JP2014138085A - 放熱構造体及びその製造方法 - Google Patents

放熱構造体及びその製造方法 Download PDF

Info

Publication number
JP2014138085A
JP2014138085A JP2013006075A JP2013006075A JP2014138085A JP 2014138085 A JP2014138085 A JP 2014138085A JP 2013006075 A JP2013006075 A JP 2013006075A JP 2013006075 A JP2013006075 A JP 2013006075A JP 2014138085 A JP2014138085 A JP 2014138085A
Authority
JP
Japan
Prior art keywords
support layer
heat
linear structures
heat dissipation
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013006075A
Other languages
English (en)
Other versions
JP6217084B2 (ja
Inventor
Yoshihiro Mizuno
義博 水野
Yoshitaka Yamaguchi
佳孝 山口
真一 ▲廣▼瀬
Shinichi Hirose
Yukie Sakida
幸恵 崎田
Masaaki Norimatsu
正明 乘松
Yohei Yagishita
洋平 八木下
Takaharu Asano
高治 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013006075A priority Critical patent/JP6217084B2/ja
Publication of JP2014138085A publication Critical patent/JP2014138085A/ja
Application granted granted Critical
Publication of JP6217084B2 publication Critical patent/JP6217084B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】良好な熱伝導性を実現し得る放熱構造体及びその製造方法を提供する。
【解決手段】炭素元素の複数の線状構造体12と、複数の線状構造体の根元部側16に形成され、複数の線状構造体を支持する支持層18と、複数の線状構造体間に充填された、支持層より融解温度が低い充填層22とを有している。
【選択図】図1

