JP2017225982A - ARC WELDING METHOD OF MOLTEN Zn TYPE PLATED STEEL PLATE, MANUFACTURING METHOD OF WELDED MEMBER AND WELDED MEMBER - Google Patents

ARC WELDING METHOD OF MOLTEN Zn TYPE PLATED STEEL PLATE, MANUFACTURING METHOD OF WELDED MEMBER AND WELDED MEMBER Download PDF

Info

Publication number
JP2017225982A
JP2017225982A JP2016121728A JP2016121728A JP2017225982A JP 2017225982 A JP2017225982 A JP 2017225982A JP 2016121728 A JP2016121728 A JP 2016121728A JP 2016121728 A JP2016121728 A JP 2016121728A JP 2017225982 A JP2017225982 A JP 2017225982A
Authority
JP
Japan
Prior art keywords
plated steel
hot
dip
welding
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016121728A
Other languages
Japanese (ja)
Other versions
JP6487877B2 (en
Inventor
和昭 細見
Kazuaki Hosomi
和昭 細見
延時 智和
Tomokazu Nobutoki
智和 延時
仲子 武文
Takefumi Nakako
武文 仲子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2016121728A priority Critical patent/JP6487877B2/en
Priority to PCT/JP2017/008398 priority patent/WO2017221470A1/en
Priority to TW106111962A priority patent/TW201800171A/en
Publication of JP2017225982A publication Critical patent/JP2017225982A/en
Application granted granted Critical
Publication of JP6487877B2 publication Critical patent/JP6487877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arc welding method of a molten Zn type plated steel plate, a manufacturing method of a welded member and the welded member excellent in welded part appearance and welded strength.SOLUTION: An arc welding method includes a process of welding molten Zn type plated steel plates with each other according to a pulse arc welding method which generates an arc by supplying a peak current and a base current alternately. Therein, a distance from a tip of a welding wire 2 to a welding object part on a part abutted to each other of molten Zn type plated steel plates 1, 1' as welding object is such a length that the welding wire 2 and a molten pool 3 produced on the abutted part are not short-circuited with each other and the welding is performed in such a length that the arc does not put out.SELECTED DRAWING: Figure 2

Description

本発明は、溶融Zn系めっき鋼板のアーク溶接方法、溶接部材の製造方法および溶接部材に関する。   The present invention relates to an arc welding method for a hot-dip Zn-based plated steel sheet, a method for manufacturing a welded member, and a welded member.

溶融亜鉛系めっき鋼板(溶融Zn系めっき鋼板)は、耐食性が良好であるため建築部材や自動車部材をはじめとする広範な用途に使用されている。なかでも、Alを1質量%以上含む溶融Zn−Al−Mgめっき鋼板は、長期間にわたり優れた耐食性を維持することから、従来の溶融Znめっき鋼板に代わる材料として需要が増加している。なお、従来の溶融Znめっき鋼板におけるめっき層中のAl濃度は通常0.3質量%以下である(JIS G3302参照)。   Hot dip galvanized steel sheets (hot galvanized steel sheets) have good corrosion resistance and are used in a wide range of applications including building members and automobile members. Among them, a hot-dip Zn—Al—Mg plated steel sheet containing 1% by mass or more of Al maintains excellent corrosion resistance over a long period of time, and therefore, the demand is increasing as a material to replace the conventional hot-dip Zn plated steel sheet. In addition, the Al concentration in the plating layer in the conventional hot-dip Zn-plated steel sheet is usually 0.3% by mass or less (see JIS G3302).

溶融Zn系めっき鋼板を建築部材、自動車部材等に用いる場合、アーク溶接法を用いて組み立てられることが多い。しかし、溶融Zn系めっき鋼板をアーク溶接すると、通常、スパッタ、ピット、およびブローホール(以下、特に記述しない限りブローホールはピットを含める)の発生が著しく、アーク溶接性に劣る。これは、Feの融点(約1538℃)に比べてZnの沸点(約906℃)が低いため、アーク溶接時にZn蒸気が発生してアークが不安定になり、スパッタおよびブローホールが発生し易いためである。なお、スパッタ、ブローホール、およびピットについて、図7の(a)〜(c)を用いて説明すれば、以下のとおりである。すなわち、図7の(a)に示すように、スパッタ111とは、例えば鋼板101・101’の溶接時に、溶接ワイヤ102や溶融池103等から飛散するスラグや金属粒等の溶接カスのことである。図7の(b)に示すように、ブローホール112とは、溶接ビード106に包含された気孔のことである。この溶接ビード106とは、溶接時に溶融した金属(母材の一部と溶着金属とが溶け合った部分)が冷え固まった部分であって、被溶接材同士を冶金的に接合している溶接金属のことである。また、図7の(c)に示すように、ピット113とは溶接ビード106の表面に現れた気孔によって形成された窪みを意味している。   When a hot-dip Zn-based plated steel sheet is used for a building member, an automobile member, etc., it is often assembled using an arc welding method. However, when arc welding is performed on a hot-dip Zn-based plated steel sheet, usually spatter, pits, and blow holes (hereinafter, blow holes include pits unless otherwise specified) are remarkably inferior in arc weldability. This is because the boiling point of Zn (about 906 ° C.) is lower than the melting point of Fe (about 1538 ° C.), so that Zn vapor is generated during arc welding, the arc becomes unstable, and spatter and blow holes are likely to occur. Because. In addition, it is as follows if a sputter | spatter, a blowhole, and a pit are demonstrated using (a)-(c) of FIG. That is, as shown in FIG. 7A, the sputter 111 is, for example, welding slag such as slag or metal particles scattered from the welding wire 102, the molten pool 103 or the like when welding the steel plates 101 and 101 ′. is there. As shown in FIG. 7B, the blow hole 112 is a pore included in the weld bead 106. The weld bead 106 is a portion in which a metal melted at the time of welding (a portion where a part of the base material and the weld metal are melted) is cooled and solidified, and is a weld metal that joins the materials to be welded metallurgically. That's it. Further, as shown in FIG. 7C, the pit 113 means a recess formed by pores appearing on the surface of the weld bead 106.

スパッタが溶融Zn系めっき鋼板のめっき面に付着すると、溶接部外観が損なわれるだけでなく、該スパッタが付着した部分が腐食の起点となる。そのため、スパッタが大量に付着すると耐食性が著しく低下して問題となる。また、スパッタをワイヤーブラシ等で除去する工程が必要となり、コストが増加する。一方、ブローホールの発生が著しいと、溶接強度が低下して問題となることがある。   When spatter adheres to the plated surface of the hot-dip Zn-based plated steel sheet, not only the appearance of the welded portion is impaired, but also the portion where the spatter adheres becomes the starting point of corrosion. Therefore, if a large amount of spatter adheres, the corrosion resistance is remarkably lowered, which causes a problem. Further, a process of removing the spatter with a wire brush or the like is required, which increases the cost. On the other hand, if blowholes are significantly generated, the welding strength may be reduced, which may be a problem.

特に、長期耐久性が要求される部材では、片面あたりのめっき付着量が90g/m以上の厚目付の溶融Zn系めっき鋼板が使用されるが、片面あたりのめっき付着量が大きくなるほどアーク溶接時のZn蒸気量が多くなるため、スパッタおよびブローホールの発生がより一層著しくなる。 In particular, for members that require long-term durability, a hot-dip Zn-plated steel sheet having a thickness of 90 g / m 2 or more per side is used, but arc welding increases as the amount of plating per side increases. Since the amount of Zn vapor at the time increases, the generation of spatter and blow holes becomes even more remarkable.

なお、本明細書では、溶融Zn系めっき鋼板の片面あたりのめっき付着量の多少について、めっき付着量が少ないものを薄目付、めっき付着量が多いものを厚目付と記載することがある。   In addition, in this specification, as for the amount of plating adhesion per one surface of a hot-dip Zn-based plated steel sheet, a material with a small amount of plating may be referred to as thin, and a material with a large amount of plating may be referred to as thick.

溶融Zn系めっき鋼板の溶接時におけるスパッタおよびブローホールの発生を抑制する方法として、溶接ワイヤを電極としたパルスアーク溶接法が提案されている。このパルスアーク溶接法によれば、電極として用いられる溶接ワイヤから母材への溶滴移行がスプレー移行となり溶滴が小粒でスパッタが抑制される。また、パルスアークにより溶融池(凝固する前の溶接ビード部分)が攪拌されるとともに、溶融池が押し下げられて溶融池が薄くなり、Zn蒸気の排出が促進されてブローホールの発生が抑制される。   A pulse arc welding method using a welding wire as an electrode has been proposed as a method for suppressing the occurrence of spatter and blowholes during welding of a hot-dip Zn-based plated steel sheet. According to this pulse arc welding method, the droplet transfer from the welding wire used as the electrode to the base material becomes spray transfer, and the droplet is small and spatter is suppressed. In addition, the molten pool (the weld bead portion before solidification) is agitated by the pulse arc, and the molten pool is pushed down to make the molten pool thinner, and the discharge of Zn vapor is promoted to suppress the generation of blowholes. .

例えば、特許文献1、2には溶接ワイヤ組成と、ピーク電流、ピーク期間、および周波数等のパルス電流波形とを適正範囲内に制御してスパッタを抑制するパルスアーク溶接法が開示されている。   For example, Patent Documents 1 and 2 disclose a pulse arc welding method that suppresses sputtering by controlling the welding wire composition and pulse current waveforms such as peak current, peak period, and frequency within an appropriate range.

