JP2014133259A - Manufacturing method of arc welding structural member - Google Patents

Manufacturing method of arc welding structural member Download PDF

Info

Publication number
JP2014133259A
JP2014133259A JP2013004104A JP2013004104A JP2014133259A JP 2014133259 A JP2014133259 A JP 2014133259A JP 2013004104 A JP2013004104 A JP 2013004104A JP 2013004104 A JP2013004104 A JP 2013004104A JP 2014133259 A JP2014133259 A JP 2014133259A
Authority
JP
Japan
Prior art keywords
welding
gas
arc
molten
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013004104A
Other languages
Japanese (ja)
Inventor
Kazuaki Hosomi
和昭 細見
Tomokazu Nobutoki
智和 延時
Takefumi Nakako
武文 仲子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2013004104A priority Critical patent/JP2014133259A/en
Publication of JP2014133259A publication Critical patent/JP2014133259A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To remarkably restrain a molten metal embrittlement crack and generation of a blow hole in an arc welding structural member of using a Zn-Al-Mg-based plated steel sheet member, without causing restriction and a large cost increase by a kind of steel of a plated original plate.SOLUTION: Joining one or both members are formed as a molten Zn-Al-Mg-based plated steel sheet member, and Ar+COgas, He+COgas or Ar+He+COgas are used as shield gas, and a gas shield is executed so that the relationship between a COuse amount F(L/cm) per unit welding length and welding input heat Q(J/cm) satisfies the following (3) formula. 0.0025≤F≤47.5Q...(3).

Description

本発明は、接合する一方または双方の部材に溶融Zn−Al−Mg系めっき鋼板部材を用いて構成した耐溶融金属脆化割れ性に優れるアーク溶接構造部材の製造法に関する。   The present invention relates to a method for producing an arc-welded structural member having excellent resistance to molten metal embrittlement cracking constituted by using a molten Zn—Al—Mg-based plated steel sheet member for one or both members to be joined.

溶融亜鉛系めっき鋼板は耐食性が良好であるため建築部材や自動車部材をはじめとする広範な用途に使用されている。なかでも溶融Zn−Al−Mg系めっき鋼板は長期間にわたり優れた耐食性を維持することから、従来の溶融亜鉛めっき鋼板に代わる材料として需要が増加している。   Since the hot dip galvanized steel sheet has good corrosion resistance, it is used in a wide range of applications including building members and automobile members. Among them, the hot-dip Zn—Al—Mg-based steel sheet maintains excellent corrosion resistance for a long period of time, and therefore, the demand is increasing as a material to replace the conventional hot-dip galvanized steel sheet.

溶融Zn−Al−Mg系めっき鋼板のめっき層は特許文献1、2に記載されるように、Zn/Al/Zn2Mg三元共晶のマトリクス中に初晶Al相または初晶Al相とZn単相が分散した金属組織を有しており、AlおよびMgにより耐食性が向上している。そのめっき層の表面には、特にMgを含む緻密で安定な腐食生成物が均一に生成するため、溶融亜鉛めっき鋼板に比べてめっき層の耐食性が格段に向上している。 As described in Patent Documents 1 and 2, the plated layer of the hot-dip Zn—Al—Mg-based plated steel sheet has a primary Al phase or primary Al phase in a Zn / Al / Zn 2 Mg ternary eutectic matrix. It has a metal structure in which a Zn single phase is dispersed, and the corrosion resistance is improved by Al and Mg. Since a dense and stable corrosion product containing Mg in particular is uniformly formed on the surface of the plated layer, the corrosion resistance of the plated layer is remarkably improved as compared with the hot dip galvanized steel sheet.

溶融Zn−Al−Mg系めっき鋼板を用いて建築部材、自動車部材等を組み立てる場合、ガスシールドアーク溶接法が適用されることが多い。溶融Zn−Al−Mg系めっき鋼板にアーク溶接を施すと溶融亜鉛めっき鋼板と比べ溶融金属脆化割れが生じやすいという問題がある。これはMgの含有によってめっき層の液相線温度が低下していることが原因であるとされている(特許文献3、4)。   In the case of assembling building members, automobile members, and the like using a molten Zn—Al—Mg plated steel sheet, a gas shield arc welding method is often applied. When arc welding is performed on a hot-dip Zn-Al-Mg-based steel sheet, there is a problem that hot metal embrittlement cracking is likely to occur as compared with a hot-dip galvanized steel sheet. This is considered to be caused by a decrease in the liquidus temperature of the plating layer due to the Mg content (Patent Documents 3 and 4).

めっき鋼板にアーク溶接を施すと、めっき層の金属はアークが通過した周囲の母材(めっき原板)表面上で溶融する。Zn−Al−Mg系めっき鋼板の場合、当該めっき層の合金はZnの融点(約420℃)に比較して液相線温度が低く、比較的長時間にわたって溶融状態を維持する。Zn−6質量%Al−3質量%Mg合金の例では凝固終了温度が約335℃である。母材表面上で溶融したZn−Al−Mg系めっき層由来の溶融金属は、Al成分が下地のFeと早期に反応してFe−Al合金層となって消費されるに伴いAl濃度を減じていき、最終的にZn−Mg二元系に近い組成となるが、Zn−3質量%Mg合金でも凝固終了温度は360℃とZnの融点420℃より低い。したがって、Zn−Al−Mg系めっき鋼板の場合、亜鉛めっき鋼板と比べ、アーク溶接時に溶融しためっき層の金属が液相状態を維持したまま母材表面上に滞留する時間が長くなる。   When arc welding is performed on the plated steel sheet, the metal of the plating layer melts on the surface of the surrounding base material (plating original sheet) through which the arc has passed. In the case of a Zn-Al-Mg plated steel sheet, the alloy of the plating layer has a liquidus temperature lower than the melting point of Zn (about 420 ° C.) and maintains a molten state for a relatively long time. In the example of the Zn-6 mass% Al-3 mass% Mg alloy, the solidification end temperature is about 335 ° C. Molten metal derived from the Zn-Al-Mg plating layer melted on the surface of the base metal reduces the Al concentration as the Al component reacts with the underlying Fe at an early stage and is consumed as an Fe-Al alloy layer. Finally, the composition becomes close to a Zn—Mg binary system, but even with a Zn-3 mass% Mg alloy, the solidification end temperature is 360 ° C. and lower than the melting point of Zn, 420 ° C. Therefore, in the case of a Zn—Al—Mg-based plated steel sheet, the time during which the metal in the plated layer melted during arc welding stays on the surface of the base material while maintaining the liquid phase is longer than that in the galvanized steel sheet.

アーク溶接直後の冷却時に引張応力状態となっている母材の表面が、溶融しためっき金属に長時間曝されると、その溶融金属は母材の結晶粒界に侵入し溶融金属脆化割れを引き起こす要因となる。溶融金属脆化割れが発生すると、それが腐食の基点となり耐食性が低下する。また強度や疲労特性が低下して問題となることもある。   When the surface of a base metal that is in a tensile stress state during cooling immediately after arc welding is exposed to molten plated metal for a long time, the molten metal penetrates into the crystal grain boundaries of the base metal and causes molten metal embrittlement cracking. It becomes a cause. When molten metal embrittlement cracking occurs, it becomes the starting point of corrosion and corrosion resistance decreases. In addition, the strength and fatigue characteristics may be reduced, causing problems.

アーク溶接時の溶融Zn−Al−Mg系めっき鋼板の溶融金属脆化割れを抑制する方法としては、例えばアーク溶接前にめっき層を切削除去する手法が提案されている。また、特許文献4にはB添加によりフェライト結晶粒界を強化した鋼板をめっき原板に適用することで耐溶融金属脆化割れ性を付与する手法が開示されている。特許文献5には溶接ワイヤの外皮中にTiO2およびFeOを添加したフラックスを充填してアーク溶接時にZn、Al、Mgを酸化させることで溶融金属脆化割れを抑制する手法が開示されている。 As a method for suppressing molten metal embrittlement cracking of a molten Zn—Al—Mg-based plated steel sheet during arc welding, for example, a method of cutting and removing a plating layer before arc welding has been proposed. Patent Document 4 discloses a technique of imparting resistance to molten metal embrittlement cracking by applying a steel plate whose ferrite crystal grain boundary is reinforced by addition of B to a plating original plate. Patent Document 5 discloses a technique of suppressing molten metal embrittlement cracking by filling Zn, Al, and Mg during arc welding by filling a flux added with TiO 2 and FeO into the outer sheath of a welding wire. .

特許第3149129号公報Japanese Patent No. 3149129 特許第3179401号公報Japanese Patent No. 3179401 特許第4475787号公報Japanese Patent No. 4475787 特許第3715220号公報Japanese Patent No. 3715220 特開2005−230912号公報JP 2005-230912 A

溶接技術、産報出版株式会社、2006年11月号、p.112−124Welding Technology, Sangyo Publishing Co., Ltd., November 2006, p.112-124

上述のめっき層を切削除去する手法や特殊な溶接ワイヤーを使用する手法は多大なコスト増を伴う。めっき原板にB添加鋼を用いる手法は鋼種選択の自由度を狭める。また、これらの手法を採用しても部品形状や溶接条件によっては溶融金属脆化割れを十分に防止できない場合があり、Zn−Al−Mg系めっき鋼板を用いたアーク溶接構造物の抜本的な溶融金属脆化割れ防止対策とはなっていない。   The method of cutting and removing the above-described plating layer and the method of using a special welding wire are accompanied by a great increase in cost. The technique of using B-added steel for the plating base plate reduces the degree of freedom in selecting the steel type. Moreover, even if these methods are adopted, molten metal embrittlement cracking may not be sufficiently prevented depending on the part shape and welding conditions, and a radical arc welding structure using a Zn-Al-Mg based steel sheet is essential. It is not a measure to prevent molten metal embrittlement cracking.

また、近年自動車の軽量化のために引張強さ590MPa以上の高張力鋼板がめっき原板に用いられるようになってきた。このような高張力鋼板を用いた溶融Zn−Al−Mg系めっき鋼板では溶接熱影響部の引張応力が増大するので溶融金属脆化割れが起こりやすくなり、適用可能な部品形状や用途が限定される。   In recent years, a high-tensile steel plate having a tensile strength of 590 MPa or more has been used as a plating original plate for reducing the weight of automobiles. In such a molten Zn-Al-Mg plated steel sheet using high-tensile steel sheet, the tensile stress in the weld heat-affected zone is increased, so that molten metal embrittlement cracking is likely to occur, and applicable part shapes and applications are limited. The

一方、Zn系めっき鋼板にアーク溶接を施すと、発生したZn蒸気が溶接金属に入り込んでブローホールやピットといった溶接欠陥の形成を招きやすい(以下、本明細書では「ピット」も含めて「ブローホール」と呼ぶ)。信頼性の高い溶接構造部材を構築するためにはブローホールの発生を抑制することも重要となる。この種のブローホールの生成にはシールドガスの組成も影響する。広く使用されている代表的なアーク溶接用シールドガスとして、CO2100%ガス、およびAr80%+CO220%ガスの2種類を挙げることができる。Ar+CO2ガスは、CO2100%ガスに比べて優れた溶接作業性を発揮し、かつ薄板の溶接では溶け込みが浅いため耐溶け落ち性、耐ギャップ性に優れるなど、高性能のシールドガスとして知られている(非特許文献1)。しかしながら、Zn蒸気に起因するブローホールを抑制するためにはCO2100%ガスの方が効果的であるとされ、亜鉛めっき鋼板の定電圧アーク溶接においてブローホールの抑制を重視する場合には、Ar+CO2ガスは推奨されない(非特許文献1の表1参照)。 On the other hand, when arc welding is performed on a Zn-based plated steel sheet, the generated Zn vapor easily enters the weld metal and easily forms weld defects such as blow holes and pits (hereinafter referred to as “blowing” including “pits” in this specification). Called "Hall"). In order to construct a highly reliable welded structural member, it is also important to suppress the occurrence of blowholes. The composition of the shielding gas also affects the generation of this type of blowhole. As a typical arc welding shield gas that is widely used, there are two types of gas: CO 2 100% gas and Ar 80% + CO 2 20% gas. Ar + CO 2 gas is known as a high-performance shield gas because it exhibits superior welding workability compared to 100% CO 2 gas, and because it has a low penetration due to the thin penetration of thin plates, it has excellent resistance to burn-off and gap resistance. (Non-Patent Document 1). However, in order to suppress blowholes due to Zn vapor, CO 2 100% gas is considered to be more effective, and when importance is attached to suppression of blowholes in constant voltage arc welding of galvanized steel sheets, Ar + CO 2 gas is not recommended (see Table 1 of Non-Patent Document 1).