Description

本発明は、放熱構造体及びその製造方法に関する。
サーバーやパーソナルコンピュータのCPU(Central Processing Unit:中央処理装
置)などに用いられる電子部品には、半導体素子から発する熱を効率よく放熱することが求められる。このため、これら電子部品は、半導体素子の直上に設けられた銅などの高い熱伝導度を有する材料のヒートスプレッダが配置された構造を有している。
この際、発熱源及びヒートスプレッダの表面には微細な凹凸が存在するため、互いをダイレクトに接触させても十分な接触面積を稼ぐことができず、接触界面が大きな熱抵抗となり、効率的に放熱を行うことができない。このため、接触熱抵抗を低減することを目的として、発熱源とヒートスプレッダとをサーマルインターフェイスマテリアル(TIM)を介して接続することが行われている。
この目的のもと、サーマルインターフェイスマテリアルには、それ自身が高い熱伝導率を有する材料であることに加え、発熱源及びヒートスプレッダ表面の微細な凹凸に対して広面積に接触しうる特性が求められている。
従来、サーマルインターフェイスマテリアルとしては、放熱グリースやフェイズチェンジマテリアル(PCM)、インジウムなどが用いられている。これらの材料が放熱材料として用いられる大きな特徴の一つは、電子機器の耐熱温度以下で流動性を有しているため、微細な凹凸に対して大きな接触面積を得ることが可能な点にある。
しかしながら、放熱グリースやフェイズチェンジマテリアルは、熱伝導率が1W/m・K〜5W/m・Kと低い。また、インジウムはレアメタルであることに加え、ITO関連での大幅な需要増加により価格が高騰しており、より安価な代替材料が待望されている。
このような背景から、放熱材料として、カーボンナノチューブに代表される炭素元素からなる線状構造体が注目されている。カーボンナノチューブは、その軸方向に非常に高い熱伝導度(1500W/m・K〜3000W/m・K)を有するだけでなく、柔軟性や耐熱性に優れた材料であり、放熱材料として高いポテンシャルを有している。
カーボンナノチューブを用いた熱伝導シートとしては、樹脂中にカーボンナノチューブを分散した熱伝導シートや、基板上に配向成長したカーボンナノチューブ束を樹脂等によって埋め込んだ熱伝導シートが提案されている。
特開2010−118609号公報 特開2009−260238号公報
しかしながら、従来の熱伝導シートでは、カーボンナノチューブの有する高い熱伝導性を十分に生かし得ない場合があった。
本発明の目的は、良好な熱伝導性を実現し得る放熱構造体及びその製造方法を提供することにある。
実施形態の一観点によれば、炭素元素の複数の線状構造体と、前記複数の線状構造体の根元部側に形成され、前記複数の線状構造体を支持する支持層と、前記複数の線状構造体間に充填された、前記支持層より融解温度が低い充填層とを有することを特徴とする放熱構造体が提供される。
実施形態の他の観点によれば、基板上に、炭素元素の複数の線状構造体を成長する工程と、前記複数の線状構造体の先端部を支持材により支持し、前記複数の線状構造体を前記基板側から前記支持材側に移転する工程と、前記複数の線状構造体の根元部側に、前記複数の線状構造体を支持する支持層を形成する工程と、前記支持層より融解温度が低い充填層を、前記複数の線状構造体間を充填するように形成する工程とを有することを特徴とする放熱構造体の製造方法が提供される。
開示の放熱構造体によれば、複数の線状構造体の根元部側を支持する支持層が形成されている。支持層の融解温度は、線状構造体間に充填された充填層の融解温度より高い。このため、アセンブリの際に充填層が融解されても、複数の線状構造体の根元部側が支持層により確実に支持される。このため、放熱体や発熱体とカーボンナノチューブとを十分に接触させることができ、良好な熱伝導性を実現することができる。
図1は、一実施形態による放熱構造体を示す断面図である。 図2は、一実施形態による電子装置を示す断面図である。 図3は、一実施形態による放熱構造体の製造方法を示す工程断面図(その1)である。 図4は、一実施形態による放熱構造体の製造方法を示す工程断面図(その2)である。 図5は、一実施形態による放熱構造体の製造方法を示す工程断面図(その3)である。 図6は、一実施形態による放熱構造体の製造方法を示す工程断面図(その4)である。 図7は、一実施形態による放熱構造体の製造方法を示す工程断面図(その5)である。 図8は、パリレンのモジュラスの温度特性を示すグラフである。 図9は、一実施形態による電子装置の製造方法を示す工程断面図である。 図10は、一実施形態による電子装置の断面の一部を示す概略図である。 図11は、一実施形態の変形例による放熱構造体の製造方法を示す工程断面図(その1)である。 図12は、一実施形態の変形例による放熱構造体の製造方法を示す工程断面図(その2)である。 図13は、参考例による電子装置の製造方法を示す工程断面図である。
図13は、参考例による電子装置の製造方法を示す工程断面図である。
図13(a)は、半導体素子(発熱体)126とヒートスプレッダ(放熱体)130との間に放熱構造体110を配した状態を示している。放熱構造体110は、複数のカーボンナノチューブ112と、複数のカーボンナノチューブ112間に充填され、複数のカーボンナノチューブ112を支持する充填層122とを有している。カーボンナノチューブ112の表面には、被覆120が形成されている。図13(a)における紙面下側は、カーボンナノチューブ112の先端部側114である。図13(a)における紙面上側は、カーボンナノチューブ112の根元部側116である。カーボンナノチューブ112の先端部側114は互いに絡み合ったような状態となっている。カーボンナノチューブ112の根元部側114は、同じ方向に配向されている。
図13(b)は、加熱した状態を示している。加熱を行うと、充填層122が融解される。また、温度の上昇に伴って、半導体素子126やヒートスプレッダ130が変形する。放熱構造体110は、半導体素子126やヒートスプレッダ130の変形に追随して変形する。
図13(c)は、ヒートスプレッダ130に荷重を加えた状態を示している。カーボンナノチューブ112の先端部側は、互いに絡み合ったような状態になっているため、変形した半導体素子126に接しても、半導体素子126の基板の面内方向には大きく変位しない。一方、カーボンナノチューブ112の根元部側は、絡み合ったような状態になっていないため、ヒートスプレッダ130の面内方向に大きく変位する。
図13(d)は、ヒートスプレッダ130に荷重を加えるのをやめた状態を示している。荷重を加えた際にヒートスプレッダ130の面内方向に大きく変位したカーボンナノチューブ112の根元部側は、荷重を加える前の状態には戻り難い。そして、カーボンナノチューブ112の先端部側114と半導体素子126とが接触していない箇所が生じる。かかる箇所においては、カーボンナノチューブ112の先端部側114と半導体素子126との間に厚い充填層122が挟まれた状態となる。
このように、発熱体126や放熱体130とカーボンナノチューブ112とが接しない箇所が生じてしまうと、熱伝導性が低下してしまい、発熱体126から発せられる熱を十分に放熱し得なくなる。
[一実施形態]
一実施形態による放熱構造体及びその製造方法並びにその放熱構造体を用いた電子装置及びその製造方法について図1乃至図10を用いて説明する。
(放熱構造体)
まず、本実施形態による放熱構造体について図1を用いて説明する。図1は、本実施形態による放熱構造体を示す断面図である。
図1に示すように、本実施形態による放熱構造体(放熱部材、放熱材料、放熱シート、熱伝導シート)10は、炭素元素の複数の線状構造体(カーボンナノチューブ)12を有している。複数のカーボンナノチューブ12は、互いに間隔を空けて形成されている。
カーボンナノチューブ12は、単層カーボンナノチューブであってもよいし、多層カーボンナノチューブであってもよい。ここでは、例えば多層カーボンナノチューブ12が形成されている。
一本の多層カーボンナノチューブ12に含まれるカーボンナノチューブの層数は、特に限定されるものではないが、例えば3〜6程度である。一本の多層カーボンナノチューブ12に含まれるカーボンナノチューブの層数の平均は、例えば4程度である。カーボンナノチューブ12の直径は、特に限定されるものではないが、例えば4〜8nm程度である。カーボンナノチューブ12の直径の平均は、例えば6nm程度である。カーボンナノチューブ12の長さは、特に限定されるものではないが、例えば80μm程度である。カーボンナノチューブ12の面密度は、特に限定されるものではないが、十分な放熱性を得る観点からは、1×1010本/cm以上であることが好ましい。ここでは、カーボンナノチューブ12の面密度を、例えば1×1011本/cm程度とする。
複数のカーボンナノチューブ12の先端部側14は、ランダムな方向を向いている(ランダム配向部)。ランダムな方向を向いているため、複数のカーボンナノチューブ12の先端部側14は、絡み合ったような状態となる。
なお、カーボンナノチューブの先端部とは、カーボンナノチューブを基板上に成長した際に、基板側に位置していた部分とは反対側の部分のことである。カーボンナノチューブを基板上に成長した際に、基板側に位置していた部分は根元部と称される。
複数のカーボンナノチューブ12の根元部側16は、同じ方向を向いている。即ち、複数のカーボンナノチューブ12の根元部側16は、互いに並行している。
