JP2014167887A - 酸化物超電導線材の接続構造体及びその製造方法 - Google Patents

酸化物超電導線材の接続構造体及びその製造方法 Download PDF

Info

Publication number
JP2014167887A
JP2014167887A JP2013039930A JP2013039930A JP2014167887A JP 2014167887 A JP2014167887 A JP 2014167887A JP 2013039930 A JP2013039930 A JP 2013039930A JP 2013039930 A JP2013039930 A JP 2013039930A JP 2014167887 A JP2014167887 A JP 2014167887A
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
pair
superconducting wire
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013039930A
Other languages
English (en)
Other versions
JP6002602B2 (ja
Inventor
Masashi Haraguchi
正志 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2013039930A priority Critical patent/JP6002602B2/ja
Publication of JP2014167887A publication Critical patent/JP2014167887A/ja
Application granted granted Critical
Publication of JP6002602B2 publication Critical patent/JP6002602B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

【課題】端部において水分の浸入による超電導特性の低下を防ぐ酸化物超電導線材の接続構造体の提供を目的とする。
【解決手段】テープ状の基材と中間層と酸化物超電導層とを備えた酸化物超電導積層体と、少なくとも前記酸化物超電導層を覆う安定化層とからなる一対の酸化物超電導線材の接続構造体であって、端部同士を隣接して対向配置された前記一対の酸化物超電導線材と、前記一対の酸化物超電導線材と同等の積層構造を有し前記一対の酸化物超電導線材の端部間を跨るよう橋渡しして配置された接続用酸化物超電導線材と、前記一対の酸化物超電導線材と前記接続用酸化物超電導線材を接合する導電性接合材と、前記導電性接合材によって接合された部分の一対の酸化物超電導線材及び前記接続用酸化物超電導線材、並びにその長手方向両側部分の一対の酸化物超電導線材の外周を接合層を介して覆う被覆部材と、を有することを特徴とする酸化物超電導線材の接続構造体。
【選択図】図2

Description

本発明は、酸化物超電導線材の接続構造体及びその製造方法に関する。
近年Bi系超電導線材BiSrCaCu8+δ(Bi2212)、BiSrCaCu10+δ(Bi2223)やRE−123系超電導線材REBaCu7−x(RE123:REはYやGdなどを含む希土類元素)といった酸化物超電導線材の開発が進んでいる。これら酸化物超電導線材は、臨界温度が90〜100K程度であり、液体窒素温度以上で超電導性を示すため、実用上極めて有望な素材とされており、これを線材に加工して電力供給用の導体あるいは超電導コイル等として使用することが要望されている。
Bi系の超電導線材は、Bi系の超電導層をAgのシース材で被覆した状態となるようにPowder In Tube法(PIT法)などにより製造された構造となっている。一方、RE−123系超電導線材は、テープ状の金属基材上に中間層を介し成膜法により酸化物超電導層を積層し、さらに前記酸化物超電導層上に薄い銀の保護層を形成し、その上に銅などの良導電性金属材料からなる安定化層を設けた構造が採用されている。
ところで、RE−123系酸化物超電導線材は水分と接触すると水分と反応し超電導特性が低下することが知られている。したがって、酸化物超電導線材に水分を付着させることが無いように保管及び使用することが求められる。しかしながら、長期間の使用において室温と低温のヒートサイクルに伴う結露などで水分が付着する虞があるため、酸化物超電導線材の長期的信頼性を確保するためには、酸化物超電導層の全周を何らかの層で保護する構造を採用する必要がある。例えば、金属基材上に中間層と酸化物超電導層を積層したテープ状の酸化物超電導積層体を備え、両縁部を折り曲げた横断面C型形状の金属テープで前記酸化物超電導積層体を覆い重なり部を半田付けすることで、前記酸化物超電導積層体を外部から遮断した構造が知られている(特許文献1)。
また、RE−123系の酸化物超電導線材を実用機器に応用するために、酸化物超電導線材を接続する技術が要望されている。例えば、特許文献1に記載の酸化物超電導線材の端部近傍の安定化層同士を半田付けすることにより接続構造体を構成することができる。
特開2012−169237号公報
しかしながら、特許文献1に記載の酸化物超電導線材は、線材の横断面外周部が金属テープにより覆われて水分の浸入を防ぐことができるが、端部は酸化物超電導層が露出しており、この酸化物超電導線材同士を接続する接続構造体は、端部からの水分浸入により、超電導特性が劣化する虞があった。
本発明は、以上のような実情に鑑みなされたものであり、各酸化物超電導線材の端部からの水分浸入による超電導特性の低下を防ぐ酸化物超電導線材の接続構造体を提供することを目的とする。
前記課題を解決するため本発明の酸化物超電導線材の接続構造体は、テープ状の基材と中間層と酸化物超電導層とを備えた酸化物超電導積層体と、少なくとも前記酸化物超電導層を覆う安定化層とからなる一対の酸化物超電導線材の接続構造体であって、端部同士を隣接して対向配置された前記一対の酸化物超電導線材と、テープ状の基材と中間層と酸化物超電導層とを備えた酸化物超電導積層体と、少なくとも酸化物超電導層の主面を覆う安定化層とからなり、前記一対の酸化物超電導線材の端部間を跨るよう橋渡しして配置された接続用酸化物超電導線材と、前記一対の酸化物超電導線材と前記接続用酸化物超電導線材を接合する導電性接合材と、前記導電性接合材によって接合された部分の一対の酸化物超電導線材及び前記接続用酸化物超電導線材、並びにその長手方向両側部分の一対の酸化物超電導線材の外周を接合層を介して覆う被覆部材と、を有することを特徴とする。
