されており、ビット線BL側の選択トランジスタ12のゲートには電位SGDが印加され、セルソース側の選択トランジスタ12のゲートには電位SGSが印加される。なお、本明細書において「接続」とは、対象物との間で電流が流れうる関係にあることを意味し、対象物に直接接触している場合と、対象物に導電体又は半導体を介して間接的に連結されている場合の双方を含む。
次に、センスアンプ20の構成について説明する。
センスアンプ20においては、電源電位VDDからセルソース電位CELSRCに向かって、p形トランジスタPT1、n形トランジスタNT1、n形トランジスタNT2、n形トランジスタNT3がこの順に直列に接続されている。これらのトランジスタは全てMOSFETである。後述する他のトランジスタも同様である。また、セルソース電位CELSRCは接地電位GND以上の電位であり、電源電位VDDはセルソース電位CELSRCよりも高い。そして、n形トランジスタNT2とn形トランジスタNT3との接続点N1にはn形トランジスタNT4の一端が接続されており、n形トランジスタNT4の他端にはビット線BLが接続されている。
p形トランジスタPT1のゲートには電位INVが印加される。後述するように、電位INVはデータラッチAに保持される電位である。n形トランジスタNT1のゲートには電位HLLが印加され、n形トランジスタNT2には電位XXLが印加され、n形トランジスタNT3のゲートには電位INVが印加される。また、n形トランジスタNT4のゲートには電位BLCが印加される。
また、センスアンプ20には、キャパシタCPが設けられている。キャパシタCPの一端は、n形トランジスタNT1とn形トランジスタNT2との接続点N2に接続され、キャパシタCPの他端には接地電位GNDが印加される。
更に、センスアンプ20においては、電源電位VDDから接続点N3に向かって、p形トランジスタPT2及びp形トランジスタPT3がこの順に直列に接続されている。p形トランジスタPT2のゲートには電位STBnが印加され、p形トランジスタPT3のゲートには接続点N2の電位SENが印加される。
接続点N3から接地電位GNDに向かって、p形トランジスタPT4及びn形トランジスタNT5がこの順に直列に接続されており、p形トランジスタPT4とn形トランジスタNT5との接続点N4は、データラッチAの一部となっている。データラッチAは、2つのインバータIV1及びIV2がループ状に接続されて構成されている。すなわち、接続点N4にはインバータIV1の入力端子が接続されており、インバータIV1の出力端子はインバータIN2の入力端子に接続されており、インバータIV2の出力端子は接続点N4に接続されている。また、p形トランジスタPT4のゲートには電位SWAが印加され、n形トランジスタNT5のゲートには電位RSTが印加される。そして、接続点N4の電位が上述の電位INVとなる。
同様に、接続点N3から接地電位GNDに向かって、p形トランジスタPT5及びn形トランジスタNT6がこの順に直列に接続されており、p形トランジスタPT5とn形トランジスタNT6との接続点N5は、データラッチBの一部となっている。データラッチBは、2つのインバータIV3及びIV4がループ状に接続されて構成されている。すなわち、接続点N5にはインバータIV3の入力端子が接続されており、インバータIV3の出力端子はインバータIN4の入力端子に接続されており、インバータIV4の出力端子は接続点N5に接続されている。また、p形トランジスタPT5のゲートには電位SWBが印加され、n形トランジスタNT6のゲートには電位RSTが印加される。なお、接続点N5の電位は、電位INVとはならない。データラッチBは、例えば、センス結果を一時的に退避させたり、データラッチAに保持されたデータと演算したりするために設けられている予備のラッチ回路であってもよい。
このように、接続点N3と接地電位GNDとの間には、データラッチA及びデータラッチBが相互に並列に接続されており、接続点N3とデータラッチAとの接続はp形トランジスタPT4によって制御され、接続点N3とデータラッチBとの接続はp形トランジスタPT5によって制御される。また、接続点N3の電位はp形トランジスタPT3によって制御され、p形トランジスタPT3の導通は接続点N2の電位SENによって決定される。
次に、本実施形態に係る半導体記憶装置の動作について説明する。
図2に示すように、メモリセルトランジスタ11においては、閾値電圧はメモリセルトランジスタ11に記憶させる4水準の値に対応して、4つの閾値分布を持つ。すなわち、各メモリセルトランジスタの閾値電圧の分布(以下、「閾値分布」という)は、消去状態の閾値分布Eの他に、閾値電圧が低い方から、A、B、Cの3つの閾値分布を持っている。そして、メモリセルトランジスタ11に書き込まれた値を読み出す際には、ソース・ゲート間電圧が隣り合う2つの閾値分布間の谷間の値となるような読出電位をメモリセルトランジスタ11のソース・ゲート間に印加し、そのメモリセルトランジスタ11が導通すれば、閾値は読出電位よりも低いと判断し、導通しなければ、閾値は読出電位よりも高いと判断する。
より具体的には、あるメモリセルトランジスタ11に書き込まれた値が、閾値分布Eに対応する値であるか、閾値分布A、B又はCに対応する値であるかを識別するときは、メモリセルトランジスタ11のゲートに、ソース・ゲート間電圧が閾値分布Eと閾値分布Aとの間の電圧となるような読出電位ARを印加する。そして、このメモリセルトランジスタ11が導通すれば、閾値は閾値分布Eに属し、導通しなければ、閾値は閾値分布A、B又はCに属すると判断する。以後、この動作を「Read−A」という。