本発明は、めっき原板の鋼種による制約や、大幅なコスト増を伴うことなく、Zn−Al−Mg系めっき鋼板部材を用いたアーク溶接構造部材において優れた耐溶融金属脆化割れ性を有し、かつブローホールの生成も抑制された信頼性の高いものを提供することを目的とする。   The present invention has excellent resistance to molten metal embrittlement cracking in arc-welded structural members using Zn-Al-Mg-based plated steel sheet members, without any restrictions due to the steel type of the plating base plate and significant cost increase. And it aims at providing the reliable thing in which the production | generation of the blowhole was also suppressed.

発明者らの検討によれば、ガスシールドアーク溶接時に溶接ビード近傍ではめっき層が蒸発により一旦消失するが、アークが通り過ぎた後、ビードから少し離れた位置で溶融状態となっているめっき層金属が直ちに上記の消失した箇所に濡れ拡がるという現象が起きることが確かめられている。この濡れ拡がりを抑制して、上記の蒸発消失した状態を維持したまま冷却が完了すれば、溶接ビートに近い位置で母材中へのめっき層成分の侵入が回避され、溶融金属脆化割れは効果的に防止できると考えられる。   According to the inventors' investigation, the plating layer disappears once by evaporation in the vicinity of the weld bead during gas shielded arc welding, but after the arc passes, the plating layer metal is in a molten state at a position slightly away from the bead. It has been confirmed that the phenomenon of immediately spreading to the above disappeared portion occurs. If this wetting spread is suppressed and cooling is completed while maintaining the state of evaporative disappearance, the penetration of the plating layer component into the base metal is avoided at a position close to the welding beat, and the molten metal embrittlement crack is It can be effectively prevented.

アーク溶接のシールドガスとしては、溶接ビード周辺の酸化を抑制する等の理由により、CO2ガスあるいはCO2を20体積%程度含有するガスを用いることが多い。特に、亜鉛めっき鋼板に適用するアーク溶接においてブローホールの抑制を重視する場合には、CO2100%ガスの適用が有利であることが知られている(前述)。しかしながら、発明者らの調査によれば、このCO2はZn−Al−Mg系めっき層金属の濡れ拡がりを助長する作用を有することがわかった。そこで、詳細な研究の結果、溶接トーチからシールドガスの成分として供給されるCO2の流量を溶接入熱に応じて適切にコントロールすることによって、Zn−Al−Mg系めっき鋼板部材における上記の濡れ拡がりを顕著に抑制することができ、かつ、CO2100%ガスを使用することなくブローホールの発生も効果的に抑制可能であることがわかった。本発明はこのような知見に基づいて完成したものである。 As a shield gas for arc welding, CO 2 gas or a gas containing about 20% by volume of CO 2 is often used for reasons such as suppressing oxidation around the weld bead. In particular, it is known that application of 100% CO 2 gas is advantageous when emphasizing suppression of blowholes in arc welding applied to galvanized steel sheets (described above). However, according to investigations by the inventors, it has been found that this CO 2 has an action of promoting the wetting and spreading of the Zn—Al—Mg-based plating layer metal. Therefore, as a result of detailed research, the above-mentioned wetting in the Zn—Al—Mg based steel sheet member is appropriately controlled by appropriately controlling the flow rate of CO 2 supplied as a component of the shielding gas from the welding torch according to the welding heat input. It has been found that the expansion can be remarkably suppressed, and the generation of blowholes can be effectively suppressed without using 100% CO 2 gas. The present invention has been completed based on such findings.

すなわち上記目的は、ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、接合する一方または双方の部材を溶融Zn−Al−Mg系めっき鋼板部材とし、シールドガスとしてAr+CO2ガス、He+CO2ガスまたはAr+He+CO2ガスを用いて、下記(1)式で表される単位溶接長さ当たりのCO2使用量FCO2(L/cm)と下記(2)式で表される溶接入熱Q(J/cm)の関係が下記(3)式を満たすようにガスシールドを行うアーク溶接構造部材の製造法によって達成される。
CO2=DCO2/v …(1)
Q=(I×V)/v …(2)
0.0025≦FCO2≦47.5Q-0.74 …(3)
ただし、DCO2はシールドガス中における標準状態(0℃、101.3kPa)換算でのCO2流量(L/sec)、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)である。
That is, the above object is to manufacture a welded structural member by joining steel materials by gas shielded arc welding, and one or both of the members to be joined is a molten Zn—Al—Mg based plated steel plate member, and Ar + CO 2 as a shielding gas. Using gas, He + CO 2 gas or Ar + He + CO 2 gas, the amount of CO 2 used per unit weld length F CO2 (L / cm) expressed by the following formula (1) and welding expressed by the following formula (2) The heat input Q (J / cm) relationship is achieved by a method for manufacturing an arc welded structure member that performs gas shielding so that the following equation (3) is satisfied.
F CO2 = D CO2 / v (1)
Q = (I × V) / v (2)
0.0025 ≦ F CO2 ≦ 47.5Q −0.74 (3)
However, D CO2 is the CO 2 flow rate (L / sec) in standard conditions (0 ° C, 101.3 kPa) in shield gas, I is the welding current (A), V is the arc voltage (V), and v is the welding. Speed (cm / sec).

ここで、「溶融Zn−Al−Mg系めっき鋼板部材」は、溶融Zn−Al−Mg系めっき鋼板からなる部材、またはそれを素材として成形加工した部材である。前記溶接入熱Qは例えば2000〜12000J/cmの範囲とすることができる。   Here, the “molten Zn—Al—Mg-based plated steel sheet member” is a member made of a molten Zn—Al—Mg-based plated steel sheet, or a member formed by using it as a raw material. The welding heat input Q can be, for example, in the range of 2000 to 12000 J / cm.

また、前記溶融Zn−Al−Mg系めっき鋼板部材が板厚2.7mm未満(例えば0.8mm以上2.7mm未満)である場合は上記(3)式に代えて下記(4)式を適用することができる。
0.0025≦FCO2≦2.62Q-0.35 …(4)
このように板厚が薄い場合には、前記溶接入熱Qは例えば2000〜4500J/cmの範囲とすることがより好ましい。
Further, when the molten Zn—Al—Mg-based plated steel sheet member has a plate thickness of less than 2.7 mm (for example, 0.8 mm or more and less than 2.7 mm), the following formula (4) is applied instead of the formula (3). can do.
0.0025 ≦ F CO2 ≦ 2.62Q -0.35 ... (4)
Thus, when plate | board thickness is thin, it is more preferable that the said welding heat input Q shall be the range of 2000-4500 J / cm, for example.

前記溶融Zn−Al−Mg系めっき鋼板は、質量%で、Al:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.5%、残部Znおよび不可避的不純物からなるめっき層を有するものが特に好適な対象となる。片面当たりのZn−Al−Mg系めっき付着量は例えば20〜250g/m2とすることができる。 The molten Zn—Al—Mg-based plated steel sheet is, by mass, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, and B: 0. Those having a plating layer composed of ˜0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, the balance Zn and unavoidable impurities are particularly suitable. Zn-Al-Mg plated coating weight per one surface can be, for example, 20 to 250 g / m 2.

本発明によれば、本来的に溶融金属脆化割れが生じやすい溶融Zn−Al−Mg系めっき鋼板部材を用いたアーク溶接構造物において、優れた耐溶融金属脆化割れ性を呈するものを特段のコスト増を伴うことなく安定して実現することが可能となった。Zn蒸気の発生に起因するブローホールの生成も同時に抑制される。めっき原板の鋼種にも特に制約はなく、溶融金属脆化割れ対策として特殊な元素を添加した鋼種を採用する必要はない。高張力鋼板を適用しても優れた耐溶融金属脆化割れ性が得られる。また、部品形状に対する自由度も大きい。したがって本発明は、今後ニーズの増大が予想される高張力鋼板を用いた自動車用アーク溶接構造部材をはじめ、種々の広範な用途において、Zn−Al−Mg系めっき鋼板アーク溶接構造部材の普及に寄与するものである。   According to the present invention, an arc welded structure using a molten Zn—Al—Mg-based plated steel sheet member that is inherently susceptible to molten metal embrittlement cracking is one that exhibits excellent resistance to molten metal embrittlement cracking. It became possible to realize stably without increasing the cost. The generation of blowholes due to the generation of Zn vapor is also suppressed at the same time. There is no particular restriction on the steel type of the plating base plate, and it is not necessary to adopt a steel type to which a special element is added as a measure against molten metal embrittlement cracking. Even when a high-strength steel plate is applied, excellent melt metal embrittlement cracking resistance can be obtained. Moreover, the freedom degree with respect to a component shape is also large. Therefore, the present invention is widely used in a wide variety of applications including Zn-Al-Mg-plated steel sheet arc welded structural members, including automotive arc welded structural members that use high-tensile steel sheets that are expected to increase in the future. It contributes.

ガスシールドアーク溶接中のトーチおよび母材の断面を模式的に示した図。The figure which showed typically the cross section of the torch and base material in gas shielded arc welding. 重ねすみ肉溶接継手の溶接部断面構造を模式的示した図。The figure which showed typically the welding part cross-section of a lap fillet welded joint. 溶融Zn−Al−Mg系めっき鋼板のアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示した図。The figure which showed typically the cross-sectional state of the high temperature welded part immediately after the arc passed at the time of the arc welding of a hot-dip Zn-Al-Mg type plated steel plate. 図3の状態から冷却された従来のZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示した図。The figure which showed typically the cross-section of the conventional Zn-Al-Mg type plated steel plate arc welding structural member cooled from the state of FIG. 図3の状態から冷却されて得られた本発明に従うZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示した図。The figure which showed typically the cross-section of the Zn-Al-Mg system plating steel plate arc welding structural member according to this invention obtained by cooling from the state of FIG. 耐溶融金属脆化割れ性を調べるための溶接実験方法を示した図。The figure which showed the welding experiment method for investigating the molten metal embrittlement cracking resistance. めっき原板の板厚が6mmの場合について、溶接入熱Qおよび単位溶接長さ当たりのCO2使用量FCO2と、耐溶融金属脆化割れ性および耐ブローホール発生性の関係を示すグラフ。For the plate thickness of the plating original plate is 6 mm, shows the CO 2 amount F CO2 per heat input Q and the unit weld length, the resistance to liquid metal embrittlement cracking resistance and blowholes of the relationship graph. めっき原板の板厚が2.6mmの場合について、溶接入熱Qおよび単位溶接長さ当たりのCO2使用量FCO2と、耐溶融金属脆化割れ性および耐ブローホール発生性の関係を示すグラフ。Graph showing the relationship between welding heat input Q and CO 2 usage F CO2 per unit weld length, resistance to molten metal embrittlement cracking and blowhole resistance when the plate thickness is 2.6 mm .