本発明の接続構造体は、導電性接合材により接合された部分と、その長手方向両側部分の線材外周を接合層を介して被覆部材により覆っているため、各酸化物超電導線材の端部からの水分浸入を抑制し、超電導特性の低下を抑制できる。
加えて、本発明の接続構造体の被覆部材は、接続用酸化物超電導線材と、接続用酸化物超電導線材に接する部分の全体を覆うように設けられるため、接続構造体の側面に接合層を構成する接合材料がはみ出して形成されることがない。即ち、本発明の接続構造体は、一対の酸化物超電導線材に対し、幅寸法を肥大化させることがなく、接続部をコンパクトに形成することが可能となり、螺旋巻きして超電導ケーブルに加工する場合や、巻回して超電導コイルに加工する場合に、接続部の肥大化による巻き線が不均一となる事を抑制できる。
また、本発明の酸化物超電導線材は、前記接続用酸化物超電導線材の端部から前記被覆部材の端部までの長手方向に沿う長さが5mm以上であることを特徴とする。
被覆部材の端部は、一対の酸化物超電導線材の外周に沿って形成され、当該外周を接合層を介し覆う。接続用酸化物超電導線材の端部から前記被覆部材の端部までの長手方向に沿う長さが5mm以上であることにより、被覆部材の端部と一対の酸化物超電導線材の外周とを確実に接合する接合層の長さを十分に確保することができ、接続用酸化物超電導線材端部側への水分浸入を抑制し超電導特性の低下を抑制できる。
また、本発明の酸化物超電導線材は、前記一対の酸化物超電導線材と前記接続用酸化物超電導線材の互いの安定化層同士が対向して配置され、当該安定化層同士が前記導電性接合材を介し電気的かつ機械的に接合されていることを特徴とする。
一対の酸化物超電導線材と接続用酸化物超電導線材の互いの安定化層同士を対向して配置することによって、接続部での電気抵抗が低い接続構造体を構成することができる。加えて接続する一対の酸化物超電導線材同士が同方向に積層されて配置されているため、接続部分で一対の酸化物超電導線材の表裏の逆転がなく、取扱いが容易となる。
本発明の酸化物超電導線材の接続構造体の製造方法は、テープ状の基材上に中間層と酸化物超電導層と少なくとも前記酸化物超電導層を覆う安定化層とを積層してなる一対の酸化物超電導線材と、テープ状の基材上に中間層と酸化物超電導層と少なくとも前記酸化物超電導層の主面を覆う安定化層とを積層してなる接続用酸化物超電導線材を用い、前記一対の酸化物超電導線材の端部同士を隣接して対向配置し、前記端部間を跨るように前記接続用酸化物超電導線材を橋渡しして対向配置するとともに、前記一対の酸化物超電導線材と前記接続用酸化物超電導線材を導電性接合材により接合する工程と、前記接続用酸化物超電導線材とこれに対向する部分の一対の酸化物超電導線材全体を接合層を介し被覆部材により覆う工程と、前記被覆部材の長手方向両端部を前記一対の酸化物超電導線材の外周に沿うように成形し前記接合層を介して一対の酸化物超電導線材の外周を覆う工程と、を有することを特徴とする。
本発明の接続構造体の製造方法は、各酸化物超電導線材の端部を含む全体を被覆部材により覆ったのち、記被覆部材の長手方向両端部を前記一対の酸化物超電導線材の外周に沿うように成形し、接合層を介して一対の酸化物超電導線材の外周を覆うため、当該外周を確実に覆うことが可能となり、接続用酸化物超電導線材の端部側への水分浸入を抑制し、超電導特性の低下を抑制する接続構造体を製造できる。
加えて、本発明の接続構造体の製造方法は、接続用酸化物超電導線材とそれに対向する一対の酸化物超電導線材全体を覆う工程を有するため、一対の酸化物超電導線材に対し幅寸法を肥大化させない接続構造体を製造できる。
本発明の接続構造体の製造方法は、前記接合層が半田からなり、前記被覆部材の長手方向両端部を前記一対の酸化物超電導線材の外周に沿うように成形した後に、前記接合層を加熱し溶融、凝固させて被覆部材と一対の酸化物超電導線材との隙間を閉じる工程を有することを特徴とする。
上記の工程を有することにより、接合層として半田を用いて一対の酸化物超電導線材の外周を確実に覆うことが可能となる。
本発明の接続構造体は、導電性接合材により接合された部分と、その長手方向両側部分の線材外周を接合層を介して被覆部材により覆っているため、各酸化物超電導線材の端部からの水分浸入を抑制し、超電導特性の低下を抑制できる。
加えて、本発明の接続構造体の被覆部材は、接続用酸化物超電導線材と、接続用酸化物超電導線材に接する部分の全体を覆うように設けられるため、接続構造体の側面に接合層を構成する接合材料がはみ出して形成されることがない。即ち、本発明の接続構造体は、一対の酸化物超電導線材に対し、幅寸法を肥大化させることがなく、接続部をコンパクトに形成することが可能となり、螺旋巻きして超電導ケーブルに加工する場合や、巻回して超電導コイルに加工する場合に、接続部の肥大化による巻き線が不均一となる事を抑制できる。
本発明に係る接続構造体に適用される酸化物超電導線材の断面図を示す。 本発明に係る接続構造体の一実施形態を模式的に示す断面図である。 本発明に係る接続構造体の一実施形態を示す模式図であり、図3(a)は、接続構造体の側面図を示し、図3(b)は、図3(a)のA−Aでの断面図を示し、図3(c)は、図3(a)のB−Bでの断面図を示す。 本発明に係る接続構造体における被覆部材の被覆手順を示し、図4(a)は、一対の酸化物超電導線材と接続用酸化物超電導線材を接続した状態の斜視図であり、図4(b)は、被覆部材を接続用酸化物超電導線材側に配置した状態の斜視図であり、図4(c)は、被覆部材により各酸化物超電導線材の周面を覆った状態の斜視図であり、図4(d)は、接続用酸化物超電導線材の端部を覆う被覆部材を一対の酸化物超電導線材の周面に沿わせた状態の斜視図である。
以下、本発明に係る酸化物超電導線材の接続構造体の一実施形態について図面に基づいて説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
(酸化物超電導線材)
図1は、本発明に係る酸化物超電導線材1の端部1aを示す模式図である。図1を基に、酸化物超電導線材1の各構成要素に関して詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
酸化物超電導線材1は、テープ状の基材10と中間層11と酸化物超電導層12とを備えた酸化物超電導積層体15と、この酸化物超電導積層体15の側面及び酸化物超電導層側の主面とを覆う第1及び第2の安定化層13、14とからなる。