また、あるメモリセルトランジスタ11に書き込まれた値が、閾値分布E又はAに対応する値であるか、閾値分布B又はCに対応する値であるかを識別するときは、メモリセルトランジスタ11のゲートに、ソース・ゲート間電圧が閾値分布Aと閾値分布Bとの間の電圧となるような読出電位BRを印加する。そして、このメモリセルトランジスタ11が導通すれば、閾値は閾値分布E又はAに属し、導通しなければ、閾値は閾値分布B又はCに属すると判断する。以後、この動作を「Read−B」という。
更に、あるメモリセルトランジスタ11に書き込まれた値が、閾値分布E、A又はBに対応する値であるか、閾値分布Cに対応する値であるかを識別するときは、メモリセルトランジスタ11のゲートに、ソース・ゲート間電圧が閾値分布Bと閾値分布Cとの間の電圧となるような読出電位CRを印加する。そして、このメモリセルトランジスタ11が導通すれば、閾値は閾値分布E、A又はBに属し、導通しなければ、閾値は閾値分布Cに属すると判断する。以後、この動作を「Read−C」という。
本実施形態においては、Read−Aにおけるメモリセルトランジスタ11のソース・ゲート間電圧(以下、「読出電圧VRA」という)は負電圧であり、Read−Bにおけるメモリセルトランジスタ11のソース・ゲート間電圧(以下、「読出電圧VRB」という)、及び、Read−Cにおけるメモリセルトランジスタ11のソース・ゲート間電圧(以下、「読出電圧VRC」という)は正電圧である。一例では、読出電圧VRAは−1.2V(ボルト)であり、読出電圧VRBは+0.8Vであり、読出電圧VRCは+2.8Vである。そして、読出電圧VRAを印加するときは、セルソース電位CELSRC及びバックゲート電位CPWELLを正の電位V1(第1の電位)とし、読出電圧VRB及びVRCを印加するときは、セルソース電位CELSRC及びバックゲート電位CPWELLを接地電位(0V)以上であって電位V1よりも低い電位V2(第2の電位)とする。
具体的には、図2及び図3(a)に示すように、メモリセルトランジスタ11に読出電圧VRAを印加するときは、セルソース電位CELSRCを電位V1、例えば+1.2Vとし、バックゲート電位CPWELLを+1.2Vとし、ビット線BLの電位を(VBL+1.2V)とし、ワード線WLに印加する読出電位ARを0Vとする。これにより、メモリセルトランジスタ11のゲート電位がソース電位に対して相対的に低くなり、読出電位ARを負電位とすることなく、読出電圧VRAを−1.2Vとすることができる。また、ビット線BLとセルソース間の電圧をVBLとすることができる。
これに対して、図2及び図3(b)に示すように、メモリセルトランジスタ11に読出電圧VRBを印加するときは、セルソース電位CELSRCを電位V2、例えば0Vとし、バックゲート電位CPWELLを0Vとし、ビット線BLの電位を電位VBLとし、ワード線WLに印加する読出電位ARを0.8Vとする。これにより、セルソース電位CELSRC及びバックゲート電位CPWELLを接地電位としつつ、読出電圧VRBを+0.8Vとすることができる。また、ビット線BLとセルソース間の電圧をVBLとすることができる。
同様に、図2及び図3(c)に示すように、メモリセルトランジスタ11に読出電圧VRCを印加するときは、セルソース電位CELSRCを電位V2、例えば0Vとし、バックゲート電位CPWELLを0Vとし、ビット線BLの電位を電位VBLとし、ワード線WLに印加する読出電位CRを2.8Vとする。これにより、セルソース電位CELSRC及びバックゲート電位CPWELLを接地電位としつつ、読出電圧VRCを+2.8Vとすることができる。また、ビット線BLとセルソース間の電圧をVBLとすることができる。
次に、半導体記憶装置1の読出動作を時系列的に説明する。
本実施形態の制御方式を、”A” only Deep Negative方式(AODN方式)という。
以下、主として図1及び図4を参照して説明する。
先ず、Read−Aの動作を実施する。
先ず、時刻tにおいて、データを読み出す対象となるメモリセルトランジスタ11(以下、「選択セル」ともいう)のゲートに接続されたワード線WLの電位を読出電位ARとし、それ以外のメモリセルトランジスタ11(以下、「非選択セル」ともいう)のゲートに接続されたワード線WLの電位を非選択電位VREADとする。非選択電位VREADは、非選択セルに書き込まれた値に拘わらず、この非選択セルをオン状態(導通状態)とするような高い電位である。また、電位SGD及びSGSをハイレベル(H)とし、選択トランジスタ12をいずれもオン状態とする。
また、このとき、電位RSTをハイレベル(H)とし、nチャネルトランジスタNT5及びNT6をオン状態として、データラッチA及びデータラッチBに保持された電位を接地電位GNDとする。これにより、電位INVがロウレベル(L)となり、p形トランジスタPT1はオン状態となり、n形トランジスタNT3はオフ状態(非導通状態)となる。その後、電位RSTをロウレベル(L)に戻し、nチャネルトランジスタNT5及びNT6をオフ状態に戻す。
更に、この時点では、電位BLC、電位HLL、電位XXLはいずれもロウレベルとする。これにより、n形トランジスタNT4、n形トランジスタNT1、n形トランジスタNT2はオフ状態となる。また、電位STBnをハイレベルとし、p形トランジスタPT2をオフ状態とする。更に、電位SWAをハイレベルとしてp形トランジスタPT4をオフ状態とし、電位SWBをロウレベルとしてp形トランジスタPT5をオン状態とする。これにより、接続点N1〜N5はいずれもフローティング状態となる。
次に、時刻tにおいて、セルソース電位CELSRCを電位V1、例えば+1.2Vとする。また、電位BLC、電位HLL、電位XXLをハイレベルとする。これにより、n形トランジスタNT4、n形トランジスタNT1、n形トランジスタNT2がいずれもオン状態となり、NANDストリング10の一端が電源電位VDDに接続され、他端がセルソース電位CELSRCに接続される。この結果、ビット線BLからセルソースに向かって、NANDストリング10にセル電流が流れる。一方、接続点N2の電位SENが電源電位VDDとなり、p形トランジスタPT3はオフ状態となるため、キャパシタCPが充電される。
