JP6080391B2 - Method for producing Zn-Al-Mg plated steel sheet arc welded structural member - Google Patents

Method for producing Zn-Al-Mg plated steel sheet arc welded structural member Download PDF

Info

Publication number
JP6080391B2
JP6080391B2 JP2012134660A JP2012134660A JP6080391B2 JP 6080391 B2 JP6080391 B2 JP 6080391B2 JP 2012134660 A JP2012134660 A JP 2012134660A JP 2012134660 A JP2012134660 A JP 2012134660A JP 6080391 B2 JP6080391 B2 JP 6080391B2
Authority
JP
Japan
Prior art keywords
steel sheet
plated steel
plating layer
molten
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012134660A
Other languages
Japanese (ja)
Other versions
JP2013035060A (en
Inventor
和昭 細見
和昭 細見
延時 智和
智和 延時
朝田 博
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2012134660A priority Critical patent/JP6080391B2/en
Publication of JP2013035060A publication Critical patent/JP2013035060A/en
Application granted granted Critical
Publication of JP6080391B2 publication Critical patent/JP6080391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、接合する一方または双方の部材に溶融Zn−Al−Mg系めっき鋼板部材を用いて構成した耐溶融金属脆化割れ性に優れるアーク溶接構造部材の製造法に関する。   The present invention relates to a method for producing an arc-welded structural member having excellent resistance to molten metal embrittlement cracking constituted by using a molten Zn—Al—Mg-based plated steel sheet member for one or both members to be joined.

溶融亜鉛系めっき鋼板は耐食性が良好であるため建築部材や自動車部材をはじめとする広範な用途に使用されている。なかでも溶融Zn−Al−Mg系めっき鋼板は長期間にわたり優れた耐食性を維持することから、従来の溶融亜鉛めっき鋼板に代わる材料として需要が増加している。   Since the hot dip galvanized steel sheet has good corrosion resistance, it is used in a wide range of applications including building members and automobile members. Among them, the hot-dip Zn—Al—Mg-based steel sheet maintains excellent corrosion resistance for a long period of time, and therefore, the demand is increasing as a material to replace the conventional hot-dip galvanized steel sheet.

溶融Zn−Al−Mg系めっき鋼板のめっき層は特許文献1、2に記載されるように、Zn/Al/Zn2Mg三元共晶のマトリクス中に初晶Al相または初晶Al相とZn単相が分散した金属組織を有しており、AlおよびMgにより耐食性が向上している。そのめっき層の表面には、特にMgを含む緻密で安定な腐食生成物が均一に生成するため、溶融亜鉛めっき鋼板に比べてめっき層の耐食性が格段に向上している。 As described in Patent Documents 1 and 2, the plated layer of the hot-dip Zn—Al—Mg-based plated steel sheet has a primary Al phase or primary Al phase in a Zn / Al / Zn 2 Mg ternary eutectic matrix. It has a metal structure in which a Zn single phase is dispersed, and the corrosion resistance is improved by Al and Mg. Since a dense and stable corrosion product containing Mg in particular is uniformly formed on the surface of the plated layer, the corrosion resistance of the plated layer is remarkably improved as compared with the hot dip galvanized steel sheet.

溶融Zn−Al−Mg系めっき鋼板を用いて建築部材、自動車部材等を組み立てる場合、ガスシールドアーク溶接法が適用されることが多い。溶融Zn−Al−Mg系めっき鋼板にアーク溶接を施すと溶融亜鉛めっき鋼板と比べ溶融金属脆化割れが生じやすいという問題がある。これはMgの含有によってめっき層の液相線温度が低下していることが原因であるとされている(特許文献3、4)。   In the case of assembling building members, automobile members, and the like using a molten Zn—Al—Mg plated steel sheet, a gas shield arc welding method is often applied. When arc welding is performed on a hot-dip Zn-Al-Mg-based steel sheet, there is a problem that hot metal embrittlement cracking is likely to occur as compared with a hot-dip galvanized steel sheet. This is considered to be caused by a decrease in the liquidus temperature of the plating layer due to the Mg content (Patent Documents 3 and 4).

めっき鋼板にアーク溶接を施すと、めっき層の金属はアークが通過した周囲の母材(めっき原板)表面上で溶融する。Zn−Al−Mg系めっき鋼板の場合、当該めっき層の合金はZnの融点(約420℃)に比較して液相線温度が低く、比較的長時間にわたって溶融状態を維持する。Zn−6質量%Al−3質量%Mg合金の例では凝固終了温度が約335℃である。母材表面上で溶融したZn−Al−Mg系めっき層由来の溶融金属は、Al成分が下地のFeと早期に反応してFe−Al合金層となって消費されるに伴いAl濃度を減じていき、最終的にZn−Mg二元系に近い組成となるが、Zn−3質量%Mg合金でも凝固終了温度は360℃とZnの融点420℃より低い。したがって、Zn−Al−Mg系めっき鋼板の場合、亜鉛めっき鋼板と比べ、アーク溶接時に溶融しためっき層の金属が液相状態を維持したまま母材表面上に滞留する時間が長くなる。   When arc welding is performed on the plated steel sheet, the metal of the plating layer melts on the surface of the surrounding base material (plating original sheet) through which the arc has passed. In the case of a Zn-Al-Mg plated steel sheet, the alloy of the plating layer has a liquidus temperature lower than the melting point of Zn (about 420 ° C.) and maintains a molten state for a relatively long time. In the example of the Zn-6 mass% Al-3 mass% Mg alloy, the solidification end temperature is about 335 ° C. Molten metal derived from the Zn-Al-Mg plating layer melted on the surface of the base metal reduces the Al concentration as the Al component reacts with the underlying Fe at an early stage and is consumed as an Fe-Al alloy layer. Finally, the composition becomes close to a Zn—Mg binary system, but even with a Zn-3 mass% Mg alloy, the solidification end temperature is 360 ° C. and lower than the melting point of Zn, 420 ° C. Therefore, in the case of a Zn—Al—Mg-based plated steel sheet, the time during which the metal in the plated layer melted during arc welding stays on the surface of the base material while maintaining the liquid phase is longer than that in the galvanized steel sheet.