複数のカーボンナノチューブ12の根元部側16には、複数のカーボンナノチューブ12の根元部側16を支持する支持層18が形成されている。より具体的には、支持層18は、カーボンナノチューブ12の根元部16の近傍に位置している。支持層18の材料としては、熱可塑性樹脂が用いられている。支持層18は、複数のカーボンナノチューブ12の根元部側16に位置している。支持層18は、温度に応じて液体と固体との間で可逆的に状態変化するものであり、室温では固体であり、加熱すると液状に変化し、冷却すると接着性を発現しつつ固体に戻る。支持層18の材料としては、後述する充填層22の融解温度より融解温度が高い材料が用いられている。支持層18の材料は、特に限定されるものではないが、ここでは、パリレン(parylene)樹脂が用いられている。複数のカーボンナノチューブ12は、支持層18を貫いている。複数のカーボンナノチューブ12が支持層18を貫いているのは、本実施形態による放熱構造体10を発熱体26や放熱体30に取り付けた際に、発熱体26や放熱体30にカーボンナノチューブ12を確実に接触させ、十分な熱伝導性を得るためである。
なお、支持層18の位置は、カーボンナノチューブ12の根元部側16の端部の直近に限定されるものではない。カーボンナノチューブ12の根元部側16の端部からある程度離間していてもよい。但し、カーボンナノチューブ12の根元部側16と先端部側14との中間の位置よりも根元部側16の端部に近い位置に支持層18を形成することが好ましい。根元部側16と先端部側14との中間の位置よりも先端部側14の端部に近い位置に支持層18を形成した場合には、カーボンナノチューブ12の根元部側16がアセンブリ時にヒートスプレッダ30の面内方向に大きく変位してしまうのを十分に防止し得ない。
複数のカーボンナノチューブ12の表面及び支持層18の表面には、被膜20が形成されている。かかる被膜20は、複数のカーボンナノチューブ12及び支持層18の表面全体を覆うように一様に形成されている。カーボンナノチューブ12や支持層18の表面に被膜20を形成することにより、カーボンナノチューブ12や支持層18の弾性(機械的強度)を向上させることができる。
被膜20の材料は、特に限定されるものではないが、酸化物や金属等を用いることができる。被膜20の材料として用いる酸化物としては、例えば、アルミニウム酸化物(Al)、チタン酸化物(TiO)、ハフニウム酸化物(RuO)、鉄酸化物(FeO)、インジウム酸化物(InO)、ランタン酸化物(LaO)等が挙げられる。また、モリブデン酸化物(MoO)、ニオブ酸化物(NbO)、ニッケル酸化物(NiO)、ルテニウム酸化物(RuO)、シリコン酸化物(SiO)、バナジウム酸化物(VO)、タングステン酸化物(WO)等を、被膜20の材料として用いてもよい。また、イットリウム酸化物(YO)、ジルコニウム酸化物(ZrO)等を被膜20の材料として用いてもよい。被膜20の材料として用いる金属としては、例えば、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、銀(Ag)、ランタン(La)等が挙げられる。ここでは、アルミニウム酸化物(酸化アルミニウム、アルミナ)が、被膜20の材料として用いられている。被膜20の膜厚は、特に限定されるものではないが、カーボンナノチューブ12や支持層18の弾性を適度に向上する観点からは、1nm〜20nm程度とすることが好ましい。酸化アルミニウムの被膜20は、例えばALD(Atomic Layer Deposition、原子層堆積)法により形成することができる。
被膜20が形成された複数のカーボンナノチューブ12間を充填するように、充填層22が形成されている。充填層22の材料としては、熱可塑性樹脂が用いられている。充填層22は、複数のカーボンナノチューブ12を支持している。充填層22は、温度に応じて液体と固体との間で可逆的に状態変化するものであり、室温では固体であり、加熱すると液状に変化し、冷却すると接着性を発現しつつ固体に戻る。充填層22の材料としては、支持層18の融解温度より融解温度が低い材料が用いられている。充填層22の材料としては、例えば、以下に示すようなホットメルト樹脂が挙げられる。ポリアミド系ホットメルト樹脂としては、例えば、ヘンケルジャパン株式会社製の「Micromelt6239」(軟化点温度:140℃)が挙げられる。また、ポリエステル系ホットメルト樹脂としては、例えば、ノガワケミカル株式会社の「DH598B」(軟化点温度:133℃)が挙げられる。また、ポリウレタン系ホットメルト樹脂としては、例えば、ノガワケミカル株式会社製の「DH722B」が挙げられる。また、ポリオレフィン系ホットメルト樹脂としては、例えば、松村石油株式会社製の「EP−90」(軟化点温度:148℃)が挙げられる。また、エチレン共重合体ホットメルト樹脂としては、例えば、ノガワケミカル株式会社製の「DA574B」(軟化点温度:105℃)が挙げられる。また、SBR系ホットメルト樹脂としては、例えば、横浜ゴム株式会社製の「M−6250」(軟化点温度:125℃)が挙げられる。また、EVA系ホットメルト樹脂としては、例えば、住友スリーエム株式会社製の「3747」(軟化点温度:104℃)が挙げられる。また、ブチルゴム系ホットメルト樹脂としては、例えば、横浜ゴム株式会社製の「M−6158」が挙げられる。
充填層22の融解温度は、本実施形態による放熱構造体10が取り付けられる発熱体26の稼働時の発熱温度の上限値より高いことが好ましい。また、充填層22の融解温度は、本実施形態による放熱構造体10、発熱体26及び放熱体30を回路基板24上に取り付けた後において行われる熱処理の温度より高いことが好ましい。例えば、本実施形態による放熱構造体10、発熱体26及び放熱体30を回路基板24に取り付けられた後にリフローを行うことにより半田バンプを用いた接合が行われる場合には、充填層22の融解温度は、かかるリフローの温度より高いことが好ましい。発熱体26の稼働やリフロー等により充填層22が溶解すると、放熱構造体10が変形し、カーボンナノチューブ12の配向性が損なわれ、ひいては、熱伝導性の低下を招く虞があるためである。
こうして、本実施形態による放熱構造体10が形成されている。
(電子装置)
次に、本実施形態による放熱構造体を用いた電子装置について図2を用いて説明する。図2は、本実施形態による電子装置を示す断面図である。
図2に示すように、多層配線基板などの回路基板24上には、例えばCPUなどの半導体素子(半導体チップ)26が実装されている。半導体素子26は、はんだバンプ28等を介して回路基板24に電気的に接続されている。
半導体素子26上には、半導体素子26からの熱を拡散するためのヒートスプレッダ30が半導体素子26を覆うように形成されている。半導体素子26とヒートスプレッダ30との間には、本実施形態による放熱構造体10が配されている。ヒートスプレッダ30は、例えば有機シーラント32等により回路基板24に接着されている。
このように、本実施形態による電子装置34では、半導体素子26とヒートスプレッダ30との間、すなわち発熱体(発熱部)26と放熱体(放熱部)30との間に、本実施形態による放熱構造体10が設けられている。放熱構造体10のカーボンナノチューブ12の根元部側16は、例えば放熱体30に接触している。より具体的には、カーボンナノチューブ12の根元部側16は、カーボンナノチューブ12の表面に形成された被膜20を介して、放熱体30に接触している。カーボンナノチューブ12の先端部側14は、例えば発熱体26に接触している。より具体的には、カーボンナノチューブ12の先端部側14は、カーボンナノチューブ12の表面に形成された被膜20を介して、発熱体26に接触している。
こうして、本実施形態による電子装置34が形成されている。
このように、本実施形態によれば、カーボンナノチューブ12の根元部側16を支持する支持層18が形成されている。支持層18の融解温度は、カーボンナノチューブ12間に充填された充填層22の融解温度より高い。このため、アセンブリ時において充填層22が融解されても、カーボンナノチューブ12の根元部側16が支持層18により確実に支持され、カーボンナノチューブ12の根元部側16がヒートスプレッダ30の面内方向に大きく変位してしまうことが防止される。一方、カーボンナノチューブ12の先端部側14はランダム配向しており、互いに絡み合ったような状態になっているため、アセンブリ時に大きく変位してしまうことはない。このため、本実施形態によれば、放熱体30や発熱体26とカーボンナノチューブ12とを十分に接触させることができ、良好な放熱性を実現することができる。
(放熱構造体の製造方法)
次に、本実施形態による放熱構造体の製造方法について図3乃至図8を用いて説明する。図3乃至図7は、本実施形態による放熱構造体の製造方法を示す工程断面図である。
まず、図3(a)に示すように、カーボンナノチューブ12を成長するための土台となる基板(基材)36を用意する。基板36としては、例えばシリコン基板を用いる。シリコン基板36には、ボロン(B)等のP型不純物がドープされていてもよい。また、シリコン基板36に、リン(P)やアンチモン(Sb)などのN型不純物がドープされていてもよい。シリコン基板36の厚さは、例えば200〜825μm程度とする。ここでは、シリコン基板36の厚さを例えば600μm程度とする。
次に、例えば熱酸化法により、シリコン基板36の表面に、膜厚300nm程度のシリコン酸化膜(図示せず)を形成する。