このとき、図3(a)に示すように、選択セルのソース・ゲート間に、例えば−1.2Vの読出電圧VRAが印加される。この結果、選択セルの値が閾値分布Eに対応する値であれば、選択セルがオン状態となり、メモリストリング10全体の電気抵抗値が相対的に低くなる。一方、選択セルの値が閾値分布A、B又はCに対応する値であれば、選択セルがオフ状態となり、メモリストリング10全体の電気抵抗値が相対的に高くなる。
次に、時刻tにおいて、ビット線BLの電位が平衡状態に達したら、電位HLLをロウレベルにする。これにより、n形トランジスタNT1がオフ状態となり、接続点N2が電源電位VDDから切り離される。このため、以後は、キャパシタCPに蓄積された電荷がビット線BL及びNANDストリング10を介してセルソースに流れる。このとき、選択セルの値が閾値分布Eに相当する値であると、NANDストリング10の電気抵抗値が相対的に低く、キャパシタCPの電荷が相対的に早く放電されるため、電位SENが相対的に早く低下する。一方、選択セルの値が閾値分布A、B又はCに相当する値であると、NANDストリング10の電気抵抗値が相対的に高く、キャパシタCPの電荷が相対的に遅く放電されるため、電位SENが相対的に遅く低下する。
従って、時刻tから一定のセンス時間経過後の時刻tにおいて、電位XXLをロウレベルとしてn形トランジスタNT2をオフ状態としたときの電位SENは、選択セルの値が閾値分布Eに属している場合は相対的に低く、閾値分布A、B又はCに属している場合は相対的に高くなる。このため、時刻tと時刻tとの時間間隔及びp形トランジスタPT3の閾値を適切に設定しておけば、選択セルの値が閾値分布Eに属していればp形トランジスタPT3がオン状態となり、閾値分布A、B又はCに属していればp形トランジスタPT3がオフ状態となる。
この結果、電位STBnをロウレベルとしてp形トランジスタPT2をオン状態とすると、p形トランジスタPT4はオフ状態にあり、p形トランジスタPT5はオン状態にあるため、選択セルの値が閾値分布Eに属していればデータラッチBに電源電位VDDが書き込まれ、閾値分布A、B又はCに属していればデータラッチBの電位は接地電位GNDを維持する。このようにして、データラッチBに選択セルの判定結果が書き込まれる。
すなわち、この時点では、データラッチBに保持された電位が電源電位であれば、選択セルの値は閾値分布Eに相当する値であり、データラッチBに保持された電位が接地電位であれば、選択セルの値は閾値分布A、B又はCに相当する値である。従って、選択セルの値が閾値分布Eに相当する値であれば、この時点で値が確定する。その後、電位STBnをハイレベルに戻して、p形トランジスタPT2をオフ状態に戻す。なお、データラッチBに書き込まれた電位は、電位INVとは連動しないため、選択セルの値がどのような値であっても、セル電流を停止することはない。
次に、Read−Bの動作を実施する。
時刻tにおいて、選択セルのゲートに接続されたワード線WLの電位を読出電位BR、例えば+0.8Vとし、セルソース電位CELSRCを電位V2、例えば0Vとする。これにより、図3(b)に示すように、選択セルのソース・ゲート間に、例えば+0.8Vの読出電圧VRBが印加される。この結果、選択セルの値が閾値分布E又はAに対応する値であれば、選択セルがオン状態となり、メモリストリング10全体の電気抵抗値が相対的に低くなる。一方、選択セルの値が閾値分布B又はCに対応する値であれば、選択セルがオフ状態となり、メモリストリング10全体の電気抵抗値が相対的に高くなる。
また、電位SWA及び電位SWBを逆転させる。すなわち、電位SWAをロウレベルとしてp形トランジスタPT4をオン状態とし、電位SWBをハイレベルとしてp形トランジスタPT5をオフ状態とする。そして、時刻tと同様に、電位HLL、電位XXLをハイレベルとする。これにより、n形トランジスタNT1、n形トランジスタNT2がオン状態となり、NANDストリング10にセル電流が流れると共に、キャパシタCPが充電される。
次に、時刻tにおいて、時刻tと同様に、電位HLLをロウレベルとし、ビット線BLを電源電位VDDから切り離すと共に、キャパシタCPに蓄積された電荷をNANDストリング10を介してセルソースに流す。これにより、キャパシタCPの放電に伴って電位SENが低下するが、その低下の早さは選択セルの値に依存し、閾値分布E又はAに相当する値であれば相対的に早く低下し、閾値分布B又はCに相当する値であれば相対的に遅く低下する。
次に、時刻tから一定のセンス時間経過後の時刻tにおいて、時刻tと同様に、電位XXLをロウレベルとしてn形トランジスタNT2をオフ状態とし、接続点N2をフローティング状態とする。これにより、選択セルの値が閾値分布E又はAに相当する値であればp形トランジスタPT3がオン状態となり、閾値分布B又はCに相当する値であればp形トランジスタPT3がオフ状態となる。
そして、電位STBnをロウレベルとしてp形トランジスタPT2をオン状態とすると、p形トランジスタPT4はオン状態にあり、p形トランジスタPT5はオフ状態にあるため、選択セルの値が閾値分布E又はAに属していればデータラッチAに電源電位VDDが書き込まれ、閾値分布B又はCに属していればデータラッチAの電位は接地電位GNDを維持する。このようにして、データラッチAに選択セルの判定結果が書き込まれる。
すなわち、この時点では、時刻tにおいて選択セルの値が閾値分布Eに相当する値であることが判定された場合を除き、データラッチAに保持された電位が電源電位VDDであれば選択セルの値は閾値分布Aに相当する値であり、データラッチAに保持された電位が接地電位GNDであれば選択セルの値は閾値分布B又はCに相当する値である。従って、選択セルの値が閾値分布E又はAに相当する値であれば、この時点までに値が確定する。