アーク溶接直後の冷却時に引張応力状態となっている母材の表面が、溶融しためっき金属に長時間曝されると、その溶融金属は母材の結晶粒界に侵入し溶融金属脆化割れを引き起こす要因となる。溶融金属脆化割れが発生すると、それが腐食の基点となり耐食性が低下する。また強度や疲労特性が低下して問題となることもある。   When the surface of a base metal that is in a tensile stress state during cooling immediately after arc welding is exposed to molten plated metal for a long time, the molten metal penetrates into the crystal grain boundaries of the base metal and causes molten metal embrittlement cracking. It becomes a cause. When molten metal embrittlement cracking occurs, it becomes the starting point of corrosion and corrosion resistance decreases. In addition, the strength and fatigue characteristics may be reduced, causing problems.

アーク溶接時の溶融Zn−Al−Mg系めっき鋼板の溶融金属脆化割れを抑制する方法としては、例えばアーク溶接前にめっき層を切削除去する手法が提案されている。また、特許文献4にはB添加によりフェライト結晶粒界を強化した鋼板をめっき原板に適用することで耐溶融金属脆化割れ性を付与する手法が開示されている。特許文献5には溶接ワイヤの外皮中にTiO2およびFeOを添加したフラックスを充填してアーク溶接時にZn、Al、Mgを酸化させることで溶融金属脆化割れを抑制する手法が開示されている。 As a method for suppressing molten metal embrittlement cracking of a molten Zn—Al—Mg-based plated steel sheet during arc welding, for example, a method of cutting and removing a plating layer before arc welding has been proposed. Patent Document 4 discloses a technique of imparting resistance to molten metal embrittlement cracking by applying a steel plate whose ferrite crystal grain boundary is reinforced by addition of B to a plating original plate. Patent Document 5 discloses a technique of suppressing molten metal embrittlement cracking by filling Zn, Al, and Mg during arc welding by filling a flux added with TiO 2 and FeO into the outer sheath of a welding wire. .

特許第3149129号公報Japanese Patent No. 3149129 特許第3179401号公報Japanese Patent No. 3179401 特許第4475787号公報Japanese Patent No. 4475787 特許第3715220号公報Japanese Patent No. 3715220 特開2005−230912号公報JP 2005-230912 A

上記のめっき層を切削除去する手法や特殊な溶接ワイヤーを使用する手法は多大なコスト増を伴う。めっき原板にB添加鋼を用いる手法は鋼種選択の自由度を狭める。また、これらの手法を採用しても部品形状や溶接条件によっては溶融金属脆化割れを十分に防止できない場合があり、Zn−Al−Mg系めっき鋼板を用いたアーク溶接構造物の抜本的な溶融金属脆化割れ防止対策とはなっていない。   The method of cutting and removing the plating layer and the method of using a special welding wire are accompanied by a great increase in cost. The technique of using B-added steel for the plating base plate reduces the degree of freedom in selecting the steel type. Moreover, even if these methods are adopted, molten metal embrittlement cracking may not be sufficiently prevented depending on the part shape and welding conditions, and a radical arc welding structure using a Zn-Al-Mg based steel sheet is essential. It is not a measure to prevent molten metal embrittlement cracking.

一方、近年自動車の軽量化のために引張強さ590MPa以上の高張力鋼板がめっき原板に用いられるようになってきた。このような高張力鋼板を用いた溶融Zn−Al−Mg系めっき鋼板では溶接熱影響部の引張応力が増大するので溶融金属脆化割れが起こりやすくなり、適用可能な部品形状や用途が限定される。   On the other hand, in recent years, a high-tensile steel plate having a tensile strength of 590 MPa or more has been used as a plating base plate for reducing the weight of automobiles. In such a molten Zn-Al-Mg plated steel sheet using high-tensile steel sheet, the tensile stress in the weld heat-affected zone is increased, so that molten metal embrittlement cracking is likely to occur, and applicable part shapes and applications are limited. The

本発明はこのような現状に鑑み、めっき原板の鋼種による制約や、大幅なコスト増を伴うことなく、Zn−Al−Mg系めっき鋼板部材を用いたアーク溶接構造部材において優れた耐溶融金属脆化割れ性を有するものを提供することを目的とする。   In view of such a current situation, the present invention is excellent in resistance to molten metal brittleness in an arc welded structure member using a Zn-Al-Mg-based plated steel sheet member without being restricted by the steel type of the plating base plate and a significant increase in cost. It aims at providing what has fracturing ability.

発明者らの検討によれば、ガスシールドアーク溶接時に溶接ビード近傍ではめっき層が蒸発により一旦消失するが、アークが通り過ぎた後、ビードから少し離れた位置で溶融状態となっているめっき層金属が直ちに上記の消失した箇所に濡れ拡がるという現象が起きることが確かめられている。この濡れ拡がりを抑制して、上記の蒸発消失した状態を維持したまま冷却が完了すれば、溶接ビートに近い位置で母材中へのめっき層成分の侵入が回避され、溶融金属脆化割れは効果的に防止できると考えられる。発明者らは詳細な研究の結果、シールドガス中に通常20体積%程度配合されているCO2の濃度を大幅に低減することにより、Zn−Al−Mg系めっき鋼板部材における上記の濡れ拡がりが顕著に抑制されることを見出し、本発明を完成するに至った。 According to the inventors' investigation, the plating layer disappears once by evaporation in the vicinity of the weld bead during gas shielded arc welding, but after the arc passes, the plating layer metal is in a molten state at a position slightly away from the bead. It has been confirmed that the phenomenon of immediately spreading to the above disappeared portion occurs. If this wetting spread is suppressed and cooling is completed while maintaining the state of evaporative disappearance, the penetration of the plating layer component into the base metal is avoided at a position close to the welding beat, and the molten metal embrittlement crack is It can be effectively prevented. As a result of detailed studies, the inventors have significantly reduced the concentration of CO 2 that is usually blended in the shielding gas by about 20% by volume, whereby the above-described wetting and spreading in the Zn—Al—Mg based plated steel sheet member can be achieved. It has been found that it is significantly suppressed, and the present invention has been completed.