次に、シリコン酸化膜上に下地膜(図示せず)を形成する。下地膜は、後述する触媒金属膜(図示せず)の下地となるものである。下地膜の材料としては、モリブデン、チタン、ハフニウム(Hf)、ジルコニウム、ニオブ、バナジウム、窒化タンタル(TaN)、チタンシリサイド(TiSi)、アルミニウム、酸化アルミニウム、酸化チタン(TiO)、タンタル等を用いることができる。また、タングステン、銅、金(Au)、白金(Pt)、パラジウム(Pd)、窒化チタン(TiN)等を、下地膜の材料として用いてもよい。また、これらの材料のうちのいずれかを含む合金を、下地膜の材料として用いてもよい。ここでは、下地膜の材料として、例えばアルミニウムを用いる。
次に、例えばスパッタリング法により、触媒金属膜(図示せず)を形成する。触媒金属膜は、基板36上にカーボンナノチューブ12を成長する際の触媒となるものである。触媒金属膜の材料としては、例えば、鉄、コバルト、ニッケル、金、銀、白金、又は、これらのうちのいずれかを含む合金を用いることができる。ここでは、触媒金属膜の材料として、例えば鉄を用いる。
下地膜の材料としてアルミニウムを用い、触媒金属膜の材料として鉄を用いた場合には、アルミニウム膜と鉄膜との積層構造がシリコン基板36上に形成される。この場合、アルミニウムの下地膜の膜厚は、例えば10nm程度とし、鉄の触媒金属膜の膜厚は、例えば2.5nm程度とする。
下地膜の材料として窒化チタンを用い、触媒金属膜の材料としてコバルトを用いた場合には、窒化チタン膜とコバルト膜との積層構造がシリコン基板36上に形成される。この場合、窒化チタンの下地膜の膜厚は、例えば5nm程度とし、コバルトの触媒金属膜の膜厚は、例えば2.6nm程度とする。
また、カーボンナノチューブ12を成長する際に用いる触媒は、金属膜に限定されるものではなく、金属微粒子であってもよい。触媒として金属微粒子を用いる場合には、例えば、微分型静電分級器(DMA:differential mobility analyzer)等を用いて、金属微粒子のサイズを制御することが好ましい。金属微粒子の材料としては、上述した触媒金属膜の材料と同様の材料を適宜用いることができる。
下地膜の材料として窒化チタンを用い、金属微粒子の触媒の材料としてコバルトを用いた場合、窒化チタンの下地膜上にコバルトの金属微粒子が存在する構造がシリコン基板36上に形成される。この場合、窒化チタンの膜厚は例えば5nm程度とし、コバルトの金属微粒子の平均粒径は例えば3.8nm程度とする。
次に、図3(b)に示すように、例えばホットフィラメントCVD(Hot Filament Chemical Vapor Deposition)法により、触媒が形成された基板36上にカーボンナノチューブ12を成長する。カーボンナノチューブ12の成長条件は、例えば以下の通りとする。原料ガスとしては、アセチレンガスとアルゴンガスとの混合ガスを用いる。アセチレンガスとアルゴンガスとの分圧比は、例えば1:9程度とする。成長室内における総ガス圧は、例えば1kPa程度とする。ホットフィラメントの温度は、例えば1000℃程度とする。成長時間は、例えば20分程度とする。このような条件でカーボンナノチューブ12を成長すると、カーボンナノチューブ12の成長レートは、例えば4μm/min程度となる。こうして、長さが例えば80μm程度の多層カーボンナノチューブ12が形成される。一本の多層カーボンナノチューブ12に含まれるカーボンナノチューブの層数は、例えば3〜6程度とする。一本の多層カーボンナノチューブ12に含まれるカーボンナノチューブの層数の平均は、例えば4程度とする。カーボンナノチューブ12の直径は、例えば4〜8nm程度とする。カーボンナノチューブ12の直径の平均は、例えば6nm程度とする。また、カーボンナノチューブ12の面密度は、例えば1×1011本/cm程度となる。
なお、カーボンナノチューブ12の成長方法は、ホットフィラメントCVD法に限定されるものではない。例えば、熱CVD法やリモートプラズマCVD法等によりカーボンナノチューブ12を成長することも可能である。
また、成長するカーボンナノチューブ12は、単層カーボンナノチューブであってもよい。
カーボンナノチューブを成長する際に用いる原料は、アセチレンに限定されるものではない。例えば、メタンガス、エチレンガス等の炭化水素類を原料として用いて、カーボンナノチューブを成長してもよい。また、エタノール、メタノール等のアルコール類を原料として用いて、カーボンナノチューブを成長してもよい。
こうして、基板36のうちの触媒が形成された領域上に、複数のカーボンナノチューブが形成される。
こうして形成された複数のカーボンナノチューブ12の先端部側(上端部側)14は、ランダムな方向を向いたランダム配向部となる。
一方、複数のカーボンナノチューブ12の先端部側14と反対側の根元部側(下端部側)16は、基板36の主面の法線方向に沿うように同じ方向を向いた状態となる。即ち、複数のカーボンナノチューブ12の根元部側16は、基板36に対して垂直に配向された垂直配向部となる。
次に、図3(c)に示すように、熱剥離シート(支持材)38が取り付けられた台座40(基板、支持体、支持材、基材)を用意する。熱剥離シート38は、例えばポリエステルフィルムの基材(図示せず)と、基材の一方の面に形成された熱剥離接着剤層(図示せず)と、基材の他方の面に形成された感圧粘着剤層(図示せず)とを有している。熱剥離シート38は、常温においては熱剥離接着剤層が一般の感圧粘着剤層と同様に被着体に接着し、加熱すると熱剥離接着剤層が発泡し、接着面積の低下により熱剥離接着剤層と被着体との接着力が低下して、熱剥離接着剤層が被着体から剥離されるものである。熱剥離シート38のうちの感圧接着剤層は台座40に接着され、熱剥離シート38のうちの熱剥離接着剤層はカーボンナノチューブ12の先端部側14に接着される。かかる熱剥離シート38としては、例えば、日東電工株式会社製の熱剥離シート(商品名:リバアルファ 3195M)等を用いることができる。台座40としては、例えば石英基板を用いることができる。
次に、図4(a)に示すように、熱剥離シート38が形成された台座40を基板36に近接させ、熱剥離シート38の熱剥離接着層をカーボンナノチューブ12の先端部側14に接触させる。これにより、カーボンナノチューブ12の先端部側14が熱剥離シート38の熱剥離接着剤層に接着される。
次に、図4(b)に示すように、熱剥離シート38を台座40とともに基板36から離間させる。カーボンナノチューブ12の先端部側14が熱剥離シート38の熱剥離接着剤層に接着されているため、カーボンナノチューブ12は基板36側から容易に剥離される。これにより、カーボンナノチューブ12が熱剥離シート38側に移転される。熱剥離シート38側に移転されたカーボンナノチューブ12は、カーボンナノチューブ12の先端部側14、即ち、ランダム配向部が熱剥離シート38に支持された状態となる。カーボンナノチューブ12の根元部側16は、フリーな状態となる。
次に、図4(c)に示すように、台座40の上下を反転させる。これにより、台座40のうちの熱剥離シート38が取り付けられた面側が上側となり、台座40のうちの熱剥離シート38が取り付けられていない面側が下側となる。こうして、カーボンナノチューブ12の先端部側14が下側に位置し、カーボンナノチューブ12の根元部側16が上側に位置することとなる。
次に、図5(a)に示すように、例えばALD法により、カーボンナノチューブ12の表面全体を一様に覆う被膜20aを形成する。カーボンナノチューブ12の表面に被膜20aを形成することにより、カーボンナノチューブ12の弾性(機械的強度)を向上させることが可能となる。被膜20aの材料は、特に限定されるものではないが、酸化物や金属等を用いることができる。被膜20aの材料として用いる酸化物としては、例えば、アルミニウム酸化物、チタン酸化物、ハフニウム酸化物、鉄酸化物、インジウム酸化物、ランタン酸化物等が挙げられる。また、モリブデン酸化物、ニオブ酸化物、ニッケル酸化物、ルテニウム酸化物、シリコン酸化物、バナジウム酸化物、タングステン酸化物等を、被膜20aの材料として用いてもよい。また、イットリウム酸化物、ジルコニウム酸化物等を被膜20aの材料として用いてもよい。被膜20aの材料として用いる金属としては、例えば、マンガン、鉄、コバルト、ニッケル、銅、銀、ランタン等が挙げられる。ここでは、例えばアルミニウム酸化物を、被膜20aの材料として用いる。被膜20aの膜厚は、特に限定されるものではないが、カーボンナノチューブ12の弾性を適度に向上する観点からは、1nm〜20nm程度とすることが好ましい。
次に、図5(b)に示すように、カーボンナノチューブ12の周囲に治具42を配する。後工程において形成される支持層18が複数のカーボンナノチューブ12の集合体の側部に形成されるのを防止するためである。治具42の上面の高さは、カーボンナノチューブ12の根元部側16の端面の高さと同等とすることが好ましい。治具42の表面は、例えば疎水化処理を施すことが好ましい。後工程において形成される支持層18のうちの治具42上に形成される部分を、治具42から容易に剥離できるようにするためである。