そして、データラッチAに書き込まれた電位は、電位INVとなるため、選択セルの値が閾値分布E又はAに属している場合は、電位INVがハイレベルとなり、p形トランジスタPT1がオフ状態となると共に、n形トランジスタNT3がオン状態となる。これにより、ビット線BLの電位がセルソース電位CELSRC、すなわち、電位V2となり、このNANDストリング10にはセル電流が流れなくなる。このように、選択セルの値が確定したNANDストリング10については、セル電流を停止し、以後の動作を実施しない。この結果、選択セルの値が確定したNANDストリング10に無駄なセル電流が流れなくなり、消費電流を抑制できる。この動作を「ロックアウト」という。
次に、Read−Cの動作を実施する。
時刻tにおいて、選択セルのゲートに接続されたワード線WLの電位を読出電位CR、例えば+2.8Vとする。セルソース電位CELSRCは電位V2、例えば0Vを維持する。これにより、図3(c)に示すように、選択セルのソース・ゲート間に、例えば+2.8Vの読出電圧VRCが印加される。この結果、選択セルの値が閾値分布E、A又はBに対応する値であれば、選択セルがオン状態となり、メモリストリング10全体の電気抵抗値が相対的に低くなる。一方、選択セルの値が閾値分布Cに対応する値であれば、選択セルがオフ状態となり、メモリストリング10全体の電気抵抗値が相対的に高くなる。
また、電位SWAはロウレベルを維持し、電位SWBはハイレベルを維持する。そして、時刻tと同様に、電位HLL、電位XXLをハイレベルとすることにより、n形トランジスタNT1、n形トランジスタNT2をオン状態とし、NANDストリング10にセル電流が流すと共に、キャパシタCPを充電する。
次に、時刻tにおいて、時刻tと同様に、電位HLLをロウレベルとし、ビット線BLを電源電位VDDから切り離すと共に、キャパシタCPに蓄積された電荷をNANDストリング10を介してセルソースに流す。このとき、電位SENの低下の早さは選択セルの値に依存し、閾値分布E、A又はBに相当する値であれば相対的に早く低下し、閾値分布Cに相当する値であれば相対的に遅く低下する。
次に、時刻tから一定のセンス時間経過後の時刻tにおいて、時刻tと同様に、電位XXLをロウレベルとしてn形トランジスタNT2をオフ状態として、接続点N2をフローティング状態とする。これにより、選択セルの値が閾値分布E、A又はBに相当する値であればp形トランジスタPT3がオン状態となり、閾値分布Cに相当する値であればp形トランジスタPT3がオフ状態となる。
そして、電位STBnをロウレベルとしてp形トランジスタPT2をオン状態とする。これにより、選択セルの値が閾値分布E、A又はBに相当する値であればデータラッチAに電源電位VDDが書き込まれ、閾値分布Cに相当する値であればデータラッチAの電位は接地電位GNDを維持する。このようにして、データラッチAに選択セルの判定結果が書き込まれる。すなわち、この時点では、既にその値が閾値分布E又はAに相当する値であると判定された選択セルを除き、データラッチAに保持された電位が電源電位VDDであれば、選択セルの値は閾値分布Bに相当する値であり、接地電位GNDであれば、閾値分布Cに相当する値であることがわかる。従って、選択セルの値がどのような値であっても、この時点までに値が確定する。
そして、選択セルの値が閾値分布E、A又はBに属している場合は、電位INVがハイレベルとなり、p形トランジスタPT1がオフ状態となると共に、n形トランジスタNT3がオン状態となる。これにより、ビット線BLの電位がセルソース電位CELSRC、すなわち、電位V2となり、NANDストリング10のセル電流が停止し、ロックアウトされる。この結果、消費電流を抑制できる。なお、選択セルの値が閾値分布Cに属している場合は、電位INVがロウレベルのままであり、セル電流が流れ続けるが、この場合は、NANDストリング10の電気抵抗値が相対的に高いため、消費電流はそれほど大きくならない。
次に、時刻t10において、電位HLL、電位XXLをハイレベルとする。
そして、上述の時刻tから時刻t10までの動作を、複数のNANDストリング10とセンスアンプ20において同時に実施する。また、各NANDストリング10内において、メモリセルトランジスタ11を1つずつ選択セルとして、上述の時刻tから時刻t10までの動作を繰り返す。このようにして、全てのメモリセルトランジスタ11から値を読み出すことができる。
次に、本実施形態の効果について説明する。
本実施形態においては、図2に示すように、Read−Aにおける読出電圧VRAを負電圧とすることにより、読出電圧VRAを0V又は正電圧とする場合と比較して、C−Readにおける読出電圧VRCを低く設定することができる。この結果、メモリセルトランジスタ11を微細化しても、メモリセルトランジスタ11に注入した電荷が漏洩して、閾値分布Cが低電圧側にシフトすることを抑制できる。これにより、半導体記憶装置1を高集積化しても、高い信頼性を確保することができる。
また、本実施形態においては、図2及び図3(a)に示すように、Read−Aの際には、セルソース電位CELSRCを正の電位V1としている。これにより、読出電位ARを負電位とすることなく、負の読出電圧VRAを実現することができる。この結果、半導体記憶装置1において、正の読出電位BR及びCRを生成するための正の昇圧回路の他に、負の読出電位ARを生成するための負の昇圧回路を設ける必要がなく、また、負電位が印加されるp形ウェルを接地電位が印加されるp形ウェルから分離するための構造を設ける必要がない。このため、半導体記憶装置1のサイズ及びコストの増大を防止できる。