すなわち上記目的は、ガスシールドアーク溶接にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材を溶融Zn−Al−Mg系めっき鋼板部材とし、Arガス、HeガスまたはAr+He混合ガスをベースとしてCO2濃度が0〜7体積%に調整されたシールドガスを使用する、耐溶融金属脆化割れ性に優れるZn−Al−Mg系めっき鋼板アーク溶接構造部材の製造法によって達成される。 That is, the above object is to manufacture a welded structural member by joining steel materials by gas shielded arc welding, and at least one member to be joined is a molten Zn—Al—Mg based plated steel plate member, and Ar gas, He gas or By using a shielding gas whose CO 2 concentration is adjusted to 0 to 7% by volume based on a mixed gas of Ar + He and using a manufacturing method of a Zn—Al—Mg-based plated steel sheet arc welded structural member having excellent resistance to molten metal embrittlement cracking Achieved.

ここで、「溶融Zn−Al−Mg系めっき鋼板部材」は、溶融Zn−Al−Mg系めっき鋼板からなる部材、またはそれを素材として成形加工した部材である。   Here, the “molten Zn—Al—Mg-based plated steel sheet member” is a member made of a molten Zn—Al—Mg-based plated steel sheet, or a member formed by using it as a raw material.

前記溶融Zn−Al−Mg系めっき鋼板は、例えば質量%で、Al:1.0〜22.0%好ましくは4.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.5%、残部Znおよび不可避的不純物からなるめっき層を有するものが好適な対象となる。その片面当たりのめっき付着量は例えば20〜250g/m2である。 The molten Zn—Al—Mg based steel sheet is, for example, mass%, Al: 1.0 to 22.0%, preferably 4.0 to 22.0%, Mg: 0.05 to 10.0%, Ti : 0 to 0.10%, B: 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, the one having a plating layer composed of the balance Zn and inevitable impurities is suitable. It becomes a target. The plating adhesion amount per one side is, for example, 20 to 250 g / m 2 .

本発明によれば、本来的に溶融金属脆化割れが生じやすい溶融Zn−Al−Mg系めっき鋼板部材を用いたアーク溶接構造物において、優れた耐溶融金属脆化割れ性を呈するものを特段のコスト増を伴うことなく安定して実現することが可能となった。めっき原板の鋼種にも特に制約はなく、溶融金属脆化割れ対策として特殊な元素を添加した鋼種を採用する必要はない。高張力鋼板を適用しても優れた耐溶融金属脆化割れ性が得られる。また、部品形状に対する自由度も大きい。したがって本発明は、今後ニーズの増大が予想される高張力鋼板を用いた自動車用アーク溶接構造部材をはじめ、種々の広範な用途において、Zn−Al−Mg系めっき鋼板アーク溶接構造部材の普及に寄与するものである。   According to the present invention, an arc welded structure using a molten Zn—Al—Mg-based plated steel sheet member that is inherently susceptible to molten metal embrittlement cracking is one that exhibits excellent resistance to molten metal embrittlement cracking. It became possible to realize stably without increasing the cost. There is no particular restriction on the steel type of the plating base plate, and it is not necessary to adopt a steel type to which a special element is added as a measure against molten metal embrittlement cracking. Even when a high-strength steel plate is applied, excellent melt metal embrittlement cracking resistance can be obtained. Moreover, the freedom degree with respect to a component shape is also large. Therefore, the present invention is widely used in a wide variety of applications including Zn-Al-Mg-plated steel sheet arc welded structural members, including automotive arc welded structural members that use high-tensile steel sheets that are expected to increase in the future. It contributes.

ガスシールドアーク溶接中のトーチおよび母材の断面を模式的に示した図。The figure which showed typically the cross section of the torch and base material in gas shielded arc welding. 重ねすみ肉溶接継手の溶接部断面構造を模式的示した図。The figure which showed typically the welding part cross-section of a lap fillet welded joint. 溶融Zn−Al−Mg系めっき鋼板のアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示した図。The figure which showed typically the cross-sectional state of the high temperature welded part immediately after the arc passed at the time of the arc welding of a hot-dip Zn-Al-Mg type plated steel plate. 図3の状態から冷却された従来のZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示した図。The figure which showed typically the cross-section of the conventional Zn-Al-Mg type plated steel plate arc welding structural member cooled from the state of FIG. 図3の状態から冷却されて得られた本発明に従うZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示した図。The figure which showed typically the cross-section of the Zn-Al-Mg system plating steel plate arc welding structural member according to this invention obtained by cooling from the state of FIG. Zn−Al−Mg系めっき鋼板アーク溶接構造部材のめっき層蒸発領域長さに及ぼすシールドガス中CO2濃度の影響を示したグラフ。Zn-Al-Mg plated steel sheet arc welding structure plating layer evaporation zone graph showing the effect of shielding gas CO 2 concentration on the length of the member. 耐溶融金属脆化割れ性を調べるための溶接実験方法を示した図。The figure which showed the welding experiment method for investigating the molten metal embrittlement cracking resistance.