次に、図5(c)に示すように、例えば蒸着法により、カーボンナノチューブ12上に支持層18を形成する。支持層18は、カーボンナノチューブ12のうちの根元部側16の上に形成される。この際、治具42上にも支持層18が形成される。支持層18の材料としては、例えばパリレン樹脂を用いる。支持層18をパリレン樹脂により形成する際には、成膜装置として、例えば、スペシャルティ・コーティング・システムズ社製の成膜装置(商品名:LABCOTER PDS2010)等を用いる。原料ダイマーとしては、例えばパリレンCを用いる。原料ダイマー粉末を、成膜装置の加熱室内に配し、例えば175℃で加熱することにより気化させる。気化されたダイマー蒸気は熱分解室に導かれ、例えば690℃で加熱されて熱分解され、反応性に富んだモノマーガスとなる。こうして生成されたモノマーガスを、複数のカーボンナノチューブ12の根元部側16、即ち、熱剥離シート38により支持された複数のカーボンナノチューブ12の上側に供給すると、カーボンナノチューブ12の根元部側16の表面において重合反応が生じる。これにより、カーボンナノチューブ12の表面に沿ってパリレン膜18がコンフォーマルに形成される。パリレン膜18の膜厚は、例えば3μm程度とする。パリレン膜18の膜厚は、ダイマーの量、成膜室のサイズ等に依存する。パリレンCの質量は、例えば5.4g程度とすることができるが、所望の膜厚のパリレン膜18が得られるように適宜設定すればよい。
次に、治具42を取り外す。これにより、支持層18のうちの治具42上に形成された部分が、治具42から剥離される。
次に、図6(a)に示すように、熱処理を行うことにより、カーボンナノチューブ12の根元部側16を支持層18上に突出させる。換言すれば、カーボンナノチューブ12により支持層18を貫通させる。熱処理温度は、支持層18の融解温度より高い温度とする。ここでは、熱処理温度を、例えば280℃程度とする。熱処理時間は、例えば1分程度とする。熱処理を行う際には、例えば台座40側から加熱する。台座40側から加熱すると、カーボンナノチューブ12の先端部側14から根元部側16に向かって熱が伝達され、支持層18のうちのカーボンナノチューブ12と接している部分の温度が選択的に上昇し、当該部分が選択的に融解される。熱処理を行う際には、支持層18に対して下向きの力を加える。具体的には、支持層18の縁部を治具(図示せず)で支持し、支持層18を下側に移動させる。これにより、カーボンナノチューブ12の根元部側16の部分が支持層18上に突出する。支持層18は、カーボンナノチューブ12の根元部16の近傍に留まらせる。支持層18の上面とカーボンナノチューブ12の根元部側16の端面との間の寸法は、例えば数μm程度とする。
カーボンナノチューブ12の根元部側16に支持層18を形成した後に、支持層18をカーボンナノチューブ12により貫通させるため、支持層18のうちの一部がカーボンナノチューブ12の根元部側16の端面に残存する場合もある。しかし、カーボンナノチューブ12の根元部側16の端面に残存する支持層18の厚さは十分に薄い。このため、カーボンナノチューブ12の根元部側16の端面に残存した支持層18により熱伝導性が過度に損なわれることはない。
図8は、パリレンのモジュラスの温度特性を示すグラフである。より具体的には、図8は、パリレンCのモジュラスの温度特性を示すグラフである。図8における横軸は温度であり、図8における縦軸はモジュラスである。
図8から分かるように、温度を上昇させていくと、パリレンのモジュラスは急激に低下する。従って、熱処理温度を適宜設定することにより、カーボンナノチューブ12の根元部側16を支持層18から突出させることが可能である。
こうして、カーボンナノチューブ12の根元部側16が支持層18上に突出する。カーボンナノチューブ12の根元部側16を支持層18上に突出するための熱処理の際には、熱剥離シート38の熱剥離接着剤層が発泡する。これにより、熱剥離シート38の熱剥離接着剤層とカーボンナノチューブ12との間の接着力が低下し、カーボンナノチューブ12を熱剥離シート38から容易に剥離することが可能となる。
次に、図6(b)に示すように、複数のカーボンナノチューブ12を熱剥離シート38から剥離する。
次に、図6(c)に示すように、例えばALD法により、カーボンナノチューブ12及び支持層18の表面全体を一様に覆うように被膜20を形成する。支持層18の表面に被膜20を形成することにより、支持層18の弾性を向上することができる。かかる被膜20の材料は、特に限定されるものではないが、酸化物や金属等を用いることができる。被膜20の材料として用いる酸化物や金属としては、上述したような材料が挙げられる。ここでは、例えばアルミニウム酸化物を、被膜20の材料として用いる。被膜20の膜厚は、特に限定されるものではないが、支持層18の弾性を適度に向上する観点からは、支持層18の表面に形成する被膜20の膜厚を例えば5nm程度とすることが好ましい。
次に、図7に示すように、複数のカーボンナノチューブ12間を充填するように、充填層22を形成する。具体的には、充填層22を形成するための熱可塑性樹脂の融解温度より高く、支持層18に用いられている熱可塑性樹脂の融解温度より低い温度で、充填層22を形成するための熱可塑性樹脂を加熱する。これにより、充填層22を形成するための熱可塑性樹脂を融解し、融解した熱可塑性樹脂に複数のカーボンナノチューブ12を含浸させる。熱可塑性樹脂は、温度に応じて液体と固体との間で可逆的に状態変化するものであり、室温では固体であり、加熱すると液状に変化し、冷却すると接着性を発現しつつ固体に戻る。充填層22を形成するための熱可塑性樹脂としては、支持層18に用いられている熱可塑性樹脂の融解温度より融解温度が低い熱可塑性樹脂を用いる。充填層22を形成するための熱可塑性樹脂としては、例えば、上述したようなホットメルト樹脂が挙げられる。
充填層22の融解温度は、上述したように、本実施形態による放熱構造体10が取り付けられる発熱体26の稼働時の発熱温度の上限値より高いことが好ましい。また、充填層22の融解温度は、上述したように、本実施形態による放熱構造体10を発熱体26等に取り付けた後に行われる熱処理の温度より高いことが好ましい。
融解した熱可塑性樹脂の温度を低下させると、熱可塑性樹脂層が固化し、固化した熱可塑性樹脂により形成される充填層22により複数のカーボンナノチューブ12が支持された状態となる。
こうして、本実施形態による放熱構造体10が製造される。
(電子装置の製造方法)
次に、本実施形態による放熱構造体を用いた電子装置の製造方法について図9及び図10を用いて説明する。図9は、本実施形態による電子装置の製造方法を示す工程断面図である。
まず、図9(a)に示すように、回路基板24上に、半導体素子26を実装する。半導体素子26は、例えば半田バンプ28等を用いて回路基板24に接続される。
次に、図9(b)に示すように、回路基板24上に実装された半導体素子26上に、本実施形態による放熱構造体10を配し、更に、ヒートスプレッダ30を被せる。この際、カーボンナノチューブ12の例えば先端部側14を半導体素子26側に位置させ、カーボンナノチューブ12の例えば根元部側16をヒートスプレッダ30側に位置させる。回路基板24上には、ヒートスプレッダ30を固定するための有機シーラント32等を塗布しておく。
なお、本実施形態による放熱構造体10をヒートスプレッダ30に予め固定しておき、放熱構造体10が設けられたヒートスプレッダ30を半導体素子26に被せてもよい。
次に、図9(c)に示すように、ヒートスプレッダ30に荷重を加えた状態で熱処理を行う。熱処理温度は、充填層22の融解温度より高く支持層18の融解温度より低い温度とする。これにより、カーボンナノチューブ12が支持層18により支持された状態で、充填層22が融解される。熱処理温度は、例えば195℃程度とする。熱処理時間は、例えば30分程度とする。温度の上昇に伴って、半導体素子26やヒートスプレッダ30の表面の凹凸や撓みも変化する。そして、放熱構造体10は、半導体素子26やヒートスプレッダ30の表面の凹凸や撓みの変化に応じて変形する。充填層22による拘束が緩むため、放熱構造体10内のカーボンナノチューブ12の端部は半導体素子26やヒートスプレッダ30に接する状態となる。
図10(a)は、ヒートスプレッダに荷重を加えた状態で熱処理を行った際における電子装置の断面の一部を示す概略図である。
図10(a)に示すように、複数のカーボンナノチューブ12の先端部側14は、互いに絡まったような状態を維持しつつ半導体素子26に接し、半導体素子26の変形に追従して変形する。
一方、複数のカーボンナノチューブ12の根元部側16は、支持層18により確実に支持されているため、著しく変位が生じることはなく、ヒートスプレッダ30に接する。
次に、室温まで冷却することにより、充填層22を固化するとともに、ヒートスプレッダ30を有機シーラント32によって回路基板24上に固定する。この際、充填層22の接着性が発現し、半導体素子26とヒートスプレッダ30とが放熱構造体10によって接着固定される。温度の低下に伴って、半導体素子26やヒートスプレッダ30の表面の凹凸や撓みも変化する。
図10(b)は、室温まで冷却した後における電子装置の断面の一部を示す概略図である。
図10(b)に示すように、複数のカーボンナノチューブ12の先端部側14は、半導体素子26に接した状態を維持しつつ、半導体素子26の変形に追従して変形する。
一方、複数のカーボンナノチューブ12の根元部側16は、支持層18により確実に支持されているため、著しい変位が生じることはなく、ヒートスプレッダ30に接した状態が維持される。
従って、半導体素子26やヒートスプレッダ30とカーボンナノチューブ12との間に厚い充填層22が挟まれた状態になってしまうことはない。従って、室温に冷却した後も、半導体素子26やヒートスプレッダ30と放熱構造体10との間で低い熱抵抗を維持することができる。