図1に、ガスシールドアーク溶接中のトーチおよび母材の断面を模式的に示す。溶接トーチ31は母材1の表面上にアーク35を形成しながら矢印の方向に進行している。溶接トーチ31の中心部に位置する電極33と溶接ワイヤ32の周囲からシールドガス34が吹き出し、アーク35および高温に曝される母材1の表面を大気から保護している。アーク35からの入熱により溶融した母材1の一部は溶接トーチ31が通り過ぎたのち急速に凝固して、溶接金属からなる溶接ビード2を形成する。シールドガス34は、非酸化性のガスであることが必要である。一般的にはCO2ガスや、Ar+CO2混合ガスが採用される。シールドガス34中のCO2はプラズマ状態のアーク35によって一部がCOとO2に乖離すると考えられており、そのCOが還元作用を発揮して溶接ビードおよびその周辺の酸化が抑制される。それにより溶接部での耐食性低下が軽減されると考えられる。 FIG. 1 schematically shows a cross section of a torch and a base material during gas shielded arc welding. The welding torch 31 advances in the direction of the arrow while forming an arc 35 on the surface of the base material 1. A shield gas 34 is blown out from the periphery of the electrode 33 and the welding wire 32 positioned at the center of the welding torch 31 to protect the arc 35 and the surface of the base material 1 exposed to high temperatures from the atmosphere. A part of the base material 1 melted by heat input from the arc 35 is rapidly solidified after the welding torch 31 passes and forms a weld bead 2 made of weld metal. The shield gas 34 needs to be a non-oxidizing gas. Generally, CO 2 gas or Ar + CO 2 mixed gas is employed. A part of CO 2 in the shielding gas 34 is considered to be separated into CO and O 2 by the plasma arc 35, and the CO exerts a reducing action to suppress oxidation of the weld bead and its surroundings. Thereby, it is thought that the corrosion-resistant fall in a welding part is reduced.

図2に、重ねすみ肉溶接継手の溶接部断面構造を模式的に例示する。自動車シャシなどにはアーク溶接によるこの種の溶接継手が多用されている。鋼板部材である母材1、母材1’が重ねられて配置され、母材1の表面と母材1’の端面に溶接ビード2が形成され、両部材が接合されている。図中の破線は溶接前の母材1の表面位置および母材1’の端面位置を表している。母材表面と溶接ビードの交点を「ビード止端部」と呼ぶ。図中には母材1についてのビード止端部を符号3で示してある。   FIG. 2 schematically illustrates the cross-sectional structure of the welded portion of the lap fillet weld joint. This type of welded joint by arc welding is frequently used for automobile chassis. A base material 1 and a base material 1 ′, which are steel plate members, are arranged so as to overlap each other, a weld bead 2 is formed on the surface of the base material 1 and an end surface of the base material 1 ′, and both members are joined. The broken lines in the figure represent the surface position of the base material 1 and the end face position of the base material 1 'before welding. The intersection of the base metal surface and the weld bead is called the “bead toe”. In the drawing, the bead toe portion of the base material 1 is indicated by reference numeral 3.

図3〜図5は、図2に示したビード止端部3の近傍に相当する部位の断面構造を拡大して模式的に示したものである。
図3に、Zn−Al−Mg系めっき鋼板のガスシールドアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示す。母材1の表面は、溶接前の段階でFe−Al系合金層6を介して均一なめっき層7に覆われていたが、アークの通過によってビード止端部3の近くではめっき層の金属が蒸発して消失している(めっき層蒸発領域9)。それよりビード止端部3からの距離が大きい部分では、元のめっき層7が溶融してZn−Al−Mg系溶融金属8となるが、蒸発による消失には至っていない。ビード止端部3からの距離がさらに大きくなると、元のめっき層7が溶融せずに存在している。なお、図3中、Zn−Al−Mg系溶融金属8およびめっき層7の厚さは誇張して描いてある。
3 to 5 schematically show an enlarged cross-sectional structure of a portion corresponding to the vicinity of the bead toe 3 shown in FIG.
FIG. 3 schematically shows a cross-sectional state in the vicinity of a high-temperature weld immediately after the arc passes during gas shielded arc welding of a Zn—Al—Mg based steel sheet. The surface of the base material 1 was covered with the uniform plating layer 7 via the Fe—Al-based alloy layer 6 in the stage before welding, but the metal of the plating layer was near the bead toe 3 due to the passage of the arc. Evaporates and disappears (plating layer evaporation region 9). In the portion where the distance from the bead toe 3 is larger than that, the original plating layer 7 is melted to become the Zn—Al—Mg based molten metal 8, but has not disappeared due to evaporation. When the distance from the bead toe 3 is further increased, the original plating layer 7 exists without melting. In FIG. 3, the thicknesses of the Zn—Al—Mg-based molten metal 8 and the plating layer 7 are exaggerated.

図4に、図3の状態から冷却されて得られた従来のZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示す。この場合、溶接時にめっき層が一旦消失して形成した「めっき層蒸発領域」(図3の符号9)にZn−Al−Mg系溶融金属(図3の符号8)が濡れ拡がり、母材1の表面はビード止端部3までの全体がZn−Al−Mg系合金層5に覆われる。Zn−Al−Mg系溶融金属(図3の符号8)が凝固して形成したZn−Al−Mg系合金層5の部分を溶融凝固領域10と呼び、元のめっき層7が残存して形成したZn−Al−Mg系合金層5の部分をめっき層未溶融領域11と呼ぶ。従来のZn−Al−Mg系めっき鋼板アーク溶接構造部材では通常この図のように、ビード止端部3直近は溶融凝固領域10となる。この場合、前述のようにZn−Al−Mg系溶融金属8は液相線温度が低いために、冷却後に溶融凝固領域10となる母材1の表面部分は溶接後の冷却過程でZn−Al−Mg系溶融金属と接触する時間が比較的長くなる。母材1のビード止端部に近い部分には溶接後の冷却で引張応力が生じているので、その結晶粒界中にZn−Al−Mg系溶融金属の成分が侵入しやすい。粒界に侵入した当該成分が溶融金属脆化割れを引き起こす要因となる。   FIG. 4 schematically shows a cross-sectional structure of a conventional Zn—Al—Mg-based plated steel sheet arc welded structural member obtained by cooling from the state of FIG. In this case, the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 3) wets and spreads in the “plating layer evaporation region” (reference numeral 9 in FIG. 3) formed once the plating layer disappears during welding, and the base material 1 The entire surface up to the bead toe 3 is covered with the Zn—Al—Mg alloy layer 5. The portion of the Zn—Al—Mg alloy layer 5 formed by solidification of the Zn—Al—Mg molten metal (reference numeral 8 in FIG. 3) is referred to as a molten solidified region 10, and the original plating layer 7 remains and is formed. The portion of the Zn—Al—Mg-based alloy layer 5 is referred to as a plating layer unmelted region 11. In a conventional Zn-Al-Mg-based plated steel sheet arc welded structural member, the bead toe 3 is usually the melt-solidified region 10 as shown in this figure. In this case, since the liquidus temperature of the Zn—Al—Mg-based molten metal 8 is low as described above, the surface portion of the base material 1 that becomes the melted and solidified region 10 after cooling becomes Zn—Al in the cooling process after welding. -The contact time with the Mg-based molten metal is relatively long. Since tensile stress is generated in the portion of the base material 1 near the bead toe due to cooling after welding, the Zn—Al—Mg based molten metal component tends to enter the crystal grain boundary. The said component which penetrate | invaded the grain boundary becomes a factor which causes a molten metal embrittlement crack.

図5に、図3の状態から冷却されて得られた本発明に従うZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示す。本発明では、シールドガスとしてCO2を含有するガスを用いるが、単位溶接長さ当たりのCO2使用量を後述のように適切に制限する。この場合、溶接時にめっき層が消失した「めっき層蒸発領域」(図3の符号9)の母材1表面は、シールドガスによる還元作用が比較的弱いために、迅速に薄い酸化皮膜に覆われると考えられる。この酸化皮膜がZn−Al−Mg系溶融金属(図3の符号8)との濡れを阻害することにより、当該Zn−Al−Mg系溶融金属の濡れ拡がりが抑止されるものと推察される。その結果、冷却後にはめっき層蒸発領域9が残存する。すなわち、ビード止端部3近傍の母材1表面はZn−Al−Mg系溶融金属と接触することなく冷却を終えることとなり、その部分での母材1中への溶融金属成分の侵入が回避される。そのため母材1の鋼種に依存することなく、優れた耐溶融金属脆化割れ性が付与される。なお、Zn−Al−Mg系溶融金属(図3の符号8)の高さ位置がビード止端部3より上方となるような溶接姿勢においても、上記の濡れ阻害作用によって当該Zn−Al−Mg系溶融金属の濡れ拡がりは顕著に抑制される。 FIG. 5 schematically shows a cross-sectional structure of a Zn—Al—Mg based plated steel sheet arc welded structural member according to the present invention obtained by cooling from the state of FIG. In the present invention, a gas containing CO 2 is used as the shielding gas, but the amount of CO 2 used per unit weld length is appropriately limited as described later. In this case, the surface of the base material 1 in the “plating layer evaporation region” (reference numeral 9 in FIG. 3) where the plating layer disappears during welding is quickly covered with a thin oxide film because the reducing action by the shielding gas is relatively weak. it is conceivable that. It is inferred that this oxide film inhibits wetting with the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 3), thereby suppressing the wetting and spreading of the Zn—Al—Mg based molten metal. As a result, the plating layer evaporation region 9 remains after cooling. That is, the surface of the base material 1 in the vicinity of the bead toe 3 is finished to cool without coming into contact with the Zn—Al—Mg-based molten metal, and the penetration of the molten metal component into the base material 1 at that portion is avoided. Is done. Therefore, excellent molten metal embrittlement cracking resistance is imparted without depending on the steel type of the base material 1. Even in a welding posture in which the height position of the Zn—Al—Mg-based molten metal (reference numeral 8 in FIG. 3) is above the bead toe 3, the above-described Zn—Al—Mg due to the above-described wetting inhibition action. Wetting and spreading of the molten metal is remarkably suppressed.