基材10は、通常の酸化物超電導線材の基材として使用し得るものであれば良く、可撓性を有する長尺のテープ状であることが好ましい。また、基材10に用いられる材料は、機械的強度が高く、耐熱性があり、線材に加工することが容易な金属を有しているものが好ましく、例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種耐熱性金属材料、もしくはこれら各種金属材料上にセラミックスを配した材料などが挙げられる。中でも、市販品であれば、ハステロイ(商品名、米国ヘインズ社製)が好適である。このハステロイの種類には、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等が挙げられ、ここではいずれの種類も使用できる。また、基材10として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材等を適用することもできる。基材10の厚さは、目的に応じて適宜調整すれば良く、通常は10〜500μm、好ましくは20〜200μmである。
中間層11は、拡散防止層、ベッド層、配向層、及びキャップ層がこの順に積層された構造を適用することができる。
拡散防止層は、この層よりも上面に他の層を形成する際に加熱処理した結果、基材10や他の層が熱履歴を受ける場合に、基材10の構成元素の一部が拡散し、不純物として酸化物超電導層12側に混入することを抑制する機能を有する。拡散防止層の具体的な構造としては、上記機能を発現し得るものであれば特に限定されないが、不純物の混入を防止する効果が比較的高いAl、Si、又はGZO(GdZr)等から構成される単層構造あるいは複層構造が望ましい。
ベッド層は、基材10と酸化物超電導層12との界面における構成元素の反応を抑え、この層よりも上面に設ける層の配向性を向上させるために用いられる。ベッド層の具体的な構造としては、上記機能を発現し得るものであれば特に限定されないが、耐熱性が高いY、CeO、La、Dy、Er、Eu、Ho、などの希土類酸化物から構成される単層構造あるいは複層構造が望ましい。
配向層は、その上に形成されるキャップ層や酸化物超電導層12の結晶配向性を制御したり、基材10の構成元素が酸化物超電導層12へ拡散することを抑制したり、基材10と酸化物超電導層12との熱膨張率や格子定数といった物理的特性の差を緩和したりする機能等を有するものである。配向層の材料には、上記機能を発現し得るものであれば特に限定されないが、GdZr、MgO、ZrO−Y(YSZ)等の金属酸化物を用いると、後述するイオンビームアシスト蒸着法(以下、IBAD法と呼ぶことがある。)において、結晶配向性の高い層が得られ、キャップ層や酸化物超電導層12の結晶配向性をより良好なものとすることができるため、特に好適である。
キャップ層は、酸化物超電導層12の結晶配向性を配向層よりも強く制御したり、酸化物超電導層12を構成する元素の中間層11への拡散や、酸化物超電導層12の積層時に使用するガスと中間層11との反応を抑制したりする機能等を有するものである。キャップ層の材料には、上記機能を発現し得るものであれば特に限定されないが、CeO、LaMnO、Y、Al、Gd、ZrO、YSZ、Ho、Nd等の金属酸化物が酸化物超電導層12との格子整合性の観点から好適である。
そのなかでも、中間層11の配向度よりもさらに配向度の優れた層を得られることから、CeO、LaMnOが特に好適である。
ここで、キャップ層にCeOを用いる場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
酸化物超電導層12は、超電導状態の時に電流を流す機能を有するものである。酸化物超電導層12に用いられる材料には、通常知られている組成の酸化物超電導体からなるものを広く適用することができ、例えば、RE−123系超電導体、Bi系超電導体などの銅酸化物超電導体などが挙げられる。RE−123系超電導体の組成は、例えば、REBaCu(7−x)(REはY、La、Nd、Sm、Er、Gd等の希土類元素、xは酸素欠損を表す。)が挙げられ、具体的には、Y123(YBaCu(7−x))、Gd123(GdBaCu(7−x))が挙げられる。Bi系超電導体の組成は、例えば、BiSrCan−1Cu4+2n+δ(nはCuOの層数、δは過剰酸素を表す。)が挙げられる。この銅酸化物超電導体は、母物質が絶縁体であるが、酸素を取り込むことで超電導体となり、超電導特性を示す性質を持っている。ここで、本発明に用いられる酸化物超電導層12の材料は、銅酸化物超電導体であり、以下、特に指定がなければ、酸化物超電導層12に用いる材料を銅酸化物超電導体とする。
上述の基材10、中間層11、酸化物超電導層12によって、酸化物超電導積層体15を構成する。図1に示すように、この酸化物超電導積層体15の酸化物超電導層12の上面には第1の安定化層13が形成され、更に当該第1の安定化層13の上面並びに、酸化物超電導積層体15の側面及び基材側裏面には、第2の安定化層14が半田層24を介し形成され、酸化物超電導線材1が構成されている。
第1の安定化層13は、事故時に発生する過電流をバイパスしたり、酸化物超電導層12とこの層よりも上面に設ける層との間で起こる化学反応を抑制し、一方の層の元素の一部が他方の層側に侵入して組成がくずれることにより起こる超電導特性が低下するのを防いだりするなどの機能を有するものである。また、酸化物超電導層12に酸素を取り込ませやすくするために、加熱時には酸素を透過しやすくさせる機能も有する。このため、第1の安定化層13には、少なくともAg又はAg合金が用いられる。本実施形態に用いられる第1の安定化層13の材料はAgであり、以下、特に指定がなければ、第1の安定化層13に用いる材料をAgとする。
なお、図1の第1の安定化層13は、酸化物超電導層12の上面のみに設けられているが、スパッタ法などの成膜法により第1の安定化層13を形成した場合、基材10、中間層11、酸化物超電導層12の側面側並びに基材10の裏面側にAg粒子が回り込んでAgの薄い層が形成されることとなり、係る構成を有していても良い。
酸化物超電導線材1の外周に形成されている第2の安定化層14は、良導電性の金属材料からなり、酸化物超電導層12が何らかの原因で超電導状態から常電導状態に遷移しようとした時に、第1の安定化層13とともに、酸化物超電導層12の電流が転流するバイパスとして機能する。第1の安定化層13はその機能により第2の安定化層14の一部とみなすことができる。