更に、本実施形態においては、図2並びに図3(b)及び(c)に示すように、Read−B及びRead−Cの際には、セルソース電位CELSRCを電位V1よりも低い電位V2としている。また、データラッチAに書き込まれた電位INVをp形トランジスタPT1のゲート及びn形トランジスタNT3のゲートに印加している。これにより、データラッチAに電源電位VDDが書き込まれたときは、p形トランジスタPT1をオフ状態とすると共に、図5(a)に示すように、n形トランジスタNT3のソース・ゲート間に十分な高さの正電圧を印加して、n形トランジスタNT3をオン状態とすることができる。この結果、選択セルの値に応じてNANDストリング10をロックアウトして、消費電流を抑えることができる。このときロックアウトするNANDストリング10は、電気抵抗値が低いNANDストリング10であるから、消費電流を低減する効果は特に大きい。
また、セルソース電位CELSRCを相対的に低い電位V2とすることにより、セルソース電位CELSRCを相対的に高い電位V1とした場合と比較して、読出電位CRを低く設定しても、高い読出電圧VRCを実現することができる。これにより、半導体記憶装置1の小型化を図ることができる。
一方、図5(b)に示すように、仮に、Read−Aの際にも選択セルの識別結果をデータラッチAに書き込むようにすると、セルソース電位CELSRCを相対的に高い電位V1としているため、電位INVが電源電位VDDとなったときでも、n形トランジスタNT3において、十分なソース・ゲート間電圧を確保できない。例えば、電位V1が1.2Vであり、電源電位VDDが2.2Vであると、n形トランジスタNT3のソース・ゲート間電圧は+1Vとなる。この場合、n形トランジスタNT3の閾値のばらつきを考慮すると、n形トランジスタNT3を確実にオン状態とするにはソース・ゲート間電圧が不足する可能性がある。この場合は、n形トランジスタNT3の導通が不十分となり、ロックアウトする予定のNANDストリング10をロックアウトできず、ビット線BLがフローティング状態となってしまう。そして、あるビット線BLがフローティング状態となると、その電位が不安定になり、隣のビット線BLに干渉し、この隣のビット線BLについて読出動作を行うときに、誤動作を生じる場合がある。
そこで、本実施形態においては、Read−Aのときには読み出し結果をデータラッチAではなくデータラッチBに書き込んでいる。データラッチBは電位INVとは連動していないため、Read−Aにおいては、選択セルの値が閾値分布Eに相当する値であっても、NANDストリング10はロックアウトされない。従って、時刻tにおいて、電位HLL及びXXLをハイレベルとしてn形トランジスタNT1及びNT2をオン状態とすると、p形トランジスタPT1はオン状態でありn形トランジスタNT3はオフ状態であるため、電源電位VDDからNANDストリング10を介してセルソースにセル電流が流れる。この結果、ロックアウトを試みる場合と比較して消費電流は若干増加するものの、ビット線BLに定常電流が流れるため、その電位が安定する。これにより、隣のビット線についてRead−Bを実施するときに、誤読出が生じることを防止できる。この結果、半導体記憶装置1の動作信頼性を向上させることができる。
次に、本実施形態の比較例について説明する。
先ず、第1の比較例について説明する。
図6に示すように、本比較例においては、読出電位ARを0Vとしている。この方式を「ポジティブセンス方式」といい、全ての読出電位を正の値で設定することができる。しかしながら、この場合は、閾値分布Cをかなり高い電圧範囲に設定する必要があるため、メモリセルトランジスタが微細化されるにつれて、メモリセルトランジスタに蓄積された電荷が漏洩しやすくなるという問題がある。電荷が漏洩すると、図6に破線で示すように、閾値分布Cが低電圧側にシフトしてしまい、閾値分布Bと重なってしまう。こうなると、読出電位CRをどのような値に設定しても、閾値分布Bと閾値分布Cとを識別できなくなってしまい、読出動作が不可能になる。
次に、第2の比較例について説明する。
図7に示すように、本比較例においては、読出電位ARを負電位としている。この方式を「ネガティブセンス方式」という。これにより、第1の比較例と比較して、閾値分布Cの電圧範囲を低減し、メモリセルトランジスタに蓄積された電荷の漏洩を抑制することができる。しかしながら、本比較例においては、負の読出電位ARを生成するために、正の読出電位BR及びCRを生成するための正の昇圧回路の他に、負の昇圧回路が必要となる。また、負電位が印加されるp形ウェルを、接地電位が印加されるp形ウェルから分離するための構造が必要となる。この結果、半導体記憶装置1の小型化が阻害される。また、製造プロセスの変更が必要となるため、製造コストも増加してしまう。
次に、第3の比較例について説明する。
図8に示すように、本比較例においては、セルソース電位を接地電位ではなく正の電位、例えば+1.2Vとしている。この方式を「ポジティブCELSRC方式」という。これにより、読出電位ARを0Vとしても、選択セルのソース電位(+1.2V)に対してゲート電位(0V)を相対的に負電位とすることができるため、負電位を生成することなく、負の読出電圧を実現することができる。この結果、第2の比較例において説明した負電位の生成に伴う問題点を回避することができる。なお、図4の破線は、本比較例の動作を示す。
しかしながら、本比較例においては、選択セルの値が確定されたNANDストリングをロックアウトしようとしても、前述の図5(b)において説明したように、セルソース電位が高い分だけn形トランジスタNT3のソース・ゲート間電圧が低くなり、確実にロックアウトできないという問題がある。ロックアウトする予定のNANDストリングをロックアウトできないと、ビット線がフローティング状態となってしまい、他のビット線に干渉してしまう。この結果、以後の読出動作が不安定となり、半導体記憶装置の動作信頼性が低下する。この問題を回避するためには、ロックアウトを行わなければよいが、そうすると、消費電流が増大してしまう。また、確実にロックアウトを行うために、電源電位VDDを高くすることも考えられるが、そうすると、半導体記憶装置の微細化及び省電力化が困難になる。