特開平9−206984号公報(1997年8月12日公開)Japanese Patent Laid-Open No. 9-206984 (published on August 12, 1997) 特開2013−184216号公報(2013年9月19日公開)JP 2013-184216 A (published September 19, 2013)

しかし、特許文献1、2には、片面当たりのめっき付着量が45g/mである薄目付の溶融Znめっき鋼板の実施例が開示されているのみであり、厚目付の溶融Zn系めっき鋼板におけるスパッタおよびブローホールの抑制方法については記載されていない。 However, Patent Documents 1 and 2 only disclose an example of a thin-walled hot-dip Zn-plated steel sheet having a coating adhesion amount per side of 45 g / m 2. There is no description on the method of suppressing spatter and blowholes in

上述のように、溶融Zn系めっき鋼板はめっき付着量が多くなるほど耐食性に優れるが、アーク溶接時にスパッタおよびブローホールが著しく発生して溶接部外観と溶接強度が低下する。本発明はこのような現状に鑑み、溶融Zn系めっき鋼板が厚目付であっても、アーク溶接におけるスパッタおよびブローホールの発生を抑制することができ、溶接部外観と溶接強度に優れた溶融Zn系めっき鋼板のアーク溶接方法、溶接部材の製造方法および溶接部材を提供することを目的とする。   As described above, the hot-dip Zn-based plated steel sheet is more excellent in corrosion resistance as the coating amount increases, but spatter and blow holes are remarkably generated during arc welding, and the weld appearance and weld strength are reduced. In view of the present situation, the present invention can suppress the occurrence of spatter and blowholes in arc welding even when the hot-dip Zn-based plated steel sheet is thick, and has a welded portion appearance and weld strength that is excellent. An object of the present invention is to provide an arc welding method for a plated steel sheet, a manufacturing method for a welding member, and a welding member.

発明者らの詳細な研究の結果、溶融Zn系めっき鋼鈑のアーク溶接において、パルスアーク溶接法を用いてアーク溶接を行うにあたり、溶接ワイヤの先端から、溶接対象である溶融Zn系めっき鋼板同士の当接部における溶接対象部までの距離を適切なものとすることで、溶融Zn系めっき鋼板のめっき付着量が薄目付のものから厚目付のものまで、スパッタおよびブローホールの発生を抑制できるという知見を得た。この知見に基づいて本発明を完成するに至った。   As a result of detailed research by the inventors, in arc welding of hot-dip Zn-based plated steel plates, when performing arc welding using a pulsed arc welding method, from the tip of the welding wire, the hot-dip Zn-based plated steel plates to be welded together By optimizing the distance to the weld target part at the contact part, it is possible to suppress the occurrence of spatters and blowholes from thin to thick ones on the hot-dip Zn-plated steel sheet. I got the knowledge. The present invention has been completed based on this finding.

すなわち、本発明における溶融Zn系めっき鋼板のアーク溶接方法は、ピーク電流とベース電流とを交互に供給することによってアークを発生させるパルスアーク溶接法により溶融Zn系めっき鋼板同士を溶接するアーク溶接方法であって、溶接ワイヤの先端から、溶接対象である溶融Zn系めっき鋼板同士の当接部における溶接対象部までの距離が、前記溶接ワイヤと前記当接部に生じた溶融池とが互いに短絡しない長さであり、かつアークが消灯しない長さにて溶接することを特徴としている。   That is, the arc welding method for hot-dip Zn-based plated steel sheets according to the present invention is an arc welding method for welding hot-dip Zn-based plated steel sheets to each other by a pulsed arc welding method in which an arc is generated by alternately supplying a peak current and a base current. The distance from the tip of the welding wire to the welding target portion at the contact portion between the hot-dip Zn-based plated steel sheets to be welded is short-circuited between the welding wire and the molten pool generated at the contact portion. It is the length which does not carry out and it welds in the length which does not turn off an arc.

また、本発明における溶融Zn系めっき鋼板のアーク溶接方法は、前記距離が、2mm以上20mm以下であることが好ましい。   Moreover, it is preferable that the said distance is 2 mm or more and 20 mm or less as for the arc welding method of the hot-dip Zn type plated steel plate in this invention.

さらに、本発明における溶融Zn系めっき鋼板のアーク溶接方法は、前記ピーク電流が350A以上650A以下であり、パルスの周期が1ms以上20ms以下であることが好ましい。   Furthermore, in the arc welding method for a hot-dip Zn-based plated steel sheet according to the present invention, the peak current is preferably 350 A or more and 650 A or less, and the pulse period is preferably 1 ms or more and 20 ms or less.

また、本発明における溶融Zn系めっき鋼板のアーク溶接方法は、前記溶融Zn系めっき鋼板のめっき層は、Znを主成分とし、1.0質量%以上22.0質量%以下のAlを含有するとすることができる。   Further, in the arc welding method for a hot-dip Zn-based plated steel sheet according to the present invention, the plating layer of the hot-dip Zn-plated steel sheet contains Zn as a main component and contains 1.0% by mass or more and 22.0% by mass or less of Al. can do.

さらに、本発明における溶融Zn系めっき鋼板のアーク溶接方法は、前記溶融Zn系めっき鋼板のめっき層は、0.05質量%以上10.0質量%以下のMgを含有することが好ましい。   Furthermore, in the arc welding method for a hot-dip Zn-based plated steel sheet according to the present invention, the plating layer of the hot-dip Zn-plated steel sheet preferably contains 0.05% by mass or more and 10.0% by mass or less of Mg.

さらに、本発明における溶融Zn系めっき鋼板のアーク溶接方法は、前記溶融Zn系めっき鋼板のめっき層の組成が、Ti:0.002〜0.1質量%、B:0.001〜0.05質量%、Si:0〜2.0質量%、およびFe:0〜2.5質量%からなる群から選ばれる1つ以上の条件を満たしていることが好ましい。   Furthermore, in the arc welding method of the hot-dip Zn-plated steel sheet according to the present invention, the composition of the plating layer of the hot-dip Zn-plated steel sheet is Ti: 0.002-0.1 mass%, B: 0.001-0.05. It is preferable that one or more conditions selected from the group consisting of mass%, Si: 0 to 2.0 mass%, and Fe: 0 to 2.5 mass% are satisfied.

また、本発明における溶融Zn系めっき鋼板のアーク溶接方法は、下記(1)式で示されるブローホール占有率Brが30%以下となり、かつ溶接ビードを中心とした縦100mm、横100mmの領域のスパッタ付着個数が20個以下となるようにアーク溶接するとすることができる。   Moreover, the arc welding method of the hot-dip Zn-based plated steel sheet according to the present invention has a blowhole occupancy Br represented by the following formula (1) of 30% or less, and has a length of 100 mm and a width of 100 mm centered on the weld bead. Arc welding can be performed so that the number of sputters deposited is 20 or less.

Br=(Σdi/L)×100 ・・・(1)
(ここで、
di:前記溶接ビードにおいて観察されたi番目のブローホールの長さ
L:溶接ビードの長さ)。
Br = (Σdi / L) × 100 (1)
(here,
di: length of the i-th blow hole observed in the weld bead L: length of the weld bead).

本発明における溶接部材の製造方法は、溶融Zn系めっき鋼板同士がパルスアーク溶接法により溶接された溶接部材の製造方法であって、前記溶融Zn系めっき鋼板の片面あたりのめっき付着量が15g/m以上250g/m以下であり、溶接ワイヤの先端から、溶接対象である溶融Zn系めっき鋼板同士の当接部における溶接対象部までの距離が2mm以上20mm以下であり、パルスアークを発生させる溶接電流のピーク電流が350A以上650A以下であり、パルスの周期が1ms以上20ms以下であるパルスアーク溶接によって前記溶融Zn系めっき鋼板同士を溶接することを特徴としている。 The method for manufacturing a welded member in the present invention is a method for manufacturing a welded member in which hot-dip Zn-based plated steel plates are welded to each other by a pulse arc welding method, and the amount of plating adhesion per side of the hot-dip Zn-based plated steel plate is 15 g / m 2 or more and 250 g / m 2 or less, and the distance from the tip of the welding wire to the welding target part at the contact part between the hot-dip Zn-based plated steel sheets to be welded is 2 mm or more and 20 mm or less, and generates a pulse arc. It is characterized in that the molten Zn-based plated steel sheets are welded to each other by pulse arc welding in which the peak current of the welding current to be applied is 350 A or more and 650 A or less and the cycle of the pulse is 1 ms or more and 20 ms or less.

本発明によれば、溶融Zn系めっき鋼板が厚目付であっても、アーク溶接におけるスパッタおよびブローホールの発生を抑制することができ、溶接部外観と溶接強度に優れた溶融Zn系めっき鋼板のアーク溶接方法、溶接部材の製造方法および溶接部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if the hot dip Zn system plating steel plate is thick, generation | occurrence | production of the spatter | spatter and blowhole in arc welding can be suppressed, An arc welding method, a manufacturing method of a welding member, and a welding member can be provided.