第2の安定化層14を構成する金属材料としては、良導電性を有するものであればよく、特に限定されないが銅、黄銅(Cu−Zn合金)、Cu−Ni合金等の銅合金、ステンレス等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることから銅製が好ましい。また、酸化物超電導線材1を超電導限流器に使用する場合、第2の安定化層14は、クエンチが起こり常電導状態に転移した時に発生する過電流を瞬時に抑制するために用いられる。この用途の場合、第2の安定化層14に用いられる材料は、例えば、Ni−Cr等のNi系合金等の高抵抗金属が挙げられる。
第2の安定化層14の厚さは特に限定されず、適宜調整可能であるが、10〜300μmとすることができる。
第2の安定化層14の形成方法は特に限定されないが、本実施形態においては、銅などの良導電性材料よりなる金属テープを横断面C字型をなすように成形し半田層24を介し酸化物超電導積層体15の酸化物超電導層12側の面、側面及び基材10側裏面の幅方向端部を被覆して形成される。金属テープの被覆に用いる半田層24を構成する半田は、特に限定されるものではなく従来公知の半田を使用可能である。例えば、Sn、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなる鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を一種又は二種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。これにより、300℃以下の温度で金属テープと第1の安定化層13を半田付けすることが可能となるので、半田付けの熱により酸化物超電導層12の特性が劣化することを抑止できる。
第2の安定化層14は、基材10において中間層11を形成していない側の裏面中央部を除いた酸化物超電導積層体15の周面を横断面C字型をなすように覆っている。第2の安定化層14は、金属テープをロール等でフォーミングし酸化物超電導積層体15の周囲に被着させ構成することができる。第2の安定化層14により覆われていない基材10の裏面側の中央部は半田層24の埋込部24aにより覆われ、埋込部24aは第2の安定化層14の端縁同士が形成する凹部を埋めるように形成されている。
酸化物超電導線材1の外周が、半田層24を介し金属テープ等からなる第2の安定化層14及び半田層24の埋込部24aで覆われていることで、酸化物超電導線材1の側面からの水分の浸入を防ぎ、酸化物超電導層12の劣化を防ぐことができる。
また、上述したように金属テープをフォーミングし酸化物超電導積層体15の周面を覆うように第2の安定化層14を形成する他に、酸化物超電導積層体15の外周全体にめっきを施すことにより第2の安定化層14とを一体的に形成しても良い。この場合、めっき層の厚さは、10μm以上とすることで、ピンホールのないめっき層を形成することが可能となり、水分の浸入を確実に防ぐことができる。
ここでは上述したように、第2の安定化層14として金属テープ又はめっき層を形成する酸化物超電導線材1を例示した。しかしながら本発明の酸化物超電導線材はこれに限定されるものではなく、例えば第2の安定化層14を有さない、即ち第1の安定化層13のみにより、安定化層としての役割を果たす構成であっても良い。
(接続構造体)
以下、本発明に係る接続構造体の第1実施形態である第1及び第2の酸化物超電導線材4、5を接続用酸化物超電導線材6を介し接続した接続構造体30について図2に基づいて説明する。
なお、本実施形態の接続構造体30において接続される、第1及び第2の酸化物超電導線材4、5並びに接続用酸化物超電導線材6は、図1を基に説明した酸化物超電導線材1と同形態である。
なお、接続用酸化物超電導線材6は、後述する被覆部材25によって外部から封止された構造となる。したがって、接続用酸化物超電導線材6の第2の安定化層6は当該接続用酸化物超電導線材6の酸化物超電導層12への水分浸入を防ぐ役割を果たす必要がなく、酸化物超電導層12の主面上にのみ形成された構成であっても良い。
図2に示すように、接続構造体30は、第1の酸化物超電導線材4及び第2の酸化物超電導線材5を導電性接合材22を介し接続用酸化物超電導線材6で接続した構造体である。
第1及び第2の酸化物超電導線材4、5は、基材10に対し酸化物超電導層12を形成した側を揃えて、接続しようとする端部4a、5a同士を隣接して配置されている。また、接続用酸化物超電導線材6と第1及び第2の酸化物超電導線材4、5は、互いの酸化物超電導層12が形成されている側同士を対向して配置されている。さらに、接続用酸化物超電導線材6は、前記隣接された端部4a、5aを跨るように橋渡ししている。
第1の酸化物超電導線材4の第2の安定化層14と接続用酸化物超電導線材6の第2の安定化層14が導電性接合材22により接合され、前記第2の酸化物超電導線材5の第2の安定化層14と接続用酸化物超電導線材6の第2の安定化層14が導電性接合材22により接合されている。
なお、本実施形態において、第1及び第2の酸化物超電導線材4、5の端部4a、5a同士は接触して配置されているが、端部4a、5a同士は離間して配置されていても良い。
接続構造体30は、第1及び第2の酸化物超電導線材4、5と接続用酸化物超電導線材6を接続した部分を被覆部材25により覆う構造を有する。被覆部材25は、接続用酸化物超電導線材6側から、両端部6a、6aを含む前記接続用酸化物超電導線材6の全長と第1及び第2の酸化物超電導線材4、5の側面並びに裏面を接合層23を介し覆っている。
図3(a)に接続構造体30の側面を示す。図3(a)に示すように被覆部材25は本体部25cと周覆部25eとから構成され、各部によって各酸化物超電導線材4、5、6の外周を覆っている。
より具体的には、被覆部材25の本体部25cは、接続用酸化物超電導線材6並びに第1及び第2の酸化物超電導線材4、5の外周を覆い、被覆部材25の長手方向端部25aに形成されている周覆部25eは、第1及び第2の酸化物超電導線材4、5の外周部に沿ってこれを囲むように形成され当該外周部を覆っている。また、周覆部25eであって、接続用酸化物超電導線材6の端部6a近傍には、接続用酸化物超電導線材6の厚み分の傾斜面を構成し、前記接続用酸化物超電導線材6の端部6aを覆っている。
図3(b)、図3(c)に図3(a)に示すA−A線、B−B線に沿う断面をそれぞれ示す。
図3(b)に示すように被覆部材25の長手方向端部25aにおいて、被覆部材25の周覆部25eは、第1の酸化物超電導線材4の外周に沿って形成され、接合層23の端部被覆部23cを介し当該外周を覆っている。したがって、接続用酸化物超電導線材6の端部6aに水分が浸入することを抑制している。