これに対して、本実施形態においては、セルソース電位CELSRCを高める必要があるRead−Aにおいてのみ、セルソース電位CELSRCを相対的に高い電位V1としている。また、このとき、選択セルの読出結果をデータラッチBに書き込み、電位INVとは連動させない。これにより、Read−Aにおいてはロックアウトを行わず、高い動作信頼性を実現することができる。また、Read−B及びRead−Cにおいては、セルソース電位CELSRCを相対的に低い電位V2としている。また、選択セルの読出結果をデータラッチAに書き込み、電位INVと連動させている。これにより、Read−B及びRead−Cにおいては、選択セルの値に応じて確実にロックアウトを行うことができる。この結果、高い動作信頼性を実現しつつ、消費電流を低減することができる。
なお、本実施形態においては、電位V2を接地電位(0V)とする例を示したが、これには限定されず、電位V2は0V以上であって電位V1よりも低ければよい。また、本実施形態においては、メモリセルトランジスタ11に4水準の値を記憶させる例を示したが、これには限定されず、メモリセルトランジスタ11に記憶させる値は、3水準又は5水準以上であってもよい。この場合は、最も低い閾値分布と2番目に低い閾値分布を識別する読出動作においてはセルソース電位CELSRCを電位V1としてロックアウトを行わず、それ以外の読出動作においてはセルソース電位CELSRCを電位V2としてロックアウトを行ってもよい。
以上説明した実施形態によれば、動作安定性が高い半導体記憶装置を実現することができる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明及びその等価物の範囲に含まれる。
1:半導体記憶装置、10:NANDストリング、11:メモリセルトランジスタ、12:選択トランジスタ、20:センスアンプ、A、B:データラッチ、BL:ビット線、CP:キャパシタ、IV1〜IV4:インバータ、N1〜N5:接続点、NT1〜NT6:n形トランジスタ、PT1〜PT5:p形トランジスタ

Claims (5)

  1. 4水準の値が書き込まれるメモリセルトランジスタを含み、一端がビット線に接続され、他端がソース線に接続されるNANDストリングと、
    前記メモリセルトランジスタに保持された値を読み出すことが可能なセンスアンプと、
    を備え、
    前記センスアンプは、
    一端が前記ビット線に接続され、他端が前記ソース線に接続されるトランジスタと、
    保持された電位が前記トランジスタのゲートに印加される第1のデータラッチと、
    保持された電位が前記トランジスタのゲートに印加されない第2のデータラッチと、
    を有し、
    前記メモリセルトランジスタに保持された値が、閾値分布が最も低い値かそれ以外の値かを識別するときは、前記セルソース電位を第1の電位とし、前記メモリセルトランジスタから読み出された値に基づいて前記第2のデータラッチに保持させる電位を決定し、前記値がいずれの値であっても前記トランジスタは非導通のままとし、
    前記メモリセルトランジスタに保持された値が、閾値分布が最も低い値又は2番目に低い値であるか、閾値分布が最も高い値又は2番目に高い値であるかを識別するときは、前記ソース線の電位を前記第1の電位よりも低く接地電位以上である第2の電位とし、前記メモリセルトランジスタから読み出された値に基づいて前記第1のデータラッチに保持させる電位を決定し、前記値が前記最も高い値又は2番目に高い値であると識別されたときは、前記トランジスタを非導通のままとし、前記値が前記最も低い値又は2番目に低い値であると識別されたときは、前記トランジスタを導通させることにより、前記ビット線の電位を前記第2の電位とし、
    前記メモリセルトランジスタに保持された値が、閾値分布が最も高い値かそれ以外の値かを識別するときは、前記セルソース電位を前記第2の電位とし、前記メモリセルトランジスタから読み出された値に基づいて前記第1のデータラッチに保持させる電位を決定し、前記値が前記最も高い値であると識別されたときは、前記トランジスタを非導通のままとし、前記値が前記最も高い値以外の値であると識別されたときは、前記トランジスタを導通させることにより、前記ビット線の電位を前記第2の電位とする半導体記憶装置。
  2. 3水準以上の値を保持可能なメモリセルトランジスタを含み、一端がビット線に、他端がソース線に接続されるNANDストリングと、
    前記メモリセルトランジスタに保持された値を読み出すことが可能なセンスアンプと、
    を備え、
    前記メモリセルトランジスタに保持された値が、閾値分布が最も低い値かそれ以外の値かを識別するときは、前記ソース線の電位を第1の電位とし、
    前記メモリセルトランジスタに保持された値が、閾値分布が最も高い値かそれ以外の値かを識別するときは、前記ソース線の電位を前記第1の電位よりも低い第2の電位とし、前記値が前記最も高い値以外の値であると識別されたときは、前記ビット線の電位を前記第2の電位とする半導体記憶装置。
  3. 前記メモリセルトランジスタには4水準の値が書き込まれ、
    前記メモリセルトランジスタに保持された値が、閾値分布が最も低い値又は2番目に低い値であるか、閾値分布が最も高い値又は2番目に高い値であるかを識別するときは、前記セルソース電位を前記第2の電位とし、前記値が前記最も低い値又は2番目に低い値であると識別されたときは、前記ビット線の電位を前記第2の電位とする請求項2記載の半導体記憶装置。
  4. 前記第2の電位は、接地電位以上である請求項2または3に記載の半導体記憶装置。
  5. 前記センスアンプは、
    一端が前記ビット線に接続され、他端が前記ソース線に接続されるトランジスタと、
    第1のデータラッチと、