図1に、ガスシールドアーク溶接中のトーチおよび母材の断面を模式的に示す。溶接トーチ31は母材1の表面上にアーク35を形成しながら矢印の方向に進行している。溶接トーチ31の中心部に位置する電極33と溶接ワイヤ32の周囲からシールドガス34が吹き出し、アーク35および高温に曝される母材1の表面を大気から保護している。アーク35からの入熱により溶融した母材1の一部は溶接トーチ31が通り過ぎたのち急速に凝固して、溶接金属からなる溶接ビード2を形成する。シールドガス34は、非酸化性のガスであることが必要である。一般的にはArなどの不活性ガスをベースガスとして、これにCO2を20体積%程度混合したAr+CO2混合ガスが採用される。シールドガス34中のCO2はプラズマ状態のアーク35によって一部がCOとO2に乖離すると考えられており、そのCOが還元作用を発揮して、母材1表面の活性化、および溶接ビードとその周辺の酸化抑制を担うとされる。また、CO2はアーク35の安定化にも役立つとされる。 FIG. 1 schematically shows a cross section of a torch and a base material during gas shielded arc welding. The welding torch 31 advances in the direction of the arrow while forming an arc 35 on the surface of the base material 1. A shield gas 34 is blown out from the periphery of the electrode 33 and the welding wire 32 positioned at the center of the welding torch 31 to protect the arc 35 and the surface of the base material 1 exposed to high temperatures from the atmosphere. A part of the base material 1 melted by heat input from the arc 35 is rapidly solidified after the welding torch 31 passes and forms a weld bead 2 made of weld metal. The shield gas 34 needs to be a non-oxidizing gas. In general, as the base gas an inert gas such as Ar, which Ar + CO 2 mixed gas of CO 2 were mixed for about 20 vol% is employed. It is considered that a part of CO 2 in the shielding gas 34 is separated from CO and O 2 by the plasma arc 35, and the CO exerts a reducing action to activate the surface of the base material 1 and weld beads. It is said to be responsible for suppressing oxidation in the surrounding area. CO 2 is also considered to help stabilize the arc 35.

図2に、重ねすみ肉溶接継手の溶接部断面構造を模式的に例示する。自動車シャシなどにはアーク溶接によるこの種の溶接継手が多用されている。鋼板部材である母材1、母材1’が重ねられて配置され、母材1の表面と母材1’の端面に溶接ビード2が形成され、両部材が接合されている。図中の破線は溶接前の母材1の表面位置および母材1’の端面位置を表している。母材表面と溶接ビードの交点を「ビード止端部」と呼ぶ。図中には母材1についてのビード止端部を符号3で示してある。   FIG. 2 schematically illustrates the cross-sectional structure of the welded portion of the lap fillet weld joint. This type of welded joint by arc welding is frequently used for automobile chassis. A base material 1 and a base material 1 ′, which are steel plate members, are arranged so as to overlap each other, a weld bead 2 is formed on the surface of the base material 1 and an end surface of the base material 1 ′, and both members are joined. The broken lines in the figure represent the surface position of the base material 1 and the end face position of the base material 1 'before welding. The intersection of the base metal surface and the weld bead is called the “bead toe”. In the drawing, the bead toe portion of the base material 1 is indicated by reference numeral 3.

図3〜図5は、図2に示したビード止端部3の近傍に相当する部位の断面構造を拡大して模式的に示したものである。
図3に、Zn−Al−Mg系めっき鋼板のガスシールドアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示す。母材1の表面は、溶接前にFe−Al系合金層6を介して均一なめっき層7に覆われていたが、アークの通過によってビード止端部3の近くではめっき層の金属が蒸発して消失している(めっき層蒸発領域9)。それよりビード止端部3からの距離が大きい部分では、元のめっき層7が溶融してZn−Al−Mg系溶融金属8となるが、蒸発による消失には至っていない。ビード止端部3からの距離がさらに大きくなると、元のめっき層7が溶融せずに存在している。なお、図3中、Zn−Al−Mg系溶融金属8およびめっき層7の厚さは誇張して描いてある。
3 to 5 schematically show an enlarged cross-sectional structure of a portion corresponding to the vicinity of the bead toe 3 shown in FIG.
FIG. 3 schematically shows a cross-sectional state in the vicinity of a high-temperature weld immediately after the arc passes during gas shielded arc welding of a Zn—Al—Mg based steel sheet. The surface of the base material 1 was covered with a uniform plating layer 7 via the Fe-Al alloy layer 6 before welding, but the metal in the plating layer evaporated near the bead toe 3 due to the passage of the arc. And disappeared (plating layer evaporation region 9). In the portion where the distance from the bead toe 3 is larger than that, the original plating layer 7 is melted to become the Zn—Al—Mg based molten metal 8, but has not disappeared due to evaporation. When the distance from the bead toe 3 is further increased, the original plating layer 7 exists without melting. In FIG. 3, the thicknesses of the Zn—Al—Mg-based molten metal 8 and the plating layer 7 are exaggerated.

図4に、図3の状態から冷却されて得られた従来のZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示す。この場合、溶接時にめっき層が一旦消失して形成した「めっき層蒸発領域」(図3の符号9)にZn−Al−Mg系溶融金属(図3の符号8)が濡れ拡がり、母材1の表面はビード止端部3までの全体がZn−Al−Mg系合金層5に覆われる。Zn−Al−Mg系溶融金属(図3の符号8)が凝固して形成したZn−Al−Mg系合金層5の部分を溶融凝固領域10と呼び、元のめっき層7が残存して形成したZn−Al−Mg系合金層5の部分をめっき層未溶融領域11と呼ぶ。従来のZn−Al−Mg系めっき鋼板アーク溶接構造部材では通常この図のように、ビード止端部3直近は溶融凝固領域10となる。この場合、前述のようにZn−Al−Mg系溶融金属8は液相線温度が低いために、冷却後に溶融凝固領域10となる母材1の表面部分は溶接後の冷却過程でZn−Al−Mg系溶融金属と接触する時間が比較的長くなる。母材1のビード止端部に近い部分には溶接後の冷却で引張応力が生じているので、その結晶粒界中にZn−Al−Mg系溶融金属の成分が侵入しやすい。粒界に侵入した当該成分が溶融金属脆化割れを引き起こす要因となる。   FIG. 4 schematically shows a cross-sectional structure of a conventional Zn—Al—Mg-based plated steel sheet arc welded structural member obtained by cooling from the state of FIG. In this case, the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 3) wets and spreads in the “plating layer evaporation region” (reference numeral 9 in FIG. 3) formed once the plating layer disappears during welding, and the base material 1 The entire surface up to the bead toe 3 is covered with the Zn—Al—Mg alloy layer 5. The portion of the Zn—Al—Mg alloy layer 5 formed by solidification of the Zn—Al—Mg molten metal (reference numeral 8 in FIG. 3) is referred to as a molten solidified region 10, and the original plating layer 7 remains and is formed. The portion of the Zn—Al—Mg-based alloy layer 5 is referred to as a plating layer unmelted region 11. In a conventional Zn-Al-Mg-based plated steel sheet arc welded structural member, the bead toe 3 is usually the melt-solidified region 10 as shown in this figure. In this case, since the liquidus temperature of the Zn—Al—Mg-based molten metal 8 is low as described above, the surface portion of the base material 1 that becomes the melted and solidified region 10 after cooling becomes Zn—Al in the cooling process after welding. -The contact time with the Mg-based molten metal is relatively long. Since tensile stress is generated in the portion of the base material 1 near the bead toe due to cooling after welding, the Zn—Al—Mg based molten metal component tends to enter the crystal grain boundary. The said component which penetrate | invaded the grain boundary becomes a factor which causes a molten metal embrittlement crack.