また、図3(c)に示すように、被覆部材25の本体部25cは、接合層23の外周部23aを介し第1の酸化物超電導線材4と接続用酸化物超電導線材6の外周を覆っている。
図3(b)、(c)に示すように、被覆部材25の縁部25b、25b同士は、第1及び第2の酸化物超電導線材4、5の基材10側裏面において離間し隙間を形成して配置されている。被覆部材25により覆われていない基材10の裏面側の中央部は接合層23の埋込部23dにより覆われ、埋込部23dは被覆部材25の縁部25b、25b同士が形成する凹部を埋めるように形成されている。
なお、本実施形態の接続構造体30は、被覆部材25の縁部25b、25b同士を基材10側裏面において隙間を形成して配置し、当該隙間を接合層23の埋込部23dにより埋め込む構造を有するが、本発明は係る構造に限定されるものではなく、被覆部材25の縁部25b、25b同士を基材10側裏面において重ね合わせ、第1及び第2の酸化物超電導線材4、5の全周を完全に被覆しても良い。
図2に示すように、接合層23は、各酸化物超電導線材4、5、6と被覆部材25との間を完全に満たしていることが好ましい。しかしながら、接合層23のうち接続用酸化物超電導線材6の端部6aの近傍であり、被覆部材25の傾斜面の内部に形成される充填部23bは、接続用酸化物超電導線材6により形成される段差のため、内部に空隙を形成する場合がある。
図2及び図3(b)、(c)を基に説明したように、被覆部材25の長手方向端部25a、25a並びに縁部25b、25bは、接合層23を介し第1及び第2の酸化物超電導線材4、5の外周に被着しているため、充填部23bの内部に空隙が生じたとしても、係る空隙は孤立して形成され、外部からの水分浸入の経路となる事はない。
図2を基に、接続構造体30に流れる電流の主な経路と、各部の長さを説明する。
超電導状態において第1の酸化物超電導線材4から第2の酸化物超電導線材5に接続構造体30を介し流れる電流の主な経路は、まず第1の酸化物超電導線材4において酸化物超電導層12から第1及び第2の安定化層13、14を通過し、第1の酸化物超電導線材4と接続用酸化物超電導線材6とを接合する導電性接合材22に達する。さらに、接続用酸化物超電導線材6の第2の安定化層14、第1の安定化層13を介し同接続用酸化物超電導線材6の酸化物超電導層12に達する。同様に、接続用酸化物超電導線材6から、導電性接合材22を介し第2の酸化物超電導線材5に流れる。
導電性接合材22により接合される領域の長手方向の長さH22は、1000mm以下が望ましく、200mm以下であることがより好ましい。
第1の酸化物超電導線材4と接続用酸化物超電導線材6が導電性接合材22により接合される領域の長手方向の長さH22を大きくすることで、第1の酸化物超電導線材4から導電性接合材22を介し接続用酸化物超電導線材6に流れる電流の経路において、電流方向に対する導電性接合材22の断面積を大きくすることができる。第2の酸化物超電導線材5と接続用酸化物超電導線材6との間でも同様であり、全体として接続構造体30の接続部分における抵抗値を抑制することができる。したがって、導電性接合材22により接合される領域の長手方向の長さH22は、長いほうが接続部分の電気抵抗の観点において好ましく、具体的には、10mm以上であることが望ましく、30mm以上であることがより好ましい。しかしながら、導電性接合材22により接合される領域の長手方向の長さH22が1000mmを超える場合は、接続部分が長くなりすぎて、接続構造体30の屈曲性が悪くなる。
周覆部25eの長手方向に沿う長さL(図2参照)、即ち、接続用酸化物超電導線材6の端部6aから、被覆部材25の長手方向端部25a、25aまでの距離は、前記長手方向端部25a、25aが前記端部被覆部23c、23cにより接合されていれば特に限定されるものではないが、作業性を考慮すると5mm以上であることが望ましい。
被覆部材25の端部25aに構成される周覆部25eは、第1及び第2の酸化物超電導線材4、5の外周に沿って形成され、当該外周を接合層23を介して覆う。この周覆部25eの長手方向に沿う長さLが5mm以上であることにより、周覆部25eと第1及び第2の酸化物超電導線材4、5の外周に接合する接合層23の長さを十分に確保することができ、接続用酸化物超電導線材6の端部6a側への水分浸入を抑制し超電導特性の低下を抑制できる。
第1及び第2の酸化物超電導線材4、5と接続用酸化物超電導線材6とを接合する導電性接合材22として半田を使用することができる。導電性接合材22としての半田を使用する場合は、従来公知の半田を使用可能であるが、加熱時に、第2の安定化層14を接合する半田層24(図1参照)の溶融を防ぐために、当該半田層24の半田より融点が低いものを使用することが望ましい。
また、被覆部材25を各酸化物超電導線材4、5、6と被着する際に用いる接合層23は、半田層24の半田より融点が低いものを用いる事が好ましく、その他にも接着剤等が使用可能である。
なお、本実施形態に用いられる導電性接合材22並びに接合層23の材料は半田であり、以下、特に指定がなければ、導電性接合材22並びに接合層23に用いる材料を半田であるとする。
被覆部材25は、Cu、ステンレス等からなる金属テープを用いる事ができる。特にCuは、半田との密着性が良いため、接合層23として半田を用いる場合は、被覆部材25としてCu製の金属テープを用いることが望ましい。
本実施形態の接続構造体30は、各酸化物超電導線材4、5、6の端部4a、5a、6aを含む接続部全体が、被覆部材25により覆われているため、各酸化物超電導線材4、5、6の端部4a、5a、6aからの水分浸入を抑制し、超電導特性の低下を抑制できる。
加えて、本実施形態の接続構造体30は、1枚のテープ状の被覆部材25により各酸化物超電導線材4、5、6の側面を覆う構造を有するため、接続構造体30の側面に被覆部材25の接合部を形成することが無く、接合層23を構成する半田等の接合材料がはみ出すことがない。即ち、接続構造体30は、第1及び第2の酸化物超電導線材4、5に対し、幅寸法が肥大化することがなく、接続部をコンパクトに形成することが可能となり、螺旋巻きして超電導ケーブルに加工する場合や、巻回して超電導コイルに加工する場合に、接続部の肥大化による巻き線が不均一となる事を抑制できる。
さらに、接続する第1及び第2の酸化物超電導線材4、5が積層方向を揃えて配置されているため、接続部分で第1及び第2の酸化物超電導線材4、5の表裏の逆転がない。
(接続構造体の製造手順)
接続構造体30を形成する手順の一例について、図2並びに図4を基に説明する。