    第2のデータラッチと、
    を有し、
    前記メモリセルトランジスタに保持された値が、閾値分布が最も低い値かそれ以外の値かを識別するときは、前記メモリセルトランジスタから読み出された値に基づいて前記第2のデータラッチに保持させる電位を決定し、
    前記メモリセルトランジスタに保持された値が、閾値分布が最も高い値かそれ以外の値かを識別するときは、前記メモリセルトランジスタから読み出された値に基づいて前記第1のデータラッチに保持させる電位を決定し、
    前記第1のデータラッチに保持された電位は前記トランジスタのゲートに印加され、
    前記第2のデータラッチに保持された電位は前記トランジスタのゲートに印加されない請求項2〜4のいずれか1つに記載の半導体記憶装置。
JP2013061125A 2013-03-22 2013-03-22 半導体記憶装置 Pending JP2014186777A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013061125A JP2014186777A (ja) 2013-03-22 2013-03-22 半導体記憶装置
TW102130321A TWI534813B (zh) 2013-03-22 2013-08-23 Semiconductor memory device
CN201310399688.0A CN104064215A (zh) 2013-03-22 2013-09-05 半导体存储装置
US14/022,729 US20140286093A1 (en) 2013-03-22 2013-09-10 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061125A JP2014186777A (ja) 2013-03-22 2013-03-22 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2014186777A true JP2014186777A (ja) 2014-10-02

Family

ID=51551888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061125A Pending JP2014186777A (ja) 2013-03-22 2013-03-22 半導体記憶装置

Country Status (4)

Country Link
US (1) US20140286093A1 (ja)
JP (1) JP2014186777A (ja)
CN (1) CN104064215A (ja)
TW (1) TWI534813B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054562A (ja) * 2015-09-08 2017-03-16 株式会社東芝 半導体記憶装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102252213B1 (ko) * 2014-03-14 2021-05-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 회로 시스템
US9704540B2 (en) * 2014-06-05 2017-07-11 Micron Technology, Inc. Apparatuses and methods for parity determination using sensing circuitry
JP2016170837A (ja) * 2015-03-12 2016-09-23 株式会社東芝 半導体記憶装置
JP6659478B2 (ja) 2016-06-17 2020-03-04 キオクシア株式会社 半導体記憶装置
US10121522B1 (en) * 2017-06-22 2018-11-06 Sandisk Technologies Llc Sense circuit with two sense nodes for cascade sensing
JP2019008859A (ja) * 2017-06-28 2019-01-17 東芝メモリ株式会社 半導体装置
JP2019053796A (ja) * 2017-09-14 2019-04-04 東芝メモリ株式会社 半導体記憶装置
US11265491B2 (en) 2019-06-20 2022-03-01 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11187658B2 (en) 2019-06-20 2021-11-30 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11233960B2 (en) 2019-06-20 2022-01-25 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11237270B2 (en) 2019-06-20 2022-02-01 Cilag Gmbh International Hyperspectral, fluorescence, and laser mapping imaging with fixed pattern noise cancellation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533644A (ja) * 2005-03-16 2008-08-21 サンディスク コーポレイション 電力が節約されている読み出しおよびプログラム−ベリファイ動作による不揮発性メモリおよび方法