本発明では単位溶接長さ当たりのCO2使用量を制限するため、溶接ビードおよびその周辺は従来一般的なアーク溶接に比べ酸化されやすい雰囲気となる。しかし、接合する部材として溶融Zn−Al−Mg系めっき鋼板部材を適用することにより、めっき層表面だけでなく溶接部近傍で鋼素地が露出した部分の耐食性も改善される。すなわち、Znによる防食効果に加え、Zn−Al−Mg系めっき金属に由来する腐食生成物が優れた保護性を発揮することにより長期間の耐食性は改善され、CO2使用量を制限することによる耐食性低下は通常の使用において顕在化しない。また、「Ar+CO2ガスを使用した場合に亜鉛めっき鋼板ではブローホールの生成が問題となりやすい」という従来の知見によれば、CO2使用量を制限することによってブローホールの生成が増大するのではないかという懸念があった。しかしながら、Zn−Al−Mg系めっき鋼板の場合は亜鉛めっき鋼板と異なり、単位溶接長さ当たりにシールドガスから供給されるCO2量を一定以上に確保することによって、Zn蒸気起因のブローホールの生成は十分に抑止できることがわかった。 In the present invention, in order to limit the amount of CO 2 used per unit weld length, the weld bead and its surroundings are more easily oxidized than conventional arc welding. However, by applying a molten Zn—Al—Mg-based plated steel sheet member as a member to be joined, the corrosion resistance of not only the plated layer surface but also the portion where the steel substrate is exposed in the vicinity of the welded portion is improved. That is, in addition to the anticorrosive effect by Zn, the corrosion product derived from the Zn—Al—Mg-based plated metal exhibits excellent protection, thereby improving the long-term corrosion resistance and limiting the amount of CO 2 used. The decrease in corrosion resistance is not apparent during normal use. In addition, according to the conventional knowledge that “the formation of blow holes tends to be a problem with galvanized steel sheets when Ar + CO 2 gas is used”, the generation of blow holes is not increased by limiting the amount of CO 2 used. There was concern about whether there was. However, in the case of a Zn—Al—Mg-based steel sheet, unlike the zinc-plated steel sheet, by ensuring a certain amount of CO 2 supplied from the shield gas per unit weld length, a blowhole caused by Zn vapor is prevented. It was found that generation can be sufficiently suppressed.

冷却後に残っためっき層蒸発領域9のビード止端部3からの長さを、本明細書では「めっき層蒸発領域長さ」と呼び、図5中に符号Lで表示した。Zn−Al−Mg系めっき鋼板アーク溶接構造部材で問題となる溶融金属脆化割れは、そのほとんどがビード止端部3のごく近傍、具体的にはビード止端部から0.3mm未満の範囲で発生することが確認されている。種々検討の結果、上述のめっき層蒸発領域長さが0.3mm以上であれば耐溶融金属脆化割れ性は大幅に向上し、0.4mm以上であればさらに好ましい。このめっき層蒸発領域長さがあまり長くなると、めっき層が存在しないことによる耐食性低下が問題となるが、発明者らの検討によると、めっき層蒸発領域長さが2.0mm以下であれば周囲のZn−Al−Mg系めっき層による犠牲防食作用が十分に得られ、この部分での耐食性低下は問題とならないレベルとなることがわかった。シールドガス組成を後述のように調整することによってめっき層蒸発領域長さを0.3〜2.0mmの範囲にコントロールすることができる。   The length of the plating layer evaporation region 9 remaining after cooling from the bead toe 3 is referred to as “plating layer evaporation region length” in this specification, and is indicated by the symbol L in FIG. Most of the molten metal embrittlement cracks which are a problem in Zn-Al-Mg-plated steel sheet arc welded structural members are very close to the bead toe 3, specifically less than 0.3 mm from the bead toe. It has been confirmed that As a result of various studies, if the plating layer evaporation region length is 0.3 mm or more, the molten metal embrittlement cracking resistance is greatly improved, and if it is 0.4 mm or more, it is more preferable. If this plating layer evaporation region length becomes too long, there will be a problem of deterioration of corrosion resistance due to the absence of the plating layer, but according to the study by the inventors, if the plating layer evaporation region length is 2.0 mm or less, It was found that the sacrificial anticorrosive action by the Zn—Al—Mg based plating layer was sufficiently obtained, and the corrosion resistance reduction at this portion was at a level that would not be a problem. By adjusting the shield gas composition as described later, the plating layer evaporation region length can be controlled within the range of 0.3 to 2.0 mm.

〔ガスシールドアーク溶接条件〕
本発明に従うアーク溶接においては、シールドガスにより供給される単位溶接長さ当たりのCO2量を溶接入熱に応じて制限することが重要である。シールドガス中に混合されるCO2は前述のようにプラズマアークに触れて一部がCOとO2に乖離し、そのCOの還元作用によって溶接ビード近傍の母材表面が活性化される。しかし、本発明ではその還元作用を抑制させることにより、溶接部近傍のめっき層が蒸発消失した母材表面が過度に活性化されることを防止し、周囲の母材表面に存在するZn−Al−Mg系溶融金属がビード止端部に濡れ拡がることを抑止する。詳細な検討の結果、下記(3)式中のFCO2≦47.5Q-0.74を満たすように単位溶接長さ当たりのCO2使用量FCO2を制限したとき、濡れ拡がりの抑止効果が現れ、上述のめっき層蒸発領域長さを0.3〜2.0mmの範囲にコントロールすることが可能となる。下記(3)式に代えて下記(3)’式を適用することが一層効果的である。また、下記(3)式中の0.0025≦FCO2を満たすように単位溶接長さ当たりのCO2使用量FCO2を確保したとき、ブローホールの生成も十分に抑止される。
CO2=DCO2/v …(1)
Q=(I×V)/v …(2)
0.0025≦FCO2≦47.5Q-0.74 …(3)
0.0025≦FCO2≦47.5Q-0.74−0.01 …(3)’
ただし、DCO2はシールドガス中における標準状態(0℃、101.3kPa)換算でのCO2流量(L/sec)、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)である。
[Gas shield arc welding conditions]
In arc welding according to the present invention, it is important to limit the amount of CO 2 per unit weld length supplied by the shielding gas in accordance with the welding heat input. As described above, CO 2 mixed in the shielding gas comes into contact with the plasma arc and partly dissociates into CO and O 2 , and the base metal surface near the weld bead is activated by the reduction action of the CO. However, in the present invention, by suppressing the reduction action, it is possible to prevent the surface of the base material from which the plating layer in the vicinity of the welded portion has evaporated and lost from being excessively activated, and Zn—Al existing on the surface of the surrounding base material. -It suppresses that a Mg-type molten metal wets and spreads to a bead toe part. As a result of detailed examination, when CO 2 consumption F CO2 per unit weld length is limited so that F CO2 ≦ 47.5Q -0.74 in the following formula (3) is satisfied, the wetting spread suppression effect appears, It becomes possible to control the above-mentioned plating layer evaporation region length in the range of 0.3 to 2.0 mm. It is more effective to apply the following formula (3) ′ instead of the following formula (3). Moreover, when the amount of CO 2 used F CO2 per unit weld length is secured so as to satisfy 0.0025 ≦ F CO2 in the following formula (3), the generation of blow holes is sufficiently suppressed.
F CO2 = D CO2 / v (1)
Q = (I × V) / v (2)
0.0025 ≦ F CO2 ≦ 47.5Q −0.74 (3)
0.0025 ≦ F CO2 ≦ 47.5Q −0.74 −0.01 (3) ′
However, D CO2 is the CO 2 flow rate (L / sec) in standard conditions (0 ° C, 101.3 kPa) in shield gas, I is the welding current (A), V is the arc voltage (V), and v is the welding. Speed (cm / sec).

接合する一方の部材のみを溶融Zn−Al−Mg系めっき鋼板部材とし、その溶融Zn−Al−Mg系めっき鋼板部材の板厚を2.7mm未満(例えば0.8mm以上2.7mm未満)とする場合、および接合する双方の部材を板厚2.7mm未満(例えば0.8mm以上2.7mm未満)の溶融Zn−Al−Mg系めっき鋼板部材とする場合は、上記(3)式に代えて下記(4)式を適用することができる。この場合、(4)式中のFCO2≦2.62Q-0.35を満たすように単位溶接長さ当たりのCO2使用量FCO2を制限すれば、濡れ拡がりの抑止効果によって上述のめっき層蒸発領域長さを0.3〜2.0mmの範囲にコントロールすることが可能となる。下記(4)式に代えて下記(4)’式を適用することが一層効果的である。また、(4)式中の0.0025≦FCO2を満たすように単位溶接長さ当たりのCO2使用量FCO2を確保したとき、ブローホールの生成も十分に抑止される。
0.0025≦FCO2≦2.62Q-0.35 …(4)
0.0025≦FCO2≦2.62Q-0.35−0.01 …(4)’
このように板厚が薄い場合には、前記溶接入熱Qは例えば2000〜4500J/cmの範囲とすることがより好ましい。
Only one member to be joined is a molten Zn—Al—Mg-based plated steel plate member, and the thickness of the molten Zn—Al—Mg-based plated steel plate member is less than 2.7 mm (for example, 0.8 mm or more and less than 2.7 mm). When both the members to be joined and the molten Zn—Al—Mg-based plated steel plate member having a plate thickness of less than 2.7 mm (for example, 0.8 mm or more and less than 2.7 mm) are used, the above formula (3) is substituted. Thus, the following equation (4) can be applied. In this case, (4) if limiting the CO 2 amount F CO2 per unit weld length to satisfy F CO2 ≦ 2.62Q -0.35 in the formula, the plating layer evaporation zone above the deterrent effect of the wetting spread The length can be controlled in the range of 0.3 to 2.0 mm. It is more effective to apply the following formula (4) ′ instead of the following formula (4). Further, (4) when securing the CO 2 amount F CO2 of 0.0025 ≦ F per a unit weld length to meet the CO2 in the formula, the generation of blowholes is also sufficiently suppressed.
0.0025 ≦ F CO2 ≦ 2.62Q -0.35 ... (4)
0.0025 ≦ F CO2 ≦ 2.62Q -0.35 -0.01 ... (4) '
Thus, when plate | board thickness is thin, it is more preferable that the said welding heat input Q shall be the range of 2000-4500 J / cm, for example.

板厚に応じて好ましい溶接条件を分類すると、例えば以下の2つの態様のアーク溶接構造部材の製造法を開示することができる。   If preferable welding conditions are classified according to the plate thickness, for example, the following two modes of manufacturing an arc welding structural member can be disclosed.