まず、図2に示すように、第1及び第2の酸化物超電導線材並びに接続用酸化物超電導線材6を配置し導電性接合材22により接合する。
具体的には、第1及び第2の酸化物超電導線材4、5を、接続しようとする端部4a、5a同士を隣接して配置する。このとき、第1及び第2の酸化物超電導線材4、5は、基材10、10に対し酸化物超電導層12、12を形成した側を揃えて配置する。次に、隣接された第1及び第2の酸化物超電導線材4、5の端部4a、5aに跨るように、接続用酸化物超電導線材6を橋渡しする。このとき、第1及び第2の酸化物超電導線材4、5に対し接続用酸化物超電導線材6は、酸化物超電導層12が積層される側を対向させて重ね合わせる。さらに、導電性接合材22により第1の酸化物超電導線材4と接続用酸化物超電導線材6の重ね合わせ部並びに第2の酸化物超電導線材5と接続用酸化物超電導線材6の重ね合わせ部を導電性接合材22により接合する。
第1及び第2の酸化物超電導線材4、5と接続用酸化物超電導線材6は、基材10、10に対し酸化物超電導層12、12が積層される側同士を対向させて重ね合わせることが望ましい。このように重ね合わせることで、接続部での電気抵抗が低い接続構造体30を構成することができる。加えて接続する第1の酸化物超電導線材4と第2の酸化物超電導線材5とが同方向に積層されて配置されているため、接続部分で第1及び第2の酸化物超電導線材4、5の表裏の逆転がなく、取扱いが容易となる。
このように接合することにより、図4(a)に示す状態とする。
次に、図4(b)に示すように接続用酸化物超電導線材6側から、金属テープ25Aを被せる。なお、後工程において当該金属テープ25Aが各酸化物超電導線材4、5、6を被覆し、被覆部材25となる。
金属テープ25Aの片面上には、Snめっき等の手法により、Sn半田からなる接合層23が形成されている。この接合層23が形成された面が、各酸化物超電導線材4、5、6と接する面(内側面)となるように金属テープ25Aを被せる。なお、接合層23は、金属テープ25Aの両面に形成されていても良い。
更に、矢印A、Bに示すように、金属テープ25Aの縁部25b、25bを各酸化物超電導線材4、5、6の外周に巻きつけるように折り曲げて成形し、図4(c)に示す状態とする。これにより、金属テープ25Aは、接続用酸化物超電導線材6の基材10側の裏面と両側面並びに、第1及び第2の酸化物超電導線材4、5の両側面と基材10側の裏面の幅方向端部近傍を覆うように成形される。即ち、金属テープ25Aの縁部25b、25b同士は、第1及び第2の酸化物超電導線材4、5の基材10側裏面において、所定の隙間を形成する。
次に、図4(c)に示す矢印C、Dの方向に金属テープ25Aを押し付けるように力を加え金属テープ25Aの長手方向端部25aを第1及び第2の酸化物超電導線材4、5の外周に沿わせた形状に成形し周覆部25e、25eを形成する。
次いで、加熱することで金属テープ25Aの内側面に形成された半田からなる接合層23を溶融させて、金属テープ25Aと各酸化物超電導線材4、5、6との間を隙間なく満たす。接合層23を構成する半田を凝固させた後には、金属テープ25Aは、接合層23を介し各酸化物超電導線材4、5、6を覆った構成となる。
次いで、第1及び第2の酸化物超電導線材4、5の基材10側裏面において、金属テープ25A(被覆部材25)の縁部25b、25b同士の隙間を溶融した半田を用いて埋め込み、埋込部23d(図3(b)、(c)参照)を形成する。
以上の工程を経て、図4(d)に示す接続構造体30を形成することができる。
以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(試料の作製)
まず、ハステロイC−276(米国ヘインズ社商品名)からなる幅10mm、厚さ0.1mm、長さ1000mmのテープ状の基材の表面を平均粒径3μmのアルミナを使用し研磨した。次に、前記基材の表面をアセトンにより脱脂、洗浄した。
この基材の主面上にスパッタ法によりAl(拡散防止層;膜厚100nm)を成膜し、その上に、イオンビームスパッタ法によりY(ベッド層;膜厚30nm)を成膜した。
次いで、このベッド層上に、イオンビームアシスト蒸着法(IBAD法)によりMgO(金属酸化物層;膜厚5〜10nm)を形成し、その上にパルスレーザー蒸着法(PLD法)により500nm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により2.0μm厚のGdBaCu7−δ(酸化物超電導層)を形成した。
さらに酸化物超電導層側からスパッタ法により酸化物超電導層上に2μm厚のAgからなる第1の安定化層を形成し、さらに、500℃で10時間、酸素雰囲気中において酸素アニール処理を行い、26時間の炉冷却後に取り出した。
上述の手順を経て得た線材の外周を半田層を介して金属テープにより被覆し、図1に示す酸化物超電導線材1と同構造の酸化物超電導線材を作製した。
まず、両面に厚さ2μmのSnめっき(融点230℃、半田層)が形成された幅20mm、厚さ20μm、長さ1000mmのCuからなる金属テープを用意する。この金属テープのSnめっきが施された面上に、前記酸化物超電導線材を長手方向を一致させ、しかも第1の安定化層が下になるように載置し、加熱・加圧ロールに通過させて金属テープ上のSnを溶融させて半田層を形成し、酸化物超電導線材の第1の安定化層と金属テープを接合させた。
次に、金属テープの幅方向両端側を曲げてコ字型に加工し、さらに金属テープの両端側を基材裏面側に折り曲げて横断面略C字型をなすよう成形した。
次に、再度、加熱・加圧ロールに通過させて、金属テープ上のSnを溶融させて半田層を形成し、酸化物超電導線材の側端部及び基材側の一部を金属テープと接合させた。この加熱・加圧ロールによる加熱・加圧処理により、金属テープ(第2の安定化層)とその内側に設けた酸化物超電導線材との間の隙間をSnで埋め、図1の酸化物超電導線材1と同構造の酸化物超電導線材を得た。
上述の手順を経て得た酸化物超電導線材を各実施例及び比較例において3本用意し、うち1本を長さ100mmに切断し、他2本である一対の酸化物超電導線材を接続する際に用いる接続用酸化物超電導線材とした。
(比較例1)
上述の一対酸化物超電導線材の端部同士を接触して隣接させ、当該端部を跨るように接続用酸化物超電導線材を橋渡しし、各酸化物超電導線材を半田(導電性接合材)により接続し、比較例1の接続構造体を作製した。
(実施例1、2、3)
上述の比較例1の接続構造体に更に被覆部材を被着させた図2に示す接続構造体と同形態の実施例1の接続構造体を作製した。