このように本実施形態によれば、カーボンナノチューブ12の根元部側16を支持する支持層18を形成する。支持層18の融解温度は、カーボンナノチューブ12間に充填された充填層22の融解温度より高い。このため、アセンブリ時に充填層22が融解しても、カーボンナノチューブ12の根元部側16が支持層18により確実に支持され、カーボンナノチューブ12の根元部側16がヒートスプレッダ30の面内方向に大きく変位してしまうことが防止される。一方、カーボンナノチューブ12の先端部側14はランダム配向しており、互いに絡み合ったような状態になっているため、アセンブリ時にヒートスプレッダ30の面内方向に大きく変位してしまうことはない。このため、本実施形態によれば、放熱体30や発熱体26とカーボンナノチューブ12とを十分に接触させることができ、良好な放熱性を実現することができる。
(変形例)
本実施形態の変形例による放熱構造体の製造方法について図11乃至図12を用いて説明する。図11及び図12は、本変形例による放熱構造体の製造方法を示す工程断面図である。
まず、基板36を用意する工程からカーボンナノチューブ12を熱剥離シート38側に移転する工程までは、図3(a)乃至図4(c)を用いて上述した第1実施形態による放熱構造体の製造方法と同様であるため、説明を省略する。
次に、図11(a)に示すように、カーボンナノチューブ12の周囲に治具42を配する。後工程において形成される支持層18が複数のカーボンナノチューブ12の集合体の側部に形成されるのを防止するためである。治具42の上面の高さは、カーボンナノチューブ12の根元部側16の端面の高さと同等とすることが好ましい。治具42の表面は、例えば疎水化処理を施すことが好ましい。後工程において形成される支持層18のうちの治具42上に形成される部分を、治具42から容易に剥離できるようにするためである。
次に、カーボンナノチューブ12の根元部側16に対向するように構造物46を配する。カーボンナノチューブ12の根元部側16と構造物46との間には、間隙を形成する。間隙の大きさdは、例えば10μm程度とする。構造物46としては、例えばシリコン基板を用いる。構造物46の表面には、構造物46の表面を疎水性にするための疎水化処理が施されている。構造物46の表面を疎水性にするのは、後述する支持層18を構造物46から容易に剥離させるためである。
次に、支持層18を形成するための原料ガスをカーボンナノチューブ12と構造物46との間の間隙に供給する。例えば、スペシャルティ・コーティング・システムズ社製の成膜装置(商品名:LABCOTER PDS2010)等を用いる。原料ダイマーとしては、例えばパリレンCを用いる。原料ダイマー粉末を、成膜装置の加熱室内に配し、例えば175℃で加熱することにより気化させる。気化されたダイマー蒸気は熱分解室に導かれ、例えば690℃で加熱されて熱分解され、反応性に富んだモノマーガスとなる。こうして生成されたモノマーガスをカーボンナノチューブ12と構造物46との間の間隙に供給する。こうして、カーボンナノチューブ12と構造物46との間隙を埋めるように支持層18が形成される(図11(b)参照)。
次に、治具42を取り外す。これにより、支持層18のうちの治具42上に形成された部分が、治具42から剥離される。
次に、支持層18の融解温度より高い温度で熱処理を行う。熱処理を行う際には、例えば構造物46側から支持層18を加熱する。支持層18上に構造物46が位置しているため、支持層18は構造物46により支持されている。このため、構造物46側から支持層18を加熱しても、支持層18が著しく変形してしまうことはない。熱処理温度は、例えば280℃程度とする。熱処理時間は、例えば1分程度とする。融解した支持層18は重力により下側に移動する。このため、カーボンナノチューブ12の根元側16の部分が支持層18から突出した状態となる(図11(c)参照)。
次に、台座40側から加熱することにより、熱剥離シート18の熱剥離接着剤層を発泡させ、熱剥離シート18の熱剥離接着剤層とカーボンナノチューブ12との接着力を低下させる。
次に、図12(a)に示すように、カーボンナノチューブ12を熱剥離シート38から剥離する。
この後の被膜20を形成する工程から充填層22を形成する工程までは、図6(c)及び図7を用いて上述した放熱構造体の製造方法と同様であるため、説明を省略する(図12(b)及び図12(c)参照)。
こうして本実施形態による放熱構造体が製造される(図12(c)参照)。
このように、複数のカーボンナノチューブ12の根元部側16に構造物46を対向させ、複数のカーボンナノチューブ12と構造物46との間の間隙に支持層18の原料を供給することにより、支持層18を形成してもよい。そして、熱処理を行うことにより、支持層18を複数のカーボンナノチューブ12により貫いてもよい。
[変形実施形態]
上記実施形態に限らず種々の変形が可能である。
例えば、一実施形態の変形例では、構造物46側から加熱したが、これに限定されるものではない。例えば、一実施形態の変形例において、台座40側から加熱するようにしてもよい。台座40側から加熱した場合には、カーボンナノチューブ12の先端部側14から根元部側16に向かって熱が伝達され、支持層18のうちのカーボンナノチューブ12と接している部分が選択的に融解される。そして、支持層18が下側に移動し、支持層18がカーボンナノチューブ12により貫かれる。なお、台座40側から加熱する場合には、加熱の際に構造物46を除去しておいてもよい。
また、一実施形態の変形例では、カーボンナノチューブ12の表面を覆う被膜20を、支持層18を形成する前に形成しない場合を例に説明したが、支持層18を形成する前にカーボンナノチューブ12の表面を一様に覆うように被膜20を形成してもよい。
上記実施形態に関し、更に以下の付記を開示する。
(付記1)
炭素元素の複数の線状構造体と、
前記複数の線状構造体の根元部側に形成され、前記複数の線状構造体を支持する支持層と、
前記複数の線状構造体間に充填された、前記支持層より融解温度が低い充填層と
を有することを特徴とする放熱構造体。
(付記2)
付記1記載の放熱構造体において、
前記支持層の表面を覆う被膜を更に有する
ことを特徴とする放熱構造体。
(付記3)
付記1又は2記載の放熱構造体において、
前記複数の線状構造体は、前記支持層を貫いている
ことを特徴とする放熱構造体。
(付記4)
付記1乃至3のいずれかに記載の放熱構造体において、
前記支持層は、パリレン樹脂を含む
ことを特徴とする放熱構造体。
(付記5)
付記2記載の放熱構造体において、
前記被膜は、アルミニウム酸化物を含む
ことを特徴とする放熱構造体。
(付記6)
付記1乃至5のいずれかに記載の放熱構造体において、
前記支持層は、前記線状構造体の先端部と前記線状構造体の前記根元部との中間の位置よりも前記線状構造体の前記根元部側に位置している
ことを特徴とする放熱構造体。
(付記7)
基板上に、炭素元素の複数の線状構造体を成長する工程と、
前記複数の線状構造体の先端部を支持材により支持し、前記複数の線状構造体を前記基板側から前記支持材側に移転する工程と、
前記複数の線状構造体の根元部側に、前記複数の線状構造体を支持する支持層を形成する工程と、
前記支持層より融解温度が低い充填層を、前記複数の線状構造体間を充填するように形成する工程と
を有することを特徴とする放熱構造体の製造方法。
(付記8)
付記7記載の放熱構造体の製造方法において、
前記支持層を形成する工程の後、前記充填層を形成する工程の前に、前記支持層の表面を覆うように被膜を形成する工程を更に有する
ことを特徴とする放熱構造体の製造方法。
(付記9)
付記7又は8記載の放熱構造体の製造方法において、
前記支持層を形成する工程の後、前記充填層を形成する工程の前に、熱処理を行うことにより、前記支持層を前記複数の線状構造体により貫通させる工程を更に有する
ことを特徴とする放熱構造体の製造方法。
(付記10)
付記9記載の放熱構造体の製造方法において、
前記支持層を前記複数の線状構造体により貫通させる工程では、前記複数の線状構造体の前記先端部側から前記根元部側に熱を伝達させる
ことを特徴とする放熱構造体の製造方法。
(付記11)
付記9又は10記載の放熱構造体の製造方法において、
前記支持層を前記複数の線状構造体により貫通させる工程では、前記複数の線状構造体の前記根元部側から前記先端部側に向かう方向の力を前記支持層に加えながら、前記熱処理を行うことにより、前記支持層を前記複数の線状導光体により貫通させる
ことを特徴とする放熱構造体の製造方法。
(付記12)
付記7乃至11のいずれかに記載の放熱構造体の製造方法において、
前記支持層を形成する工程では、前記複数の線状構造体の前記根元部側と対向するように構造物を配し、前記複数の線状構造体の前記根元部側と前記構造体との間に前記支持層の原料を供給することにより、前記支持層を形成する
ことを特徴とする放熱構造体の製造方法。
10…放熱構造体
12…カーボンナノチューブ、線状構造体
14…先端部
16…根元部
18…支持層
20、20a…被膜
22…充填層
24…回路基板
26…半導体素子、発熱体
28…半田バンプ
30…ヒートスプレッダ、放熱体
32…有機シーラント
34…電子装置
36…基板
38…熱剥離シート
40…台座
42…治具
46…構造物
110…放熱構造体
112…カーボンナノチューブ
114…先端部
116…根元部
120…被膜
122…充填層
126…半導体素子
130…ヒートスプレッダ