図5に、図3の状態から冷却されて得られた本発明に従うZn−Al−Mg系めっき鋼板アーク溶接構造部材の断面構造を模式的に示す。本発明では、シールドガスとしてCO2濃度を大幅に減じたガスまたはCO2無添加のガスを使用する。このため溶接時にめっき層が消失した「めっき層蒸発領域」(図3の符号9)の母材1表面は、シールドガスによる還元作用が弱いために酸化され、迅速に薄い酸化皮膜に覆われると考えられる。この酸化皮膜がZn−Al−Mg系溶融金属(図3の符号8)との濡れを阻害することにより、当該Zn−Al−Mg系溶融金属の濡れ拡がりが抑止されるものと推察される。その結果、冷却後にはめっき層蒸発領域9が残存する。すなわち、ビード止端部3近傍の母材1表面はZn−Al−Mg系溶融金属と接触することなく冷却を終えることとなり、その部分での母材1中への溶融金属成分の侵入が回避される。そのため母材1の鋼種に依存することなく、優れた耐溶融金属脆化割れ性が付与される。なお、Zn−Al−Mg系溶融金属(図3の符号8)の高さ位置がビード止端部3より上方となるような溶接姿勢においても、上記の濡れ阻害作用によって当該Zn−Al−Mg系溶融金属の濡れ拡がりは顕著に抑制される。 FIG. 5 schematically shows a cross-sectional structure of a Zn—Al—Mg based plated steel sheet arc welded structural member according to the present invention obtained by cooling from the state of FIG. In the present invention, a gas having a greatly reduced CO 2 concentration or a gas not containing CO 2 is used as the shielding gas. For this reason, the surface of the base material 1 in the “plating layer evaporation region” (reference numeral 9 in FIG. 3) where the plating layer disappeared during welding is oxidized due to a weak reduction action by the shielding gas, and is quickly covered with a thin oxide film. Conceivable. It is inferred that this oxide film inhibits wetting with the Zn—Al—Mg based molten metal (reference numeral 8 in FIG. 3), thereby suppressing the wetting and spreading of the Zn—Al—Mg based molten metal. As a result, the plating layer evaporation region 9 remains after cooling. That is, the surface of the base material 1 in the vicinity of the bead toe 3 is finished to cool without coming into contact with the Zn—Al—Mg-based molten metal, and the penetration of the molten metal component into the base material 1 at that portion is avoided. Is done. Therefore, excellent molten metal embrittlement cracking resistance is imparted without depending on the steel type of the base material 1. Even in a welding posture in which the height position of the Zn—Al—Mg-based molten metal (reference numeral 8 in FIG. 3) is above the bead toe 3, the above-described Zn—Al—Mg due to the above-described wetting inhibition action. Wetting and spreading of the molten metal is remarkably suppressed.

冷却後に残っためっき層蒸発領域9のビード止端部3からの長さを、本明細書では「めっき層蒸発領域長さ」と呼び、図5中に符号Lで表示した。Zn−Al−Mg系めっき鋼板アーク溶接構造部材で問題となる溶融金属脆化割れは、そのほとんどがビード止端部3のごく近傍で発生する。種々検討の結果、上述のめっき層蒸発領域長さが0.3mm以上であれば耐溶融金属脆化割れ性は大幅に向上し、0.4mm以上であればさらに好ましい。このめっき層蒸発領域長さがあまり長くなると、めっき層が存在しないことによる耐食性低下が問題となるが、発明者らの検討によると、めっき層蒸発領域長さが2.0mm以下であれば周囲のZn−Al−Mg系めっき層による犠牲防食作用が十分に得られ、この部分での耐食性低下は問題とならないレベルとなることがわかった。シールドガス組成を後述のように調整することによってめっき層蒸発領域長さを0.3〜2.0mmの範囲にコントロールすることができる。   The length of the plating layer evaporation region 9 remaining after cooling from the bead toe 3 is referred to as “plating layer evaporation region length” in this specification, and is indicated by the symbol L in FIG. Most of the molten metal embrittlement cracks which are a problem in the Zn—Al—Mg plated steel sheet arc welded structural member occur in the vicinity of the bead toe 3. As a result of various studies, if the plating layer evaporation region length is 0.3 mm or more, the molten metal embrittlement cracking resistance is greatly improved, and if it is 0.4 mm or more, it is more preferable. If this plating layer evaporation region length becomes too long, there will be a problem of deterioration of corrosion resistance due to the absence of the plating layer, but according to the study by the inventors, if the plating layer evaporation region length is 2.0 mm or less, It was found that the sacrificial anticorrosive action by the Zn—Al—Mg based plating layer was sufficiently obtained, and the corrosion resistance reduction at this portion was at a level that would not be a problem. By adjusting the shield gas composition as described later, the plating layer evaporation region length can be controlled within the range of 0.3 to 2.0 mm.