被覆部材として、両面に厚さ2μmのSnめっき(融点230℃、半田層)が形成された幅20mm、厚さ20μmのCuからなるテープを用意した(テープの長さは実施例1〜3でそれぞれ異なる)。この被覆部材を用いて、接続用酸化物超電導線材側から、両端部を含む前記接続用酸化物超電導線材の全長と一対の酸化物超電導線材を覆った(図3(c)の状態)。更に、被覆部材の長手方向両端部を成形することにより周覆部を形成し、加熱することで被覆部材の内側のSnめっきを溶融し接合層を形成した。さらに、一対の酸化物超電導線材の幅方向端部同士の隙間に半田を供給し、凹部を埋め、図3(b)、(c)における接合層の埋込部23dを形成した。以上の工程を経ることにより実施例1〜3の接続構造体(図2及び図3(d)の接続構造体30)を作製した。
実施例1〜3は、それぞれ被覆部材としてのテープの長さが異なる。これによって、被覆部材の周覆部の長さ(図2の接続構造体30における長さL)が異なる。実施例1の接続構造体は、長さL=5mm、実施例2の接続構造体は、長さL=10mm、実施例3の接続構造体は、長さL=15mmである。
(プレッシャークッカー試験)
比較例1並びに実施例1〜3に対し、高温(121℃)・高湿(100%)・高圧力(2気圧)下に24時間〜100時間放置するプレッシャークッカー試験を行い、その前後での臨界電流値及び接続抵抗値の比を測定した。放置前の臨界電流値(Ic)に対する放置後の臨界電流値(Ic)の比をIc/Icとして、表1に測定結果を示す。
なお、各実施例及び比較例は2個のサンプルを用意し測定を行い、各サンプルの平均値をとった。
このような過酷な試験条件において、Ic/Ic≧0.95であれば、実使用において殆ど劣化は起こらないものと考えられる。
Figure 2014167887
表1において、Ic/Icが1.0を超えるものは、測定の誤差に起因するものであると考えらえる。
実施例1〜3においては、Ic/Ic≧0.95であり100時間のプレッシャークッカー試験により、臨界電流値の低下はみられなかった。一方比較例1においては、プレッシャークッカー試験を24時間行った時点での測定結果において臨界電流値が著しく劣化している。
これらの結果から5mm以上の周覆部を構成して被覆部材を設けることにより、各接続構造体に水分が浸入することを抑制でき、超電導特性の低下を抑制することができることを確認した。
1…酸化物超電導線材、1a、4a、5a、6a…端部、4…第1の酸化物超電導線材、5…第2の酸化物超電導線材、6…接続用酸化物超電導線材、10…基材、11…中間層、12…酸化物超電導層、13…第1の安定化層、14…第2の安定化層、15…酸化物超電導積層体、22…導電性接合材、23…接合層、24…半田層、25…被覆部材、25A…金属テープ、25a…長手方向端部、25b…縁部、25c…本体部、25e…周覆部、30…接続構造体、H22…長さ、L…長さ

Claims (5)

  1. テープ状の基材と中間層と酸化物超電導層とを備えた酸化物超電導積層体と、
    少なくとも前記酸化物超電導層を覆う安定化層とからなる一対の酸化物超電導線材の接続構造体であって、
    端部同士を隣接して対向配置された前記一対の酸化物超電導線材と、
    テープ状の基材と中間層と酸化物超電導層とを備えた酸化物超電導積層体と、少なくとも酸化物超電導層の主面を覆う安定化層とからなり、前記一対の酸化物超電導線材の端部間を跨るよう橋渡しして配置された接続用酸化物超電導線材と、
    前記一対の酸化物超電導線材と前記接続用酸化物超電導線材を接合する導電性接合材と、
    前記導電性接合材によって接合された部分の一対の酸化物超電導線材及び前記接続用酸化物超電導線材、並びにその長手方向両側部分の一対の酸化物超電導線材の外周を接合層を介して覆う被覆部材と、を有することを特徴とする酸化物超電導線材の接続構造体。
  2. 前記接続用酸化物超電導線材の端部から前記被覆部材の端部までの長手方向に沿う長さが5mm以上であることを特徴とする請求項1に記載の酸化物超電導線材の接続構造体。
  3. 前記一対の酸化物超電導線材と前記接続用酸化物超電導線材の互いの安定化層同士が対向して配置され、当該安定化層同士が前記導電性接合材を介し電気的かつ機械的に接合されていることを特徴とする請求項1又は2に記載の酸化物超電導線材の接続構造体。
  4. テープ状の基材上に中間層と酸化物超電導層と少なくとも前記酸化物超電導層を覆う安定化層とを積層してなる一対の酸化物超電導線材と、テープ状の基材上に中間層と酸化物超電導層と少なくとも前記酸化物超電導層の主面を覆う安定化層とを積層してなる接続用酸化物超電導線材を用い、
    前記一対の酸化物超電導線材の端部同士を隣接して対向配置し、前記端部間を跨るように前記接続用酸化物超電導線材を橋渡しして対向配置するとともに、前記一対の酸化物超電導線材と前記接続用酸化物超電導線材を導電性接合材により接合する工程と、
    前記接続用酸化物超電導線材とこれに対向する部分の一対の酸化物超電導線材全体を接合層を介し被覆部材により覆う工程と、
    前記被覆部材の長手方向両端部を前記一対の酸化物超電導線材の外周に沿うように成形し前記接合層を介して一対の酸化物超電導線材の外周を覆う工程と、を有することを特徴とする酸化物超電導線材の接続構造体の製造方法。
  5. 前記接合層が半田からなり、
    前記被覆部材の長手方向両端部を前記一対の酸化物超電導線材の外周に沿うように成形した後に、前記接合層を加熱し溶融、凝固させて被覆部材と一対の酸化物超電導線材との隙間を閉じる工程を有することを特徴とする請求項4に記載の酸化物超電導線材の接続構造体の製造方法。
JP2013039930A 2013-02-28 2013-02-28 酸化物超電導線材の接続構造体及びその製造方法 Active JP6002602B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039930A JP6002602B2 (ja) 2013-02-28 2013-02-28 酸化物超電導線材の接続構造体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039930A JP6002602B2 (ja) 2013-02-28 2013-02-28 酸化物超電導線材の接続構造体及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014167887A true JP2014167887A (ja) 2014-09-11
JP6002602B2 JP6002602B2 (ja) 2016-10-05

Family

