JP2016168612A - ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH - Google Patents

ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH Download PDF

Info

Publication number
JP2016168612A
JP2016168612A JP2015050349A JP2015050349A JP2016168612A JP 2016168612 A JP2016168612 A JP 2016168612A JP 2015050349 A JP2015050349 A JP 2015050349A JP 2015050349 A JP2015050349 A JP 2015050349A JP 2016168612 A JP2016168612 A JP 2016168612A
Authority
JP
Japan
Prior art keywords
welding
plated steel
hot
arc welding
dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015050349A
Other languages
Japanese (ja)
Inventor
和昭 細見
Kazuaki Hosomi
和昭 細見
延時 智和
Tomokazu Nobutoki
智和 延時
仲子 武文
Takefumi Nakako
武文 仲子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2015050349A priority Critical patent/JP2016168612A/en
Publication of JP2016168612A publication Critical patent/JP2016168612A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arc welding method and a welding member for a molten Zn-Al-Mg based plated steel plate excellent in weld zone appearance and welding strength.SOLUTION: An arc welding method for a molten Zn based plated steel enables arc welding so that a solid wire diameter Wd and the maximum diameter Dd of a droplet before transit to a molten pool may satisfy the relation of the following (1) expression, the solid wire diameter Wd being 0.8-1.6 mm, and the count of sputter pieces in a region with a length of 100 mm and a width of 100 mm centered around a welding bead may be 20 or less with a blow hole occupancy Br of 30% or less. 0.8Wd≤Dd≤3Wd...(1), where Dd is the maximum diameter (mmm) of a droplet before transit to a molten pool, and Wd is the diameter (mm) of a solid wire.SELECTED DRAWING: None

Description

本発明は、スパッタとブローホールの発生量が少なく溶接部外観と溶接強度に優れた溶融Zn系めっき鋼板のアーク溶接方法と溶接部材に関する。   The present invention relates to an arc welding method and a welded member for a hot-dip Zn-based plated steel sheet that generates less spatter and blowholes and has an excellent weld appearance and weld strength.

溶融Zn系めっき鋼板は耐食性が良好であるため建築部材や自動車部材をはじめとする広範な用途に使用されている。なかでも溶融Zn−Al−Mg系めっき鋼板は長期間にわたり優れた耐食性を維持することから、従来の溶融Znめっき鋼板に代わる材料として需要が増加している。   Since the hot-dip Zn-based plated steel sheet has good corrosion resistance, it is used in a wide range of applications including building members and automobile members. Among them, the hot-dip Zn—Al—Mg-based steel sheet maintains excellent corrosion resistance for a long period of time, and therefore, the demand is increasing as a material to replace the conventional hot-dip Zn-plated steel sheet.

溶融Zn系めっき鋼板を建築部材、自動車部材等に用いる場合、アーク溶接法で組み立てられることが多い。しかし、溶融Zn系めっき鋼板をアーク溶接するとスパッタおよびピット、ブローホール(以下、特に記述しない限りブローホールはピットを含める)の発生が著しく、アーク溶接性に劣る。これは、Feの融点約1538℃に比べてZnの沸点が約906℃と低いため、アーク溶接時にZn蒸気が発生し、このZn蒸気によりアークが不安定になり、スパッタが発生する。スパッタがめっき面に付着すると溶接部外観が低下するだけでなくその部分が腐食の起点となるので耐食性が低下する。また、Zn蒸気が抜けきらない内に溶融池が凝固するとブローホールが発生する。ブローホールの発生が著しいと溶接強度が低下して問題となる。   When a hot-dip Zn-based plated steel sheet is used for a building member, an automobile member, etc., it is often assembled by an arc welding method. However, when arc welding is performed on a hot-dip Zn-based plated steel sheet, spatter, pits, and blow holes (hereinafter, blow holes include pits unless otherwise specified) are remarkably generated, resulting in poor arc weldability. This is because the boiling point of Zn is as low as about 906 ° C. compared with the melting point of Fe of about 1538 ° C., so that Zn vapor is generated during arc welding, the arc becomes unstable due to this Zn vapor, and spatter is generated. When spatter adheres to the plated surface, not only the appearance of the welded portion is deteriorated, but also that portion becomes a starting point of corrosion, so that the corrosion resistance is lowered. In addition, blowholes are generated when the molten pool solidifies before the Zn vapor can escape. If blowholes are noticeably generated, the welding strength decreases, which causes a problem.

例えば、特許文献1と特許文献2には、亜鉛系めっき鋼板に対してガスシールド溶接により重ねすみ肉溶接を行う場合に、亜鉛の蒸気に起因してピットやブローホールといった溶接欠陥が生じることが開示されている。その解決手段として、特許文献1はめっき被膜の亜鉛含有量を93重量%以上とすることにより、沸点が低下し亜鉛が蒸発しやすくなるので溶融池へ侵入する亜鉛蒸気が減少し、欠陥の発生が少なくなるとしている。特許文献2は、ブローホールの発生を抑えるためには溶融金属中から積極的に亜鉛蒸気を放出させるのが有効であり、そのためには鋼ワイヤにTiおよび/またはNbを添加すること、更にその上でシールドガスに微量のOガスを添加することを開示している。 For example, in Patent Document 1 and Patent Document 2, when lap fillet welding is performed on a zinc-based plated steel sheet by gas shield welding, welding defects such as pits and blow holes may occur due to zinc vapor. It is disclosed. As a solution to this problem, Patent Document 1 discloses that the zinc content of the plating film is 93% by weight or more, so that the boiling point is lowered and the zinc is easily evaporated, so that the zinc vapor entering the molten pool is reduced and defects are generated. There are going to be fewer. In Patent Document 2, it is effective to positively release zinc vapor from the molten metal in order to suppress the occurrence of blowholes. For that purpose, Ti and / or Nb is added to the steel wire, and further The above discloses that a small amount of O 2 gas is added to the shielding gas.

特開平5−305445号公報JP-A-5-305445 特開平5−329682号公報JP-A-5-329682

上記のように、溶融Zn系めっき鋼板は耐食性に優れるが、アーク溶接時にスパッタ、ブローホールが発生して溶接部外観と溶接強度が低下する。本発明はこのような現状に鑑み、溶接部外観と溶接強度に優れた溶融Zn系めっき鋼板のアーク溶接方法および溶接部材を提供することを目的とする。 As described above, the hot-dip Zn-based plated steel sheet is excellent in corrosion resistance, but spatter and blow holes are generated during arc welding, and the weld appearance and weld strength are reduced. In view of such a current situation, an object of the present invention is to provide an arc welding method and a welded member for a hot-dip Zn-based plated steel sheet that are excellent in appearance and weld strength of a welded part.

発明者らの詳細な研究の結果、溶融Zn系めっき鋼板のアーク溶接におけるソリッドワイヤー直径、ソリッドワイヤー直径に対する溶滴移行前の溶滴の直径、ブローホール占有率とスパッタ付着個数を適正範囲内に制御することで、溶接部外観を損なうことなくスパッタとブローホールを抑制できるという知見を得て本発明を完成したものである。   As a result of detailed research by the inventors, the solid wire diameter in arc welding of hot-dip Zn-based plated steel sheet, the diameter of the droplet before transfer of the droplet to the solid wire diameter, the blow hole occupation rate and the number of sputter deposits are within the appropriate range. The present invention has been completed by obtaining the knowledge that by controlling it, spatter and blowholes can be suppressed without impairing the appearance of the weld.

すなわち上記課題は、溶融Zn系めっき鋼板をアーク溶接するに際し、ソリッドワイヤー直径Wdが0.8〜1.6mmで、溶融池に移行する前の溶滴の最大直径Ddを下記(1)式の範囲内とし、下記(2)式で示されるブローホール占有率Brが30%以下で、溶接ビードを中心とした縦100mm、横100mmの領域のスパッタ付着個数が20個以下となるようにアーク溶接することにより達成される。
0.8Wd≦Dd≦3Wd・・・(1)
ここで、
Dd:溶融池に移行する前の溶滴の最大直径(mm)
Wd:ソリッドワイヤーの直径(mm)
また、
Br=(Σdi/L)×100 …(2)
Σdi:ブローホール長さの積算値(mm)
L:溶接ビード長さ(mm)
That is, the above problem is that when arc welding a hot-dip Zn-based plated steel sheet, the solid wire diameter Wd is 0.8 to 1.6 mm, and the maximum diameter Dd of the droplet before moving to the molten pool is expressed by the following equation (1). Arc welding so that the blow hole occupancy Br represented by the following formula (2) is 30% or less, and the number of sputter deposits in the region of 100 mm length and 100 mm width centering on the weld bead is 20 or less. Is achieved.
0.8 Wd ≦ Dd ≦ 3 Wd (1)
here,
Dd: Maximum diameter of droplet before moving to molten pool (mm)
Wd: Solid wire diameter (mm)
Also,
Br = (Σdi / L) × 100 (2)
Σdi: Integrated value of blowhole length (mm)
L: Weld bead length (mm)

本発明では、板間ギャップは2mm以下、溶接電圧は15〜35V、溶接電流は80〜350Aが好ましい。 In the present invention, the gap between the plates is preferably 2 mm or less, the welding voltage is 15 to 35 V, and the welding current is preferably 80 to 350 A.

本発明に係る溶融Zn系めっき鋼板は、めっき層の組成がZnを主成分とし、質量%でAl:1.0〜22.0%、Mg:0.05〜10.0%を含有する。   In the hot-dip Zn-based plated steel sheet according to the present invention, the composition of the plating layer is mainly composed of Zn, and contains Al: 1.0 to 22.0% and Mg: 0.05 to 10.0% by mass.

上記、溶融Zn−Al−Mg系めっき鋼板のめっき層は更に質量%でTi:0.002〜0.10%、B:0.001〜0.05%、Si:0〜2.0%、Fe:0〜2.5%からなる群から選ばれる1あるいは2以上を含有することができる。   The above-mentioned coating layer of the hot-dip Zn—Al—Mg-based steel sheet is further in mass%, Ti: 0.002 to 0.10%, B: 0.001 to 0.05%, Si: 0 to 2.0%, Fe: 1 or 2 or more selected from the group consisting of 0 to 2.5% can be contained.

本発明の溶接部材は、下記(2)式で示されるブローホール占有率Brが30%以下で溶接強度に優れる。
Br=(Σdi/L)×100 …(2)
ここで
Σdi:ブローホール長さの積算値(mm)
L:溶接ビード長さ(mm)
The welded member of the present invention is excellent in welding strength when the blowhole occupation ratio Br shown by the following formula (2) is 30% or less.
Br = (Σdi / L) × 100 (2)
Where Σdi: integrated value of blowhole length (mm)
L: Weld bead length (mm)

また、本発明の溶接部材は溶接ビードを中心とした縦100mm、横100mmの領域のスパッタ付着個数が20個以下で溶接部外観と耐食性に優れる。 In addition, the welded member of the present invention is excellent in the appearance and corrosion resistance of the welded portion when the number of sputtered deposits in the region of 100 mm length and 100 mm width centering on the weld bead is 20 or less.

本発明によれば、溶融Zn系めっき鋼板のアーク溶接におけるスパッタとブローホールを抑制でき、溶接部外観と溶接強度および耐食性に優れる溶接部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sputter | spatter and blowhole in arc welding of a hot dip Zn system plating steel plate can be suppressed, and the welding member which is excellent in a welded part external appearance, weld strength, and corrosion resistance can be provided.

重ね隅肉溶接継手のピット、ブローホールを模式図的に示した図Schematic diagram of pits and blowholes in a lap fillet welded joint 本発明の溶滴移行現象を模式図的に示した図The figure which showed the droplet transfer phenomenon of the present invention typically 溶滴が粗大化した場合の溶滴移行時のスパッタ発生現象とブローホール発生現象を模式図的に示した図Schematic illustration of spattering and blowhole generation phenomena during droplet transfer when droplets become coarse Feの粘度におよぼす添加元素の影響を示す図Diagram showing the effect of additive elements on the viscosity of Fe スパッタ付着個数の測定方法とブローホール占有率の定義を説明する図Diagram explaining the number of spatter deposits and the definition of blowhole occupancy

図1に、重ね隅肉溶接継手の溶接部断面構造を模式的に例示する。自動車シャシなどにはアーク溶接によるこの種の溶接継手が多用されている。表面に溶融Zn系めっき層2を有する溶融Zn系めっき鋼板1、1’が重ねられて配置されており、溶融Zn系めっき鋼板1’の表面と溶融Zn系めっき鋼板1の端面に溶接ビード3が形成され、両部材が接合されている。   FIG. 1 schematically illustrates a cross-sectional structure of a welded portion of a lap fillet weld joint. This type of welded joint by arc welding is frequently used for automobile chassis. A molten Zn-based plated steel sheet 1, 1 ′ having a molten Zn-based plated layer 2 is disposed on the surface, and a weld bead 3 is disposed on the surface of the molten Zn-based plated steel sheet 1 ′ and the end surface of the molten Zn-based plated steel sheet 1. Is formed, and both members are joined.

図1(a)はZn蒸気が溶接金属から抜けきらずにピット4が発生した溶接部の断面である。図1(b)はZn蒸気が溶接金属内に閉じ込められてブローホール5が発生した溶接部の断面図である。図1の(a)、(b)ともに板間ギャップを設けない場合の溶接部断面である。板間ギャップを設けないとZn蒸気は溶接金属3の表側しか抜ける経路がないため、ピット、ブローホールが発生しやすくなる。また、溶接金属内に滞留したZn蒸気が一揆に噴出するとアークが不安定になり、スパッタが発生する。図1(c)は板間ギャップ6を設けた場合の溶接部の断面図である。板間ギャップを設けると、Zn蒸気が板間ギャップ6側にも排出されるのでスパッタ、ブローホール抑制効果が大きい。   FIG. 1A is a cross section of a welded portion in which pits 4 are generated without allowing Zn vapor to escape from the weld metal. FIG. 1B is a cross-sectional view of a welded portion where a blow hole 5 is generated by confining Zn vapor in the weld metal. FIG. 1A and FIG. 1B are cross sections of a welded portion when no inter-plate gap is provided. If there is no gap between the plates, there is no route for the Zn vapor to escape only from the front side of the weld metal 3, so that pits and blow holes are likely to occur. Further, when Zn vapor staying in the weld metal is ejected all at once, the arc becomes unstable and spatter is generated. FIG. 1C is a cross-sectional view of the welded portion when the inter-plate gap 6 is provided. When the inter-plate gap is provided, Zn vapor is also discharged to the inter-plate gap 6 side, so that the effect of suppressing spatter and blow holes is great.

しかし、アーク溶接構造部材の形状によっては板間ギャップが設けられない場合や大きくできない場合がある。そこで、本発明ではソリッドワイヤー直径と溶滴移行前の溶滴の最大直径を適正に管理することにより溶滴を溶融池にスムーズに移行させてスパッタ、ブローホールを抑制する。   However, depending on the shape of the arc welded structural member, the gap between the plates may not be provided or may not be increased. Therefore, in the present invention, by appropriately managing the solid wire diameter and the maximum diameter of the droplet before the droplet transfer, the droplet is smoothly transferred to the molten pool to suppress spatter and blowholes.

本発明者らは、ハイスピードカメラを用いて重ね隅肉溶接における溶滴移行現象を詳細に観察し、本発明を完成した。ハイスピードカメラ撮影条件を以下に示す。
〔ハイスピードカメラ撮影条件〕
ハイスピードカメラ:株式会社ノビテック社製M310
可視化用レーザ光源:Cavitra社製CAVLUX HF、パルス波長:810nm
撮影コマ数:4000コマ/秒
供試材:溶融Zn−6質量%−3質量%Mgめっき鋼板
The inventors of the present invention observed the droplet transfer phenomenon in the lap fillet welding in detail using a high speed camera, and completed the present invention. The high-speed camera shooting conditions are shown below.
[High-speed camera shooting conditions]
High-speed camera: M310 manufactured by Novitec Corporation
Laser light source for visualization: CAVLUX HF manufactured by Cavitra, pulse wavelength: 810 nm
Number of frames taken: 4000 frames / second Test material: Molten Zn-6 mass%-3 mass% Mg-plated steel sheet

図2に本発明の条件範囲内でアーク溶接した場合の溶滴移行現象を模式図的に示す。図2(a)はソリッドワイヤー7と溶融池9の間にアーク8が点弧した状態である。アーク8によってソリッドワイヤー7の先端が溶融し、図2(b)に示すように溶滴10が形成される。図2(c)に示すように溶滴10は溶融池9と短絡し、図2(d)に示すように溶融池9に移行する。次に、図2(e)に示すように点弧したアーク8のピンチ効果によって溶滴10はソリッドワイヤー7から分断される。そして、図2(f)に示すように、ソリッドワイヤー7直下の溶融池9はアーク8によって押し下げられ、Zn蒸気の排出が促進される。図2の(a)から(f)が繰り返されて溶接ビードが形成される。   FIG. 2 schematically shows the droplet transfer phenomenon when arc welding is performed within the condition range of the present invention. FIG. 2A shows a state where an arc 8 is ignited between the solid wire 7 and the molten pool 9. The tip of the solid wire 7 is melted by the arc 8, and a droplet 10 is formed as shown in FIG. As shown in FIG. 2 (c), the droplet 10 is short-circuited with the molten pool 9, and moves to the molten pool 9 as shown in FIG. 2 (d). Next, as shown in FIG. 2 (e), the droplet 10 is separated from the solid wire 7 by the pinch effect of the arc 8 that has been ignited. And as shown in FIG.2 (f), the molten pool 9 just under the solid wire 7 is pushed down by the arc 8, and discharge | emission of Zn vapor | steam is accelerated | stimulated. 2A to 2F are repeated to form a weld bead.

図2に示すように、本発明の条件範囲内でアーク溶接するとソリッドワイヤー先端に形成された溶滴がスムーズに溶融池に移行し、さらにアークによる溶融池の押し下げ効果により溶融池からのZn蒸気の排出が促進されてスパッタ、ブローホールが抑制される。   As shown in FIG. 2, when arc welding is performed within the condition range of the present invention, the droplet formed on the tip of the solid wire smoothly moves to the molten pool, and further, the Zn vapor from the molten pool is caused by the effect of pushing down the molten pool by the arc. Discharge is promoted to suppress spatter and blow holes.

図3に本発明の条件範囲外でアーク溶接して溶滴が粗大化した場合の溶滴移行現象を模式図的に示す。図3(a)はアーク8が点弧した状態、図3(b)は溶滴10が形成された状態を示す。図3(c)に示すように溶滴10は溶融池9と短絡して移行するが、溶滴が大きくなり過ぎると図3(d)に示すように溶融池9に移行しきれずに湾曲し、図3(e)、(f)に示すように点弧したアーク8によって溶滴10が吹き飛ばされてスパッタ11が発生する。さらに、スパッタが発生すると図3(f)に示すようにアーク8が消灯して溶融池9が押し下げられないのでZn蒸気が排出されず、ブローホール12が発生する。 FIG. 3 schematically shows the droplet transfer phenomenon when the droplets are coarsened by arc welding outside the condition range of the present invention. 3A shows a state in which the arc 8 has been ignited, and FIG. 3B shows a state in which the droplet 10 has been formed. As shown in FIG. 3 (c), the droplet 10 moves short-circuited with the molten pool 9, but if the droplet becomes too large, it does not move to the molten pool 9 as shown in FIG. 3 (e) and 3 (f), the droplet 10 is blown off by the arc 8 that has been ignited, and the sputter 11 is generated. Further, when sputtering occurs, the arc 8 is extinguished and the molten pool 9 cannot be pushed down as shown in FIG. 3 (f), so that Zn vapor is not discharged and a blow hole 12 is generated.

以下に本発明のアーク溶接条件を詳述する。   The arc welding conditions of the present invention are described in detail below.

〔ソリッドワイヤー直径および溶滴の最大直径〕
本発明ではソリッドワイヤー直径Wdが0.8〜1.6mmで、溶融池に移行する前の溶滴の最大直径Ddを下記(1)式の範囲内とする。
0.8Wd≦Dd≦3Wd・・・(1)
ここで、
Dd:溶融池に移行する前の溶滴の最大直径(mm)
Wd:ソリッドワイヤーの直径(mm)
[Solid wire diameter and maximum diameter of droplets]
In the present invention, the solid wire diameter Wd is 0.8 to 1.6 mm, and the maximum diameter Dd of the droplet before moving to the molten pool is within the range of the following formula (1).
0.8 Wd ≦ Dd ≦ 3 Wd (1)
here,
Dd: Maximum diameter of droplet before moving to molten pool (mm)
Wd: Solid wire diameter (mm)

本発明では、溶滴の最大直径Ddは水平方向、垂直方向にかかわらず溶滴の最も大きい直径とし、溶接始端部から10mmまでおよび溶接終端部から10mmまでの部分を除く任意の部分の溶滴移行現象を10回ハイスピードカメラ撮影して測定した溶滴の最大直径の平均値とする。 In the present invention, the maximum diameter Dd of the droplets is the largest diameter of the droplets regardless of the horizontal direction or the vertical direction, and the droplets in any part except the part from the welding start end part to 10 mm and the welding end part to 10 mm. The transition phenomenon is defined as the average value of the maximum diameter of the droplets measured by photographing with a high speed camera 10 times.

ソリッドワイヤー直径Wdが0.8mm未満、ソリッドワイヤーの直径Wdに対する溶滴の最大直径Ddが上記(1)式の範囲未満であるとアーク力が弱くなり、溶融池の押し下げ効果が得られなくなる。また、溶滴が小さくなり過ぎて単位時間当たりに移行する溶滴量が減少し、溶融池の温度が下がって粘度が高くなるのでZn蒸気が排出されにくくなって溶融池内にZn蒸気が残存してスパッタ、ブローホールが発生する。   When the solid wire diameter Wd is less than 0.8 mm and the maximum diameter Dd of the droplet with respect to the solid wire diameter Wd is less than the range of the above formula (1), the arc force becomes weak and the effect of pushing down the molten pool cannot be obtained. In addition, the amount of droplets transferred per unit time decreases because the droplets become too small, and the viscosity of the molten pool decreases and the viscosity increases, so that it is difficult for Zn vapor to be discharged, and Zn vapor remains in the molten pool. Spatter and blow holes are generated.

ソリッドワイヤー直径Wdが1.6mmを越え、または溶滴の最大直径Ddが上記(1)式の範囲よりも大きくなると溶滴が粗大化してスパッタが発生しやすくなる。また、ソリッドワイヤー直径Wdに対して溶滴の最大直径Ddが大きくなりすぎると溶滴が不安定になり、溶滴が溶融池に移行する前にソリッドワイヤーから離脱して大粒のスパッタとなる。スパッタが発生するとアークが消灯するのでアークによる溶融池の押し下げ効果が小さくなり、Zn蒸気が溶融池から排出されにくくなるのでブローホールが発生する。
溶滴移行を安定してスムーズに行い、スパッタとブローホールを抑制するにはソリッドワイヤー直径Wdと溶滴の最大直径Ddを上記範囲内に管理する必要がある。なお、本発明ではソリッドワイヤーの組成は特に限定されない。鋼材用のJIS Z3312 YGW12等を用いればよい。
When the solid wire diameter Wd exceeds 1.6 mm, or the maximum diameter Dd of the droplet is larger than the range of the above formula (1), the droplet is coarsened and sputtering is likely to occur. In addition, when the maximum diameter Dd of the droplet becomes too large with respect to the solid wire diameter Wd, the droplet becomes unstable, and the droplet drops from the solid wire before moving to the molten pool, resulting in a large spatter. When spatter occurs, the arc is extinguished, so the effect of pushing down the molten pool by the arc becomes small, and Zn vapor is difficult to be discharged from the molten pool, so that blow holes are generated.
In order to perform droplet transfer stably and smoothly and suppress spatter and blowholes, it is necessary to manage the solid wire diameter Wd and the maximum droplet diameter Dd within the above ranges. In the present invention, the composition of the solid wire is not particularly limited. JIS Z3312 YGW12 for steel materials may be used.

〔板間ギャップ、溶接電流、溶接電圧〕
本発明では、板間ギャップは2mm以下、溶接電圧は15〜35V、溶接電流は80〜350Aが好ましい。
[Gap between plates, welding current, welding voltage]
In the present invention, the gap between the plates is preferably 2 mm or less, the welding voltage is 15 to 35 V, and the welding current is preferably 80 to 350 A.

板間ギャップを設けると前述のように溶融池からのZn蒸気の排出が促進されて安定した溶滴移行となりスパッタ、ブローホールが抑制される。しかし、板間ギャップが2mmを越えるとのど厚が薄くなって溶接強度が低下するので2mm以下が好ましい。 When the gap between the plates is provided, the discharge of Zn vapor from the molten pool is promoted as described above, and stable droplet transfer is achieved, thereby suppressing spatter and blowholes. However, when the gap between the plates exceeds 2 mm, the throat thickness becomes thin and the welding strength is lowered, so 2 mm or less is preferable.

溶接電圧が15V未満では入熱不足で溶融池の温度が下がって粘度が高くなり、Zn蒸気が排出されにくくなって溶融池内にZn蒸気が残存してスパッタ、ブローホールが発生する。一方、溶接電圧が35Vを超えるとアーク長が長くなり、ソリッドワイヤー先端と溶融池との距離が長くなる。その結果、溶滴の移行に時間がかかり、その間に溶滴が粗大化してスパッタ、ブローホールが発生しやすくなるので35V以下が好ましい。 If the welding voltage is less than 15 V, the heat of the molten pool decreases due to insufficient heat input, the viscosity increases, Zn vapor is difficult to be discharged, Zn vapor remains in the molten pool, and spatter and blow holes are generated. On the other hand, when the welding voltage exceeds 35V, the arc length becomes long, and the distance between the solid wire tip and the molten pool becomes long. As a result, it takes time to transfer the droplets, and during that time the droplets become coarse and spatter and blowholes are likely to be generated.

溶接電流が80A未満では入熱不足で溶融池の温度が下がって粘度が高くなり、Zn蒸気が排出されにくくなって溶融池内にZn蒸気が残存してスパッタ、ブローホールが発生する。溶接電流はソリッドワイヤーの送給量とリンクしており、必要以上に溶接電流を大きくすると溶滴が粗大化するので350A以下が好ましい。 If the welding current is less than 80 A, heat input is insufficient, the temperature of the molten pool decreases, the viscosity increases, Zn vapor is difficult to be discharged, Zn vapor remains in the molten pool, and spatter and blow holes are generated. The welding current is linked to the feed amount of the solid wire, and if the welding current is increased more than necessary, the droplets become coarse, so 350 A or less is preferable.

〔溶接速度〕
本発明では溶接速度は特に限定されない。溶融Zn系めっき鋼板の板厚によって適宜選択される。
[Welding speed]
In the present invention, the welding speed is not particularly limited. It selects suitably by the plate | board thickness of a hot-dip Zn type plated steel plate.

〔シールドガス〕
本発明ではシールドガスの種類は特に限定されないが、安価な炭酸ガスや、スパッタ抑制効果が大きいAr−20体積%CO2ガス、あるいはさらにCO2濃度を下げたAr−5体積%CO2ガス等が好適である。
〔Shielding gas〕
In the present invention, the type of the shielding gas is not particularly limited, but inexpensive carbon dioxide gas, Ar-20 volume% CO2 gas having a large sputtering suppression effect, or Ar-5 volume% CO2 gas with a further reduced CO2 concentration, etc. are suitable. is there.

〔溶融Zn系めっき鋼板〕
本発明に係る溶融Zn系めっき鋼板は、めっき層の組成がZnを主成分とし、質量%でAl:1.0〜22.0%、Mg:0.05〜10.0%を含有し、AlとMgにより耐食性が高められている。
[Hot Zn-plated steel sheet]
In the hot-dip Zn-based plated steel sheet according to the present invention, the composition of the plating layer is mainly composed of Zn, and contains Al: 1.0 to 22.0%, Mg: 0.05 to 10.0% by mass, Corrosion resistance is enhanced by Al and Mg.

上記、溶融Zn−Al−Mg系めっき鋼板のめっき層は更に質量%でTi:0.002〜0.10%、B:0.001〜0.05%、Si:0〜2.0%、Fe:0〜2.5%からなる群から選ばれる1あるいは2以上を含有することができる。   The above-mentioned coating layer of the hot-dip Zn—Al—Mg-based steel sheet is further in mass%, Ti: 0.002 to 0.10%, B: 0.001 to 0.05%, Si: 0 to 2.0%, Fe: 1 or 2 or more selected from the group consisting of 0 to 2.5% can be contained.

溶融めっきの方法は特に限定されないが、一般的にはインライン焼鈍型の溶融めっき設備を使用することがコスト的に有利となる。めっき層組成は溶融めっき浴組成をほぼ反映したものとなる。以下、めっき層の成分元素について説明する。めっき層成分元素の「%」は特に断らない限り「質量%」を意味する。 Although the method of hot dipping is not particularly limited, it is generally advantageous in terms of cost to use an in-line annealing type hot dipping equipment. The plating layer composition substantially reflects the hot-dip plating bath composition. Hereinafter, the component elements of the plating layer will be described. “%” Of the plating layer component element means “mass%” unless otherwise specified.

Alは、めっき鋼板の耐食性向上に有効であり、また、めっき浴においてMg酸化物系ドロスの発生を抑制する。さらに、図4に示すようにAlは微量添加でFeの粘度を下げる効果があり、アーク溶接時にめっき層中のAlは溶融池に取り込まれて溶融池の粘度を下げてZn蒸気の排出を促進してスパッタ、ブローホールを抑制する。これらの作用を十分に発揮させるためには1.0%以上のAl含有量を確保する必要があり、4.0%以上のAl含有量を確保することがより好ましい。一方、Al含有量が多くなるとめっき層の下地に脆いFe−Al合金層が成長しやすくなり、Fe−Al合金層の過剰な成長はめっき密着性の低下を招く要因となる。種々検討の結果、Al含有量は22.0%以下とすることがより好ましく、15.0%以下、あるいはさらに10.0%以下に管理しても構わない。   Al is effective in improving the corrosion resistance of the plated steel sheet, and suppresses the generation of Mg oxide dross in the plating bath. Furthermore, as shown in FIG. 4, Al has the effect of lowering the viscosity of Fe by adding a small amount, and during arc welding, Al in the plating layer is taken into the molten pool to lower the viscosity of the molten pool and promote the discharge of Zn vapor. Thus, spatter and blowholes are suppressed. In order to fully exhibit these actions, it is necessary to secure an Al content of 1.0% or more, and it is more preferable to secure an Al content of 4.0% or more. On the other hand, when the Al content increases, a brittle Fe—Al alloy layer easily grows on the base of the plating layer, and excessive growth of the Fe—Al alloy layer causes a decrease in plating adhesion. As a result of various studies, the Al content is more preferably 22.0% or less, and may be controlled to 15.0% or less, or even 10.0% or less.

Mgは、めっき層表面に均一な腐食生成物を生成させてめっき鋼板の耐食性を著しく高める作用を呈する。Mg含有量は0.05%以上とすることがより効果的であり、1.0%以上とすることがさらに好ましい。一方、めっき浴中のMg含有量が多くなるとMg酸化物系ドロスが発生し易くなり、めっき層の品質低下を招く要因となるのでMg含有量は10.0%以下の範囲とする。また、Mgは沸点が約1091℃とFeの融点よりも低く、
Znと同様にアーク溶接時に蒸発してスパッタ、ブローホールの原因になると考えられるのでMg含有量は10.0%以下が望ましい。
Mg exhibits the effect | action which produces | generates a uniform corrosion product on the surface of a plating layer, and raises the corrosion resistance of a plated steel plate remarkably. The Mg content is more preferably 0.05% or more, and more preferably 1.0% or more. On the other hand, if the Mg content in the plating bath increases, Mg oxide-based dross is likely to occur, which causes a deterioration in the quality of the plating layer, so the Mg content is set to a range of 10.0% or less. Mg has a boiling point of about 1091 ° C., which is lower than the melting point of Fe,
Like Zn, it is considered that it evaporates during arc welding and causes spatter and blowholes, so the Mg content is preferably 10.0% or less.

溶融めっき浴中にTiを含有させると、めっき層外観と耐食性を低下させる原因となるZn11Mg2系相の生成、成長が抑制されるので好適である。Ti添加量が0.002%未満では抑制効果が不十分で、0.1%を越えるとめっき時にTi−Al系の析出物の生成、成長に起因しためっき層表面の外観不良を引き起こす要因となる。このため、本発明ではTi添加量を0.002〜0.1%に限定する。 When Ti is contained in the hot dipping bath, it is preferable because generation and growth of a Zn11Mg2 phase that causes deterioration of the plating layer appearance and corrosion resistance are suppressed. If the Ti addition amount is less than 0.002%, the suppression effect is insufficient, and if it exceeds 0.1%, the appearance of the plating layer surface due to the formation and growth of Ti-Al-based precipitates at the time of plating is caused. Become. For this reason, in this invention, Ti addition amount is limited to 0.002-0.1%.

BもTiと同様にZn11Mg2系相の生成、成長を抑制する効果を有する。Bの場合添加量を0.001%以上とすることがより効果的である。ただし、Bも過剰添加するとTi−BあるいはAl−B系の析出物に起因しためっき層表面の外観不良を引き起こすのでB:0.05%以下の範囲とすることが望ましい。   B also has the effect of suppressing the formation and growth of a Zn11Mg2-based phase like Ti. In the case of B, it is more effective to make the addition amount 0.001% or more. However, excessive addition of B causes a poor appearance of the plating layer surface due to Ti-B or Al-B-based precipitates, so B is preferably set to a range of 0.05% or less.

溶融めっき浴中にSiを含有させると、めっき原板表面とめっき層の界面に生成する
Fe−Al合金層の過剰な成長が抑制され、溶融Zn−Al−Mg系めっき鋼板の加工性を向上させる上で有利となる。したがって、必要に応じてSiを含有させることができる。その場合、Si含有量を0.005%以上とすることがより効果的である。ただし、過剰のSi含有は溶融めっき浴中のドロス量を増大させる要因となるので、Si含有量は2.0%以下とすることが望ましい。
When Si is contained in the hot dipping bath, excessive growth of the Fe—Al alloy layer formed at the interface between the plating original plate surface and the plating layer is suppressed, and the workability of the hot-dip Zn—Al—Mg plated steel sheet is improved. This is advantageous. Therefore, Si can be contained as necessary. In that case, it is more effective to set the Si content to 0.005% or more. However, since excessive Si content causes an increase in the dross amount in the hot dipping bath, the Si content is preferably 2.0% or less.

溶融めっき浴中には、鋼板を浸漬・通過させる関係上、Feが混入しやすい。Zn−
Al−Mg系めっき層中にFeが混入すると耐食性が低下するのでFe含有量は2.5%以下とすることが好ましい。
In the hot dipping bath, Fe is likely to be mixed because the steel sheet is immersed and passed. Zn-
When Fe is mixed in the Al—Mg-based plating layer, the corrosion resistance is lowered, so the Fe content is preferably 2.5% or less.

溶融Zn−Al−Mg系めっき鋼板のめっき付着量が少ないと、めっき面の耐食性および犠牲防食作用を長期にわたって維持するうえで不利となる。種々検討の結果、片面当たりのめっき付着量は20g/m2以上とすることがより効果的である。一方、めっき付着量が多くなると溶接時の蒸発Zn量が多くなり、スパッタ、ブローホールが発生しやすくなる。このため片面当たりのめっき付着量は250g/m2以下とすることが望ましい。   If the coating amount of the molten Zn—Al—Mg based steel sheet is small, it is disadvantageous for maintaining the corrosion resistance and sacrificial anticorrosive action of the plated surface for a long period of time. As a result of various studies, it is more effective that the amount of plating deposited per side is 20 g / m 2 or more. On the other hand, when the amount of plating adhesion increases, the amount of evaporated Zn during welding increases, and sputtering and blowholes are likely to occur. For this reason, it is desirable that the plating adhesion amount per one side is 250 g / m 2 or less.

〔ブローホール占有率、スパッタ付着個数〕
建築用薄板溶接接合部設計・施工マニュアル(建築用薄板溶接接合部設計・施工マニュアル編集委員会)によれば、図5に模式図的に示すブローホール長さの積算値Σdi(mm)の測定値から下記(2)式により算出されるブローホール占有率Brが30%以下であれば溶接強度に問題ないとされている。本発明の溶接部材は、ブローホール占有率Brが30%以下で溶接強度に優れる。
Br=(Σdi/L)×100 …(2)
ここで、
Σdi:ブローホール長さの積算値(mm)
L:溶接ビード長さ(mm)
[Blow hole occupancy, number of spatters attached]
According to the Architectural Thin Plate Welded Joint Design and Construction Manual (Architecture Thin Plate Welded Joint Design and Construction Manual Editorial Committee), the measurement of the integrated value Σdi (mm) of the blowhole length schematically shown in FIG. If the blow hole occupancy Br calculated by the following equation (2) from the value is 30% or less, there is no problem in the welding strength. The welded member of the present invention is excellent in weld strength when the blowhole occupation ratio Br is 30% or less.
Br = (Σdi / L) × 100 (2)
here,
Σdi: Integrated value of blowhole length (mm)
L: Weld bead length (mm)

図5の点線で示す溶接ビード3を中心とした幅100mm、長さ100mmの領域のスパッタ付着個数が20個以下であればスパッタが目立たず、耐食性への影響も小さい。本発明の溶接部材はスパッタ付着個数が20個以下で溶接部外観と耐食性に優れる。 If the number of sputter deposits in the region of 100 mm wide and 100 mm long centered on the weld bead 3 indicated by the dotted line in FIG. The welded member of the present invention has a sputter adhesion number of 20 or less, and is excellent in welded portion appearance and corrosion resistance.

表1に示す組成を有する板厚3.2mm、板幅1000mmの熱延鋼帯をめっき原板とし、これを溶融めっきラインに通板して溶融Zn−Al−Mg系めっき鋼板を製造した。   A hot rolled steel strip having a thickness of 3.2 mm and a plate width of 1000 mm having the composition shown in Table 1 was used as a plating base plate, and this was passed through a hot dipping line to produce a hot-dip Zn—Al—Mg plated steel plate.

Figure 2016168612
Figure 2016168612

上記めっき鋼板から幅100mm、長さ200mmのサンプルを切り出し、重ね隅肉溶接継手でアーク溶接を行った。ソリッドワイヤーにはJIS Z3312 YGW12を用い、ビード長さは180mmとした。その他の溶接条件は表2に示す。下記に示す条件で溶接始端部から90mmの部分のアーク溶接時の溶滴移行現象を10回ハイスピードカメラ撮影し、溶滴移行前の溶滴の最大直径Dd(10回の平均値)を測定した。アーク溶接後、X線透過写真を撮影し、前述の方法でブローホール占有率Brを測定した。また、目視によりスパッタ付着個数を測定した。めっき層組成、めっき付着量、アーク溶接条件、溶滴移行前の溶滴の最大直径、ブローホール占有率、スパッタ付着個数を表2に示す。
〔ハイスピードカメラ撮影条件〕
ハイスピードカメラ:株式会社ノビテック社製M310
可視化用レーザ光源:Cavitra社製CAVLUX HF、パルス波長:810nm
撮影コマ数:4000コマ/秒
A sample having a width of 100 mm and a length of 200 mm was cut out from the plated steel sheet and arc welded with a lap fillet welded joint. JIS Z3312 YGW12 was used for the solid wire, and the bead length was 180 mm. Other welding conditions are shown in Table 2. Under the conditions shown below, the droplet transfer phenomenon during arc welding of the 90 mm portion from the welding start end is photographed 10 times with a high-speed camera, and the maximum diameter Dd (average value of 10 times) of the droplet before transfer is measured. did. After arc welding, an X-ray transmission photograph was taken, and blow hole occupancy Br was measured by the method described above. Moreover, the number of spatter adhesion was measured visually. Table 2 shows the composition of the plating layer, the amount of plating, arc welding conditions, the maximum diameter of the droplets before transfer of the droplets, the blow hole occupation ratio, and the number of sputter deposits.
[High-speed camera shooting conditions]
High-speed camera: M310 manufactured by Novitec Corporation
Laser light source for visualization: CAVLUX HF manufactured by Cavitra, pulse wavelength: 810 nm
Number of frames: 4000 frames / second

Figure 2016168612
Figure 2016168612

表2のNo.1〜20に示すように、アーク溶接条件、溶滴移行前の溶滴の最大直径Ddが本発明の範囲内の実施例では、ブローホール占有率は30%以下、スパッタ付着個数は20以下であった。本実施例から、本発明により溶接部外観と耐食性および溶接強度に優れた溶融Zn−Al−Mg系めっき鋼板アーク溶接部材が得られることがわかる。 No. in Table 2 As shown in 1 to 20, in the examples in which the arc welding conditions and the maximum diameter Dd of the droplet before the droplet transfer are within the scope of the present invention, the blow hole occupation ratio is 30% or less, and the number of sputters is 20 or less. there were. From this example, it can be seen that the present invention can provide a welded Zn-Al-Mg-based plated steel sheet arc welded member having excellent weld appearance and corrosion resistance and weld strength.

それに対して、溶接電流、溶接電圧、ソリッドワイヤー直径Wd、溶滴移行前の溶滴の最大直径が本発明の範囲未満のNo.31〜33の比較例、および溶接電流、溶接電圧、溶滴移行前の溶滴の最大直径Dd、ソリッドワイヤーの直径が本発明の範囲を超えるNo.34〜39の比較例ではブローホールとスパッタが著しく発生した。   On the other hand, the welding current, welding voltage, solid wire diameter Wd, and the maximum diameter of the droplet before droplet transfer are less than the range of the present invention. Nos. 31 to 33, and No. 31 in which the welding current, the welding voltage, the maximum diameter Dd of the droplet before droplet transfer, and the diameter of the solid wire exceed the range of the present invention. In the comparative examples 34 to 39, blowholes and spatter were remarkably generated.

板間ギャップが本発明における好ましい範囲を超えるNo.20は、ブローホール、スパッタは抑えられたがのど厚が薄くなり、引張試験で溶接部破断して溶接強度不足であった。 No. of the gap between the plates exceeds the preferred range in the present invention. In No. 20, blowholes and spatter were suppressed, but the throat thickness was reduced, and the weld was broken in a tensile test, resulting in insufficient weld strength.

1、1’ 溶融Zn−Al−Mg系めっき鋼板
2 めっき層
3 溶接ビード
4 ピット
5 ブローホール
6 板間ギャップ

1, 1 ′ Molten Zn—Al—Mg plated steel sheet 2 Plating layer 3 Weld bead 4 Pit 5 Blow hole 6 Inter-plate gap

Claims (6)

溶融Zn系めっき鋼板をアーク溶接するに際し、
ソリッドワイヤー直径Wdが0.8〜1.6mmで、
ソリッドワイヤー直径Wdと溶融池に移行する前の溶滴の最大直径Ddが下記(1)式の関係を満足し、
ブローホール占有率Brが30%以下で、
溶接ビードを中心とした縦100mm、横100mmの領域のスパッタ付着個数が20個以下となるようにアーク溶接する溶融Zn系めっき鋼板のアーク溶接方法。
0.8Wd≦Dd≦3Wd・・・(1)
ここで、
Dd:溶融池に移行する前の溶滴の最大直径(mm)
Wd:ソリッドワイヤーの直径(mm)
When arc welding a hot-dip Zn-based plated steel sheet,
Solid wire diameter Wd is 0.8-1.6mm,
The solid wire diameter Wd and the maximum diameter Dd of the droplet before moving to the molten pool satisfy the relationship of the following formula (1):
Blow hole occupancy Br is 30% or less,
An arc welding method for a hot-dip Zn-based plated steel sheet, in which arc welding is performed so that the number of sputter deposits in a region of 100 mm length and 100 mm width centering on a weld bead is 20 or less.
0.8 Wd ≦ Dd ≦ 3 Wd (1)
here,
Dd: Maximum diameter of droplet before moving to molten pool (mm)
Wd: Solid wire diameter (mm)
板間ギャップが2mm以下で、溶接電圧が15〜35V、溶接電流が80〜350Aである請求項1に記載の溶融Zn系めっき鋼板のアーク溶接方法。 The arc welding method for hot-dip Zn-based plated steel sheets according to claim 1, wherein the gap between the plates is 2 mm or less, the welding voltage is 15 to 35 V, and the welding current is 80 to 350 A. 溶融Zn系めっき鋼板のめっき層の組成がZnを主成分とし、質量%でAl:1.0〜22.0%、Mg:0.05〜10.0%を含有する請求項1および2に記載の溶融Zn系めっき鋼板のアーク溶接方法。   The composition of the plating layer of the hot-dip Zn-plated steel sheet contains Zn as a main component and contains Al: 1.0 to 22.0% and Mg: 0.05 to 10.0% by mass%. An arc welding method for the hot-dip Zn-based plated steel sheet. 前記溶融Zn系めっき鋼板のめっき層が更に質量%でTi:0.002〜0.10%、B:0.001〜0.05%、Si:0〜2.0%、Fe:0〜2.5%からなる群から選ばれる1あるいは2以上を含有する請求項1〜3のいずれかに記載の溶融Zn系めっき鋼板のアーク溶接方法。   The plating layer of the hot-dip Zn-based plated steel sheet is further mass% in Ti: 0.002-0.10%, B: 0.001-0.05%, Si: 0-2.0%, Fe: 0-2. The arc welding method for hot-dip Zn-based plated steel sheets according to any one of claims 1 to 3, comprising 1 or 2 or more selected from the group consisting of 0.5%. 請求項1〜4に記載の溶融Zn系めっき鋼板のアーク溶接方法によりアーク溶接した溶接部材。 The welding member which carried out the arc welding by the arc welding method of the hot-dip Zn type plated steel plate of Claims 1-4. 溶接ビードを中心とした縦100mm、横100mmの領域のスパッタ付着個数が20個以下である請求項5に記載のアーク溶接した溶接部材。

6. The arc-welded welded member according to claim 5, wherein the number of sputter deposits in a region of 100 mm in length and 100 mm in width centering on the weld bead is 20 or less.

JP2015050349A 2015-03-13 2015-03-13 ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH Pending JP2016168612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050349A JP2016168612A (en) 2015-03-13 2015-03-13 ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050349A JP2016168612A (en) 2015-03-13 2015-03-13 ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH

Publications (1)

Publication Number Publication Date
JP2016168612A true JP2016168612A (en) 2016-09-23

Family

ID=56982887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050349A Pending JP2016168612A (en) 2015-03-13 2015-03-13 ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH

Country Status (1)

Country Link
JP (1) JP2016168612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975899B2 (en) 2016-10-28 2021-04-13 Nippon Steel Nisshin Co., Ltd. Welded member and method for manufacturing same
CN113751840A (en) * 2021-09-02 2021-12-07 唐山钢铁集团有限责任公司 Method for improving quality of welding seam of gas metal arc welding of zinc-aluminum-magnesium plating plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090017A (en) * 2002-08-30 2004-03-25 Nisshin Steel Co Ltd Arc welding method of galvanized steel plate
JP2011073022A (en) * 2009-09-30 2011-04-14 Daihen Corp Carbon dioxide pulsed arc welding method
JP2014133259A (en) * 2013-01-11 2014-07-24 Nisshin Steel Co Ltd Manufacturing method of arc welding structural member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090017A (en) * 2002-08-30 2004-03-25 Nisshin Steel Co Ltd Arc welding method of galvanized steel plate
JP2011073022A (en) * 2009-09-30 2011-04-14 Daihen Corp Carbon dioxide pulsed arc welding method
JP2014133259A (en) * 2013-01-11 2014-07-24 Nisshin Steel Co Ltd Manufacturing method of arc welding structural member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975899B2 (en) 2016-10-28 2021-04-13 Nippon Steel Nisshin Co., Ltd. Welded member and method for manufacturing same
CN113751840A (en) * 2021-09-02 2021-12-07 唐山钢铁集团有限责任公司 Method for improving quality of welding seam of gas metal arc welding of zinc-aluminum-magnesium plating plate

Similar Documents

Publication Publication Date Title
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
JP4839193B2 (en) Solid wire
JP5980128B2 (en) Manufacturing method of arc-welded structural members
JP5372217B2 (en) Manufacturing method of arc-welded structural members
WO2018079131A1 (en) Welded member and method for manufacturing same
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
JP4303655B2 (en) Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
JP2014133259A (en) Manufacturing method of arc welding structural member
JP2011131243A (en) Arc welding method and arc weld joint of galvanized steel plate
JP2016101593A (en) Arc welding method for galvanized steel sheet and arc-welded joint
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP2002239725A (en) Gas-shielded arc welding for steel sheet
JP2016168612A (en) ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH
WO2015198627A1 (en) METHOD FOR ARC WELDING OF HOT-DIP Zn-Al-Mg COATED STEEL SHEET, AND WELDED MEMBER
WO2018159038A1 (en) Arc welding method for hot-dip galvanized steel sheet, and method for manufacturing welded member
KR102190331B1 (en) Arc welding method of hot-dip Zn-based plated steel sheet with excellent weld appearance and welding strength, and method of manufacturing welded members
JP3941528B2 (en) Carbon dioxide shielded arc welding wire
JP2022042360A (en) Arc-welding method
JP3802642B2 (en) Arc welding method for galvanized steel sheet
WO2016194400A1 (en) Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
JP2019048321A (en) Multielectrode gas shield arc-welding method
JP6487877B2 (en) Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member
JP3983155B2 (en) Steel wire for gas shielded arc welding
JPH05305477A (en) Wire for galvanized steel sheet having excellent arc weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190328