JP2011141944A (ja) * 2011-02-02 2011-07-21 Toshiba Corp 半導体記憶装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907497B2 (en) * 2001-12-20 2005-06-14 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
JP4564521B2 (ja) * 2007-09-06 2010-10-20 株式会社東芝 不揮発性半導体記憶装置
US7957197B2 (en) * 2008-05-28 2011-06-07 Sandisk Corporation Nonvolatile memory with a current sense amplifier having a precharge circuit and a transfer gate coupled to a sense node
US7751250B2 (en) * 2008-06-27 2010-07-06 Sandisk Corporation Memory device with power noise minimization during sensing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533644A (ja) * 2005-03-16 2008-08-21 サンディスク コーポレイション 電力が節約されている読み出しおよびプログラム−ベリファイ動作による不揮発性メモリおよび方法
JP2011141944A (ja) * 2011-02-02 2011-07-21 Toshiba Corp 半導体記憶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054562A (ja) * 2015-09-08 2017-03-16 株式会社東芝 半導体記憶装置

Also Published As

Publication number Publication date
CN104064215A (zh) 2014-09-24
TW201438012A (zh) 2014-10-01
US20140286093A1 (en) 2014-09-25
TWI534813B (zh) 2016-05-21

Similar Documents

Publication Publication Date Title
JP2014186777A (ja) 半導体記憶装置
US9984761B2 (en) Semiconductor memory device
US8885411B2 (en) Nonvolatile semiconductor memory device
JP6470146B2 (ja) 半導体記憶装置
US9042183B2 (en) Non-volatile semiconductor memory device having non-volatile memory array
US20160204653A1 (en) Semiconductor device being capable of improving the breakdown characteristics
US9190161B2 (en) Semiconductor memory device
US20200043549A1 (en) Semiconductor memory device, memory system, and write method
US9390808B1 (en) Semiconductor memory device
US20170365325A1 (en) Non-volatile semiconductor memory device and driving method for word line thereof
JP2013157050A (ja) 不揮発性半導体記憶装置
JP2013012267A (ja) 不揮発性半導体記憶装置
US20100232229A1 (en) Semiconductor memory device including stacked gate including charge accumulation layer and control gate
US20150348621A1 (en) Nonvolatile semiconductor memory device and read method thereof
JP2013200932A (ja) 不揮発性半導体記憶装置
JP2012119019A (ja) 不揮発性半導体記憶装置
US20170076790A1 (en) Semiconductor memory device
US9171637B2 (en) Nonvolatile semiconductor memory device and method of controlling the same
US20170062062A1 (en) Semiconductor memory device
JP2011222090A (ja) 不揮発性半導体記憶装置
US20100085114A1 (en) High-voltage generation circuit and semiconductor storage device provided therewith and semiconductor integrated device
JP2019096369A (ja) 半導体記憶装置
KR101393772B1 (ko) 반도체 기억 장치
KR100842752B1 (ko) 리드 디스터브가 억제되는 낸드 플래시 메모리소자의리드방법
JP2013161512A (ja) 不揮発性半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160201