Claims (11)

  1. 炭素元素の複数の線状構造体と、
    前記複数の線状構造体の根元部側に形成され、前記複数の線状構造体を支持する支持層と、
    前記複数の線状構造体間に充填された、前記支持層より融解温度が低い充填層と
    を有することを特徴とする放熱構造体。
  2. 請求項1記載の放熱構造体において、
    前記支持層の表面を覆う被膜を更に有する
    ことを特徴とする放熱構造体。
  3. 請求項1又は2記載の放熱構造体において、
    前記複数の線状構造体は、前記支持層を貫いている
    ことを特徴とする放熱構造体。
  4. 請求項1乃至3のいずれか1項に記載の放熱構造体において、
    前記支持層は、パリレン樹脂を含む
    ことを特徴とする放熱構造体。
  5. 請求項2記載の放熱構造体において、
    前記被膜は、アルミニウム酸化物を含む
    ことを特徴とする放熱構造体。
  6. 基板上に、炭素元素の複数の線状構造体を成長する工程と、
    前記複数の線状構造体の先端部を支持材により支持し、前記複数の線状構造体を前記基板側から前記支持材側に移転する工程と、
    前記複数の線状構造体の根元部側に、前記複数の線状構造体を支持する支持層を形成する工程と、
    前記支持層より融解温度が低い充填層を、前記複数の線状構造体間を充填するように形成する工程と
    を有することを特徴とする放熱構造体の製造方法。
  7. 請求項6記載の放熱構造体の製造方法において、
    前記支持層を形成する工程の後、前記充填層を形成する工程の前に、前記支持層の表面を覆うように被膜を形成する工程を更に有する
    ことを特徴とする放熱構造体の製造方法。
  8. 請求項6又は7記載の放熱構造体の製造方法において、
    前記支持層を形成する工程の後、前記充填層を形成する工程の前に、熱処理を行うことにより、前記支持層を前記複数の線状構造体により貫通させる工程を更に有する
    ことを特徴とする放熱構造体の製造方法。
  9. 請求項8記載の放熱構造体の製造方法において、
    前記支持層を前記複数の線状構造体により貫通させる工程では、前記複数の線状構造体の前記先端部側から前記根元部側に熱を伝達させる
    ことを特徴とする放熱構造体の製造方法。
  10. 請求項8又は9記載の放熱構造体の製造方法において、
    前記支持層を前記複数の線状構造体により貫通させる工程では、前記複数の線状構造体の前記根元部側から前記先端部側に向かう方向の力を前記支持層に加えながら、前記熱処理を行うことにより、前記支持層を前記複数の線状導光体により貫通させる
    ことを特徴とする放熱構造体の製造方法。
  11. 請求項6乃至10のいずれか1項に記載の放熱構造体の製造方法において、
    前記支持層を形成する工程では、前記複数の線状構造体の前記根元部側と対向するように構造物を配し、前記複数の線状構造体の前記根元部側と前記構造体との間に前記支持層の原料を供給することにより、前記支持層を形成する
    ことを特徴とする放熱構造体の製造方法。
JP2013006075A 2013-01-17 2013-01-17 放熱構造体及びその製造方法 Expired - Fee Related JP6217084B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006075A JP6217084B2 (ja) 2013-01-17 2013-01-17 放熱構造体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006075A JP6217084B2 (ja) 2013-01-17 2013-01-17 放熱構造体及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014138085A true JP2014138085A (ja) 2014-07-28
JP6217084B2 JP6217084B2 (ja) 2017-10-25