〔態様1〕
ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、接合する一方または双方の部材を溶融Zn−Al−Mg系めっき鋼板部材とし、かつ前記溶融Zn−Al−Mg系めっき鋼板部材の板厚を2.7mm以上7.0mm以下とし、シールドガスとしてAr+CO2ガス、He+CO2ガスまたはAr+He+CO2ガスを用いて、下記(1)式で表される単位溶接長さ当たりのCO2使用量FCO2(L/cm)と下記(2)式で表される溶接入熱Q(J/cm)の関係が下記(3)式を満たすようにガスシールドを行うアーク溶接構造部材の製造法。
CO2=DCO2/v …(1)
Q=(I×V)/v …(2)
0.0025≦FCO2≦47.5Q-0.74 …(3)
ただし、DCO2はシールドガス中における標準状態(0℃、101.3kPa)換算でのCO2流量(L/sec)、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)である。
この場合、前記溶接入熱Qを2000〜12000J/cmの範囲とすることが一層好ましい。また、(3)式に代えて下記(3)’式を採用することが一層効果的である。
0.0025≦FCO2≦47.5Q-0.74−0.01 …(3)’
[Aspect 1]
When manufacturing a welded structural member by joining steel materials by gas shielded arc welding, one or both of the members to be joined is a molten Zn-Al-Mg based steel plate member, and the molten Zn-Al-Mg based plating is used. The plate thickness of the steel plate member is set to 2.7 mm to 7.0 mm, and Ar + CO 2 gas, He + CO 2 gas, or Ar + He + CO 2 gas is used as a shielding gas, and CO per unit weld length represented by the following formula (1) 2 Arc welding structural members that perform gas shielding so that the relationship between the usage F CO2 (L / cm) and the welding heat input Q (J / cm) represented by the following equation (2) satisfies the following equation (3): Manufacturing method.
F CO2 = D CO2 / v (1)
Q = (I × V) / v (2)
0.0025 ≦ F CO2 ≦ 47.5Q −0.74 (3)
However, D CO2 is the CO 2 flow rate (L / sec) in standard conditions (0 ° C, 101.3 kPa) in shield gas, I is the welding current (A), V is the arc voltage (V), and v is the welding. Speed (cm / sec).
In this case, the welding heat input Q is more preferably in the range of 2000 to 12000 J / cm. It is more effective to adopt the following expression (3) ′ instead of expression (3).
0.0025 ≦ F CO2 ≦ 47.5Q −0.74 −0.01 (3) ′

〔態様2〕
ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、接合する一方または双方の部材を溶融Zn−Al−Mg系めっき鋼板部材とし、かつ前記溶融Zn−Al−Mg系めっき鋼板部材の板厚を0.8mm以上2.7mm未満とし、溶接入熱Qを2000〜4500J/cmの範囲とし、シールドガスとしてAr+CO2ガス、He+CO2ガスまたはAr+He+CO2ガスを用いて、下記(1)式で表される単位溶接長さ当たりのCO2使用量FCO2(L/cm)と下記(2)式で表される溶接入熱Q(J/cm)の関係が下記(4)式を満たすようにガスシールドを行うアーク溶接構造部材の製造法。
CO2=DCO2/v …(1)
Q=(I×V)/v …(2)
0.0025≦FCO2≦2.62Q-0.35 …(4)
ただし、DCO2はシールドガス中における標準状態(0℃、101.3kPa)換算でのCO2流量(L/sec)、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)である。
また、(4)式に代えて下記(4)’式を採用することが一層効果的である。
0.0025≦FCO2≦2.62Q-0.35−0.01 …(4)’
[Aspect 2]
When manufacturing a welded structural member by joining steel materials by gas shielded arc welding, one or both of the members to be joined is a molten Zn-Al-Mg based steel plate member, and the molten Zn-Al-Mg based plating is used. The plate thickness of the steel plate member is 0.8 mm or more and less than 2.7 mm, the welding heat input Q is in the range of 2000 to 4500 J / cm, and Ar + CO 2 gas, He + CO 2 gas or Ar + He + CO 2 gas is used as a shielding gas, The relationship between the CO 2 usage F CO2 (L / cm) per unit weld length represented by the formula 1) and the welding heat input Q (J / cm) represented by the following formula (2) is shown in the following (4). A method of manufacturing an arc welded structural member that performs gas shielding to satisfy the equation.
F CO2 = D CO2 / v (1)
Q = (I × V) / v (2)
0.0025 ≦ F CO2 ≦ 2.62Q -0.35 ... (4)
However, D CO2 is the CO 2 flow rate (L / sec) in standard conditions (0 ° C, 101.3 kPa) in shield gas, I is the welding current (A), V is the arc voltage (V), and v is the welding. Speed (cm / sec).
It is more effective to adopt the following expression (4) ′ instead of expression (4).
0.0025 ≦ F CO2 ≦ 2.62Q -0.35 -0.01 ... (4) '

上記いずれの態様においても、シールドガス中のCO2濃度は70体積%以下の範囲とすることがより好ましい。CO2濃度の下限については上記(3)式または(4)式の0.0025≦FCO2を満たす限り特に規定する必要はないが、溶接入熱Qや溶接速度vの自由度を拡げる上では1体積%以上のCO2濃度を確保することが好ましく、5体積%以上とすることがより好ましい。シールドガスの流量(全成分のトータル流量)は例えば0.05〜1.0L/secの範囲で設定することができ、0.07〜0.7L/secの範囲とすることがより好ましい。 In any of the above embodiments, the CO 2 concentration in the shielding gas is more preferably in the range of 70% by volume or less. The lower limit of the CO 2 concentration is not particularly required as long as 0.0025 ≦ F CO2 in the above formula (3) or (4) is satisfied. However, in order to increase the flexibility of the welding heat input Q and the welding speed v, It is preferable to secure a CO 2 concentration of 1% by volume or more, and more preferably 5% by volume or more. The flow rate of the shield gas (total flow rate of all components) can be set, for example, in the range of 0.05 to 1.0 L / sec, and more preferably in the range of 0.07 to 0.7 L / sec.

溶接入熱Qおよび単位溶接長さ当たりのCO2使用量FCO2と、耐溶融金属脆化割れ性および耐ブローホール発生性(ブローホールの発生を抑制する作用の大きさ)の関係を調べた実験例を紹介する。 We investigated the relationship between welding heat input Q and CO 2 consumption F CO2 per unit weld length, and resistance to molten metal embrittlement cracking and blowholes (the magnitude of the action to suppress the occurrence of blowholes). An experimental example is introduced.

《実験例》
板厚6mmおよび2.6mmの590MPa高張力鋼板(後述表1の鋼Bに相当する組成)をめっき原板として、溶融めっき法によりZn−1.0質量%Al−1.1質量%Mg浴、Zn−6.1質量%Al−3.0質量%Mg浴、およびZn−11.0質量%Al−6.0質量%Mg浴を用いて、板厚2水準×3種類のめっき鋼板を作製した。めっき付着量は片面当たり約90g/m2(両面均等)とした。この場合、片面当たりのめっき層厚さは約13μmである。得られためっき鋼板を供試材として、以下の方法で耐溶融金属脆化割れ性および耐ブローホール発生性を調べた。
《Experimental example》
Using a 590 MPa high-tensile steel plate having a thickness of 6 mm and 2.6 mm (composition corresponding to steel B in Table 1 described later) as a plating base plate, a Zn-1.0 mass% Al-1.1 mass% Mg bath by a hot dipping method, Using a Zn-6.1 mass% Al-3.0 mass% Mg bath and a Zn-11.0 mass% Al-6.0 mass% Mg bath, 2 levels of plate thickness x 3 types of plated steel sheets were prepared. did. The plating adhesion amount was about 90 g / m 2 per side (equal to both sides). In this case, the plating layer thickness per side is about 13 μm. Using the obtained plated steel sheet as a test material, the resistance to molten metal embrittlement cracking and the resistance to blowholes were examined by the following methods.

〔耐溶融金属脆化割れ性試験方法〕
図6に示すように、100mm×75mmの試験片14(溶融Zn−Al−Mg系めっき鋼板部材)の中央部に直径20mm、長さ25mmの棒鋼のボス(突起)15を垂直に立て、上記の溶接条件でガスシールドアーク溶接を行って試験片14とボス15を接合した。具体的には溶接開始点Sから時計回りにボス15の周囲を1周して、溶接開始点Sを過ぎた後もさらにビードを重ねて溶接を進め、溶接ビード16の重なり部分17が生成した後の溶接終了点Eまで溶接を行った。溶接中、試験片14は平盤上に拘束された状態とした。この試験は実験的に溶接割れが生じやすい状況としたものである。
[Fused metal embrittlement cracking test method]
As shown in FIG. 6, a boss (protrusion) 15 of a steel bar having a diameter of 20 mm and a length of 25 mm is set up vertically at the center of a 100 mm × 75 mm test piece 14 (a molten Zn—Al—Mg based steel plate member), The test piece 14 and the boss 15 were joined by performing gas shielded arc welding under the following welding conditions. Specifically, the boss 15 is rotated once around the boss 15 clockwise from the welding start point S, and after the welding start point S is passed, welding is further performed by overlapping the beads, and an overlapping portion 17 of the weld bead 16 is generated. Welding was performed up to a later welding end point E. During welding, the test piece 14 was restrained on a flat plate. This test was conducted in a situation where welding cracks are likely to occur experimentally.

溶接後、ボス15の中心軸を通り、且つビード重なり部分17を通る切断面20について、ビード重なり部分17近傍の試験片14部分を走査型電子顕微鏡で観察することにより、試験片14に観測される最も深い割れの深さ(最大割れ深さ)を測定した。この割れは「溶融金属脆化割れ」であると判断される。この試験において最大割れ深さが0.5mm未満であるものは、従来のZn−Al−Mg系めっき鋼板部材を用いた溶接構造部材に対して、耐溶融金属脆化割れ性が顕著に改善されていると評価することができる。
そこで本実験例では、最大割れ深さが0.5mm未満であるものを耐溶融金属脆化割れ性;良好、それ以外を耐溶融金属脆化割れ性;不良と評価した。
After welding, the cut surface 20 passing through the central axis of the boss 15 and passing through the bead overlap portion 17 is observed on the test piece 14 by observing the test piece 14 near the bead overlap portion 17 with a scanning electron microscope. The deepest crack depth (maximum crack depth) was measured. This crack is judged to be a “molten metal embrittlement crack”. In this test, when the maximum crack depth is less than 0.5 mm, the molten metal embrittlement cracking resistance is remarkably improved as compared with a welded structure member using a conventional Zn-Al-Mg plated steel sheet member. Can be evaluated.
Therefore, in this experimental example, a sample having a maximum crack depth of less than 0.5 mm was evaluated as melt metal embrittlement cracking resistance; good, and the others were evaluated as melt metal embrittlement crack resistance;

〔耐ブローホール発生性試験方法〕
上記溶接試験後の溶接ビード部についてX線透過写真を撮影し、一般財団法人日本建築センターが定めるブローホール占有率Bsを測定することにより評価した。ブローホール占有率Bsは、溶接ビード長さLに占める、当該長さLのビード中に存在する各ブローホールの溶接ビード方向における径の総和の割合で表される。ここではLを溶接ビード中心部における1周分の距離、溶接ビード方向を円周方向としてブローホール占有率Bsを求めた。このBsが30%以下であればブローホールによる溶接部の強度低下は小さく、合格と判定される。
[Blow hole resistance test method]
An X-ray transmission photograph was taken for the weld bead portion after the welding test, and evaluation was performed by measuring the blowhole occupancy Bs determined by the Japan Architecture Center. The blow hole occupation ratio Bs is expressed as a ratio of the total diameter in the weld bead direction of each blow hole existing in the bead having the length L in the weld bead length L. Here, the blowhole occupancy ratio Bs was determined with L being a distance of one round at the center of the weld bead and the weld bead direction being the circumferential direction. If this Bs is 30% or less, the strength reduction of the welded part due to the blowhole is small, and it is determined as acceptable.