パルスアーク溶接法におけるパルス電流波形を模式的に示す図である。It is a figure which shows typically the pulse current waveform in the pulse arc welding method. パルスアーク溶接現象を模式的に示す断面図である。It is sectional drawing which shows a pulse arc welding phenomenon typically. (a)は本発明の実施の形態における溶融Zn系めっき鋼板のアーク溶接方法において、重ね継手による隅肉溶接の場合の溶接ワイヤと溶融Zn系めっき鋼板同士の当接部との位置関係を模式的に示す断面図であり、(b)はT字継手による隅肉溶接の場合の上記位置関係を模式的に示す断面図である。(A) is a schematic diagram showing a positional relationship between a welding wire and a contact portion between hot-dip Zn-based plated steel sheets in the case of fillet welding by a lap joint in the method for arc welding of hot-dip Zn-plated steel sheets in the embodiment of the present invention. It is sectional drawing shown typically, (b) is sectional drawing which shows typically the said positional relationship in the case of fillet welding by a T-shaped joint. 溶融Zn系めっき鋼板同士が溶接されてなる溶接部材におけるブローホール占有率の測定方法を説明する平面図である。It is a top view explaining the measuring method of the blowhole occupation rate in the welding member formed by welding hot-dip Zn system plated steel plates. 溶融Zn系めっき鋼板同士が溶接されてなる溶接部材におけるスパッタ付着個数の測定方法を説明する平面図である。It is a top view explaining the measuring method of the sputter | spatter adhesion number in the welding member formed by welding hot-dip Zn series plated steel plates. 従来のパルス無しのアーク溶接法におけるアーク溶接現象を模式的に示す断面図である。It is sectional drawing which shows typically the arc welding phenomenon in the conventional arc welding method without a pulse. (a)は、スパッタを模式的に示す断面図であり、(b)は、ブローホールを模式的に示す断面図であり、(c)は、ピットを模式的に示す断面図である。(A) is sectional drawing which shows typically a sputter | spatter, (b) is sectional drawing which shows a blow hole typically, (c) is sectional drawing which shows a pit typically.

以下、本発明の実施の形態について説明する。なお、以下の記載は発明の趣旨をより良く理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。また、本明細書において、「A〜B」とは、A以上B以下であることを示している。   Embodiments of the present invention will be described below. The following description is for better understanding of the gist of the invention and does not limit the present invention unless otherwise specified. Moreover, in this specification, "A-B" has shown that it is A or more and B or less.

以下の説明においては、本発明の実施の形態における溶融Zn系めっき鋼板のアーク溶接方法についての理解を容易にするため、先ず、従来のパルス無しのアーク溶接法におけるアーク溶接現象について図6を用いて説明し、次に、一般的なパルスアーク溶接法の概要を図1および図2に基づいて説明する。本発明の実施形態におけるパルスアーク溶接の原理は、一般的なパルスアーク溶接法の原理と同様である。   In the following description, in order to facilitate understanding of the arc welding method of the hot-dip Zn-based plated steel sheet in the embodiment of the present invention, first, the arc welding phenomenon in the conventional pulse welding arc welding method will be described with reference to FIG. Next, an outline of a general pulse arc welding method will be described with reference to FIG. 1 and FIG. The principle of pulse arc welding in the embodiment of the present invention is the same as that of a general pulse arc welding method.

図6は、従来のパルス無しのアーク溶接法におけるアーク溶接現象を模式的に示す断面図である。図6に示すように、パルス無しのアーク溶接法では、例えば溶融Zn系めっき鋼板201・201’の溶接時において、溶接ワイヤ202から生じた溶滴205が溶融池へ接触(短絡)することによって移行する短絡移行現象が生じる。この場合、溶滴205と溶融池とが混在する部分において、Zn蒸気の噴出によってスパッタが大量に発生することがある。また、Zn蒸気が抜けにくいためにブローホールが大量に発生する。   FIG. 6 is a sectional view schematically showing an arc welding phenomenon in a conventional arc welding method without a pulse. As shown in FIG. 6, in the arc welding method without a pulse, for example, when the molten Zn-based plated steel plate 201/201 ′ is welded, the droplet 205 generated from the welding wire 202 contacts (short-circuits) the molten pool. A short-circuit transition phenomenon occurs. In this case, a large amount of spatter may be generated by jetting Zn vapor in a portion where the droplets 205 and the molten pool are mixed. Moreover, since Zn vapor is difficult to escape, a large amount of blow holes are generated.

次に、一般的なパルスアーク溶接法の概要を説明する。図1は、パルスアーク溶接法におけるパルス電流波形を模式的に示す図である。図1に示すように、パルスアーク溶接法は、ピーク電流IPとベース電流IBとを交互に繰り返して供給するアーク溶接法であって、ピーク電流IPは溶滴がスプレー移行する臨界電流以上に設定される。ピーク電流IPが流れている時間をピーク期間PPとし、ピーク電流IPおよびベース電流IBからなるパルス電流のパルス周期を周期PFQとする。ピーク電流IPを臨界電流以上に設定すると、電磁力によるワイヤ先端の溶滴を引き絞る効果(電磁ピンチ効果)が生じ、この電磁ピンチ効果により溶接ワイヤ先端の溶滴にくびれが生じ、溶滴が小粒化してパルス周期ごとに規則正しい溶滴の移行(スプレー移行)が行われる。これにより、溶滴はスムーズに溶融池に移行し、スパッタの発生が抑制される。   Next, an outline of a general pulse arc welding method will be described. FIG. 1 is a diagram schematically showing a pulse current waveform in the pulse arc welding method. As shown in FIG. 1, the pulse arc welding method is an arc welding method in which a peak current IP and a base current IB are alternately and repeatedly supplied, and the peak current IP is set to be equal to or higher than a critical current at which the droplets are sprayed. Is done. The time during which the peak current IP flows is defined as a peak period PP, and the pulse period of the pulse current composed of the peak current IP and the base current IB is defined as a period PFQ. When the peak current IP is set to be equal to or higher than the critical current, an effect of drawing the droplet at the wire tip due to electromagnetic force (electromagnetic pinch effect) occurs, and this electromagnetic pinch effect causes a constriction on the droplet at the tip of the welding wire. The droplets are atomized and regular droplet transfer (spray transfer) is performed for each pulse period. Thereby, a droplet transfers to a molten pool smoothly and generation | occurrence | production of a sputter | spatter is suppressed.

図2は、パルスアーク溶接現象を模式的に示す断面図である。ここでは、重ね継手による隅肉溶接を例に説明する。図2に示すように、ピーク電流値を適切に設定したパルスアーク溶接法では、小粒の溶滴5が溶接ワイヤ2から溶融池3にスプレー移行するので短絡が発生しにくく、また、パルスアーク4によりアーク直下の溶融池3が押し下げられ溶融池の深さが薄くなるとともに攪拌されて、Zn蒸気の排出が促進されてスパッタおよびブローホールの発生が抑制される。溶融池3が冷え固まった部分は、溶接ビード6となる。   FIG. 2 is a cross-sectional view schematically showing the pulse arc welding phenomenon. Here, fillet welding using a lap joint will be described as an example. As shown in FIG. 2, in the pulse arc welding method in which the peak current value is appropriately set, small droplets 5 are sprayed from the welding wire 2 to the molten pool 3, so that a short circuit is unlikely to occur, and the pulse arc 4 As a result, the molten pool 3 immediately below the arc is pushed down, the depth of the molten pool is reduced and stirred, and the discharge of Zn vapor is promoted to suppress the occurrence of spatter and blowholes. A portion where the molten pool 3 is cooled and solidified becomes a weld bead 6.

さらに説明すれば、このようなパルスアーク溶接法では、溶接ワイヤ2の先端と溶融池3との間隔、すなわちアーク長が短くなるほど、パルスアーク4による溶融池3の押し下げ効果が大きくなるため、Zn蒸気の排出が促進される。しかし、アーク長が短くなり過ぎると、溶接ワイヤ2の先端と溶融池3とが短絡してスパークし、溶融池3が吹き飛ばされて大量のスパッタが発生する。特に、溶融Zn系めっき鋼板が厚目付の場合、Zn蒸気の発生量が多くなるため、パルスアーク溶接法を用いても溶融池3からZn蒸気が抜けきらず溶融池3内に滞留したZn蒸気が一気に噴出して溶融池3が波打ち、溶接ワイヤ2の先端と短絡してスパッタの発生が著しくなってしまう。   More specifically, in such a pulse arc welding method, as the distance between the tip of the welding wire 2 and the molten pool 3, that is, the arc length becomes shorter, the effect of pushing down the molten pool 3 by the pulse arc 4 becomes larger. Steam discharge is promoted. However, if the arc length becomes too short, the tip of the welding wire 2 and the molten pool 3 are short-circuited and sparked, and the molten pool 3 is blown away and a large amount of spatter is generated. In particular, when the molten Zn-based plated steel sheet is thick, the amount of Zn vapor generated increases, so that Zn vapor does not escape from the molten pool 3 even if the pulse arc welding method is used. The molten pool 3 undulates at a stroke, and the tip of the welding wire 2 is short-circuited to cause spattering.

そこで、本発明では溶接ワイヤ2の先端と溶融池3との短絡を防止して、溶融Zn系めっき鋼板が厚目付であってもZn蒸気の影響を抑制して溶滴移行を安定化させ、スパッタおよびブローホールの発生を抑制する。   Therefore, in the present invention, the short-circuit between the tip of the welding wire 2 and the molten pool 3 is prevented, and even if the molten Zn-based plated steel sheet is thick, the influence of Zn vapor is suppressed to stabilize the droplet transfer, Suppresses spatter and blowholes.

なお、本明細書におけるパルスアーク溶接法という語の意味するところは、以下のようなものである。すなわち、一般に、各種のアーク溶接法において、パルス電圧を印加してパルスアークを発生させることができるが、そのような各種のパルスアーク溶接法の中で、本発明のパルスアーク溶接法は、パルスMAG(Metal Active Gas)溶接法およびパルスMIG(Metal Inert Gas)溶接法を対象としている。つまり、本発明は、溶接ワイヤと母材との間に発生させたアークにより該溶接ワイヤと母材とを同時に溶かしながら溶接を行うと共に、溶接時において、アークの周辺にシールドガスが存在するパルスアーク溶接法に関する。   In addition, the meaning of the term pulse arc welding method in this specification is as follows. That is, generally, in various arc welding methods, it is possible to generate a pulse arc by applying a pulse voltage. Among such various pulse arc welding methods, the pulse arc welding method of the present invention is a pulse arc welding method. MAG (Metal Active Gas) welding method and pulsed MIG (Metal Inert Gas) welding method are targeted. In other words, the present invention performs welding while simultaneously melting the welding wire and the base metal by an arc generated between the welding wire and the base material, and at the time of welding, a pulse in which a shielding gas exists around the arc. It relates to the arc welding method.

以下に本実施の形態について詳述する。   This embodiment will be described in detail below.

〔溶接ワイヤと溶接前の溶融Zn系めっき鋼板同士の当接部との位置関係〕
本実施の形態における溶融Zn系めっき鋼板のアーク溶接方法における、溶接ワイヤと溶接前の溶融Zn系めっき鋼板同士の当接部との位置関係について、図3に基づいて説明する。
[Positional relationship between the welding wire and the contact portion between the hot-dip Zn-plated steel sheets before welding]
The positional relationship between the welding wire and the contact portion between the hot-dip Zn-plated steel sheets before welding in the arc welding method for hot-dip Zn-plated steel sheets in the present embodiment will be described with reference to FIG.

図3の(a)は、本実施の形態における溶融Zn系めっき鋼板のアーク溶接方法において、重ね継手による隅肉溶接の場合の溶接ワイヤ2と溶融Zn系めっき鋼板1・1’同士の当接部7との位置関係を模式的に示す断面図である。図3の(b)は、T字継手による隅肉溶接の場合の溶接ワイヤ2と溶融Zn系めっき鋼板1・1’同士の当接部7との位置関係を模式的に示す断面図である。図3の(a)(b)はいずれも、溶接方向に対して垂直な方向の断面を示していると共に、溶接前の状態を示している。   FIG. 3 (a) shows the contact between the welding wire 2 and the molten Zn-based plated steel sheet 1 · 1 ′ in the case of fillet welding by a lap joint in the arc welding method of the molten Zn-based plated steel sheet in the present embodiment. 7 is a cross-sectional view schematically showing a positional relationship with a part 7. FIG. FIG. 3B is a cross-sectional view schematically showing the positional relationship between the welding wire 2 and the contact portion 7 between the hot-dip Zn-based plated steel plates 1 and 1 ′ in the case of fillet welding with a T-shaped joint. . 3 (a) and 3 (b) both show a cross section in a direction perpendicular to the welding direction and a state before welding.

図3の(a)および(b)に示すように、溶接前において、溶接の対象となる溶融Zn系めっき鋼板1と溶融Zn系めっき鋼板1’とは、種々の継手形状に配置され得る。図3の(a)では重ね継手に配置され、図3の(b)ではT字継手に配置されている。配置された溶融Zn系めっき鋼板1と溶融Zn系めっき鋼板1’との間には、それらが互いに当接する当接面としての当接部7が形成される。ここで、当接部7において、溶接ワイヤ2の先端に最も近い端部を、隅部7aと称する。隅部7aは、溶融Zn系めっき鋼板1と溶融Zn系めっき鋼板1’とが隣接する部分において溶接ビード6(図4参照)が形成される部分である。   As shown in (a) and (b) of FIG. 3, before welding, the hot-dip Zn-based plated steel plate 1 and the hot-zinc-plated steel plate 1 ′ to be welded can be arranged in various joint shapes. In (a) of FIG. 3, it arrange | positions at a lap joint, and is arrange | positioned at the T-shaped joint in (b) of FIG. Between the arranged hot-dip Zn-based plated steel plate 1 and hot-dip Zn-plated steel plate 1 ′, a contact portion 7 is formed as a contact surface with which they contact each other. Here, the end portion closest to the tip of the welding wire 2 in the contact portion 7 is referred to as a corner portion 7a. The corner portion 7a is a portion where a weld bead 6 (see FIG. 4) is formed at a portion where the molten Zn-based plated steel plate 1 and the molten Zn-based plated steel plate 1 'are adjacent to each other.

換言すれば、隅部7aは、溶融Zn系めっき鋼板1および溶融Zn系めっき鋼板1’が任意の継手形状に配置された状態において、溶融Zn系めっき鋼板1と溶融Zn系めっき鋼板1’とを溶接するためにアークが照射される部分であり、溶接対象部と称することもできる。なお、継手形状が突合せ継手の場合には、上記溶接対象部は、溶融Zn系めっき鋼板1の端部と溶融Zn系めっき鋼板1’の端部とが対向する面における、溶接ワイヤ2側の縁部(稜線)を意味する。   In other words, the corner portion 7a is formed with the molten Zn-based plated steel plate 1 and the molten Zn-based plated steel plate 1 ′ in a state where the molten Zn-based plated steel plate 1 and the molten Zn-based plated steel plate 1 ′ are arranged in an arbitrary joint shape. This is a portion irradiated with an arc for welding, and can also be referred to as a welding target portion. In the case where the joint shape is a butt joint, the weld target portion is on the side of the welding wire 2 on the surface where the end portion of the molten Zn-based plated steel plate 1 and the end portion of the molten Zn-based plated steel plate 1 ′ face each other. An edge (ridgeline) is meant.

前述のように、溶接ワイヤ2の先端と溶融池3との短絡によるスパッタの発生を抑制するには、アーク長を適正範囲内に管理することが重要である。しかし、再び図2を参照して説明すると、溶融池3はパルスアーク4による押し下げ効果によりパルスアーク4の波形とほぼ同調してごく短時間の内に上下動しており、溶接中にアーク長そのものを測定し、管理することは困難である。そこで、本発明では、図3の(a)および(b)に示すように、溶接ワイヤ2の先端であるワイヤ先端部2aから、溶接前の溶融Zn系めっき鋼板同士の当接部7における溶接ワイヤ2側の隅部7aまでの距離Dが、溶接ワイヤ2と溶融池3とが互いに短絡しない長さであり、かつパルスアーク4が消灯しない長さにする。   As described above, in order to suppress the occurrence of spatter due to a short circuit between the tip of the welding wire 2 and the molten pool 3, it is important to manage the arc length within an appropriate range. However, referring again to FIG. 2, the weld pool 3 moves up and down within a very short time in synchronism with the waveform of the pulse arc 4 due to the depressing effect of the pulse arc 4. It is difficult to measure and manage itself. Therefore, in the present invention, as shown in FIGS. 3A and 3B, welding is performed at a contact portion 7 between the hot-dip Zn-based plated steel sheets before welding from the wire tip portion 2 a that is the tip of the welding wire 2. The distance D to the corner 7a on the wire 2 side is such a length that the welding wire 2 and the molten pool 3 are not short-circuited with each other, and the pulse arc 4 is not extinguished.

ここで、例えば図3の(a)および(b)に示す継手形状についてパルスアーク溶接を行う場合、溶接ワイヤ2は紙面に対して垂直な方向に移動して上記溶接対象部を順次溶接していくことになる。それゆえ、上記距離Dとは、点としてのワイヤ先端部2aから、線としての上記溶接対象部(隅部7a、または溶接ワイヤ2側の縁部)へと引いた垂線の長さを示している。なお、溶接ワイヤ2の中心軸を通る直線が隅部7aを通過する必要は必ずしもなく、上記直線が隅部7aの近傍を通過していればよい。そのため、広い意味では、上記距離Dは、溶接ワイヤ2の中心軸を通る直線が溶融Zn系めっき鋼板1または溶融Zn系めっき鋼板1’と交差する点(溶接対象部)とワイヤ先端部2aとの間の距離である。   Here, for example, when pulse arc welding is performed on the joint shapes shown in FIGS. 3A and 3B, the welding wire 2 moves in a direction perpendicular to the paper surface, and sequentially welds the welding target portions. Will go. Therefore, the distance D indicates the length of the perpendicular drawn from the wire tip 2a as a point to the welding object (the corner 7a or the edge on the welding wire 2 side) as a line. Yes. In addition, the straight line passing through the central axis of the welding wire 2 does not necessarily pass through the corner portion 7a, and the straight line only needs to pass through the vicinity of the corner portion 7a. Therefore, in a broad sense, the distance D is defined as a point where the straight line passing through the central axis of the welding wire 2 intersects the molten Zn-based plated steel sheet 1 or the molten Zn-based plated steel sheet 1 ′ (welding target part) and the wire tip 2a. Is the distance between.

このように、本実施の形態の溶融Zn系めっき鋼板のアーク溶接方法では、ワイヤ先端部2aから、隅部7aまでの距離Dを、溶接ワイヤ2と溶融池3とが互いに短絡しない長さであり、かつアークが消灯しない長さに維持して溶接する。この方法は、アーク長そのものを測定するのではなく、上記距離Dを維持しつつ溶接することにより、溶融Zn系めっき鋼板が厚目付であっても、アーク溶接におけるスパッタおよびブローホールの発生を簡単な構成で抑制することができる。   Thus, in the arc welding method for the hot-dip Zn-based plated steel sheet of the present embodiment, the distance D from the wire tip 2a to the corner 7a is such that the welding wire 2 and the molten pool 3 do not short-circuit each other. Weld and maintain the length so that the arc does not turn off. This method does not measure the arc length itself but welds while maintaining the distance D, so that spatter and blowholes are easily generated in arc welding even if the hot-dip Zn-plated steel sheet is thick. Can be suppressed with a simple configuration.

本実施の形態の溶融Zn系めっき鋼板のアーク溶接方法において、ワイヤ先端部2aから隅部7aまでの距離Dを、2〜20mmの範囲とすることが好ましい。距離Dが2mmを下回ると溶接ワイヤ2と溶融池3とが短絡してスパッタが発生してしまう。スパッタが発生すると溶融池3の押し下げによる撹拌が行われないのでZn蒸気が排出されず、ブローホールも発生してしまう。一方、距離Dが20mmを超えるとアークが消灯する、いわゆるアーク切れが発生する。アーク切れが発生すると、溶接ワイヤ2が溶融池3と短絡してパルスアーク4が再点弧する時にスパークして溶融池3が吹き飛ばされてスパッタが発生する。さらに、パルスアーク4が消灯している間は溶融池3の押し下げによる撹拌が行われないのでZn蒸気が排出されず、ブローホールが発生する。その上、距離Dが20mmを超えるとアークが広がって電磁力によるピンチ効果が弱くなるので溶滴5が切れにくくなり、その結果、溶滴5が粗大化して浮遊し大粒のスパッタも発生してしまう。   In the arc welding method of the hot-dip Zn-plated steel sheet of the present embodiment, the distance D from the wire tip 2a to the corner 7a is preferably in the range of 2 to 20 mm. When the distance D is less than 2 mm, the welding wire 2 and the molten pool 3 are short-circuited and spatter occurs. When spatter is generated, stirring by depressing the molten pool 3 is not performed, so that Zn vapor is not discharged and blow holes are generated. On the other hand, when the distance D exceeds 20 mm, the arc is extinguished, so-called arc breakage occurs. When the arc break occurs, when the welding wire 2 is short-circuited to the molten pool 3 and the pulse arc 4 is re-ignited, the spark is blown off and the molten pool 3 is blown off to generate spatter. Further, while the pulse arc 4 is extinguished, stirring by pushing down the molten pool 3 is not performed, so that Zn vapor is not discharged and blow holes are generated. In addition, when the distance D exceeds 20 mm, the arc spreads and the pinch effect due to the electromagnetic force is weakened, so that the droplet 5 is difficult to break. End up.

ここで、ワイヤ先端部2aの金属は、溶融Zn系めっき鋼板をパルスアーク溶接している間において、溶融池3へと移行するため、溶接ワイヤ2の先端は、徐々に溶接ワイヤ2への電圧供給側へと後退していくことになる。上記距離Dは、種々の溶接条件に応じて変化し得るため、一義的に求まるものではなく、溶接ワイヤ2の供給速度、後述するピーク電流IPおよび周期PFQを適宜調節して2〜20mmの範囲内に調整される。   Here, since the metal of the wire tip 2a moves to the molten pool 3 during pulse arc welding of the molten Zn-based plated steel sheet, the tip of the welding wire 2 gradually increases the voltage to the welding wire 2. It will go back to the supply side. Since the distance D can vary depending on various welding conditions, it is not uniquely determined. The range D is in the range of 2 to 20 mm by appropriately adjusting the supply speed of the welding wire 2, the peak current IP and the period PFQ described later. Adjusted in.

このように、ワイヤ先端部2aから隅部7aまでの距離Dを、2〜20mmの範囲とすることにより、溶融Zn系めっき鋼板が厚目付であっても、スパッタおよびブローホールの発生を効果的に抑制して、溶接部外観と溶接強度に優れた溶融Zn系めっき鋼板のアーク溶接方法とすることができる。   Thus, by setting the distance D from the wire tip 2a to the corner 7a to be in the range of 2 to 20 mm, spatter and blowholes are effectively generated even when the hot-dip Zn-based plated steel sheet is thick. Therefore, it is possible to provide an arc welding method for a hot-dip Zn-based plated steel sheet having excellent weld appearance and weld strength.

次に、本実施の形態の溶融Zn系めっき鋼板のアーク溶接方法において用いられる各種の条件の、好ましい具体例について説明する。   Next, preferable specific examples of various conditions used in the arc welding method of the hot-dip Zn-based plated steel sheet according to the present embodiment will be described.

〔ピーク電流〕
パルスアークを発生させるためのピーク電流IPを、350〜650Aの範囲とすることが好ましい。例えば、溶接ワイヤ2の供給速度が15m/min以上の場合に、ピーク電流IPが350Aを下回ると溶接ワイヤ2が溶融不足となって、溶接ワイヤ2の供給が過剰となり距離Dが2mmを下回る。また、アーク力が弱くなり、溶融池3の押し下げによる撹拌効果が弱くなる。逆にピーク電流IPが650Aを超えると溶接ワイヤ2が溶融過多となって距離Dが20mmを超え、アーク切れや溶滴5の粗大化が発生する。
[Peak current]
The peak current IP for generating the pulse arc is preferably in the range of 350 to 650A. For example, when the supply speed of the welding wire 2 is 15 m / min or more and the peak current IP falls below 350 A, the welding wire 2 becomes insufficiently melted, the supply of the welding wire 2 becomes excessive, and the distance D falls below 2 mm. Moreover, arc force becomes weak and the stirring effect by pushing down of the molten pool 3 becomes weak. On the contrary, when the peak current IP exceeds 650 A, the welding wire 2 is excessively melted, the distance D exceeds 20 mm, and arc breakage or coarsening of the droplet 5 occurs.

〔周期〕
パルスアークにおけるパルスの周期PFQを、1〜20msの範囲とすることが好ましい。周期PFQが短くなるとパルスアーク4で溶融池3を押し下げる回数が増加するのでZn蒸気の排出が促進される。しかし、周期PFQが短くなり過ぎると、溶接ワイヤ2の供給速度が遅い場合(例えば、3m/min以下の場合)に、溶接ワイヤ2が溶融過多となって上記距離Dが20mmを超え、アーク切れや溶滴5の粗大化が発生する。それにより、溶滴移行が不安定になり、スパッタが発生する。一方、周期PFQが長くなり過ぎると溶接ワイヤ2が溶融不足となって上記距離Dが2mmを下回り、溶融池3と短絡してスパッタが発生する。また、パルスアーク4で溶融池3を押し下げる回数が減少するのでZn蒸気が排出されなくなり、スパッタおよびブローホールが発生する。
〔period〕
The pulse period PFQ in the pulse arc is preferably in the range of 1 to 20 ms. When the period PFQ is shortened, the number of times the molten pool 3 is pushed down by the pulse arc 4 increases, so that the discharge of Zn vapor is promoted. However, if the period PFQ becomes too short, when the supply speed of the welding wire 2 is slow (for example, 3 m / min or less), the welding wire 2 becomes excessively melted and the distance D exceeds 20 mm, and the arc breaks. And the droplets 5 become coarse. As a result, droplet transfer becomes unstable and spatter occurs. On the other hand, if the period PFQ becomes too long, the welding wire 2 is insufficiently melted, the distance D is less than 2 mm, and the short circuit with the molten pool 3 is caused to generate spatter. Further, since the number of times the molten pool 3 is pushed down by the pulse arc 4 is reduced, Zn vapor is not discharged, and spatter and blow holes are generated.

〔シールドガス〕
パルスマグ溶接法では、溶滴をスプレー移行させるためにAr−CO混合ガスが、シールドガスとして用いられる。このシールドガスは、溶接中のアークや溶融池の周辺を大気からシールドするためのものでもある。本実施の形態でもシールドガスは、Ar−CO混合ガスを用いる。Ar−CO混合ガスとしては、Ar−30体積%COガス、Ar−20体積%COガス、Ar−10体積%COガス、または、さらにCO濃度を下げたAr−5体積%COガスを用いてもよい。
〔Shielding gas〕
In the pulse mag welding method, an Ar—CO 2 mixed gas is used as a shielding gas in order to cause the droplets to be sprayed. This shielding gas is also used to shield the periphery of the arc being welded and the molten pool from the atmosphere. Also in this embodiment, Ar—CO 2 mixed gas is used as the shielding gas. As Ar—CO 2 mixed gas, Ar-30 vol% CO 2 gas, Ar-20 vol% CO 2 gas, Ar-10 vol% CO 2 gas, or Ar-5 vol% with further reduced CO 2 concentration CO 2 gas may be used.

また、本実施の形態においてパルスミグ溶接法を用いる場合、上記シールドガスはアルゴンガスまたはアルゴン−ヘリウム混合ガスである。   Further, when the pulse MIG welding method is used in the present embodiment, the shielding gas is an argon gas or an argon-helium mixed gas.

〔継手形状〕
図3の(a)に示した重ね継手による隅肉溶接、および図3の(b)に示したT字継手による隅肉溶接以外に、角継手、十字継手、当て金継手、フレアー継手等のいずれの継手形状にも本発明は適用できる。また、本発明は、突合せ継手、角継手、十字継手およびT字継手による突合せ溶接にも適用できる。
(Fitting shape)
In addition to fillet welding with the lap joint shown in (a) of FIG. 3 and fillet welding with the T-shaped joint shown in (b) of FIG. 3, a corner joint, a cross joint, a metal fitting, a flare joint, etc. The present invention can be applied to any joint shape. The present invention can also be applied to butt welding using a butt joint, a corner joint, a cross joint, and a T-shaped joint.

〔溶融Zn系めっき鋼板〕
本実施の形態において溶接の対象となる溶融Zn系めっき鋼板は、溶融Znめっき鋼板、合金化溶融Znめっき鋼板、溶融Zn−Alめっき鋼板、溶融Zn−Al−Mgめっき鋼板等の、めっき層がZnを主成分とする溶融めっき鋼板が好ましい。
[Hot Zn-plated steel sheet]
In the present embodiment, the hot-dip Zn-plated steel sheet to be welded has a plated layer such as a hot-dip Zn-plated steel sheet, an alloyed hot-dip Zn-plated steel sheet, a hot-dip Zn-Al-plated steel sheet, and a hot-dip Zn-Al-Mg-plated steel sheet. A hot-dip galvanized steel sheet mainly composed of Zn is preferred.

溶融Zn系めっき鋼板のなかでも溶融Zn−Al−Mgめっき鋼板は、Al:1.0〜22.0質量%、Mg:0.05〜10.0質量%を含有し、耐食性に優れるので好適である。溶融Zn−Al−Mgめっき鋼板のめっき層は、めっき層外観と耐食性を低下させる原因となるZn11Mg系相の生成および成長を抑制するためにTi:0.002〜0.1質量%、B:0.001〜0.05質量%を添加してもよい。また、めっき原板表面とめっき層との界面に生成するFe−Al合金層の過剰な成長を抑制して加工時のめっき層の密着性を向上させるためにSiを2.0質量%まで添加してもよい。 Among the hot-dip Zn-based plated steel sheets, the hot-dip Zn-Al-Mg plated steel sheets contain Al: 1.0 to 22.0 mass%, Mg: 0.05 to 10.0 mass%, and are excellent in corrosion resistance. It is. The plating layer of the hot-dip Zn—Al—Mg plated steel sheet is Ti: 0.002 to 0.1% by mass in order to suppress the formation and growth of a Zn 11 Mg 2 phase that causes the appearance and corrosion resistance of the plating layer to deteriorate. , B: You may add 0.001-0.05 mass%. In addition, Si is added up to 2.0% by mass in order to suppress excessive growth of the Fe-Al alloy layer formed at the interface between the plating plate surface and the plating layer and improve the adhesion of the plating layer during processing. May be.

〔めっき付着量〕
溶融Zn系めっき鋼板のめっき付着量が少ないと、めっき面の耐食性および犠牲防食作用を長期にわたって維持するうえで不利となる。種々検討の結果、片面当たりのめっき付着量は15g/m以上とすることがより効果的である。一方、片面当たりのめっき付着量が250g/mを超えるとZn蒸気の発生量が多くなり過ぎ、本実施の形態の溶融Zn系めっき鋼板のアーク溶接方法を用いてもスパッタおよびブローホールの発生を抑制することが困難になるので、片面当たりのめっき付着量が250g/m以下とすることが好ましい。
[Amount of plating]
When the coating amount of the hot-dip Zn-based plated steel sheet is small, it is disadvantageous for maintaining the corrosion resistance and sacrificial anticorrosive action of the plated surface over a long period of time. As a result of various studies, it is more effective to set the amount of plating deposited on one surface to 15 g / m 2 or more. On the other hand, if the coating adhesion amount per side exceeds 250 g / m 2 , the amount of Zn vapor generated becomes too large, and spatter and blow holes are generated even when the arc welding method of the hot-dip Zn-based plated steel sheet of this embodiment is used. Therefore, it is preferable that the plating adhesion amount per side is 250 g / m 2 or less.

〔溶接ワイヤ〕
溶接ワイヤ2は、JIS Z3312 YGW11、またはJIS Z3312 YGW12を用いることが好ましい。これら以外に、JIS Z3312に規定された各種ソリッドワイヤを用いてもよく、他の種類のものでもよい。例えば、メッキレスワイヤ、フラックス入りワイヤ、スラグ系ワイヤ、等を用いてもよい。
(Welding wire)
As the welding wire 2, it is preferable to use JIS Z3312 YGW11 or JIS Z3312 YGW12. In addition to these, various solid wires defined in JIS Z3312 may be used, and other types may be used. For example, a platingless wire, a flux-cored wire, a slag wire, or the like may be used.

溶接ワイヤ2のワイヤ径は、例えば直径1.2mmのものを用いることができ、直径0.8〜1.6mmの範囲のものであってもよい。   The wire diameter of the welding wire 2 can use the diameter of 1.2 mm, for example, and may be the diameter of 0.8-1.6 mm.

本実施の形態では、溶接ワイヤ2の供給速度を3m/min以上15m/min以下の範囲とする。これにより、溶接ワイヤ2が溶融不足となること、および、溶接ワイヤ2が溶融過多となることを抑制することができる。尚、上記した溶接ワイヤ2の供給速度は、平均溶接電流の設定値に応じて設定されてよい。   In the present embodiment, the supply speed of the welding wire 2 is set in the range of 3 m / min to 15 m / min. Thereby, it is possible to suppress the welding wire 2 from being insufficiently melted and the welding wire 2 from being excessively melted. The supply speed of the welding wire 2 described above may be set according to the set value of the average welding current.

〔溶接速度〕
溶接速度は、例えば0.4m/minとすることができ、0.1〜2.0m/minの範囲で、各種の溶接条件に応じて設定すればよい。
[Welding speed]
The welding speed can be set to 0.4 m / min, for example, and may be set in the range of 0.1 to 2.0 m / min according to various welding conditions.

〔ブローホール占有率、スパッタ付着個数〕
本実施の形態の溶融Zn系めっき鋼板のアーク溶接方法によれば、スパッタおよびブローホールの発生を抑制して溶融Zn系めっき鋼板同士の溶接を行うことができ、該溶接されてなる溶接部材を提供することができる。該溶接部材の評価(ブローホール占有率、スパッタ付着個数)について、図4および図5に基づいて説明する。
[Blow hole occupancy, number of spatters attached]
According to the arc welding method of the hot-dip Zn-plated steel sheet of the present embodiment, welding of hot-dip Zn-plated steel sheets can be performed while suppressing the occurrence of spatter and blowholes. Can be provided. Evaluation of the welded member (blow hole occupancy, number of spatter deposits) will be described with reference to FIGS.

図4は、溶融Zn系めっき鋼板同士が溶接されてなる溶接部材10におけるブローホール占有率の測定方法を説明する平面図である。図4に示すように、溶融Zn系めっき鋼板1と溶融Zn系めっき鋼板1’とが溶接されてなる溶接部材10には溶接ビード6が形成されており、該溶接ビード6はブローホール6aを有していることが多い。また、溶接ビード6の長手方向(溶接線方向)の長さを長さLとし、溶接ビード6の一端部からi番目のブローホールの長さをdiとする。ここで、例えば継手形状がT字継手の場合、図4に示す溶融Zn系めっき鋼板1と溶融Zn系めっき鋼板1’とは3次元的には垂直に溶接されている。   FIG. 4 is a plan view for explaining a method for measuring the blowhole occupancy rate in the welded member 10 formed by welding the molten Zn-based plated steel plates. As shown in FIG. 4, a weld bead 6 is formed on a welded member 10 formed by welding a hot-dip Zn-based plated steel plate 1 and a hot-dip Zn-based plated steel plate 1 ′, and the weld bead 6 has a blow hole 6a. Many have. Further, the length in the longitudinal direction (weld line direction) of the weld bead 6 is defined as a length L, and the length of the i-th blow hole from one end of the weld bead 6 is defined as di. Here, for example, when the joint shape is a T-shaped joint, the molten Zn-based plated steel sheet 1 and the molten Zn-based plated steel sheet 1 ′ shown in FIG. 4 are three-dimensionally welded vertically.

建築用薄板溶接接合部設計・施工マニュアル(建築用薄板溶接接合部設計・施工マニュアル編集委員会)によれば、図4に模式的に示す各ブローホール6aの長さdiの積算値、すなわち溶接ビード6に形成された全てのブローホール6aの長さを測定して積算した積算値Σdi(mm)の測定値から下記(1)式により算出されるブローホール占有率Brが30%以下であれば溶接強度に問題ないとされている。本発明における溶接部材10は、ブローホール占有率Brが30%以下であり、溶接強度に優れる。   According to the architectural thin plate welded joint design and construction manual (architecture thin plate welded joint design and construction manual editing committee), the integrated value of the length di of each blowhole 6a schematically shown in FIG. If the blowhole occupancy Br calculated by the following equation (1) from the measured value of the integrated value Σdi (mm) obtained by measuring and integrating the lengths of all the blowholes 6a formed in the bead 6 is 30% or less It is said that there is no problem in welding strength. The welded member 10 in the present invention has a blowhole occupation ratio Br of 30% or less, and is excellent in welding strength.

Br=(Σdi/L)×100 ・・・(1)
ここで、
di:溶接ビードにおいて観察されたi番目のブローホールの長さ
L:溶接ビードの長さ
である。
Br = (Σdi / L) × 100 (1)
here,
di: length of the i-th blow hole observed in the weld bead L: length of the weld bead.

図5は、溶融Zn系めっき鋼板同士が溶接されてなる溶接部材10におけるスパッタ付着個数の測定方法を説明する平面図である。図5の点線で示す、溶接ビード6を中心とした縦100mm、横100mmの領域8のスパッタ付着個数が20個以下であればスパッタが目立たず、耐食性への影響も小さい。ここで、領域8の中心は、溶接ビード6の中央とすればよく、縦100mmとは、溶接ビード6から一方(溶融Zn系めっき鋼板1)の側に50mm、他方(溶融Zn系めっき鋼板1’)の側に50mmを意味する。このとき、例えば溶接部材10の継手形状がT字継手の場合、領域8の縦100mmは、溶接ビード6を中心として直角方向にそれぞれ50mmとすればよい。また、横100mmとは、溶接ビード6の長手方向と同じ方向における、領域8の横幅を意味する。   FIG. 5 is a plan view for explaining a method of measuring the number of spatter deposits on the welded member 10 formed by welding the molten Zn-based plated steel plates. If the number of sputter deposits in the region 8 having a length of 100 mm and a width of 100 mm centered on the weld bead 6 indicated by the dotted line in FIG. Here, the center of the region 8 may be the center of the weld bead 6, and the length of 100 mm is 50 mm from the weld bead 6 to one (hot Zn-plated steel sheet 1) and the other (hot Zn-plated steel sheet 1). ') Means 50mm on the side. At this time, for example, when the joint shape of the welding member 10 is a T-shaped joint, the length 100 mm of the region 8 may be 50 mm in the perpendicular direction with the weld bead 6 as the center. Further, the width of 100 mm means the width of the region 8 in the same direction as the longitudinal direction of the weld bead 6.

本発明における溶接部材10は、領域8のスパッタ付着個数が20個以下であり、溶接外観と耐食性に優れる。   The welding member 10 according to the present invention has 20 or less spatter deposits in the region 8 and is excellent in weld appearance and corrosion resistance.

表1に示す4種類の溶融Zn系めっき鋼板を用いて、重ね隅肉溶接継手を構成してパルスアーク溶接を行った。溶接ワイヤ2は直径1.2mmのJIS Z3312 YGW12を用い、溶接速度0.4m/min、ビード長さ180mm、重ね代30mmとした。   Using four types of hot-dip Zn-based plated steel sheets shown in Table 1, lap fillet welded joints were constructed and pulse arc welding was performed. The welding wire 2 used was JIS Z3312 YGW12 having a diameter of 1.2 mm, a welding speed of 0.4 m / min, a bead length of 180 mm, and an overlap margin of 30 mm.

Figure 2017225982
Figure 2017225982

また、溶接中に、溶接ワイヤ2の先端と、溶接前の溶融Zn系めっき鋼板同士の当接部7における溶接ワイヤ2側の隅部7aとを含む部分の溶接状態を下記に示す条件でハイスピードカメラ撮影することにより、溶接ワイヤ2の先端から隅部7aまでの距離Dを測定した。パルスアーク溶接後、前述の方法でスパッタ付着個数およびブローホール占有率Brを測定した。   Further, during welding, the welding state of the portion including the tip of the welding wire 2 and the corner 7a on the welding wire 2 side in the contact portion 7 between the hot-dip Zn-based plated steel sheets before welding is high under the conditions shown below. The distance D from the tip of the welding wire 2 to the corner 7a was measured by taking a picture with a speed camera. After pulsed arc welding, the number of sputtered deposits and blowhole occupancy Br were measured by the methods described above.

〔ハイスピードカメラ撮影条件〕
ハイスピードカメラ:(株)ノビテック社製M310
可視化用レーザ光源:Cavitra社製CAVLUX HF
パルス波長:810nm
撮影コマ数:4000コマ/秒。
[High-speed camera shooting conditions]
High-speed camera: M310 manufactured by Novitec Corporation
Laser light source for visualization: CAVLUX HF manufactured by Cavitra
Pulse wavelength: 810 nm
Number of frames: 4000 frames / second.

表2および表3に、溶融Zn系めっき鋼板の種類、パルスアーク溶接条件、溶接ワイヤ2の先端から隅部7aまでの距離D、そして、スパッタ付着個数、ブローホール占有率Brの測定結果を示す。   Tables 2 and 3 show the types of hot-dip Zn-based plated steel sheets, pulse arc welding conditions, distance D from the tip of welding wire 2 to corner 7a, the number of sputter deposits, and the measurement results of blowhole occupancy Br. .

表2は、溶融Zn系めっき鋼板として溶融Zn−6%Al−3%Mgめっき鋼板を用い、シールドガスの種類、ピーク電流IP、周期PFQ、溶接ワイヤ2の先端から隅部7aまでの距離Dを変化させてスパッタ付着個数、ブローホール占有率Brを調査した結果である。   Table 2 uses a molten Zn-6% Al-3% Mg plated steel sheet as the molten Zn-based plated steel sheet, the type of shield gas, the peak current IP, the period PFQ, and the distance D from the tip of the welding wire 2 to the corner 7a. This is the result of investigating the number of sputtered deposits and the blow hole occupation ratio Br by changing.

Figure 2017225982
Figure 2017225982

距離D、ピーク電流IP、周期PFQが本発明の範囲内であるNo.1〜20の実施例はスパッタ付着個数が20個未満、ブローホール占有率が30%未満で、本実施例から本発明によりスパッタ、ブローホールが抑制されて溶接部外観と溶接強度に優れたアーク溶接部材が得られることがわかる。   No. in which the distance D, the peak current IP, and the period PFQ are within the scope of the present invention. Examples 1 to 20 have less than 20 spatter deposits and less than 30% blowhole occupancy. From this example, spatter and blowholes are suppressed according to the present invention, and the arc has excellent weld appearance and weld strength. It can be seen that a welded member is obtained.

一方、距離D、ピーク電流IP、周期PFQが本発明の条件範囲外であるNo.21〜26の比較例ではスパッタ、ブローホールの発生が著しく、溶接部外観と溶接強度に優れたアーク溶接部材が得られない。   On the other hand, the distance D, peak current IP, and period PFQ are out of the condition range of the present invention. In the comparative examples 21 to 26, spatter and blowhole are remarkably generated, and an arc welded member excellent in the appearance and weld strength of the weld cannot be obtained.

表3は、種々のめっき組成と付着量を有する溶融Zn系めっき鋼板の種類を用いて、種々のパルスアーク溶接条件、距離Dにおいて溶接を行い、スパッタ付着個数、ブローホール占有率Brを調査した結果である。   Table 3 shows the number of sputtered deposits and blowhole occupancy Br by performing welding under various pulse arc welding conditions and distances D using types of hot-dip Zn-plated steel sheets having various plating compositions and adhesion amounts. It is a result.

Figure 2017225982
Figure 2017225982

No.27〜39に示すように、溶接ワイヤ2の先端から隅部7aまでの距離D、ピーク電流IP、周期PFQ、めっき付着量が本発明の範囲内の実施例では、いずれの溶融Zn系めっき鋼板による溶接部材においても、スパッタ、ブローホールが抑制されている。特に、No.35〜38ではめっき付着量が15g/mの薄目付から250g/mの厚目付までスパッタおよびブローホールの発生が抑えられており、溶接部外観と溶接強度に優れた溶融Zn系めっき鋼鈑アーク溶接部材が得られることがわかる。 No. As shown to 27-39, in the Example in which the distance D from the front-end | tip of the welding wire 2 to the corner part 7a, the peak current IP, the period PFQ, and the coating adhesion amount are in the scope of the present invention, any hot-dip Zn-based plated steel sheet Sputtering and blowholes are also suppressed in the welded member. In particular, no. Coating weight in 35 to 38 has spattering and blowholes is suppressed from with diluted in 15 g / m 2 to a thickness basis weight of 250 g / m 2, dip Zn-base plated steel excellent in weld strength and weld appearance It can be seen that an arc welding member is obtained.

それに対して、表3のNo.40〜48の比較例ではめっき付着量が本発明の上限である250g/mを超えており、溶接ワイヤ2の先端から隅部7aまでの距離D、ピーク電流IP、周期PFQが本発明の範囲内であってもZn蒸気の発生が著しいためスパッタおよびブローホールの発生が抑制できず、溶接部外観と溶接強度に優れた溶融Zn系めっき鋼鈑アーク溶接部材が得られていない。 On the other hand, no. In the comparative examples of 40 to 48, the plating adhesion amount exceeds 250 g / m 2 which is the upper limit of the present invention, and the distance D from the tip of the welding wire 2 to the corner portion 7a, the peak current IP, and the period PFQ are of the present invention. Even within the range, the generation of Zn vapor is remarkable, so that the generation of spatter and blowholes cannot be suppressed, and a hot-dip Zn-based plated steel-iron-welded member excellent in weld appearance and weld strength has not been obtained.

1・1’ 溶融Zn系めっき鋼板
2 溶接ワイヤ
2a ワイヤ先端部(溶接ワイヤの先端)
3 溶融池
4 パルスアーク
5 溶滴
6 溶接ビード
7 当接部
7a 隅部(溶接対象部)
8 領域(スパッタ個数を数える領域)
10 溶接部材
1.1 'Hot-dip Zn-based plated steel plate 2 Welding wire 2a Wire tip (tip of welding wire)
3 weld pool 4 pulse arc 5 droplet 6 weld bead 7 abutting part 7a corner (weld part)
8 areas (area where the number of spatters is counted)
10 Welded parts

Claims (8)

ピーク電流とベース電流とを交互に供給することによってアークを発生させるパルスアーク溶接法により溶融Zn系めっき鋼板同士を溶接するアーク溶接方法であって、
溶接ワイヤの先端から、溶接対象である溶融Zn系めっき鋼板同士の当接部における溶接対象部までの距離が、前記溶接ワイヤと前記当接部に生じた溶融池とが互いに短絡しない長さであり、かつアークが消灯しない長さにて溶接することを特徴とする溶融Zn系めっき鋼板のアーク溶接方法。
An arc welding method for welding molten Zn-based plated steel sheets by a pulsed arc welding method in which an arc is generated by alternately supplying a peak current and a base current,
The distance from the tip of the welding wire to the welding target portion at the contact portion between the molten Zn-based plated steel sheets to be welded is such that the welding wire and the molten pool generated at the contact portion do not short-circuit each other. An arc welding method for a hot-dip Zn-based plated steel sheet, characterized by welding with a length that does not extinguish the arc.
前記距離が、2mm以上20mm以下であることを特徴とする請求項1に記載の溶融Zn系めっき鋼板のアーク溶接方法。   The said distance is 2 mm or more and 20 mm or less, The arc welding method of the hot-dip Zn type plated steel plate of Claim 1 characterized by the above-mentioned. 前記ピーク電流が350A以上650A以下であり、パルスの周期が1ms以上20ms以下であることを特徴とする請求項1または2に記載の溶融Zn系めっき鋼板のアーク溶接方法。   The arc welding method for hot-dip Zn-based plated steel sheets according to claim 1 or 2, wherein the peak current is 350 A or more and 650 A or less, and the cycle of the pulse is 1 ms or more and 20 ms or less. 前記溶融Zn系めっき鋼板のめっき層は、Znを主成分とし、1.0質量%以上22.0質量%以下のAlを含有することを特徴とする請求項1〜3のいずれか1項に記載の溶融Zn系めっき鋼板のアーク溶接方法。   The plated layer of the hot-dip Zn-based plated steel sheet contains Zn as a main component and contains 1.0% by mass or more and 22.0% by mass or less of Al. An arc welding method for the hot-dip Zn-based plated steel sheet. 前記溶融Zn系めっき鋼板のめっき層は、0.05質量%以上10.0質量%以下のMgを含有することを特徴とする請求項4に記載の溶融Zn系めっき鋼板のアーク溶接方法。   5. The arc welding method for a hot-dip Zn-plated steel sheet according to claim 4, wherein the plated layer of the hot-dip Zn-plated steel sheet contains 0.05% by mass or more and 10.0% by mass or less of Mg. 前記溶融Zn系めっき鋼板のめっき層の組成が、Ti:0.002〜0.1質量%、B:0.001〜0.05質量%、Si:0〜2.0質量%、およびFe:0〜2.5質量%からなる群から選ばれる1つ以上の条件を満たしていることを特徴とする請求項5に記載の溶融Zn系めっき鋼板のアーク溶接方法。   The composition of the plated layer of the hot-dip Zn-based plated steel sheet is Ti: 0.002 to 0.1 mass%, B: 0.001 to 0.05 mass%, Si: 0 to 2.0 mass%, and Fe: The arc welding method for a hot-dip Zn-based plated steel sheet according to claim 5, wherein at least one condition selected from the group consisting of 0 to 2.5 mass% is satisfied. 下記(1)式で示されるブローホール占有率Brが30%以下となり、かつ溶接ビードを中心とした縦100mm、横100mmの領域のスパッタ付着個数が20個以下となるようにアーク溶接することを特徴とする請求項1〜6のいずれか1項に記載の溶融Zn系めっき鋼板のアーク溶接方法。
Br=(Σdi/L)×100 ・・・(1)
(ここで、
di:前記溶接ビードにおいて観察されたi番目のブローホールの長さ
L:溶接ビードの長さ)
Arc welding is performed so that the blow hole occupancy Br represented by the following formula (1) is 30% or less, and the number of sputter deposits in the region of 100 mm in length and 100 mm in width with the weld bead as the center is 20 or less. The arc welding method for hot-dip Zn-plated steel sheets according to any one of claims 1 to 6.
Br = (Σdi / L) × 100 (1)
(here,
di: length of the i-th blow hole observed in the weld bead L: length of the weld bead)
溶融Zn系めっき鋼板同士がパルスアーク溶接法により溶接された溶接部材の製造方法であって、
前記溶融Zn系めっき鋼板の片面あたりのめっき付着量が15g/m以上250g/m以下であり、
溶接ワイヤの先端から、溶接対象である溶融Zn系めっき鋼板同士の当接部における溶接対象部までの距離が2mm以上20mm以下であり、パルスアークを発生させる溶接電流のピーク電流が350A以上650A以下であり、パルスの周期が1ms以上20ms以下であるパルスアーク溶接によって前記溶融Zn系めっき鋼板同士を溶接することを特徴とする溶接部材の製造方法。
A method for producing a welded member in which hot-dip Zn-based plated steel sheets are welded together by a pulse arc welding method,
The plating adhesion amount per side of the hot-dip Zn-based plated steel sheet is 15 g / m 2 or more and 250 g / m 2 or less,
The distance from the tip of the welding wire to the welding target portion at the contact portion between the molten Zn-based plated steel sheets to be welded is 2 mm or more and 20 mm or less, and the peak current of the welding current that generates the pulse arc is 350 A or more and 650 A or less. A method for producing a welded member, comprising welding the hot-dip Zn-based plated steel sheets by pulse arc welding with a pulse period of 1 ms to 20 ms.
JP2016121728A 2016-06-20 2016-06-20 Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member Active JP6487877B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016121728A JP6487877B2 (en) 2016-06-20 2016-06-20 Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member
PCT/JP2017/008398 WO2017221470A1 (en) 2016-06-20 2017-03-03 Arc welding method for hot-dip galvanized steel sheet and method for manufacturing welded member
TW106111962A TW201800171A (en) 2016-06-20 2017-04-11 ARC welding method of steel sheet with molten zinc based plating and method for producing welding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121728A JP6487877B2 (en) 2016-06-20 2016-06-20 Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member

Publications (2)

Publication Number Publication Date
JP2017225982A true JP2017225982A (en) 2017-12-28
JP6487877B2 JP6487877B2 (en) 2019-03-20

Family

ID=60783506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121728A Active JP6487877B2 (en) 2016-06-20 2016-06-20 Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member

Country Status (3)

Country Link
JP (1) JP6487877B2 (en)
TW (1) TW201800171A (en)
WO (1) WO2017221470A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547186B (en) * 2020-04-23 2022-05-27 上海微电子装备(集团)股份有限公司 Arc fuse wire additive manufacturing device and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206984A (en) * 1996-01-31 1997-08-12 Nippon Steel Weld Prod & Eng Co Ltd Gas shield arc welding for thin sheet
JP2013184216A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Solid wire and gas shielded arc welding method using the same
JP2014133259A (en) * 2013-01-11 2014-07-24 Nisshin Steel Co Ltd Manufacturing method of arc welding structural member
WO2015198627A1 (en) * 2014-06-27 2015-12-30 日新製鋼株式会社 METHOD FOR ARC WELDING OF HOT-DIP Zn-Al-Mg COATED STEEL SHEET, AND WELDED MEMBER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206984A (en) * 1996-01-31 1997-08-12 Nippon Steel Weld Prod & Eng Co Ltd Gas shield arc welding for thin sheet
JP2013184216A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Solid wire and gas shielded arc welding method using the same
JP2014133259A (en) * 2013-01-11 2014-07-24 Nisshin Steel Co Ltd Manufacturing method of arc welding structural member
WO2015198627A1 (en) * 2014-06-27 2015-12-30 日新製鋼株式会社 METHOD FOR ARC WELDING OF HOT-DIP Zn-Al-Mg COATED STEEL SHEET, AND WELDED MEMBER

Also Published As

Publication number Publication date
TW201800171A (en) 2018-01-01
JP6487877B2 (en) 2019-03-20
WO2017221470A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6385411B2 (en) Welded member and manufacturing method thereof
CN105382383B (en) Multielectrode gas-shielded arc welding method
CN106488825A (en) Vertical narrow groove gas-shielded arc welding method
JP6285062B1 (en) Arc welding method of hot-dip Zn-based plated steel sheet and method of manufacturing welded member
US20220402078A1 (en) Mig welding method
JP2002239725A (en) Gas-shielded arc welding for steel sheet
JP2019089099A (en) Composite welding method of zinc-based plated steel sheet
KR100343750B1 (en) Pit and blow hole resistant flux-cored wire electrode for gas-shielded arc-welding of galvanized steel sheet
JP5222014B2 (en) Manufacturing method of MIG welded joint of steel and aluminum
JP6487877B2 (en) Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member
JP3802642B2 (en) Arc welding method for galvanized steel sheet
JP6904162B2 (en) Arc welding method for hot-dip Zn-based plated steel sheets and manufacturing method for welded members
US20180354049A1 (en) Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
JP4953561B2 (en) Flux-cored wire for multi-electrode gas shielded arc welding
JP5173558B2 (en) Manufacturing method of MIG welded joint of steel and aluminum
JP2016168612A (en) ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH
JP7435932B1 (en) Gas shielded arc welding method and welded joint manufacturing method
JP7364088B2 (en) Arc welding joints and arc welding methods
JP7435931B1 (en) Gas shielded arc welding method and welded joint manufacturing method
WO2024095613A1 (en) Gas-shielded arc welding method and method for welded-joint production
JP7364089B2 (en) Arc welding joints and arc welding methods
WO2024095614A1 (en) Lap fillet arc welding method, and method for producing welding joint
JP3583561B2 (en) Horizontal electrogas welding method
JP5600619B2 (en) Dissimilar material joining method
JP2749968B2 (en) High current density welding method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190222

R150 Certificate of patent or registration of utility model

Ref document number: 6487877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350