〔ガスシールドアーク溶接条件〕
本発明に従うアーク溶接においては、シールドガスのCO2濃度を0〜7体積%の範囲とすることが重要である。シールドガス中に混合されるCO2は前述のようにプラズマアークに触れて一部がCOとO2に乖離し、そのCOの還元作用によって溶接ビード近傍の母材表面が活性化される。従来一般的なガスシールドアーク溶接ではCO2を20体積%程度混合したシールドガスを使用することによって上記の還元作用を十分に発揮させるとともに、アークの安定化による溶け込み深さの増大を図るのが通常である。しかし、本発明ではその還元作用を抑制させるか、あるいは全く利用しないことにより、溶接部近傍のめっき層が蒸発消失した母材表面が過度に活性化されることを防止し、周囲の母材表面に存在するZn−Al−Mg系溶融金属がビード止端部に濡れ拡がることを抑止する。詳細な検討の結果、CO2濃度を7%以下としたとき、濡れ拡がりの抑止効果が現れ、上述のめっき層蒸発領域長さを0.3〜2.0mmの範囲にコントロールすることが可能となる。CO2濃度を5.0%未満とすることがより効果的である。シールドガスのベースガスは、従来と同様にArガスとすることができる。Heガスや、Ar+He混合ガスとしてもよい。それらのベースガスの純度は従来と同等レベルとすればよい。
[Gas shield arc welding conditions]
In the arc welding according to the present invention, it is important that the CO 2 concentration of the shielding gas is in the range of 0 to 7% by volume. As described above, CO 2 mixed in the shielding gas comes into contact with the plasma arc and partly dissociates into CO and O 2 , and the base metal surface near the weld bead is activated by the reduction action of the CO. In conventional gas shielded arc welding, it is possible to achieve the above reduction effect sufficiently by using a shielding gas mixed with about 20% by volume of CO 2 and to increase the penetration depth by stabilizing the arc. It is normal. However, in the present invention, by suppressing the reduction action or not using it at all, it is possible to prevent the surface of the base material where the plating layer in the vicinity of the welded portion has evaporated and lost from being excessively activated, and the surface of the surrounding base material Zn—Al—Mg based molten metal present in the bead is prevented from spreading to the bead toes. As a result of detailed examination, when the CO 2 concentration is set to 7% or less, the effect of suppressing the wetting and spreading is exhibited, and the above-mentioned plating layer evaporation region length can be controlled within the range of 0.3 to 2.0 mm. Become. It is more effective to set the CO 2 concentration to less than 5.0%. The base gas of the shielding gas can be Ar gas as in the conventional case. He gas or Ar + He mixed gas may be used. The purity of those base gases may be set to the same level as before.

その他の溶接条件については、例えばシールドガス流量は10〜30L/min、溶接電流は90〜350A、アーク電圧は10〜35V、溶接速度は0.2〜1.5m/minの範囲で調整すればよい。溶接装置は従来一般的なものを使用することができる。   For other welding conditions, for example, the shield gas flow rate is adjusted to 10 to 30 L / min, the welding current is set to 90 to 350 A, the arc voltage is set to 10 to 35 V, and the welding speed is adjusted within the range of 0.2 to 1.5 m / min. Good. Conventional welding devices can be used.

Arガス中のCO2濃度とめっき層蒸発領域長さの関係を調べた実験例を紹介する。
表1に示す溶融Zn−Al−Mg系めっき鋼板を水平に置き、水平移動する溶接トーチから発生するアークにより鋼板表面に溶接ビードを形成させた(ビードオンプレート)。溶接条件は表1中に記載してある。溶接ビードおよびその近傍の母材を含むビード方向に垂直な断面について、鏡面研磨および硝酸濃度0.2体積%ナイタール液でのエッチングを施したのち、走査型電子顕微鏡観察を行い、ビード止端部近傍を観察することにより図5に符号Lで示しためっき層蒸発領域長さを測定した。
An experimental example in which the relationship between the CO 2 concentration in the Ar gas and the plating layer evaporation region length is examined is introduced.
The molten Zn—Al—Mg based plated steel sheet shown in Table 1 was placed horizontally, and a weld bead was formed on the steel sheet surface by an arc generated from a horizontally moving welding torch (bead on plate). The welding conditions are listed in Table 1. The cross section perpendicular to the bead direction including the weld bead and the base material in the vicinity thereof is mirror-polished and etched with a nitric acid solution with a nitric acid concentration of 0.2% by volume. By observing the vicinity, the plating layer evaporation region length indicated by the symbol L in FIG. 5 was measured.

Figure 0006080391
Figure 0006080391

図6にその結果を示す。図6からわかるように、シールドガス中のCO2濃度が7体積%以下になるとめっき層蒸発領域を残したまま冷却される現象が明確に現れ、0.3mm以上のめっき層蒸発領域長さが確保される。CO2濃度5体積%付近に位置する3プロットはCO2濃度4.8体積%の例であるが、このようにCO2濃度を5.0体積%未満とすることでめっき層蒸発領域長さを0.8mm以上とすることができ、極めて良好な耐溶融金属脆化割れ性が実現できる。 The result is shown in FIG. As can be seen from FIG. 6, when the CO 2 concentration in the shielding gas is 7% by volume or less, the phenomenon of cooling while leaving the plating layer evaporation region clearly appears, and the plating layer evaporation region length of 0.3 mm or more is shown. Secured. The three plots located near the CO 2 concentration of 5% by volume are examples of the CO 2 concentration of 4.8% by volume. Thus, by setting the CO 2 concentration to less than 5.0% by volume, the plating layer evaporation region length Can be made 0.8 mm or more, and extremely good resistance to molten metal embrittlement cracking can be realized.

〔溶融Zn−Al−Mg系めっき鋼板部材〕
本発明では、アーク溶接で接合する双方の部材のうち、少なくとも一方に溶融Zn−Al−Mg系めっき鋼板部材を適用する。
その溶融Zn−Al−Mg系めっき鋼板部材のめっき原板としては、用途に応じて種々の鋼種が採用できる。高張力鋼板を使用することもできる。めっき原板の板厚は1.0〜6.0mmとすることができる。
[Fused Zn-Al-Mg plated steel sheet member]
In the present invention, a molten Zn—Al—Mg based plated steel sheet member is applied to at least one of both members joined by arc welding.
Various steel types can be adopted as the plating original plate of the molten Zn—Al—Mg-based plated steel plate member depending on the application. High tensile steel plates can also be used. The plate thickness of the plating original plate can be set to 1.0 to 6.0 mm.