図7および図8に、それぞれめっき原板の板厚が6mmおよび2.6mmの場合について、溶接入熱Qおよび単位溶接長さ当たりのCO2使用量FCO2と、耐溶融金属脆化割れ性および耐ブローホール発生性の関係を示す。評価基準は以下の通りである。
×印のプロット;最大割れ深さが0.5mm以上(耐溶融金属脆化割れ性;不良)
△印のプロット;最大割れ深さが0mmを超え0.5mm未満(耐溶融金属脆化割れ性;良好)、かつブローホール占有率Bsが30%以下(耐ブローホール発生性;良好)
○印のプロット;最大割れ深さが0mmすなわち割れが観測されない(耐溶融金属脆化割れ性;優秀)、かつブローホール占有率Bsが30%以下(耐ブローホール発生性;良好)
●印のプロット;最大割れ深さが0mmすなわち割れが観測されない(耐溶融金属脆化割れ性;優秀)、かつブローホール占有率Bsが30%を超える(耐ブローホール発生性;不良)
このうち○および△を合格とした。
上記3種類のめっき組成について、同じ評価結果が得られた。したがって、図7、図8中の各プロットは3種類のめっき組成について共通の評価結果を示すものである。
FIGS. 7 and 8 show the welding heat input Q, the amount of CO 2 used per unit weld length F CO2 , the resistance to molten metal embrittlement cracking, and the case where the plate thickness of the plating plate is 6 mm and 2.6 mm, respectively. The relationship of blow hole resistance is shown. The evaluation criteria are as follows.
X mark plot; maximum crack depth of 0.5 mm or more (molten metal embrittlement cracking resistance: poor)
Δ plot: maximum crack depth of more than 0 mm and less than 0.5 mm (melted metal embrittlement cracking resistance: good), and blowhole occupancy Bs is 30% or less (blowhole resistance: good)
○ Plot: Maximum crack depth is 0 mm, that is, no crack is observed (melted metal embrittlement cracking resistance: excellent), and the blowhole occupancy Bs is 30% or less (blowhole generation resistance: good)
● Plot: Maximum crack depth is 0 mm, that is, no cracks are observed (melted metal embrittlement cracking resistance: excellent), and the blowhole occupancy Bs exceeds 30% (blowhole resistance: poor)
Among these, ○ and Δ were accepted.
The same evaluation results were obtained for the above three types of plating compositions. Therefore, each plot in FIG. 7 and FIG. 8 shows a common evaluation result for the three types of plating compositions.

図7からわかるように、上記(3)式を満たすようにガスシールドを行うことによって、良好な耐溶融金属脆化割れ性と耐ブローホール発生性を両立させることができる。上記(3)式に代えて上記(3)’式を採用すれば、非常に優れた耐溶融金属脆化割れ性を一層安定して実現することができる。
また、図8からわかるように、めっき原板の板厚が2.6mm(両面のめっき層を含んだトータル板厚は2.6mmを超え2.7mm未満の範囲となる)の場合には、上記(4)式を満たすようにガスシールドを行うことによって、良好な耐溶融金属脆化割れ性と耐ブローホール発生性を安定して両立させることができる。それより薄い板厚では、溶接時の冷却速度が更に速くなることによって、めっき層金属の濡れ拡がりが抑制される効果は一層増大するので、やはり(4)式を満たせば良好な耐溶融脆化割れ性が確保される。上記(4)式に代えて上記(4)’式を採用すれば、非常に優れた耐溶融金属脆化割れ性を一層安定して実現することができる。
As can be seen from FIG. 7, by performing the gas shield so as to satisfy the above expression (3), it is possible to achieve both good resistance to molten metal embrittlement cracking and resistance to blowholes. If the above formula (3) ′ is adopted instead of the above formula (3), it is possible to realize a very excellent resistance to molten metal embrittlement cracking more stably.
Further, as can be seen from FIG. 8, when the plate thickness of the plating original plate is 2.6 mm (the total plate thickness including the plating layers on both sides is in the range of more than 2.6 mm and less than 2.7 mm), By performing the gas shield so as to satisfy the formula (4), it is possible to stably achieve both good resistance to molten metal embrittlement cracking and resistance to blowholes. If the plate thickness is thinner than that, the effect of suppressing the wetting and spreading of the plating layer metal will be further increased by further increasing the cooling rate during welding. Breakability is ensured. If the above formula (4) ′ is adopted instead of the above formula (4), it is possible to realize extremely excellent resistance to molten metal embrittlement cracking more stably.

〔溶融Zn−Al−Mg系めっき鋼板部材〕
本発明では、アーク溶接で接合する双方の部材のうち、少なくとも一方に溶融Zn−Al−Mg系めっき鋼板部材を適用する。
その溶融Zn−Al−Mg系めっき鋼板部材のめっき原板としては、用途に応じて種々の鋼種が採用できる。高張力鋼板を使用することもできる。板厚は例えば0.8〜7.0mmの範囲で設定すればよい。
[Fused Zn-Al-Mg plated steel sheet member]
In the present invention, a molten Zn—Al—Mg based plated steel sheet member is applied to at least one of both members joined by arc welding.
Various steel types can be adopted as the plating original plate of the molten Zn—Al—Mg-based plated steel plate member depending on the application. High tensile steel plates can also be used. The plate thickness may be set in the range of 0.8 to 7.0 mm, for example.

具体的な溶融Zn−Al−Mg系めっき層の組成としては、質量%で、Al:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.5%、残部Znおよび不可避的不純物からなるものを挙げることができる。めっき層組成は溶融めっき浴組成をほぼ反映したものとなる。溶融めっきの方法は特に限定されないが、一般的にはインライン焼鈍型の溶融めっき設備を使用することがコスト的に有利となる。以下、めっき層の成分元素について説明する。めっき層成分元素の「%」は特に断らない限り「質量%」を意味する。   Specifically, the composition of the molten Zn—Al—Mg-based plating layer is, by mass, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10. %, B: 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, the balance Zn and inevitable impurities. The plating layer composition substantially reflects the hot-dip plating bath composition. Although the method of hot dipping is not particularly limited, it is generally advantageous in terms of cost to use an in-line annealing type hot dipping equipment. Hereinafter, the component elements of the plating layer will be described. “%” Of the plating layer component element means “mass%” unless otherwise specified.

Alは、めっき鋼板の耐食性向上に有効であり、また、めっき浴においてMg酸化物系ドロスの発生を抑制する。これらの作用を十分に発揮させるためには1.0%以上のAl含有量を確保する必要があり、4.0%以上のAl含有量を確保することがより好ましい。一方、Al含有量が多くなるとめっき層の下地に脆いFe−Al合金層が成長しやすくなり、Fe−Al合金層の過剰な成長はめっき密着性の低下を招く要因となる。種々検討の結果、Al含有量は22.0%以下とすることがより好ましく、15.0%以下、あるいはさらに10.0%以下に管理しても構わない。   Al is effective in improving the corrosion resistance of the plated steel sheet, and suppresses the generation of Mg oxide dross in the plating bath. In order to fully exhibit these actions, it is necessary to secure an Al content of 1.0% or more, and it is more preferable to secure an Al content of 4.0% or more. On the other hand, when the Al content increases, a brittle Fe—Al alloy layer easily grows on the base of the plating layer, and excessive growth of the Fe—Al alloy layer causes a decrease in plating adhesion. As a result of various studies, the Al content is more preferably 22.0% or less, and may be controlled to 15.0% or less, or even 10.0% or less.

Mgは、めっき層表面に均一な腐食生成物を生成させてめっき鋼板の耐食性を著しく高める作用を呈する。Mg含有量は0.05%以上とすることがより効果的であり、1.0%以上とすることがさらに好ましい。一方、めっき浴中のMg含有量が多くなるとMg酸化物系ドロスが発生し易くなり、めっき層の品質低下を招く要因となる。Mg含有量は10.0%以下の範囲とすることが望ましい。   Mg exhibits the effect | action which produces | generates a uniform corrosion product on the surface of a plating layer, and raises the corrosion resistance of a plated steel plate remarkably. The Mg content is more preferably 0.05% or more, and more preferably 1.0% or more. On the other hand, if the Mg content in the plating bath increases, Mg oxide-based dross is likely to occur, which causes a reduction in the quality of the plating layer. The Mg content is desirably in the range of 10.0% or less.

溶融めっき浴中にTi、Bを含有させると、溶融めっき時における製造条件の自由度が拡大する等のメリットがある。このため、必要に応じてTi、Bの1種または2種を添加することができる。その添加量はTiの場合0.0005%以上、Bの場合0.0001%以上とすることがより効果的である。ただし、めっき層中のTiやBの含有量が過剰になると析出物の生成に起因しためっき層表面の外観不良を引き起こす要因となる。これらの元素を添加する場合は、Ti:0.10%以下、B:0.05%以下の範囲とすることが望ましい。   When Ti and B are contained in the hot dipping bath, there are advantages such as an increase in the degree of freedom of manufacturing conditions during hot dipping. For this reason, 1 type or 2 types of Ti and B can be added as needed. It is more effective to add 0.0005% or more in the case of Ti and 0.0001% or more in the case of B. However, when the content of Ti or B in the plating layer becomes excessive, it causes a poor appearance of the plating layer surface due to the formation of precipitates. When these elements are added, it is desirable that Ti: 0.10% or less and B: 0.05% or less.

溶融めっき浴中にSiを含有させると、めっき原板表面とめっき層の界面に生成するFe−Al合金層の過剰な成長が抑制され、溶融Zn−Al−Mg系めっき鋼板の加工性を向上させる上で有利となる。したがって、必要に応じてSiを含有させることができる。その場合、Si含有量を0.005%以上とすることがより効果的である。ただし、過剰のSi含有は溶融めっき浴中のドロス量を増大させる要因となるので、Si含有量は2.0%以下とすることが望ましい。   When Si is contained in the hot dipping bath, excessive growth of the Fe—Al alloy layer formed at the interface between the plating original plate surface and the plating layer is suppressed, and the workability of the hot-dip Zn—Al—Mg plated steel sheet is improved. This is advantageous. Therefore, Si can be contained as necessary. In that case, it is more effective to set the Si content to 0.005% or more. However, since excessive Si content causes an increase in the dross amount in the hot dipping bath, the Si content is preferably 2.0% or less.

溶融めっき浴中には、鋼板を浸漬・通過させる関係上、Feが混入しやすい。Zn−Al−Mg系めっき層中のFe含有量は2.5%以下とすることが好ましい。   In the hot dipping bath, Fe is likely to be mixed because the steel sheet is immersed and passed. The Fe content in the Zn—Al—Mg plating layer is preferably 2.5% or less.

溶融Zn−Al−Mg系めっき鋼板部材のめっき付着量が少ないと、めっき面の耐食性および犠牲防食作用を長期にわたって維持するうえで不利となる。種々検討の結果、本発明に従ってビード止端部近傍に生じた「めっき層蒸発領域」を残存させる場合、片面当たりのZn−Al−Mg系めっき付着量は20g/m2以上とすることがより効果的である。一方、めっき付着量が多くなると溶接時にブローホールが発生しやすくなる。このため片面当たりのめっき付着量は250g/m2以下とすることが望ましい。 When the coating amount of the molten Zn—Al—Mg-based steel sheet member is small, it is disadvantageous for maintaining the corrosion resistance and sacrificial anticorrosive action of the plated surface for a long time. As a result of various studies, when the “plating layer evaporation region” generated in the vicinity of the bead toe according to the present invention is left, the Zn—Al—Mg based plating adhesion amount per side is preferably 20 g / m 2 or more. It is effective. On the other hand, when the plating adhesion amount increases, blow holes are likely to occur during welding. For this reason, it is desirable that the amount of plating deposited on one side be 250 g / m 2 or less.

〔溶接相手部材〕
上記の溶融Zn−Al−Mg系めっき鋼板部材とアーク溶接により接合する相手部材は、上記と同様の溶融Zn−Al−Mg系めっき鋼板部材であっても構わないし、それ以外の鋼材であっても構わない。
[Parts to be welded]
The mating member to be joined by arc welding to the above molten Zn—Al—Mg based plated steel sheet member may be the same molten Zn—Al—Mg based plated steel sheet member as described above, or other steel materials. It doesn't matter.