ID=51617483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039930A Active JP6002602B2 (ja) 2013-02-28 2013-02-28 酸化物超電導線材の接続構造体及びその製造方法

Country Status (1)

Country Link
JP (1) JP6002602B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019105778A1 (en) * 2017-11-28 2019-06-06 Basf Se Joined superconducting tapes
WO2023112391A1 (ja) * 2021-12-15 2023-06-22 住友電気工業株式会社 超電導線材接続構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033580A1 (fr) * 1999-11-04 2001-05-10 Sumitomo Electric Industries, Ltd. Procede de fabrication d'un fil en oxyde supraconducteur, fil en oxyde supraconducteur, bobine supraconductrice et dispositif supraconducteur
JP2006228665A (ja) * 2005-02-21 2006-08-31 Sumitomo Electric Ind Ltd 酸化物超電導線材およびその製造方法ならびに超電導機器
JP2008234957A (ja) * 2007-03-20 2008-10-02 Furukawa Electric Co Ltd:The 薄膜超電導線の接続方法及びその接続構造体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033580A1 (fr) * 1999-11-04 2001-05-10 Sumitomo Electric Industries, Ltd. Procede de fabrication d'un fil en oxyde supraconducteur, fil en oxyde supraconducteur, bobine supraconductrice et dispositif supraconducteur
JP2006228665A (ja) * 2005-02-21 2006-08-31 Sumitomo Electric Ind Ltd 酸化物超電導線材およびその製造方法ならびに超電導機器
JP2008234957A (ja) * 2007-03-20 2008-10-02 Furukawa Electric Co Ltd:The 薄膜超電導線の接続方法及びその接続構造体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019105778A1 (en) * 2017-11-28 2019-06-06 Basf Se Joined superconducting tapes
WO2023112391A1 (ja) * 2021-12-15 2023-06-22 住友電気工業株式会社 超電導線材接続構造

Also Published As

Publication number Publication date
JP6002602B2 (ja) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5933781B2 (ja) 酸化物超電導線材
US9362026B2 (en) Oxide superconductor wire, connection structure thereof, and superconductor equipment
JP6178779B2 (ja) 超電導線材の接続構造体および超電導線材の接続構造体の製造方法
WO2016021343A1 (ja) 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法
JP6101491B2 (ja) 酸化物超電導線材及びその製造方法
JP6101490B2 (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP2014154320A (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP6002602B2 (ja) 酸化物超電導線材の接続構造体及びその製造方法
JP5775785B2 (ja) 酸化物超電導線材及びその製造方法
JP5693798B2 (ja) 酸化物超電導線材
JP6069269B2 (ja) 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法
JP2014220194A (ja) 酸化物超電導線材及びその製造方法
JP2013247011A (ja) 酸化物超電導線材及びその製造方法
JP2014130730A (ja) 酸化物超電導線材の接続構造体及び接続方法並びに接続構造体を用いた酸化物超電導線材
JP5677116B2 (ja) 高温超電導コイル
JP2014107149A (ja) 酸化物超電導線材並びに当該酸化物超電導線材の接続構造体
JP2014167847A (ja) 酸化物超電導線材及び超電導コイル並びに酸化物超電導線材の製造方法
JP2014002833A (ja) 酸化物超電導線材およびその製造方法
JP5775810B2 (ja) 酸化物超電導線材の製造方法
JP2014130793A (ja) 酸化物超電導線材の接続構造体とその製造方法
JP2014154331A (ja) 酸化物超電導線材及び酸化物超電導線材の接続構造体並びに酸化物超電導線材の製造方法
JP5775808B2 (ja) 酸化物超電導線材とその製造方法
WO2014104333A1 (ja) 酸化物超電導線材の接続構造体およびその製造方法と超電導機器
JP2015046322A (ja) 酸化物超電導線材、及び酸化物超電導線材の製造方法
JP5701356B2 (ja) 酸化物超電導線材およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6002602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250