具体的な溶融Zn−Al−Mg系めっき層の組成としては、質量%で、Al:1.0〜22.0%好ましくは4.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.5%、残部Znおよび不可避的不純物からなるものを挙げることができる。めっき層組成は溶融めっき浴組成をほぼ反映したものとなる。溶融めっきの方法は特に限定されないが、一般的にはインライン焼鈍型の溶融めっき設備を使用することがコスト的に有利となる。以下、めっき層の成分元素について説明する。めっき層成分元素の「%」は特に断らない限り「質量%」を意味する。   Specifically, the composition of the molten Zn—Al—Mg-based plating layer is, by mass, Al: 1.0-22.0%, preferably 4.0-22.0%, Mg: 0.05-10. 0%, Ti: 0 to 0.10%, B: 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, balance Zn and inevitable impurities be able to. The plating layer composition substantially reflects the hot-dip plating bath composition. Although the method of hot dipping is not particularly limited, it is generally advantageous in terms of cost to use an in-line annealing type hot dipping equipment. Hereinafter, the component elements of the plating layer will be described. “%” Of the plating layer component element means “mass%” unless otherwise specified.

Alは、めっき鋼板の耐食性向上に有効であり、また、めっき浴においてMg酸化物系ドロスの発生を抑制する。これらの作用を十分に発揮させるためには1.0%以上のAl含有量を確保する必要があり、4.0%以上のAl含有量を確保することがより好ましい。一方、Al含有量が多くなるとめっき層の下地に脆いFe−Al合金層が成長しやすくなり、Fe−Al合金層の過剰な成長はめっき密着性の低下を招く要因となる。種々検討の結果、Al含有量は22.0%以下とすることがより好ましく、15.0%以下、あるいはさらに10.0%以下に管理しても構わない。   Al is effective in improving the corrosion resistance of the plated steel sheet, and suppresses the generation of Mg oxide dross in the plating bath. In order to fully exhibit these actions, it is necessary to secure an Al content of 1.0% or more, and it is more preferable to secure an Al content of 4.0% or more. On the other hand, when the Al content increases, a brittle Fe—Al alloy layer easily grows on the base of the plating layer, and excessive growth of the Fe—Al alloy layer causes a decrease in plating adhesion. As a result of various studies, the Al content is more preferably 22.0% or less, and may be controlled to 15.0% or less, or even 10.0% or less.

Mgは、めっき層表面に均一な腐食生成物を生成させてめっき鋼板の耐食性を著しく高める作用を呈する。Mg含有量は0.05%以上とすることがより効果的であり、1.0%以上とすることがさらに好ましい。一方、めっき浴中のMg含有量が多くなるとMg酸化物系ドロスが発生し易くなり、めっき層の品質低下を招く要因となる。Mg含有量は10.0%以下の範囲とすることが望ましい。   Mg exhibits the effect | action which produces | generates a uniform corrosion product on the surface of a plating layer, and raises the corrosion resistance of a plated steel plate remarkably. The Mg content is more preferably 0.05% or more, and more preferably 1.0% or more. On the other hand, if the Mg content in the plating bath increases, Mg oxide-based dross is likely to occur, which causes a reduction in the quality of the plating layer. The Mg content is desirably in the range of 10.0% or less.

溶融めっき浴中にTi、Bを含有させると、溶融めっき時における製造条件の自由度が拡大する等のメリットがある。このため、必要に応じてTi、Bの1種または2種を添加することができる。その添加量はTiの場合0.0005%以上、Bの場合0.0001%以上とすることがより効果的である。ただし、めっき層中のTiやBの含有量が過剰になると析出物の生成に起因しためっき層表面の外観不良を引き起こす要因となる。これらの元素を添加する場合は、Ti:0.10%以下、B:0.05%以下の範囲とすることが望ましい。   When Ti and B are contained in the hot dipping bath, there are advantages such as an increase in the degree of freedom of manufacturing conditions during hot dipping. For this reason, 1 type or 2 types of Ti and B can be added as needed. It is more effective to add 0.0005% or more in the case of Ti and 0.0001% or more in the case of B. However, when the content of Ti or B in the plating layer becomes excessive, it causes a poor appearance of the plating layer surface due to the formation of precipitates. When these elements are added, it is desirable that Ti: 0.10% or less and B: 0.05% or less.

溶融めっき浴中にSiを含有させると、めっき原板表面とめっき層の界面に生成するFe−Al合金層の過剰な成長が抑制され、溶融Zn−Al−Mg系めっき鋼板の加工性を向上させる上で有利となる。したがって、必要に応じてSiを含有させることができる。その場合、Si含有量を0.005%以上とすることがより効果的である。ただし、過剰のSi含有は溶融めっき浴中のドロス量を増大させる要因となるので、Si含有量は2.0%以下とすることが望ましい。   When Si is contained in the hot dipping bath, excessive growth of the Fe—Al alloy layer formed at the interface between the plating original plate surface and the plating layer is suppressed, and the workability of the hot-dip Zn—Al—Mg plated steel sheet is improved. This is advantageous. Therefore, Si can be contained as necessary. In that case, it is more effective to set the Si content to 0.005% or more. However, since excessive Si content causes an increase in the dross amount in the hot dipping bath, the Si content is preferably 2.0% or less.

溶融めっき浴中には、鋼板を浸漬・通過させる関係上、Feが混入しやすい。Zn−Al−Mg系めっき層中のFe含有量は2.5%以下とすることが好ましい。   In the hot dipping bath, Fe is likely to be mixed because the steel sheet is immersed and passed. The Fe content in the Zn—Al—Mg plating layer is preferably 2.5% or less.