表1に示す各鋼種について、板厚3.2mm、4.5mm、6.0mm、2.6mmおよび1.6mmの冷延鋼帯を用意した。いずれも板幅は1000mmである。これらの冷延鋼帯をめっき原板として、溶融めっきラインに通板して種々のめっき層組成を有する溶融Zn−Al−Mg系めっき鋼板を製造した。めっき付着量は両面均等とした。各溶融Zn−Al−Mg系めっき鋼板から切り出した試料を用いて、上述の耐溶融金属脆化割れ性試験方法(図6参照)に従う方法により種々の溶接条件でガスシールドアーク溶接を行った。得られた溶接部について最大割れ深さを測定し、耐溶融金属脆化割れ性を評価した。また、上述の耐ブローホール発生性試験方法に従ってブローホール占有率Bsを求め、Bsが30%以下であるものを○(耐ブローホール発生性;良好)、それ以外を×(耐ブローホール発生性;不良)とした。   For each steel type shown in Table 1, cold-rolled steel strips having a thickness of 3.2 mm, 4.5 mm, 6.0 mm, 2.6 mm, and 1.6 mm were prepared. In either case, the plate width is 1000 mm. These cold-rolled steel strips were used as plating base plates and passed through a hot dipping line to produce hot-dip Zn—Al—Mg-based plated steel plates having various plating layer compositions. The amount of plating was equal on both sides. Gas shield arc welding was performed under various welding conditions by a method according to the above-described molten metal embrittlement cracking test method (see FIG. 6) using a sample cut out from each molten Zn—Al—Mg plated steel sheet. With respect to the obtained welded portion, the maximum crack depth was measured to evaluate the resistance to molten metal embrittlement cracking. Also, the blowhole occupancy ratio Bs is obtained according to the above-mentioned blowhole resistance test method, and Bs of 30% or less is ○ (blowhole resistance; good) and the others are × (blowhole resistance) ;)).

板厚3.2mmのめっき原板を用いた試料について、溶融めっき条件、溶接条件および試験結果を表2、表3に示す。
板厚4.5mmのめっき原板を用いた試料について、溶融めっき条件、溶接条件および試験結果を表4に示す。
板厚6.0mmのめっき原板を用いた試料について、溶融めっき条件、溶接条件および試験結果を表5に示す。
板厚2.6mmのめっき原板を用いた試料について、溶融めっき条件、溶接条件および試験結果を表6に示す。
板厚1.6mmのめっき原板を用いた試料について、溶融めっき条件、溶接条件および試験結果を表7に示す。
Tables 2 and 3 show the hot dipping conditions, welding conditions, and test results for samples using a plating original plate having a thickness of 3.2 mm.
Table 4 shows the hot dipping conditions, the welding conditions, and the test results for the sample using the plating original plate having a thickness of 4.5 mm.
Table 5 shows the hot dipping conditions, welding conditions, and test results for samples using a plating original plate having a thickness of 6.0 mm.
Table 6 shows the hot dipping conditions, the welding conditions, and the test results for the sample using the plating original plate having a thickness of 2.6 mm.
Table 7 shows the hot dipping conditions, welding conditions, and test results for a sample using a plating original plate having a plate thickness of 1.6 mm.

Figure 2014133259
Figure 2014133259

Figure 2014133259
Figure 2014133259

Figure 2014133259
Figure 2014133259

Figure 2014133259
Figure 2014133259

Figure 2014133259
Figure 2014133259

Figure 2014133259
Figure 2014133259

Figure 2014133259
Figure 2014133259

表2、表4、表5に示されるように、溶融Zn−Al−Mg系めっき鋼板部材のガスシールドアーク溶接において、単位溶接長さ当たりのCO2使用量FCO2と溶接入熱Qの関係が上述の(3)式を満たすようにガスシールドを行うことにより、耐溶融金属脆化割れ性に優れ、かつブローホール発生も良好に抑制された溶接構造部材が得られる。
また、表6、表7に示されるように、溶融Zn−Al−Mg系めっき鋼板部材の板厚(めっき層厚さを含む)が2.7mm未満のものにおいては、上述の(4)式を満たすようにガスシールドを行うことにより、耐溶融金属脆化割れ性に優れ、かつブローホール発生も良好に抑制された溶接構造部材が得られる。
As shown in Table 2, Table 4, and Table 5, in gas shielded arc welding of hot-dip Zn-Al-Mg plated steel plate members, the relationship between CO 2 usage F CO2 per unit weld length and welding heat input Q However, by performing the gas shield so as to satisfy the above-described expression (3), a welded structure member having excellent resistance to molten metal embrittlement cracking and occurrence of blowholes can be obtained.
Further, as shown in Tables 6 and 7, when the thickness of the molten Zn—Al—Mg-based plated steel sheet member (including the plating layer thickness) is less than 2.7 mm, the above-described formula (4) By performing the gas shield so as to satisfy the condition, a welded structure member having excellent resistance to molten metal embrittlement cracking and well-suppressed blowhole generation can be obtained.

表3には、めっき原板の板厚が3.2mmの試料について、(3)式を満たさない条件でガスシールドを行った場合を例示した。No.23、24、27〜30、33〜35は単位溶接長さ当たりのCO2使用量FCO2が溶接入熱Qに対して過大であったことにより、ビード近傍の「めっき層蒸発領域」において、CO2による還元作用が十分に低減されず、Zn−Al−Mg系溶融金属がビード止端部まで濡れ拡がる現象を食い止めることができなかった。その結果、溶融金属脆化割れが生じた。No.25、26、31、32は単位溶接長さ当たりのCO2使用量FCO2が不十分であったことにより、めっき層に由来するZn蒸気起因のブローホール発生を抑制する効果が十分に発揮されなかった。 Table 3 exemplifies a case where a gas shield is performed on a sample having a plate thickness of 3.2 mm that does not satisfy the expression (3). Nos. 23, 24, 27 to 30, and 33 to 35 indicate that the amount of CO 2 used per unit weld length F CO2 was excessive with respect to the welding heat input Q, so that “plating layer evaporation region” near the bead. , The reduction action by CO 2 was not sufficiently reduced, and the phenomenon that the Zn—Al—Mg based molten metal spreads to the bead toe could not be prevented. As a result, molten metal embrittlement cracking occurred. Nos. 25, 26, 31, and 32 have a sufficient effect of suppressing the generation of blow holes due to Zn vapor derived from the plating layer due to insufficient CO 2 usage F CO2 per unit weld length. It was not demonstrated.

1、1’ 母材
2 溶接ビード
3 ビード止端部
5 Zn−Al−Mg系合金層
6 Fe−Al系合金層
7 めっき層
8 Zn−Al−Mg系溶融金属
9 めっき層蒸発領域
10 溶融凝固領域
11 めっき層未溶融領域
14 試験片
15 ボス
16 溶接ビード
17 ビード重なり部分
31 溶接トーチ
32 溶接ワイヤ
33 電極
34 シールドガス
35 アーク
DESCRIPTION OF SYMBOLS 1, 1 'base material 2 Weld bead 3 Bead toe part 5 Zn-Al-Mg type alloy layer 6 Fe-Al type alloy layer 7 Plating layer 8 Zn-Al-Mg type molten metal 9 Plating layer evaporation area 10 Melt solidification Area 11 Plating layer unmelted area 14 Test piece 15 Boss 16 Weld bead 17 Bead overlap part 31 Welding torch 32 Welding wire 33 Electrode 34 Shielding gas 35 Arc

Claims (6)

ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、接合する一方または双方の部材を溶融Zn−Al−Mg系めっき鋼板部材とし、シールドガスとしてAr+CO2ガス、He+CO2ガスまたはAr+He+CO2ガスを用いて、下記(1)式で表される単位溶接長さ当たりのCO2使用量FCO2(L/cm)と下記(2)式で表される溶接入熱Q(J/cm)の関係が下記(3)式を満たすようにガスシールドを行うアーク溶接構造部材の製造法。
CO2=DCO2/v …(1)
Q=(I×V)/v …(2)
0.0025≦FCO2≦47.5Q-0.74 …(3)
ただし、DCO2はシールドガス中における標準状態(0℃、101.3kPa)換算でのCO2流量(L/sec)、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)である。
When manufacturing a welded structural member by joining steel materials by gas shielded arc welding, one or both members to be joined are made of a molten Zn—Al—Mg-based plated steel plate member, and Ar + CO 2 gas and He + CO 2 gas are used as shielding gases. Alternatively, using Ar + He + CO 2 gas, the amount of CO 2 used per unit weld length F CO2 (L / cm) expressed by the following formula (1) and the welding heat input Q (J expressed by the following formula (2): / Cm) is a method of manufacturing an arc-welded structural member that performs gas shielding so that the following equation (3) is satisfied.
F CO2 = D CO2 / v (1)
Q = (I × V) / v (2)
0.0025 ≦ F CO2 ≦ 47.5Q −0.74 (3)
However, D CO2 is the CO 2 flow rate (L / sec) in standard conditions (0 ° C, 101.3 kPa) in shield gas, I is the welding current (A), V is the arc voltage (V), and v is the welding. Speed (cm / sec).
前記溶接入熱Qを2000〜12000J/cmの範囲とする請求項1に記載のアーク溶接構造部材の製造法。   The manufacturing method of the arc welding structural member of Claim 1 which makes the said welding heat input Q into the range of 2000-12000 J / cm. ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、接合する一方または双方の部材を溶融Zn−Al−Mg系めっき鋼板部材とし、かつ前記溶融Zn−Al−Mg系めっき鋼板部材の板厚を2.7mm未満とし、シールドガスとしてAr+CO2ガス、He+CO2ガスまたはAr+He+CO2ガスを用いて、下記(1)式で表される単位溶接長さ当たりのCO2使用量FCO2(L/cm)と下記(2)式で表される溶接入熱Q(J/cm)の関係が下記(4)式を満たすようにガスシールドを行うアーク溶接構造部材の製造法。
CO2=DCO2/v …(1)
Q=(I×V)/v …(2)
0.0025≦FCO2≦2.62Q-0.35 …(4)
ただし、DCO2はシールドガス中における標準状態(0℃、101.3kPa)換算でのCO2流量(L/sec)、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)である。
When manufacturing a welded structural member by joining steel materials by gas shielded arc welding, one or both of the members to be joined is a molten Zn-Al-Mg based steel plate member, and the molten Zn-Al-Mg based plating is used. The amount of CO 2 used per unit weld length represented by the following formula (1) using Ar + CO 2 gas, He + CO 2 gas or Ar + He + CO 2 gas as shielding gas, with the plate thickness of the steel plate member being less than 2.7 mm F A method of manufacturing an arc welded structure member that performs gas shielding so that the relationship between CO2 (L / cm) and welding heat input Q (J / cm) represented by the following formula (2) satisfies the following formula (4).
F CO2 = D CO2 / v (1)
Q = (I × V) / v (2)
0.0025 ≦ F CO2 ≦ 2.62Q -0.35 ... (4)
However, D CO2 is the CO 2 flow rate (L / sec) in standard conditions (0 ° C, 101.3 kPa) in shield gas, I is the welding current (A), V is the arc voltage (V), and v is the welding. Speed (cm / sec).
前記溶接入熱Qを2000〜4500J/cmの範囲とする請求項3に記載のアーク溶接構造部材の製造法。   The manufacturing method of the arc welding structure member of Claim 3 which makes the said welding heat input Q the range of 2000-4500J / cm. 前記溶融Zn−Al−Mg系めっき鋼板は、質量%で、Al:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.5%、残部Znおよび不可避的不純物からなるめっき層を有するものである請求項1〜4のいずれかに記載のアーク溶接構造部材の製造法。   The molten Zn—Al—Mg-based plated steel sheet is, by mass, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, and B: 0. It has a plating layer consisting of ˜0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, the balance Zn and unavoidable impurities. Manufacturing method of arc welded structural members. 前記溶融Zn−Al−Mg系めっき鋼板は、片面当たりのめっき付着量が20〜250g/m2である請求項1〜5のいずれかに記載のアーク溶接構造部材の製造法。 The hot-dip Zn-Al-Mg plated steel sheet, method of producing arc welding structure according to any of claims 1 to 5 coating weight per one side is 20 to 250 g / m 2.
JP2013004104A 2013-01-11 2013-01-11 Manufacturing method of arc welding structural member Pending JP2014133259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004104A JP2014133259A (en) 2013-01-11 2013-01-11 Manufacturing method of arc welding structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004104A JP2014133259A (en) 2013-01-11 2013-01-11 Manufacturing method of arc welding structural member

Publications (1)

Publication Number Publication Date
JP2014133259A true JP2014133259A (en) 2014-07-24

Family

ID=51411968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004104A Pending JP2014133259A (en) 2013-01-11 2013-01-11 Manufacturing method of arc welding structural member

Country Status (1)

Country Link
JP (1) JP2014133259A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016168612A (en) * 2015-03-13 2016-09-23 日新製鋼株式会社 ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH
WO2016194400A1 (en) * 2015-05-29 2016-12-08 日新製鋼株式会社 Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
JP2016221575A (en) * 2015-05-29 2016-12-28 日新製鋼株式会社 ARC WELDING METHOD FOR HOT-DIP Zn-BASED PLATED STEEL SHEET EXCELLENT IN WELD ZONE APPEARANCE AND WELDING STRENGTH, WELDING MEMBER PRODUCTION METHOD, AND WELDING MEMBER
JP2017225982A (en) * 2016-06-20 2017-12-28 日新製鋼株式会社 ARC WELDING METHOD OF MOLTEN Zn TYPE PLATED STEEL PLATE, MANUFACTURING METHOD OF WELDED MEMBER AND WELDED MEMBER
JP2018506644A (en) * 2014-12-24 2018-03-08 ポスコPosco Zinc alloy-plated steel material excellent in weldability and corrosion resistance of machined part and method for producing the same
WO2018079131A1 (en) * 2016-10-28 2018-05-03 日新製鋼株式会社 Welded member and method for manufacturing same
CN109526213A (en) * 2016-05-18 2019-03-26 日新制钢株式会社 The laser cutting and processing method of electroplating steel plate, laser cutting and converted products, thermal cutting and processing method, thermal cutting and converted products, the steel plate of surface treatment, laser cutting method and laser processing head
US10518351B2 (en) 2014-11-27 2019-12-31 Nippon Steel Nisshin Co., Ltd. Arc welding method for Zn plated steel sheet and arc welded joint

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090017A (en) * 2002-08-30 2004-03-25 Nisshin Steel Co Ltd Arc welding method of galvanized steel plate
JP2011208264A (en) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd Vehicle chassis member excellent in corrosion resistance and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090017A (en) * 2002-08-30 2004-03-25 Nisshin Steel Co Ltd Arc welding method of galvanized steel plate
JP2011208264A (en) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd Vehicle chassis member excellent in corrosion resistance and method of manufacturing the same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518351B2 (en) 2014-11-27 2019-12-31 Nippon Steel Nisshin Co., Ltd. Arc welding method for Zn plated steel sheet and arc welded joint
JP2018506644A (en) * 2014-12-24 2018-03-08 ポスコPosco Zinc alloy-plated steel material excellent in weldability and corrosion resistance of machined part and method for producing the same
US11248287B2 (en) 2014-12-24 2022-02-15 Posco Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance
JP2020169388A (en) * 2014-12-24 2020-10-15 ポスコPosco Zinc alloy plated steel material excellent in weldability and processed part corrosion resistance, and its manufacturing method
US10584407B2 (en) 2014-12-24 2020-03-10 Posco Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance and method of manufacturing same
JP2016168612A (en) * 2015-03-13 2016-09-23 日新製鋼株式会社 ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH
CN107921570B (en) * 2015-05-29 2019-10-11 日铁日新制钢株式会社 The arc welding method of molten zinc plating system steel plate and the manufacturing method of welding assembly
US10906113B2 (en) 2015-05-29 2021-02-02 Nisshin Steel Co., Ltd. Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
KR20180043205A (en) * 2015-05-29 2018-04-27 닛신 세이코 가부시키가이샤 Arc welding method of molten Zn-based galvanized steel sheet excellent in appearance and weld strength of welded part, method of manufacturing welded member, and welded member
JP2017125261A (en) * 2015-05-29 2017-07-20 日新製鋼株式会社 WELD MEMBER OF MOLTEN Zn-BASED PLATED SHEET STEEL EXCELLENT IN WELD ZONE APPEARANCE AND WELD STRENGTH
WO2016194400A1 (en) * 2015-05-29 2016-12-08 日新製鋼株式会社 Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
US20180354049A1 (en) * 2015-05-29 2018-12-13 Nisshin Steel Co., Ltd. Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
TWI685390B (en) * 2015-05-29 2020-02-21 日商日鐵日新製鋼股份有限公司 Method for arc-welding molten zn plated steel plate, method for manufacturing welded member, and welded member, each excellent in appearance of welded part and in welding strength
AU2016271967C1 (en) * 2015-05-29 2021-06-17 Nisshin Steel Co., Ltd. Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
CN107921570A (en) * 2015-05-29 2018-04-17 日新制钢株式会社 The arc welding method of weld part appearance and the excellent melting plating Zn systems steel plate of weld strength, the manufacture method and welding assembly of welding assembly
JP2016221575A (en) * 2015-05-29 2016-12-28 日新製鋼株式会社 ARC WELDING METHOD FOR HOT-DIP Zn-BASED PLATED STEEL SHEET EXCELLENT IN WELD ZONE APPEARANCE AND WELDING STRENGTH, WELDING MEMBER PRODUCTION METHOD, AND WELDING MEMBER
EP3305453B1 (en) 2015-05-29 2020-01-29 Nippon Steel Nisshin Co., Ltd. Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
AU2016271967B2 (en) * 2015-05-29 2021-01-07 Nisshin Steel Co., Ltd. Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
KR102190331B1 (en) 2015-05-29 2020-12-11 닛테츠 닛신 세이코 가부시키가이샤 Arc welding method of hot-dip Zn-based plated steel sheet with excellent weld appearance and welding strength, and method of manufacturing welded members
US10759005B2 (en) 2016-05-18 2020-09-01 Amada Holdings Co., Ltd. Laser cutting and machining method for plated steel plate, laser cut-and-machined product, thermal cutting and machining method, thermal cut-and-machined product, surface-treated steel plate, laser cutting method, and laser machining head
CN109526213A (en) * 2016-05-18 2019-03-26 日新制钢株式会社 The laser cutting and processing method of electroplating steel plate, laser cutting and converted products, thermal cutting and processing method, thermal cutting and converted products, the steel plate of surface treatment, laser cutting method and laser processing head
US11559857B2 (en) 2016-05-18 2023-01-24 Amada Co., Ltd. Laser cutting and machining method for plated steel plate, laser cut-and-machined product, thermal cutting and machining method, thermal cut-and-machined product, surface-treated steel plate, laser cutting method, and laser machining head
JP2017225982A (en) * 2016-06-20 2017-12-28 日新製鋼株式会社 ARC WELDING METHOD OF MOLTEN Zn TYPE PLATED STEEL PLATE, MANUFACTURING METHOD OF WELDED MEMBER AND WELDED MEMBER
WO2017221470A1 (en) * 2016-06-20 2017-12-28 日新製鋼株式会社 Arc welding method for hot-dip galvanized steel sheet and method for manufacturing welded member
CN110087812A (en) * 2016-10-28 2019-08-02 日铁日新制钢株式会社 Welding assembly and its manufacturing method
TWI703004B (en) * 2016-10-28 2020-09-01 日商日新製鋼股份有限公司 Welding member and method for producing same
KR102075877B1 (en) 2016-10-28 2020-02-10 닛테츠 닛신 세이코 가부시키가이샤 Welding member and manufacturing method thereof
CN110087812B (en) * 2016-10-28 2020-10-23 日铁日新制钢株式会社 Welded component and method for manufacturing same
RU2708186C1 (en) * 2016-10-28 2019-12-04 Ниппон Стил Ниссин Ко., Лтд. Welded article and a method for production thereof
EP3533550A4 (en) * 2016-10-28 2019-11-20 Nippon Steel Nisshin Co., Ltd. Welded member and method for manufacturing same
AU2017350123B2 (en) * 2016-10-28 2019-08-15 Nippon Steel Nisshin Co., Ltd. Welded member and method for manufacturing same
US10975899B2 (en) 2016-10-28 2021-04-13 Nippon Steel Nisshin Co., Ltd. Welded member and method for manufacturing same
KR20190082805A (en) * 2016-10-28 2019-07-10 닛테츠 닛신 세이코 가부시키가이샤 Welding member and manufacturing method thereof
JP2018069292A (en) * 2016-10-28 2018-05-10 日新製鋼株式会社 Welding member and production method therefor
WO2018079131A1 (en) * 2016-10-28 2018-05-03 日新製鋼株式会社 Welded member and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5372217B2 (en) Manufacturing method of arc-welded structural members
TWI399445B (en) Stainless steel wire with flux core for welding zing coated steel sheets
JP6080391B2 (en) Method for producing Zn-Al-Mg plated steel sheet arc welded structural member
JP2014133259A (en) Manufacturing method of arc welding structural member
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
KR101012199B1 (en) Weld joint formed with stainless steel-based weld metal for welding a zinc-based alloy coated steel sheet
JP5980128B2 (en) Manufacturing method of arc-welded structural members
JP4303655B2 (en) Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
JP2012081514A (en) Fillet arc welding method of galvanized steel sheet
JP5283402B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
US20150231726A1 (en) METHOD FOR PRODUCING ARC-WELDED Zn-Al-Mg ALLOY COATED STEEL PLATE STRUCTURAL MEMBER
JP2009274132A (en) Coated arc welding electrode for galvanized steel sheet
WO2015198627A1 (en) METHOD FOR ARC WELDING OF HOT-DIP Zn-Al-Mg COATED STEEL SHEET, AND WELDED MEMBER
JP2024502759A (en) Welded structural member with excellent crack resistance and its manufacturing method
JP4766958B2 (en) Welding wire for Zn-based plated steel sheet and welding method for Zn-based plated steel sheet
JP2008184685A (en) Zn-Al-Mg BASE PLATED STEEL SHEET HAVING EXCELLENT MOLTEN METAL EMBRITTLEMENT CRACK RESISTANCE
KR102305743B1 (en) Welded structural member having excellent crack resistance and manufacturing method of the same
JP4857013B2 (en) Bonding structure
JP2004136342A (en) Steel wire for gas shielded arc welding
JP2004209513A (en) Arc welding method of galvannealed steel plate
JP2005028392A (en) Welded joint of galvannealed steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214