Family

ID=51415432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006075A Expired - Fee Related JP6217084B2 (ja) 2013-01-17 2013-01-17 放熱構造体及びその製造方法

Country Status (1)

Country Link
JP (1) JP6217084B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463404A (zh) * 2015-12-07 2016-04-06 珠海格力电器股份有限公司 碳纳米管阵列复合膜的制备方法及换热器
JP2016092334A (ja) * 2014-11-10 2016-05-23 富士通株式会社 放熱シート、放熱シートの製造方法、及び電子装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118609A (ja) * 2008-11-14 2010-05-27 Fujitsu Ltd 放熱材料並びに電子機器及びその製造方法
JP2011086700A (ja) * 2009-10-14 2011-04-28 Shinko Electric Ind Co Ltd 放熱用部品
JP2012199335A (ja) * 2011-03-18 2012-10-18 Fujitsu Ltd シート状構造体、シート状構造体の製造方法、電子機器及び電子機器の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118609A (ja) * 2008-11-14 2010-05-27 Fujitsu Ltd 放熱材料並びに電子機器及びその製造方法
JP2011086700A (ja) * 2009-10-14 2011-04-28 Shinko Electric Ind Co Ltd 放熱用部品
JP2012199335A (ja) * 2011-03-18 2012-10-18 Fujitsu Ltd シート状構造体、シート状構造体の製造方法、電子機器及び電子機器の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092334A (ja) * 2014-11-10 2016-05-23 富士通株式会社 放熱シート、放熱シートの製造方法、及び電子装置の製造方法
US10611941B2 (en) 2014-11-10 2020-04-07 Fujitsu Limited Heat radiation sheet, method of manufacturing heat radiation sheet, and method of manufacturing electronic device
CN105463404A (zh) * 2015-12-07 2016-04-06 珠海格力电器股份有限公司 碳纳米管阵列复合膜的制备方法及换热器

Also Published As

Publication number Publication date
JP6217084B2 (ja) 2017-10-25

Similar Documents

Publication Publication Date Title
US10396009B2 (en) Heat dissipation material and method of manufacturing thereof, and electronic device and method of manufacturing thereof
JP6127417B2 (ja) 放熱材料の製造方法
JP5790023B2 (ja) 電子部品の製造方法
JP5447069B2 (ja) シート状構造体、電子機器及び電子機器の製造方法
JP5842349B2 (ja) シート状構造体、シート状構造体の製造方法、電子機器及び電子機器の製造方法
JP5673668B2 (ja) 放熱構造体、電子機器およびそれらの製造方法
JP6135760B2 (ja) 放熱構造体及びその製造方法並びに電子装置
JP6065410B2 (ja) シート状構造体、シート状構造体の製造方法、電子機器及び電子機器の製造方法
JP5293561B2 (ja) 熱伝導性シート及び電子機器
JP2013115094A (ja) 放熱材料及びその製造方法
JP2011091106A (ja) 熱伝導部材及びその製造方法、放熱用部品、半導体パッケージ
JP5447117B2 (ja) 電子機器の製造方法
US9644128B2 (en) Carbon nanotube sheet, electronic device, method of manufacturing carbon nanotube sheet, and method of manufacturing electronic device
JP5760668B2 (ja) シート状構造体及びその製造方法並びに電子機器及びその製造方法
JP6217084B2 (ja) 放熱構造体及びその製造方法
JP6244651B2 (ja) シート状構造体及びその製造方法、並びに電子装置及びその製造方法
JP2015185562A (ja) 電子機器とその組み立て方法、及びシート状構造体とその製造方法
JP5935302B2 (ja) シート状構造体及びその製造方法並びに電子機器及びその製造方法
JP6123154B2 (ja) 放熱材料の製造方法
JP6056501B2 (ja) 放熱構造体の製造方法
JP2010280528A (ja) シート状構造体及びその製造方法
JP6115270B2 (ja) 放熱構造体及びその製造方法並びに電子装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6217084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees