JP5980128B2 - Manufacturing method of arc-welded structural members - Google Patents

Manufacturing method of arc-welded structural members Download PDF

Info

Publication number
JP5980128B2
JP5980128B2 JP2013000095A JP2013000095A JP5980128B2 JP 5980128 B2 JP5980128 B2 JP 5980128B2 JP 2013000095 A JP2013000095 A JP 2013000095A JP 2013000095 A JP2013000095 A JP 2013000095A JP 5980128 B2 JP5980128 B2 JP 5980128B2
Authority
JP
Japan
Prior art keywords
shield gas
welding
arc
gas
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013000095A
Other languages
Japanese (ja)
Other versions
JP2014131809A (en
Inventor
和昭 細見
和昭 細見
延時 智和
智和 延時
仲子 武文
武文 仲子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2013000095A priority Critical patent/JP5980128B2/en
Publication of JP2014131809A publication Critical patent/JP2014131809A/en
Application granted granted Critical
Publication of JP5980128B2 publication Critical patent/JP5980128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、接合する一方または双方の部材に溶融Zn−Al−Mg系めっき鋼板部材を用いて構成した耐溶融金属脆化割れ性に優れるアーク溶接構造部材の製造法に関する。   The present invention relates to a method for producing an arc-welded structural member having excellent resistance to molten metal embrittlement cracking constituted by using a molten Zn—Al—Mg-based plated steel sheet member for one or both members to be joined.

溶融亜鉛系めっき鋼板は耐食性が良好であるため建築部材や自動車部材をはじめとする広範な用途に使用されている。なかでも溶融Zn−Al−Mg系めっき鋼板は長期間にわたり優れた耐食性を維持することから、従来の溶融亜鉛めっき鋼板に代わる材料として需要が増加している。   Since the hot dip galvanized steel sheet has good corrosion resistance, it is used in a wide range of applications including building members and automobile members. Among them, the hot-dip Zn—Al—Mg-based steel sheet maintains excellent corrosion resistance for a long period of time, and therefore, the demand is increasing as a material to replace the conventional hot-dip galvanized steel sheet.

溶融Zn−Al−Mg系めっき鋼板のめっき層は特許文献1、2に記載されるように、Zn/Al/Zn2Mg三元共晶のマトリクス中に初晶Al相または初晶Al相とZn単相が分散した金属組織を有しており、AlおよびMgにより耐食性が向上している。そのめっき層の表面には、特にMgを含む緻密で安定な腐食生成物が均一に生成するため、溶融亜鉛めっき鋼板に比べてめっき層の耐食性が格段に向上している。 As described in Patent Documents 1 and 2, the plated layer of the hot-dip Zn—Al—Mg-based plated steel sheet has a primary Al phase or primary Al phase in a Zn / Al / Zn 2 Mg ternary eutectic matrix. It has a metal structure in which a Zn single phase is dispersed, and the corrosion resistance is improved by Al and Mg. Since a dense and stable corrosion product containing Mg in particular is uniformly formed on the surface of the plated layer, the corrosion resistance of the plated layer is remarkably improved as compared with the hot dip galvanized steel sheet.

溶融Zn−Al−Mg系めっき鋼板を用いて建築部材、自動車部材等を組み立てる場合、ガスシールドアーク溶接法が適用されることが多い。溶融Zn−Al−Mg系めっき鋼板にアーク溶接を施すと溶融亜鉛めっき鋼板と比べ溶融金属脆化割れが生じやすいという問題がある。これはMgの含有によってめっき層の液相線温度が低下していることが原因であるとされている(特許文献3、4)。   In the case of assembling building members, automobile members, and the like using a molten Zn—Al—Mg plated steel sheet, a gas shield arc welding method is often applied. When arc welding is performed on a hot-dip Zn-Al-Mg-based steel sheet, there is a problem that hot metal embrittlement cracking is likely to occur as compared with a hot-dip galvanized steel sheet. This is considered to be caused by a decrease in the liquidus temperature of the plating layer due to the Mg content (Patent Documents 3 and 4).

めっき鋼板にアーク溶接を施すと、めっき層の金属はアークが通過した周囲の母材(めっき原板)表面上で溶融する。Zn−Al−Mg系めっき鋼板の場合、当該めっき層の合金はZnの融点(約420℃)に比較して液相線温度が低く、比較的長時間にわたって溶融状態を維持する。Zn−6質量%Al−3質量%Mg合金の例では凝固終了温度が約335℃である。母材表面上で溶融したZn−Al−Mg系めっき層由来の溶融金属は、Al成分が下地のFeと早期に反応してFe−Al合金層となって消費されるに伴いAl濃度を減じていき、最終的にZn−Mg二元系に近い組成となるが、Zn−3質量%Mg合金でも凝固終了温度は360℃とZnの融点420℃より低い。したがって、Zn−Al−Mg系めっき鋼板の場合、亜鉛めっき鋼板と比べ、アーク溶接時に溶融しためっき層の金属が液相状態を維持したまま母材表面上に滞留する時間が長くなる。   When arc welding is performed on the plated steel sheet, the metal of the plating layer melts on the surface of the surrounding base material (plating original sheet) through which the arc has passed. In the case of a Zn-Al-Mg plated steel sheet, the alloy of the plating layer has a liquidus temperature lower than the melting point of Zn (about 420 ° C.) and maintains a molten state for a relatively long time. In the example of the Zn-6 mass% Al-3 mass% Mg alloy, the solidification end temperature is about 335 ° C. Molten metal derived from the Zn-Al-Mg plating layer melted on the surface of the base metal reduces the Al concentration as the Al component reacts with the underlying Fe at an early stage and is consumed as an Fe-Al alloy layer. Finally, the composition becomes close to a Zn—Mg binary system, but even with a Zn-3 mass% Mg alloy, the solidification end temperature is 360 ° C. and lower than the melting point of Zn, 420 ° C. Therefore, in the case of a Zn—Al—Mg-based plated steel sheet, the time during which the metal in the plated layer melted during arc welding stays on the surface of the base material while maintaining the liquid phase is longer than that in the galvanized steel sheet.

アーク溶接直後の冷却時に引張応力状態となっている母材の表面が、溶融しためっき金属に長時間曝されると、その溶融金属は母材の結晶粒界に侵入し溶融金属脆化割れを引き起こす要因となる。溶融金属脆化割れが発生すると、それが腐食の基点となり耐食性が低下する。また強度や疲労特性が低下して問題となることもある。   When the surface of a base metal that is in a tensile stress state during cooling immediately after arc welding is exposed to molten plated metal for a long time, the molten metal penetrates into the crystal grain boundaries of the base metal and causes molten metal embrittlement cracking. It becomes a cause. When molten metal embrittlement cracking occurs, it becomes the starting point of corrosion and corrosion resistance decreases. In addition, the strength and fatigue characteristics may be reduced, causing problems.

アーク溶接時の溶融Zn−Al−Mg系めっき鋼板の溶融金属脆化割れを抑制する方法としては、例えばアーク溶接前にめっき層を切削除去する手法が提案されている。また、特許文献4にはB添加によりフェライト結晶粒界を強化した鋼板をめっき原板に適用することで耐溶融金属脆化割れ性を付与する手法が開示されている。特許文献5には溶接ワイヤの外皮中にTiO2およびFeOを添加したフラックスを充填してアーク溶接時にZn、Al、Mgを酸化させることで溶融金属脆化割れを抑制する手法が開示されている。 As a method for suppressing molten metal embrittlement cracking of a molten Zn—Al—Mg-based plated steel sheet during arc welding, for example, a method of cutting and removing a plating layer before arc welding has been proposed. Patent Document 4 discloses a technique of imparting resistance to molten metal embrittlement cracking by applying a steel plate whose ferrite crystal grain boundary is reinforced by addition of B to a plating original plate. Patent Document 5 discloses a technique of suppressing molten metal embrittlement cracking by filling Zn, Al, and Mg during arc welding by filling a flux added with TiO 2 and FeO into the outer sheath of a welding wire. .

特許第3149129号公報Japanese Patent No. 3149129 特許第3179401号公報Japanese Patent No. 3179401 特許第4475787号公報Japanese Patent No. 4475787 特許第3715220号公報Japanese Patent No. 3715220 特開2005−230912号公報JP 2005-230912 A

上述のめっき層を切削除去する手法や特殊な溶接ワイヤーを使用する手法は多大なコスト増を伴う。めっき原板にB添加鋼を用いる手法は鋼種選択の自由度を狭める。また、これらの手法を採用しても部品形状や溶接条件によっては溶融金属脆化割れを十分に防止できない場合があり、Zn−Al−Mg系めっき鋼板を用いたアーク溶接構造物の抜本的な溶融金属脆化割れ防止対策とはなっていない。   The method of cutting and removing the above-described plating layer and the method of using a special welding wire are accompanied by a great increase in cost. The technique of using B-added steel for the plating base plate reduces the degree of freedom in selecting the steel type. Moreover, even if these methods are adopted, molten metal embrittlement cracking may not be sufficiently prevented depending on the part shape and welding conditions, and a radical arc welding structure using a Zn-Al-Mg based steel sheet is essential. It is not a measure to prevent molten metal embrittlement cracking.

一方、近年自動車の軽量化のために引張強さ590MPa以上の高張力鋼板がめっき原板に用いられるようになってきた。このような高張力鋼板を用いた溶融Zn−Al−Mg系めっき鋼板では溶接熱影響部の引張応力が増大するので溶融金属脆化割れが起こりやすくなり、適用可能な部品形状や用途が限定される。   On the other hand, in recent years, a high-tensile steel plate having a tensile strength of 590 MPa or more has been used as a plating base plate for reducing the weight of automobiles. In such a molten Zn-Al-Mg plated steel sheet using high-tensile steel sheet, the tensile stress in the weld heat-affected zone is increased, so that molten metal embrittlement cracking is likely to occur, and applicable part shapes and applications are limited. The

本発明はこのような現状に鑑み、めっき原板の鋼種による制約や、大幅なコスト増を伴うことなく、Zn−Al−Mg系めっき鋼板部材を用いたアーク溶接構造部材において優れた耐溶融金属脆化割れ性を有するものを提供することを目的とする。   In view of such a current situation, the present invention is excellent in resistance to molten metal brittleness in an arc welded structure member using a Zn-Al-Mg-based plated steel sheet member without being restricted by the steel type of the plating base plate and a significant increase in cost. It aims at providing what has fracturing ability.

発明者らの検討によれば、ガスシールドアーク溶接時に溶接ビード近傍ではめっき層が蒸発により一旦消失するが、アークが通り過ぎた後、ビードから少し離れた位置で溶融状態となっているめっき層金属が直ちに上記の消失した箇所に濡れ拡がるという現象が起きることが確かめられている。この溶融状態のめっき層金属がビード止端部付近まで濡れ拡がるまでの時期に、当該溶融状態のめっき層金属を凝固させてしまうことができれば、ビード止端部に近い位置で母材中へのめっき層成分の侵入が回避され、溶融金属脆化割れは効果的に防止できると考えられる。発明者らの詳細な研究の結果、2重管構造のシールドガス吐出ノズルを持つ溶接トーチを用いて、インナーシールドガスとアウターシールドガスの流量バランスをコントロールすることによって、上記目的が達成できることが明らかとなった。本発明はこのような知見に基づいて完成したものである。   According to the inventors' investigation, the plating layer disappears once by evaporation in the vicinity of the weld bead during gas shielded arc welding, but after the arc passes, the plating layer metal is in a molten state at a position slightly away from the bead. It has been confirmed that the phenomenon of immediately spreading to the above disappeared portion occurs. If the molten plating layer metal can be solidified at the time until the molten plating layer metal spreads to the vicinity of the bead toe, it can be introduced into the base material at a position near the bead toe. It is considered that the penetration of the plating layer component is avoided and the molten metal embrittlement crack can be effectively prevented. As a result of detailed studies by the inventors, it is clear that the above object can be achieved by controlling the flow balance between the inner shield gas and the outer shield gas using a welding torch having a shield gas discharge nozzle having a double pipe structure. It became. The present invention has been completed based on such findings.

すなわち本発明では、ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材を溶融Zn−Al−Mg系めっき鋼板部材とし、電極周囲に内管と外管からなる2重管を備える溶接トーチを用い、前記内管から体積%でCO2:10〜100%、O2:0〜5%、Ar:0〜90%である組成のインナーシールドガスを吐出させるとともに、前記外管から体積%でAr:0〜100%、He:0〜100%、CO2:0〜100%、N2:0〜80%、H2:0〜25%、O2:0〜22%である組成のアウターシールドガスを吐出させ、アウターシールドガスの吐出流量Qoutとインナーシールドガスの吐出流量Qin(L/min)を下記(1)〜(3)式に規定される範囲とするアーク溶接構造部材の製造法が提供される。
2≦Qin≦50 …(1)
10≦Qout≦50 …(2)
Qin/Qout≧0.2 …(3)
That is, in the present invention, when manufacturing a welded structural member by joining steel materials by gas shielded arc welding, at least one member to be joined is a molten Zn-Al-Mg-based plated steel plate member, and an inner tube around the electrode. An inner shield gas having a composition in which CO 2 : 10 to 100%, O 2 : 0 to 5%, and Ar: 0 to 90% in volume% from the inner pipe using a welding torch having a double pipe made of an outer pipe with ejecting, Ar volume% from the outer tube: 0~100%, He: 0~100% , CO 2: 0~100%, N 2: 0~80%, H 2: 0~25%, The outer shield gas having a composition of O 2 : 0 to 22% is discharged, and the discharge flow rate Qout of the outer shield gas and the discharge flow rate Qin (L / min) of the inner shield gas are defined in the following formulas (1) to (3). Range Preparation of welded structural members is provided.
2 ≦ Qin ≦ 50 (1)
10 ≦ Qout ≦ 50 (2)
Qin / Qout ≧ 0.2 (3)

ここで、「溶融Zn−Al−Mg系めっき鋼板部材」は、溶融Zn−Al−Mg系めっき鋼板からなる部材、またはそれを素材として成形加工した部材である。
前記内管の外壁と前記外管の内壁の間に形成されるアウターシールドガス流路の出口端部において、当該内管の外径をD1、当該外管の内径をD2とするとき、下記(4)式を満たす溶接トーチを適用することがより効果的である。
0.3≦(D2−D1)/D2≦0.5 …(4)
Here, the “molten Zn—Al—Mg-based plated steel sheet member” is a member made of a molten Zn—Al—Mg-based plated steel sheet, or a member formed by using it as a raw material.
At the outlet end portion of the outer shield gas flow path formed between the outer wall of the inner tube and the inner wall of the outer tube, when the outer diameter of the inner tube is D 1 and the inner diameter of the outer tube is D 2 , It is more effective to apply a welding torch that satisfies the following formula (4).
0.3 ≦ (D 2 −D 1 ) / D 2 ≦ 0.5 (4)

前記溶融Zn−Al−Mg系めっき鋼板は、例えば質量%で、Al:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.5%、残部Znおよび不可避的不純物からなるめっき層を有するものが好適な対象となる。その片面当たりのめっき付着量は例えば20〜250g/m2である。 The molten Zn—Al—Mg based steel sheet is, for example, mass%, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, B: Those having a plating layer consisting of 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, the balance Zn and inevitable impurities are suitable targets. The plating adhesion amount per one side is, for example, 20 to 250 g / m 2 .

本発明によれば、本来的に溶融金属脆化割れが生じやすい溶融Zn−Al−Mg系めっき鋼板部材を用いたアーク溶接構造物において、優れた耐溶融金属脆化割れ性を呈するものを安定して実現することが可能となった。めっき原板の鋼種にも特に制約はなく、溶融金属脆化割れ対策として特殊な元素を添加した鋼種を採用する必要はない。高張力鋼板を適用しても優れた耐溶融金属脆化割れ性が得られる。また、部品形状に対する自由度も大きい。したがって本発明は、今後ニーズの増大が予想される高張力鋼板を用いた自動車用アーク溶接構造部材をはじめ、種々の広範な用途において、Zn−Al−Mg系めっき鋼板アーク溶接構造部材の普及に寄与するものである。   According to the present invention, an arc welded structure using a molten Zn-Al-Mg-based plated steel sheet member, which is inherently susceptible to molten metal embrittlement cracking, is stable when it exhibits excellent resistance to molten metal embrittlement cracking. And realized it. There is no particular restriction on the steel type of the plating base plate, and it is not necessary to adopt a steel type to which a special element is added as a measure against molten metal embrittlement cracking. Even when a high-strength steel plate is applied, excellent melt metal embrittlement cracking resistance can be obtained. Moreover, the freedom degree with respect to a component shape is also large. Therefore, the present invention is widely used in a wide variety of applications including Zn-Al-Mg-plated steel sheet arc welded structural members, including automotive arc welded structural members that use high-tensile steel sheets that are expected to increase in the future. It contributes.

重ねすみ肉溶接継手の溶接部断面構造を模式的示した図。The figure which showed typically the welding part cross-section of a lap fillet welded joint. 溶融Zn−Al−Mg系めっき鋼板のアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示した図。The figure which showed typically the cross-sectional state of the high temperature welded part immediately after the arc passed at the time of the arc welding of a hot-dip Zn-Al-Mg type plated steel plate. 図2の状態から冷却された従来のZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示した図。The figure which showed typically the cross-section of the conventional Zn-Al-Mg type plated steel plate arc welding structural member cooled from the state of FIG. 本発明の実施に適用する溶接トーチの断面構造を模式的に示した図。The figure which showed typically the cross-section of the welding torch applied to implementation of this invention. 図2の状態から冷却されて得られた本発明に従うZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示した図。The figure which showed typically the cross-section of the Zn-Al-Mg system plating steel plate arc welding structural member according to this invention obtained by cooling from the state of FIG. 耐溶融金属脆化割れ性を調べるための溶接実験方法を示した図。The figure which showed the welding experiment method for investigating the molten metal embrittlement cracking resistance.

図1に、重ねすみ肉溶接継手の溶接部断面構造を模式的に例示する。自動車シャシなどにはアーク溶接によるこの種の溶接継手が多用されている。鋼板部材である母材1、母材1’が重ねられて配置され、母材1の表面と母材1’の端面に溶接ビード2が形成され、両部材が接合されている。図中の破線は溶接前の母材1の表面位置および母材1’の端面位置を表している。母材表面と溶接ビードの交点を「ビード止端部」と呼ぶ。図中には母材1についてのビード止端部を符号3で示してある。   FIG. 1 schematically illustrates a cross-sectional structure of a welded portion of a lap fillet welded joint. This type of welded joint by arc welding is frequently used for automobile chassis. A base material 1 and a base material 1 ′, which are steel plate members, are arranged so as to overlap each other, a weld bead 2 is formed on the surface of the base material 1 and an end surface of the base material 1 ′, and both members are joined. The broken lines in the figure represent the surface position of the base material 1 and the end face position of the base material 1 'before welding. The intersection of the base metal surface and the weld bead is called the “bead toe”. In the drawing, the bead toe portion of the base material 1 is indicated by reference numeral 3.

図2〜図4は、図1に示したビード止端部3の近傍に相当する部位の断面構造を拡大して模式的に示したものである。
図2に、Zn−Al−Mg系めっき鋼板のガスシールドアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示す。母材1の表面は、溶接前の段階でFe−Al系合金層6を介して均一なめっき層7に覆われていたが、アークの通過によってビード止端部3の近くではめっき層の金属が蒸発して消失している(めっき層蒸発領域9)。それよりビード止端部3からの距離が大きい部分では、元のめっき層7が溶融してZn−Al−Mg系溶融金属8となるが、蒸発による消失には至っていない。ビード止端部3からの距離がさらに大きくなると、元のめっき層7が溶融せずに存在している。なお、図2中、Zn−Al−Mg系溶融金属8およびめっき層7の厚さは誇張して描いてある。
2 to 4 schematically show an enlarged sectional structure of a portion corresponding to the vicinity of the bead toe 3 shown in FIG.
FIG. 2 schematically shows a cross-sectional state in the vicinity of a high-temperature welded portion immediately after the arc passes during gas shielded arc welding of a Zn—Al—Mg-based plated steel sheet. The surface of the base material 1 was covered with the uniform plating layer 7 via the Fe—Al-based alloy layer 6 in the stage before welding, but the metal of the plating layer was near the bead toe 3 due to the passage of the arc. Evaporates and disappears (plating layer evaporation region 9). In the portion where the distance from the bead toe 3 is larger than that, the original plating layer 7 is melted to become the Zn—Al—Mg based molten metal 8, but has not disappeared due to evaporation. When the distance from the bead toe 3 is further increased, the original plating layer 7 exists without melting. In FIG. 2, the thicknesses of the Zn—Al—Mg molten metal 8 and the plating layer 7 are exaggerated.

図3に、図2の状態から冷却されて得られた従来のZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示す。この場合、溶接時にめっき層が一旦消失して形成した「めっき層蒸発領域」(図2の符号9)にZn−Al−Mg系溶融金属(図2の符号8)が濡れ拡がり、母材1の表面はビード止端部3までの全体がZn−Al−Mg系合金層5に覆われる。Zn−Al−Mg系溶融金属(図2の符号8)が凝固して形成したZn−Al−Mg系合金層5の部分を溶融凝固領域10と呼び、元のめっき層7が残存して形成したZn−Al−Mg系合金層5の部分をめっき層未溶融領域11と呼ぶ。従来のZn−Al−Mg系めっき鋼板アーク溶接構造部材では通常この図のように、ビード止端部3直近は溶融凝固領域10となる。この場合、前述のようにZn−Al−Mg系溶融金属8は液相線温度が低いために、冷却後に溶融凝固領域10となる母材1の表面部分は溶接後の冷却過程でZn−Al−Mg系溶融金属と接触する時間が比較的長くなる。母材1のビード止端部に近い部分には溶接後の冷却で引張応力が生じているので、その結晶粒界中にZn−Al−Mg系溶融金属の成分が侵入しやすい。粒界に侵入した当該成分が溶融金属脆化割れを引き起こす要因となる。   FIG. 3 schematically shows a cross-sectional structure of a conventional Zn—Al—Mg-based plated steel sheet arc welded structural member obtained by cooling from the state of FIG. In this case, the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 2) wets and spreads in the “plating layer evaporation region” (reference numeral 9 in FIG. 2) formed once the plating layer disappears during welding. The entire surface up to the bead toe 3 is covered with the Zn—Al—Mg alloy layer 5. A portion of the Zn—Al—Mg alloy layer 5 formed by solidification of the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 2) is called a melt solidified region 10, and the original plating layer 7 remains and is formed. The portion of the Zn—Al—Mg-based alloy layer 5 is referred to as a plating layer unmelted region 11. In a conventional Zn-Al-Mg-based plated steel sheet arc welded structural member, the bead toe 3 is usually the melt-solidified region 10 as shown in this figure. In this case, since the liquidus temperature of the Zn—Al—Mg-based molten metal 8 is low as described above, the surface portion of the base material 1 that becomes the melted and solidified region 10 after cooling becomes Zn—Al in the cooling process after welding. -The contact time with the Mg-based molten metal is relatively long. Since tensile stress is generated in the portion of the base material 1 near the bead toe due to cooling after welding, the Zn—Al—Mg based molten metal component tends to enter the crystal grain boundary. The said component which penetrate | invaded the grain boundary becomes a factor which causes a molten metal embrittlement crack.

図4に、本発明の実施に適用する溶接トーチの断面構造を模式的に示す。溶接ワイヤー31とコンタクトチップ32の周囲に、溶接ワイヤー31を中心軸として円筒状の内管33と外管34からなる2重管を備え、内管33および外管34の先端からそれぞれ異なる供給経路より導かれたシールドガスAおよびBが吐出するようになっている。内管33の外壁36と外管34の内壁37の間にはシールドガスBが均等に分散して吐出するように必要に応じてメッシュ35が設置される。溶接ワイヤ31は消耗電極であるが、用途に応じて非消耗電極を適用することもできる。内管33から吐出するシールドガスAを「インナーシールドガス」、外管34から吐出するシールドガスBを「アウターシールドガス」と呼ぶ。インナーシールドガスは従来一般的なガスシールドアーク溶接に適用するシールドガスと同様に、主として溶接される材料の表面酸化を防ぐ役割を担う。一方、アウターシールドガスは、本発明においては、溶接された材料のビード周辺の表面を速やかに冷却する目的で使用する。これにより、ビード周辺の表面に溶融した状態で存在するZn−Al−Mg系溶融金属(図2の符号8)の凝固を促進してビード止端部への濡れ拡がりを抑止する。   FIG. 4 schematically shows a cross-sectional structure of a welding torch applied to the implementation of the present invention. Around the welding wire 31 and the contact tip 32, a double pipe comprising a cylindrical inner tube 33 and an outer tube 34 with the welding wire 31 as a central axis is provided, and supply paths that are different from the tips of the inner tube 33 and the outer tube 34, respectively. More guided shield gases A and B are discharged. A mesh 35 is installed between the outer wall 36 of the inner tube 33 and the inner wall 37 of the outer tube 34 as necessary so that the shield gas B is uniformly dispersed and discharged. Although the welding wire 31 is a consumable electrode, a non-consumable electrode can be applied depending on the application. The shield gas A discharged from the inner pipe 33 is called “inner shield gas”, and the shield gas B discharged from the outer pipe 34 is called “outer shield gas”. The inner shield gas plays a role of mainly preventing surface oxidation of the material to be welded, like the shield gas applied to conventional gas shield arc welding. On the other hand, in the present invention, the outer shield gas is used for the purpose of quickly cooling the surface around the bead of the welded material. Thereby, the solidification of the Zn—Al—Mg-based molten metal (symbol 8 in FIG. 2) existing in a molten state on the surface around the bead is promoted, and wetting and spreading to the bead toe end portion is suppressed.

シールドガスによる冷却能力を増大させる手法としては、通常のガスシールドアーク溶接法においてシールドガスの流量を増大させる方法や、溶接ビード周辺のより広い領域にシールドガスが当たるように溶接トーチのノズル形状を工夫する方法が想定することができる。しかし、発明者らの検討によれば、一般的な溶接トーチを用いてシールドガス流量を増大させていくとアークが不安定となり、Zn−Al−Mg系溶融金属(図2の符号8)の濡れ拡がりを十分に阻止するに足る冷却力を確保することは困難であることがわかった。また、溶接トーチのシールドガス吐出口の径を従来より太くしてシールドガスが材料表面の広範囲に当たるようにした場合にも、アークが不安定になりやすく、良好な結果を得ることは困難であった。   As a method of increasing the cooling capacity by the shield gas, there is a method of increasing the flow rate of the shield gas in the normal gas shield arc welding method, or the nozzle shape of the welding torch so that the shield gas hits a wider area around the weld bead. A method to devise can be assumed. However, according to the study by the inventors, when the flow rate of the shielding gas is increased using a general welding torch, the arc becomes unstable, and the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 2) It has been found that it is difficult to secure sufficient cooling power to sufficiently prevent wetting and spreading. Also, when the diameter of the shield gas discharge port of the welding torch is made larger than before and the shield gas hits a wide area on the surface of the material, the arc tends to become unstable and it is difficult to obtain good results. It was.

そこで発明者らは詳細な研究の結果、図4に例示されるような2重管タイプの溶接トーチを用いて、インナーシールドガスとアウターシールドガスの流量を独立にコントロールする手法を採用した。後述する流量条件を適用することにより、Zn−Al−Mg系溶融金属(図2の符号8)の濡れ拡がりが効果的に抑制され、Zn−Al−Mg系めっき鋼板を用いた溶接施工では克服が難しいとされている溶融金属脆化割れの問題が回避される。   As a result of detailed studies, the inventors have adopted a method of independently controlling the flow rates of the inner shield gas and the outer shield gas using a double pipe type welding torch as illustrated in FIG. By applying the flow rate conditions described later, wetting and spreading of the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 2) is effectively suppressed, and it is overcome by welding using a Zn—Al—Mg based plated steel sheet. The problem of molten metal embrittlement cracking, which is considered difficult, is avoided.

本発明ではアウターシールドガスの冷却能力を利用して溶融状態となっているめっき層金属の凝固を促進するので、アウターシールドガスはビード周辺のできるだけ広い範囲に吹き付けることが効果的である。ただし、アークの安定性の観点から、インナーシールドガスについては、その流束が過度に拡がらないようにすることが重要である。そこで検討の結果、インナーシールドガスとアウターシールドガスによって形成されるトータルのシールドガス吐出流束に占める、アウターシールドガスに起因する部分の割合を増大させることが、安定なアークを維持しながら冷却能力を高める上で有効である。具体的には図4に示すように、内管33の外壁36と外管34の内壁37の間に形成されるアウターシールドガス流路の出口端部において、当該内管の外径をD1、当該外管の内径をD2とするとき、下記(4)式を満たすものを適用することがより効果的である。
0.3≦(D2−D1)/D2≦0.5 …(4)
In the present invention, the cooling ability of the outer shield gas is utilized to promote solidification of the molten plating layer metal, and therefore it is effective to spray the outer shield gas over as wide a range as possible around the bead. However, from the viewpoint of arc stability, it is important for the inner shield gas to prevent the flux from spreading excessively. Therefore, as a result of study, it is possible to increase the ratio of the portion due to the outer shield gas in the total shield gas discharge flux formed by the inner shield gas and the outer shield gas, so that the cooling capacity is maintained while maintaining a stable arc. It is effective in increasing Specifically, as shown in FIG. 4, the outer diameter of the inner pipe is set to D 1 at the outlet end portion of the outer shield gas flow path formed between the outer wall 36 of the inner pipe 33 and the inner wall 37 of the outer pipe 34. , when the inner diameter of the outer tube and D 2, it is more effective to apply satisfy the following equation (4).
0.3 ≦ (D 2 −D 1 ) / D 2 ≦ 0.5 (4)

内管33の内径は11〜18mmの範囲とすることがより好ましい。また、内管33の外径D1は15〜22mmの範囲、外管34の内径D2は22〜44mmの範囲とすることがより好ましい。 The inner diameter of the inner tube 33 is more preferably in the range of 11 to 18 mm. The outer diameter D 1 of the inner tube 33 is more preferably in the range of 15 to 22 mm, and the inner diameter D 2 of the outer tube 34 is more preferably in the range of 22 to 44 mm.

図5に、図2の状態から冷却されて得られた本発明に従うZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示す。上述のような構造の溶接トーチを用いて吐出したアウターシールドガスの一部はビード周辺の領域に吹き付けられる。このとき、Zn−Al−Mg系溶融金属(図2の符号8)の表面は、インナーシールドガスに起因する横向き(ビードから遠ざかる方向)のガス流に加え、アウターシールドガスが吹き付けられることによって生じるガス流にも曝され、当該Zn−Al−Mg系溶融金属は単位時間当たりにより多くのガスと接触することとなる。その結果、Zn−Al−Mg系溶融金属からの抜熱が促進されて凝固時期が早まり、止端部3の近傍にめっき層蒸発領域9をある程度残した状態で冷却を完了させることができる。   FIG. 5 schematically shows a cross-sectional structure of a Zn—Al—Mg based plated steel sheet arc welded structural member according to the present invention obtained by cooling from the state of FIG. A part of the outer shield gas discharged using the welding torch having the above-described structure is sprayed to the area around the bead. At this time, the surface of the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 2) is generated by blowing the outer shield gas in addition to the gas flow in the lateral direction (direction away from the bead) caused by the inner shield gas. The Zn—Al—Mg based molten metal is also exposed to a gas flow, and comes into contact with more gas per unit time. As a result, heat removal from the Zn—Al—Mg based molten metal is promoted, the solidification time is advanced, and cooling can be completed in a state where the plating layer evaporation region 9 is left to some extent in the vicinity of the toe portion 3.

本明細書では冷却後に残っためっき層蒸発領域9のビード止端部3からの長さを「めっき層蒸発領域長さ」と呼び、図5中に符号Lで表示した。Zn−Al−Mg系めっき鋼板アーク溶接構造部材で問題となる溶融金属脆化割れは、そのほとんどがビード止端部3のごく近傍、具体的にはビード止端部から0.3mm未満の範囲で発生することが確認されている。上記(4)式を満たすような溶接トーチを使用した場合には、めっき層蒸発領域長さを0.3mm以上確保することが一層容易となり、優れた耐溶融金属脆化割れ性を付与する上で極めて効果的である。なお、Zn−Al−Mg系溶融金属(図3の符号8)の高さ位置がビード止端部3より上方となるような溶接姿勢においても、アウターシールドガスによる上記の冷却効果によって当該Zn−Al−Mg系溶融金属の濡れ拡がりは顕著に抑制される。   In this specification, the length of the plating layer evaporation region 9 remaining after cooling from the bead toe 3 is referred to as “plating layer evaporation region length”, and is indicated by the symbol L in FIG. Most of the molten metal embrittlement cracks which are a problem in Zn-Al-Mg-plated steel sheet arc welded structural members are very close to the bead toe 3, specifically less than 0.3 mm from the bead toe. It has been confirmed that When a welding torch that satisfies the above formula (4) is used, it becomes easier to secure the plating layer evaporation region length of 0.3 mm or more, and it provides excellent resistance to molten metal embrittlement cracking. It is extremely effective. Even in a welding posture in which the height position of the Zn—Al—Mg molten metal (reference numeral 8 in FIG. 3) is above the bead toe 3, the cooling effect by the outer shield gas causes the Zn— Wetting and spreading of the Al—Mg based molten metal is remarkably suppressed.

上記のめっき層蒸発領域長さLがあまり長くなると、めっき層が存在しないことによる耐食性低下が問題となるが、発明者らの検討によると、めっき層蒸発領域長さが2.0mm以下であれば周囲のZn−Al−Mg系めっき層による犠牲防食作用が十分に得られ、この部分での耐食性低下は問題とならないレベルとなることがわかった。インナーシールドガスとアウターシールドガスの流量を後述の規定に従って設定することにより、めっき層蒸発領域長さを0.3〜2.0mmの範囲にコントロールすることができる。   When the plating layer evaporation region length L is too long, there is a problem of deterioration in corrosion resistance due to the absence of the plating layer. According to the study by the inventors, the plating layer evaporation region length is 2.0 mm or less. In other words, it was found that the sacrificial anticorrosive action by the surrounding Zn—Al—Mg-based plating layer was sufficiently obtained, and the corrosion resistance reduction at this portion was at a level not causing a problem. By setting the flow rates of the inner shield gas and the outer shield gas in accordance with the regulations described later, the plating layer evaporation region length can be controlled in the range of 0.3 to 2.0 mm.

〔シールドガス〕
インナーシールドガスには、アーク溶接で通常使用されている種々のガスが適用可能である。具体的には、Arガス、CO2ガス、Ar−CO2混合ガス、Ar−CO2−O2混合ガス等を使用すればよい。各ガス成分の濃度範囲は、体積%でCO2:10〜100%、O2:0〜5%、Ar:0〜90%とすることができる。これ以外にも、公知のシールドガスに使用されている成分の混在が許容されるが、残部を不可避的不純物のみとするように管理してもよい。
〔Shielding gas〕
Various gases usually used in arc welding can be applied to the inner shield gas. Specifically, Ar gas, CO 2 gas, Ar—CO 2 mixed gas, Ar—CO 2 —O 2 mixed gas, or the like may be used. Concentration range of each gas component, CO 2 by volume%: 10~100%, O 2: 0~5%, Ar: can be 0% to 90%. In addition to this, mixing of the components used in the known shield gas is allowed, but the remainder may be managed to include only inevitable impurities.

アウターシールドガスには、Heガス、H2ガス、Arガス、CO2ガス、O2ガス、N2ガスの1種または1種以上を成分とするガスを使用する。空気はN2、O2と少量のArの混合ガスとみなすことができ、使用可能である。Heガス、H2ガスは熱伝導率が大きいため、これらのガスを使用すると特に優れた抜熱効果が得られる。インナーシールドガスと共通のガス組成とすることもできる。各ガス成分の濃度範囲は、体積%でAr:0〜100%、He:0〜100%、CO2:0〜100%、N2:0〜80%、H2:0〜25%、O2:0〜22%とすることができる。これ以外にも、公知のシールドガスに使用されている成分の混在が許容されるが、残部を不可避的不純物のみとするように管理してもよい。 As the outer shield gas, a gas containing one or more of He gas, H 2 gas, Ar gas, CO 2 gas, O 2 gas, and N 2 gas as a component is used. Air can be regarded as a mixed gas of N 2 , O 2 and a small amount of Ar, and can be used. Since He gas and H 2 gas have high thermal conductivity, a particularly excellent heat removal effect can be obtained when these gases are used. The gas composition may be the same as that of the inner shield gas. Concentration range of each gas component, Ar by volume%: 0~100%, He: 0~100 %, CO 2: 0~100%, N 2: 0~80%, H 2: 0~25%, O 2 : 0 to 22%. In addition to this, mixing of the components used in the known shield gas is allowed, but the remainder may be managed to include only inevitable impurities.

〔ガスシールドアーク溶接条件〕
本発明に従うアーク溶接においては、アウターシールドガスの吐出流量Qoutとインナーシールドガスの吐出流量Qin(L/min)を下記(1)〜(3)式に規定される範囲とする。
2≦Qin≦50 …(1)
10≦Qout≦50 …(2)
Qin/Qout≧0.2 …(3)
[Gas shield arc welding conditions]
In the arc welding according to the present invention, the discharge flow rate Qout of the outer shield gas and the discharge flow rate Qin (L / min) of the inner shield gas are set within the ranges defined by the following equations (1) to (3).
2 ≦ Qin ≦ 50 (1)
10 ≦ Qout ≦ 50 (2)
Qin / Qout ≧ 0.2 (3)

インナーシールドガスの流量が小さすぎるとアークが不安定になる。インナーシールドガスの流量が大きすぎると溶接ビード部の冷却効果が大きくなり、めっき金属に由来するZnが蒸気として抜けるまでに溶接金属が凝固することによりブローホールの発生が多くなる。アウターシールドガスの流量が小さすぎると溶接ビード周辺の冷却能力が不十分となり、Zn−Al−Mg系溶融金属(図2の符号8)の濡れ拡がりを防止することが難しくなる。その場合、優れた耐溶融金属脆化割れ性を安定して付与することは困難である。アウターシールドガスの流量が大きすぎると冷却効果が飽和し、コスト増となる。   If the flow rate of the inner shield gas is too small, the arc becomes unstable. When the flow rate of the inner shield gas is too large, the cooling effect of the weld bead portion is increased, and the occurrence of blow holes increases due to solidification of the weld metal before Zn derived from the plated metal is removed as vapor. If the flow rate of the outer shield gas is too small, the cooling capacity around the weld bead will be insufficient, and it will be difficult to prevent wetting and spreading of the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 2). In that case, it is difficult to stably impart excellent molten metal embrittlement cracking resistance. If the flow rate of the outer shield gas is too large, the cooling effect is saturated and the cost increases.

インナーシールドガスとアウターシールドガスの流量比Qin/Qoutが小さすぎると、アウターシールドガスの吐出流によってインナーシールドガスの流れが乱されてアークが不安定になる。アークが不安定になると溶接ビードが途切れて連続した健全なビードが形成されない場合もある。なお、Qin/Qoutの上限については、上記(1)式、(2)式の制限を受けるため特に規定する必要はない。ただし、アークの安定化を特に重視する場合は上記(3)式に代わり、下記(3)’式を適用することがより効果的である。
2.0≧Qin/Qout≧0.2 …(3)’
If the flow ratio Qin / Qout between the inner shield gas and the outer shield gas is too small, the flow of the inner shield gas is disturbed by the discharge flow of the outer shield gas and the arc becomes unstable. When the arc becomes unstable, the weld bead may be interrupted and a continuous and healthy bead may not be formed. The upper limit of Qin / Qout is not particularly required because it is restricted by the above formulas (1) and (2). However, when the stabilization of the arc is particularly emphasized, it is more effective to apply the following expression (3) ′ instead of the above expression (3).
2.0 ≧ Qin / Qout ≧ 0.2 (3) ′

溶接入熱は板厚等に応じて最適な値に設定すればよい。溶接入熱が過小であると溶け込みが不十分となって溶接ビードが不連続となる場合がある。逆に溶接入熱が過大であるとスパッタが発生しやすくなる。通常2000〜12000J/cmの範囲で溶接入熱の適正値を見出すことができる。
溶接速度は、上記溶接入熱が得られるように設定する。例えば0.2〜2.5m/minの範囲で設定することができる。
The welding heat input may be set to an optimum value according to the plate thickness or the like. If the welding heat input is too low, the welding may be insufficient and the weld bead may be discontinuous. Conversely, if the welding heat input is excessive, spatter is likely to occur. Usually, an appropriate value of welding heat input can be found in the range of 2000 to 12000 J / cm.
The welding speed is set so that the welding heat input can be obtained. For example, it can be set in the range of 0.2 to 2.5 m / min.

〔溶融Zn−Al−Mg系めっき鋼板部材〕
本発明では、アーク溶接で接合する双方の部材のうち、少なくとも一方に溶融Zn−Al−Mg系めっき鋼板部材を適用する。
その溶融Zn−Al−Mg系めっき鋼板部材のめっき原板としては、用途に応じて種々の鋼種が採用できる。高張力鋼板を使用することもできる。板厚は例えば1.0〜6.0mmの範囲で設定すればよい。
[Fused Zn-Al-Mg plated steel sheet member]
In the present invention, a molten Zn—Al—Mg based plated steel sheet member is applied to at least one of both members joined by arc welding.
Various steel types can be adopted as the plating original plate of the molten Zn—Al—Mg-based plated steel plate member depending on the application. High tensile steel plates can also be used. The plate thickness may be set in the range of 1.0 to 6.0 mm, for example.

具体的な溶融Zn−Al−Mg系めっき層の組成としては、質量%で、Al:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.5%、残部Znおよび不可避的不純物からなるものを挙げることができる。めっき層組成は溶融めっき浴組成をほぼ反映したものとなる。溶融めっきの方法は特に限定されないが、一般的にはインライン焼鈍型の溶融めっき設備を使用することがコスト的に有利となる。以下、めっき層の成分元素について説明する。めっき層成分元素の「%」は特に断らない限り「質量%」を意味する。   Specifically, the composition of the molten Zn—Al—Mg-based plating layer is, by mass, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10. %, B: 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, the balance Zn and inevitable impurities. The plating layer composition substantially reflects the hot-dip plating bath composition. Although the method of hot dipping is not particularly limited, it is generally advantageous in terms of cost to use an in-line annealing type hot dipping equipment. Hereinafter, the component elements of the plating layer will be described. “%” Of the plating layer component element means “mass%” unless otherwise specified.

Alは、めっき鋼板の耐食性向上に有効であり、また、めっき浴においてMg酸化物系ドロスの発生を抑制する。これらの作用を十分に発揮させるためには1.0%以上のAl含有量を確保する必要があり、4.0%以上のAl含有量を確保することがより好ましい。一方、Al含有量が多くなるとめっき層の下地に脆いFe−Al合金層が成長しやすくなり、Fe−Al合金層の過剰な成長はめっき密着性の低下を招く要因となる。種々検討の結果、Al含有量は22.0%以下とすることがより好ましく、15.0%以下、あるいはさらに10.0%以下に管理しても構わない。   Al is effective in improving the corrosion resistance of the plated steel sheet, and suppresses the generation of Mg oxide dross in the plating bath. In order to fully exhibit these actions, it is necessary to secure an Al content of 1.0% or more, and it is more preferable to secure an Al content of 4.0% or more. On the other hand, when the Al content increases, a brittle Fe—Al alloy layer easily grows on the base of the plating layer, and excessive growth of the Fe—Al alloy layer causes a decrease in plating adhesion. As a result of various studies, the Al content is more preferably 22.0% or less, and may be controlled to 15.0% or less, or even 10.0% or less.

Mgは、めっき層表面に均一な腐食生成物を生成させてめっき鋼板の耐食性を著しく高める作用を呈する。Mg含有量は0.05%以上とすることがより効果的であり、1.0%以上とすることがさらに好ましい。一方、めっき浴中のMg含有量が多くなるとMg酸化物系ドロスが発生し易くなり、めっき層の品質低下を招く要因となる。Mg含有量は10.0%以下の範囲とすることが望ましい。   Mg exhibits the effect | action which produces | generates a uniform corrosion product on the surface of a plating layer, and raises the corrosion resistance of a plated steel plate remarkably. The Mg content is more preferably 0.05% or more, and more preferably 1.0% or more. On the other hand, if the Mg content in the plating bath increases, Mg oxide-based dross is likely to occur, which causes a reduction in the quality of the plating layer. The Mg content is desirably in the range of 10.0% or less.

溶融めっき浴中にTi、Bを含有させると、溶融めっき時における製造条件の自由度が拡大する等のメリットがある。このため、必要に応じてTi、Bの1種または2種を添加することができる。その添加量はTiの場合0.0005%以上、Bの場合0.0001%以上とすることがより効果的である。ただし、めっき層中のTiやBの含有量が過剰になると析出物の生成に起因しためっき層表面の外観不良を引き起こす要因となる。これらの元素を添加する場合は、Ti:0.10%以下、B:0.05%以下の範囲とすることが望ましい。   When Ti and B are contained in the hot dipping bath, there are advantages such as an increase in the degree of freedom of manufacturing conditions during hot dipping. For this reason, 1 type or 2 types of Ti and B can be added as needed. It is more effective to add 0.0005% or more in the case of Ti and 0.0001% or more in the case of B. However, when the content of Ti or B in the plating layer becomes excessive, it causes a poor appearance of the plating layer surface due to the formation of precipitates. When these elements are added, it is desirable that Ti: 0.10% or less and B: 0.05% or less.

溶融めっき浴中にSiを含有させると、めっき原板表面とめっき層の界面に生成するFe−Al合金層の過剰な成長が抑制され、溶融Zn−Al−Mg系めっき鋼板の加工性を向上させる上で有利となる。したがって、必要に応じてSiを含有させることができる。その場合、Si含有量を0.005%以上とすることがより効果的である。ただし、過剰のSi含有は溶融めっき浴中のドロス量を増大させる要因となるので、Si含有量は2.0%以下とすることが望ましい。   When Si is contained in the hot dipping bath, excessive growth of the Fe—Al alloy layer formed at the interface between the plating original plate surface and the plating layer is suppressed, and the workability of the hot-dip Zn—Al—Mg plated steel sheet is improved. This is advantageous. Therefore, Si can be contained as necessary. In that case, it is more effective to set the Si content to 0.005% or more. However, since excessive Si content causes an increase in the dross amount in the hot dipping bath, the Si content is preferably 2.0% or less.

溶融めっき浴中には、鋼板を浸漬・通過させる関係上、Feが混入しやすい。Zn−Al−Mg系めっき層中のFe含有量は2.5%以下とすることが好ましい。   In the hot dipping bath, Fe is likely to be mixed because the steel sheet is immersed and passed. The Fe content in the Zn—Al—Mg plating layer is preferably 2.5% or less.

溶融Zn−Al−Mg系めっき鋼板部材のめっき付着量が少ないと、めっき面の耐食性および犠牲防食作用を長期にわたって維持するうえで不利となる。種々検討の結果、本発明に従ってビード止端部近傍に生じた「めっき層蒸発領域」を残存させる場合、片面当たりのZn−Al−Mg系めっき付着量は20g/m2以上とすることがより効果的である。一方、めっき付着量が多くなると溶接時にブローホールが発生しやすくなる。ブローホールが発生すると溶接強度が低下する。このため片面当たりのめっき付着量は250g/m2以下とすることが望ましい。 When the coating amount of the molten Zn—Al—Mg-based steel sheet member is small, it is disadvantageous for maintaining the corrosion resistance and sacrificial anticorrosive action of the plated surface for a long time. As a result of various studies, when the “plating layer evaporation region” generated in the vicinity of the bead toe according to the present invention is left, the Zn—Al—Mg based plating adhesion amount per side is preferably 20 g / m 2 or more. It is effective. On the other hand, when the plating adhesion amount increases, blow holes are likely to occur during welding. When blow holes occur, the welding strength decreases. For this reason, it is desirable that the amount of plating deposited on one side be 250 g / m 2 or less.

〔溶接相手部材〕
上記の溶融Zn−Al−Mg系めっき鋼板部材とアーク溶接により接合する相手部材は、上記と同様の溶融Zn−Al−Mg系めっき鋼板部材であっても構わないし、それ以外の鋼材であっても構わない。
[Parts to be welded]
The mating member to be joined by arc welding to the above molten Zn—Al—Mg based plated steel sheet member may be the same molten Zn—Al—Mg based plated steel sheet member as described above, or other steel materials. It doesn't matter.

表1に示す組成を有する板厚3.2mm、板幅1000mmの冷延鋼帯をめっき原板とし、これを溶融めっきラインに通板して種々のめっき層組成を有する溶融Zn−Al−Mg系めっき鋼板を製造した。表2、表3に、めっき組成および片面当たりのめっき付着量を示す。   A cold-rolled steel strip having a thickness of 3.2 mm and a width of 1000 mm having the composition shown in Table 1 is used as a plating base plate, and this is passed through a hot dipping line to obtain a molten Zn-Al-Mg system having various plating layer compositions. A plated steel sheet was produced. Tables 2 and 3 show the plating composition and the amount of plating adhered per side.

Figure 0005980128
Figure 0005980128

Figure 0005980128
Figure 0005980128

Figure 0005980128
Figure 0005980128

各溶融Zn−Al−Mg系めっき鋼板を用いて、後述の試験方法によりガスシールドアーク溶接を行い、耐溶融金属脆化割れ性を評価した。
溶接トーチとしては、図4に示す2重管構造のものを使用し、インナーシールドガスとアウターシールドガスをそれぞれ独立した管路から供給した。
大部分の例において、内管33の内径:16mm、外径(D1に相当):20mm、外管34の内径(D2に相当):29mmのものを使用した。この場合、(4)式中の(D2−D1)/D2の値は約0.31となる。
一部の例では、内管33の内径:16mm、外径(D1に相当):20mm、外管34の内径(D2に相当):35mmのものを使用した。この場合、(4)式中の(D2−D1)/D2の値は約0.43となる。
さらに一部の例では、内管33の内径:16mm、外径(D1に相当):20mm、外管34の内径(D2に相当):25mmのものを使用した。この場合、(4)式中の(D2−D1)/D2の値は0.20となる。
また、一部の比較例では従来一般に使用されている溶接トーチを用いて、アウターシールドガスを使用しない溶接を行った。
溶接条件は以下の通りである。
〔溶接条件〕
・溶接ワイヤー: YGW12、直径1.2mm
・シールドガス組成、流量: 表4、表5に記載
・溶接電流: 110〜200A
・アーク電圧: 12〜20V
・溶接速度: 0.2〜2.5m/min(表4、表5に記載)
・入熱: 2000〜6000J/cm
Using each molten Zn—Al—Mg-based plated steel sheet, gas shield arc welding was performed by the test method described later, and the resistance to molten metal embrittlement cracking was evaluated.
As the welding torch, a double pipe structure shown in FIG. 4 was used, and the inner shield gas and the outer shield gas were supplied from independent pipes.
In most examples, the inner tube 33 having an inner diameter of 16 mm, an outer diameter (corresponding to D 1 ): 20 mm, and an inner diameter of the outer tube 34 (corresponding to D 2 ): 29 mm were used. In this case, the value of (D 2 −D 1 ) / D 2 in the equation (4) is about 0.31.
In some examples, the inner tube 33 had an inner diameter of 16 mm, an outer diameter (corresponding to D 1 ): 20 mm, and an outer tube 34 having an inner diameter (corresponding to D 2 ): 35 mm. In this case, the value of (D 2 −D 1 ) / D 2 in the equation (4) is about 0.43.
Further, in some examples, the inner tube 33 having an inner diameter of 16 mm, an outer diameter (corresponding to D 1 ): 20 mm, and an inner diameter of the outer tube 34 (corresponding to D 2 ): 25 mm were used. In this case, the value of (D 2 −D 1 ) / D 2 in the equation (4) is 0.20.
In some comparative examples, welding without using an outer shield gas was performed using a welding torch generally used conventionally.
The welding conditions are as follows.
[Welding conditions]
・ Welding wire: YGW12, diameter 1.2mm
・ Shield gas composition, flow rate: listed in Tables 4 and 5 ・ Welding current: 110 to 200 A
・ Arc voltage: 12-20V
-Welding speed: 0.2 to 2.5 m / min (described in Tables 4 and 5)
・ Heat input: 2000-6000 J / cm

〔耐溶融金属脆化割れ性の試験方法〕
図6に示すように、100mm×75mmの試験片14(溶融Zn−Al−Mg系めっき鋼板部材)の中央部に直径20mm、長さ25mmの棒鋼のボス(突起)15を垂直に立て、上記の溶接条件でガスシールドアーク溶接を行って試験片14とボス15を接合した。具体的には溶接開始点Sから時計回りにボス15の周囲を1周して、溶接開始点Sを過ぎた後もさらにビードを重ねて溶接を進め、溶接ビード16の重なり部分17が生成した後の溶接終了点Eまで溶接を行った。溶接中、試験片14は平盤上に拘束された状態とした。この試験は実験的に溶接割れが生じやすい状況としたものである。
[Test method for molten metal embrittlement crack resistance]
As shown in FIG. 6, a boss (protrusion) 15 of a steel bar having a diameter of 20 mm and a length of 25 mm is set up vertically at the center of a 100 mm × 75 mm test piece 14 (a molten Zn—Al—Mg based steel plate member), The test piece 14 and the boss 15 were joined by performing gas shielded arc welding under the following welding conditions. Specifically, the boss 15 is rotated once around the boss 15 clockwise from the welding start point S, and after the welding start point S is passed, welding is further performed by overlapping the beads, and an overlapping portion 17 of the weld bead 16 is generated. Welding was performed up to a later welding end point E. During welding, the test piece 14 was restrained on a flat plate. This test was conducted in a situation where welding cracks are likely to occur experimentally.

溶接後、ボス15の中心軸を通り、且つビード重なり部分17を通る切断面20について、ビード重なり部分17近傍の試験片14部分を走査型電子顕微鏡で観察することにより、試験片14に観測される最も深い割れの深さ(最大割れ深さ)を測定した。この割れは「溶融金属脆化割れ」であると判断される。この試験において最大割れ深さが0.5mm未満であるものは、従来のZn−Al−Mg系めっき鋼板部材を用いた溶接構造部材に対して、耐溶融金属脆化割れ性が顕著に改善されていると評価することができる。   After welding, the cut surface 20 passing through the central axis of the boss 15 and passing through the bead overlap portion 17 is observed on the test piece 14 by observing the test piece 14 near the bead overlap portion 17 with a scanning electron microscope. The deepest crack depth (maximum crack depth) was measured. This crack is judged to be a “molten metal embrittlement crack”. In this test, when the maximum crack depth is less than 0.5 mm, the molten metal embrittlement cracking resistance is remarkably improved as compared with a welded structure member using a conventional Zn-Al-Mg plated steel sheet member. Can be evaluated.

また、上記溶接により形成されたビードを目視観察し、ビードが連続して形成された場合を○(ビード形状;良好)、ビードが途切れて不連続になった箇所が存在する場合を×(ビード形状;不良)と評価した。
ビード形状観察後、ビード部のX線透過写真を撮影し、一般財団法人日本建築センターが定めるブローホール占有率Bsを測定した。Bsは、溶接ビード全長に占める個々のブローホール長さの総和の割合である。ここではビード中心部の円周方向長さ(1周分)を溶接ビードの全長とした。一般財団法人日本建築センターの評価基準に従い、Bsが30%以下であるものを○(耐ブローホール性;良好)、それ以外を×(耐ブローホール性;不良)と評価した。
結果を表4、表5に示す。
Further, when the beads formed by the above-mentioned welding are visually observed, the case where the beads are continuously formed is indicated as ◯ (bead shape; good), and the case where the beads are discontinuous and there are discontinuous portions is indicated by × (beads). Shape; poor).
After observing the bead shape, an X-ray transmission photograph of the bead portion was taken, and the blowhole occupancy Bs determined by the Japan Architecture Center was measured. Bs is a ratio of the total sum of the lengths of individual blow holes in the entire length of the weld bead. Here, the circumferential length (one turn) of the center portion of the bead is defined as the total length of the weld bead. According to the evaluation standards of the Japan Architecture Center, those with Bs of 30% or less were evaluated as ○ (blowhole resistance; good) and the others were evaluated as x (blowhole resistance; poor).
The results are shown in Tables 4 and 5.

Figure 0005980128
Figure 0005980128

Figure 0005980128
Figure 0005980128

表4に示される本発明例のものは、いずれも優れた耐溶融金属脆化割れ性を示し、ビード形状および耐ブローホール性にも問題がなかった。特に(4)式の規定を満たす溶接トーチを使用したものでは、溶接時に溶融しためっき層金属がビード止端部まで濡れ拡がる前に凝固しており、その結果、溶融金属脆化割れの発生は認められなかった(最大割れ深さ=0mm)。(4)式の規定を満たさない溶接トーチを使用したNo.29でも、本発明に従ってインナーシールドガスとアウターシールドガスの流量を調整したことによりビード止端部まで濡れ拡る溶融めっき金属の量は非常に少なく、上述の厳しい条件下での溶接試験においても割れの発生は極めて微小であった。   All of the examples of the present invention shown in Table 4 exhibited excellent resistance to molten metal embrittlement cracking, and had no problem in bead shape and blowhole resistance. In particular, in the case of using a welding torch satisfying the formula (4), the plated layer metal melted during welding solidifies before spreading to the bead toe, and as a result, the occurrence of molten metal embrittlement cracks Not recognized (maximum crack depth = 0 mm). Even in No. 29 using a welding torch that does not satisfy the provisions of equation (4), the amount of hot-dip plated metal that wets and spreads to the bead toes by adjusting the flow rates of the inner shield gas and the outer shield gas according to the present invention is as follows. The occurrence of cracks was extremely small even in the welding test under the severe conditions described above.

表5に示される比較例のうち、インナーシールドガスの流量が本発明の規定に満たないNo.42、およびインナーシールドガスとアウターシールドガスの流量比Qin/Qoutが本発明の規定に満たないNo.43、45、46、49ではアークが不安定となって健全なビードが形成できなかった。シールドガス吐出部が単筒構造である従来一般的な溶接トーチを用いたNo.41、およびアウターシールドガスの流量が本発明の規定に満たないNo.44、47、48、50、51ではビード周辺の冷却が不十分であるため溶接時に溶融しためっき層金属がビード止端部まで濡れ拡がり、大きな溶融金属脆化割れが生じた。インナーシールドガスの流量が本発明の規定を超えるNo.52、53では溶融した溶接金属中に含まれるめっき層由来のZnが蒸気として抜けるまでに溶接金属が凝固したことにより、ビード部でのブローホールが増大した。   Among the comparative examples shown in Table 5, No. 42 in which the flow rate of the inner shield gas does not meet the provisions of the present invention, and the No. in which the flow ratio Qin / Qout of the inner shield gas and the outer shield gas does not meet the provisions of the present invention In .43, 45, 46 and 49, the arc became unstable and a healthy bead could not be formed. No. 41 using a conventional general welding torch whose shield gas discharge part has a single cylinder structure, and No. 44, 47, 48, 50, 51 where the flow rate of the outer shield gas does not meet the provisions of the present invention. Since the surroundings were insufficiently cooled, the plated layer metal melted during welding spread to the toe end of the bead, resulting in large molten metal embrittlement cracks. In Nos. 52 and 53 where the flow rate of the inner shield gas exceeds the provisions of the present invention, the weld metal solidified before Zn derived from the plating layer contained in the molten weld metal escaped as a vapor, so The hall has increased.

1、1’ 母材
2 溶接ビード
3 ビード止端部
5 Zn−Al−Mg系合金層
6 Fe−Al系合金層
7 めっき層
8 Zn−Al−Mg系溶融金属
9 めっき層蒸発領域
10 溶融凝固領域
11 めっき層未溶融領域
14 試験片
15 ボス
16 溶接ビード
17 ビード重なり部分
31 溶接ワイヤー
32 コンタクトチップ
33 内管
34 外管
35 メッシュ
36 内管の外壁
37 外管の内壁
DESCRIPTION OF SYMBOLS 1, 1 'base material 2 Weld bead 3 Bead toe part 5 Zn-Al-Mg type alloy layer 6 Fe-Al type alloy layer 7 Plating layer 8 Zn-Al-Mg type molten metal 9 Plating layer evaporation area 10 Melt solidification Area 11 Plating layer unmelted area 14 Test piece 15 Boss 16 Weld bead 17 Bead overlap part 31 Welding wire 32 Contact tip 33 Inner tube 34 Outer tube 35 Mesh 36 Outer wall of inner tube 37 Inner wall of outer tube

Claims (4)

ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材を溶融Zn−Al−Mg系めっき鋼板部材とし、電極周囲に内管と外管からなる2重管を備える溶接トーチを用い、前記内管から体積%でCO2:10〜100%、O2:0〜5%、Ar:0〜90%である組成のインナーシールドガスを吐出させるとともに、前記外管から体積%でAr:0〜100%、He:0〜100%、CO2:0〜100%、N2:0〜80%、H2:0〜25%、O2:0〜22%である組成のアウターシールドガスを吐出させ、アウターシールドガスの吐出流量Qoutとインナーシールドガスの吐出流量Qin(L/min)を下記(1)〜(3)式に規定される範囲とするアーク溶接構造部材の製造法。
2≦Qin≦50 …(1)
10≦Qout≦50 …(2)
Qin/Qout≧0.2 …(3)
When manufacturing a welded structural member by joining steel materials by gas shielded arc welding, at least one member to be joined is a molten Zn—Al—Mg-based plated steel plate member, and an inner tube and an outer tube are formed around the electrode 2. Using a welding torch equipped with a heavy pipe, and discharging the inner shield gas having a composition of CO 2 : 10 to 100%, O 2 : 0 to 5%, Ar: 0 to 90% in volume% from the inner pipe, 0~100%, He:: Ar% by volume from the outer tube 0~100%, CO 2: 0~100% , N 2: 0~80%, H 2: 0~25%, O 2: 0~ The outer shield gas having a composition of 22% is discharged, and the discharge flow rate Qout of the outer shield gas and the discharge flow rate Qin (L / min) of the inner shield gas are set in the ranges defined by the following equations (1) to (3). Manufacture of arc welded structural members .
2 ≦ Qin ≦ 50 (1)
10 ≦ Qout ≦ 50 (2)
Qin / Qout ≧ 0.2 (3)
前記内管の外壁と前記外管の内壁の間に形成されるアウターシールドガス流路の出口端部において、当該内管の外径をD1、当該外管の内径をD2とするとき、前記溶接トーチは下記(4)式を満たすものである請求項1に記載のアーク溶接構造部材の製造法。
0.3≦(D2−D1)/D2≦0.5 …(4)
At the outlet end portion of the outer shield gas flow path formed between the outer wall of the inner tube and the inner wall of the outer tube, when the outer diameter of the inner tube is D 1 and the inner diameter of the outer tube is D 2 , The method for manufacturing an arc welded structural member according to claim 1, wherein the welding torch satisfies the following expression (4).
0.3 ≦ (D 2 −D 1 ) / D 2 ≦ 0.5 (4)
前記溶融Zn−Al−Mg系めっき鋼板は、質量%で、Al:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.5%、残部Znおよび不可避的不純物からなるめっき層を有するものである請求項1または2に記載のアーク溶接構造部材の製造法。   The molten Zn—Al—Mg-based plated steel sheet is, by mass, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, and B: 0. The arc welded structure according to claim 1 or 2, which has a plating layer comprising -0.05%, Si: 0-2.0%, Fe: 0-2.5%, the balance Zn and unavoidable impurities. Manufacturing method of the member. 前記溶融Zn−Al−Mg系めっき鋼板は、片面当たりのめっき付着量が20〜250g/m2である請求項1〜3のいずれかに記載のアーク溶接構造部材の製造法。 The hot-dip Zn-Al-Mg plated steel sheet, method of producing arc welding structure according to any of claims 1 to 3 coating weight per one side is 20 to 250 g / m 2.
JP2013000095A 2013-01-04 2013-01-04 Manufacturing method of arc-welded structural members Active JP5980128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013000095A JP5980128B2 (en) 2013-01-04 2013-01-04 Manufacturing method of arc-welded structural members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013000095A JP5980128B2 (en) 2013-01-04 2013-01-04 Manufacturing method of arc-welded structural members

Publications (2)

Publication Number Publication Date
JP2014131809A JP2014131809A (en) 2014-07-17
JP5980128B2 true JP5980128B2 (en) 2016-08-31

Family

ID=51411139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013000095A Active JP5980128B2 (en) 2013-01-04 2013-01-04 Manufacturing method of arc-welded structural members

Country Status (1)

Country Link
JP (1) JP5980128B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107921570A (en) * 2015-05-29 2018-04-17 日新制钢株式会社 The arc welding method of weld part appearance and the excellent melting plating Zn systems steel plate of weld strength, the manufacture method and welding assembly of welding assembly
KR20180074826A (en) * 2016-12-23 2018-07-04 주식회사 포스코 Welded member having excellent welded portion porosity resistance and fatigue property and method of manufacturing the same
WO2019245063A1 (en) * 2018-06-18 2019-12-26 주식회사 포스코 Plated steel sheet weld member having excellent porosity-resistance and fatigue property of weld zone, and method for manufacturing same
US11815127B2 (en) 2016-12-23 2023-11-14 Posco Co., Ltd Welded member for plated steel plate excellent in weld zone porosity resistance and fatigue properties and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023156B2 (en) 2014-11-27 2016-11-09 日新製鋼株式会社 Arc welding method for Zn-plated steel sheet
WO2016194400A1 (en) * 2015-05-29 2016-12-08 日新製鋼株式会社 Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
JP2018086671A (en) * 2016-11-29 2018-06-07 株式会社神戸製鋼所 Narrow groove welding torch, narrow groove welding method and narrow groove welding system
EP4414476A1 (en) * 2022-01-31 2024-08-14 Nippon Steel Corporation Welded joint

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125672U (en) * 1982-02-20 1983-08-26 三菱重工業株式会社 Double shield gas nozzle
JPH0736958B2 (en) * 1991-08-16 1995-04-26 日合アセチレン株式会社 Double gas shield metal arc welding method
JPH10225771A (en) * 1997-02-13 1998-08-25 Toyota Motor Corp Shield structure of welding torch
JP2009012027A (en) * 2007-07-03 2009-01-22 Taiyo Nippon Sanso Corp Shielding gas for mag welding of galvanized sheet steel, and welding method using the shielding gas
JP2009113115A (en) * 2007-10-05 2009-05-28 Nisshin Steel Co Ltd METHOD FOR WELDING Zn-Al-Mg-BASED ALLOY PLATED STEEL SHEET
JP4377955B2 (en) * 2007-12-27 2009-12-02 新日本製鐵株式会社 Stainless steel flux-cored welding wire for welding galvanized steel sheet and arc welding method for galvanized steel sheet using the same
JP5700394B2 (en) * 2010-03-30 2015-04-15 日新製鋼株式会社 Automotive chassis member having excellent corrosion resistance and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107921570A (en) * 2015-05-29 2018-04-17 日新制钢株式会社 The arc welding method of weld part appearance and the excellent melting plating Zn systems steel plate of weld strength, the manufacture method and welding assembly of welding assembly
CN107921570B (en) * 2015-05-29 2019-10-11 日铁日新制钢株式会社 The arc welding method of molten zinc plating system steel plate and the manufacturing method of welding assembly
KR20180074826A (en) * 2016-12-23 2018-07-04 주식회사 포스코 Welded member having excellent welded portion porosity resistance and fatigue property and method of manufacturing the same
KR102020515B1 (en) * 2016-12-23 2019-09-11 주식회사 포스코 Welded member having excellent welded portion porosity resistance and fatigue property and method of manufacturing the same
US11815127B2 (en) 2016-12-23 2023-11-14 Posco Co., Ltd Welded member for plated steel plate excellent in weld zone porosity resistance and fatigue properties and method for manufacturing the same
WO2019245063A1 (en) * 2018-06-18 2019-12-26 주식회사 포스코 Plated steel sheet weld member having excellent porosity-resistance and fatigue property of weld zone, and method for manufacturing same

Also Published As

Publication number Publication date
JP2014131809A (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP5980128B2 (en) Manufacturing method of arc-welded structural members
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
JP5372217B2 (en) Manufacturing method of arc-welded structural members
JP6080391B2 (en) Method for producing Zn-Al-Mg plated steel sheet arc welded structural member
JP6385411B2 (en) Welded member and manufacturing method thereof
JP2014133259A (en) Manufacturing method of arc welding structural member
KR101849058B1 (en) ARC WELDING METHOD FOR Zn PLATED STEEL SHEET AND ARC WELDED JOINT
JP2007289965A (en) Flux-cored wire for gas shielded arc welding and welding method
JP4303655B2 (en) Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
JP7060159B2 (en) MIG welding method
JP2011131243A (en) Arc welding method and arc weld joint of galvanized steel plate
JP2024502759A (en) Welded structural member with excellent crack resistance and its manufacturing method
JP6969705B1 (en) Steel wire for gas shielded arc welding, gas shielded arc welding method, and manufacturing method of gas shielded arc welded joint
JP2001259888A (en) Flux cored wire for welding galvanized steel sheet having excellent pit resistance and blowhole resistance
JP2009274132A (en) Coated arc welding electrode for galvanized steel sheet
KR102190331B1 (en) Arc welding method of hot-dip Zn-based plated steel sheet with excellent weld appearance and welding strength, and method of manufacturing welded members
JP2005230912A (en) Arc welding flux cored wire superior in liquid metal embrittlement crack resistance, and arc welding method
JP2019048321A (en) Multielectrode gas shield arc-welding method
JP4766958B2 (en) Welding wire for Zn-based plated steel sheet and welding method for Zn-based plated steel sheet
KR102305743B1 (en) Welded structural member having excellent crack resistance and manufacturing method of the same
US20240198447A1 (en) Arc welded joint and arc welding method
JPH06210490A (en) Welding wire of zinc galvanized steel sheet and welding method
JP2004136342A (en) Steel wire for gas shielded arc welding
KR20230154327A (en) Arc welding joints and arc welding methods
JP2005000986A (en) Hot dip welding method for galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5980128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350