溶融Zn−Al−Mg系めっき鋼板部材のめっき付着量が少ないと、めっき面の耐食性および犠牲防食作用を長期にわたって維持するうえで不利となる。種々検討の結果、本発明に従ってビード止端部近傍に生じた「めっき層蒸発領域」を残存させる場合、片面当たりのZn−Al−Mg系めっき付着量は20g/m2以上とすることがより効果的である。一方、めっき付着量が多くなると溶接時にブローホールが発生しやすくなる。ブローホールが発生すると溶接強度が低下する。このため片面当たりのめっき付着量は250g/m2以下とすることが望ましい。 When the coating amount of the molten Zn—Al—Mg-based steel sheet member is small, it is disadvantageous for maintaining the corrosion resistance and sacrificial anticorrosive action of the plated surface for a long time. As a result of various studies, when the “plating layer evaporation region” generated in the vicinity of the bead toe according to the present invention is left, the Zn—Al—Mg based plating adhesion amount per side is preferably 20 g / m 2 or more. It is effective. On the other hand, when the plating adhesion amount increases, blow holes are likely to occur during welding. When blow holes occur, the welding strength decreases. For this reason, it is desirable that the amount of plating deposited on one side be 250 g / m 2 or less.

〔溶接相手部材〕
上記の溶融Zn−Al−Mg系めっき鋼板部材とアーク溶接により接合する相手部材は、上記と同様の溶融Zn−Al−Mg系めっき鋼板部材であっても構わないし、それ以外の鋼材であっても構わない。
[Parts to be welded]
The mating member to be joined by arc welding to the above molten Zn—Al—Mg based plated steel sheet member may be the same molten Zn—Al—Mg based plated steel sheet member as described above, or other steel materials. It doesn't matter.

表2に示す組成を有する板厚3.2mm、板幅1000mmの冷延鋼帯を溶融めっきラインに通板して種々のめっき層組成を有する溶融Zn−Al−Mg系めっき鋼板を製造し、以下に示す試験方法によりガスシールドアーク溶接を行い、耐溶融金属脆化割れ性に及ぼすシールドガス組成の影響を調査した。めっき層組成、めっき付着量、シールドガス組成は後述表4中に示してある。本発明例に適用したシールドガスは、CO2:0〜7体積%、残部:Ar、Heの1種以上の組成を有するものである。 A cold-rolled steel strip having a thickness of 3.2 mm and a width of 1000 mm having the composition shown in Table 2 is passed through a hot dipping line to produce hot-dip Zn—Al—Mg-based plated steel plates having various plating layer compositions, Gas shield arc welding was performed by the following test method, and the influence of the shielding gas composition on the resistance to molten metal embrittlement cracking was investigated. The plating layer composition, the plating adhesion amount, and the shielding gas composition are shown in Table 4 below. The shielding gas applied to the examples of the present invention has one or more compositions of CO 2 : 0 to 7% by volume and the balance: Ar and He.

Figure 0006080391
Figure 0006080391

〔耐溶融金属脆化割れ性の試験方法〕
図7に示すように、100mm×75mmの試験片14(溶融Zn−Al−Mg系めっき鋼板部材)の中央部に直径20mm、長さ25mmの棒鋼のボス(突起)15を垂直に立て、表3に示す溶接条件でガスシールドアーク溶接を行って試験片14とボス15を接合した。具体的には溶接開始点Sから時計回りにボス15の周囲を1周して、溶接開始点Sを過ぎた後もさらにビードを重ねて溶接を進め、溶接ビード16の重なり部分17が生成した後の溶接終了点Eまで溶接を行った。溶接中、試験片14は平板上に拘束された状態とした。この試験は実験的に溶接割れが生じやすい状況としたものである。
[Test method for molten metal embrittlement crack resistance]
As shown in FIG. 7, a boss (projection) 15 of a steel bar having a diameter of 20 mm and a length of 25 mm is vertically set up at the center of a 100 mm × 75 mm test piece 14 (molten Zn—Al—Mg-based plated steel plate member). The test piece 14 and the boss 15 were joined by gas shield arc welding under the welding conditions shown in FIG. Specifically, the boss 15 is rotated once around the boss 15 clockwise from the welding start point S, and after the welding start point S is passed, welding is further performed by overlapping the beads, and an overlapping portion 17 of the weld bead 16 is generated. Welding was performed up to a later welding end point E. During welding, the test piece 14 was held on a flat plate. This test was conducted in a situation where welding cracks are likely to occur experimentally.

Figure 0006080391
Figure 0006080391

溶接後、ボス15の中心軸を通り、且つビード重なり部分17を通る切断面20について、ビード重なり部分17近傍の試験片14部分を走査型電子顕微鏡で観察することにより、試験片14に観測される最も深い割れの深さ(最大割れ深さ)を測定した。この割れは「溶融金属脆化割れ」であると判断される。結果を表4に示す。   After welding, the cut surface 20 passing through the central axis of the boss 15 and passing through the bead overlap portion 17 is observed on the test piece 14 by observing the test piece 14 near the bead overlap portion 17 with a scanning electron microscope. The deepest crack depth (maximum crack depth) was measured. This crack is judged to be a “molten metal embrittlement crack”. The results are shown in Table 4.

Figure 0006080391
Figure 0006080391

表4に示されるように、シールドガス中のCO2濃度が9体積%以上である比較例のものにおいて、溶融金属脆化割れが観測された。これらはいずれも試験片14におけるめっき層蒸発領域長さL(前述図3参照)が0.3mm未満であり、最も深い溶融金属脆化割れはほとんどの試料において止端部からの距離が0.3mm以内の部位に生じていた。これに対し、シールドガス中のCO2濃度を7%以下とした本発明例のものには溶融金属脆化割れは観測されなかった。本発明例のものにおけるめっき層蒸発領域長さLは、いずれも0.3mm以上であり、特にCO2濃度を5%未満とした例におけるめっき層蒸発領域長さLは0.6mm以上であった。 As shown in Table 4, molten metal embrittlement cracking was observed in the comparative example in which the CO 2 concentration in the shielding gas was 9% by volume or more. In any of these, the plating layer evaporation region length L (see FIG. 3) in the test piece 14 is less than 0.3 mm, and the deepest molten metal embrittlement crack has a distance from the toe portion of most samples of about 0.3 mm. It occurred at a site within 3 mm. On the other hand, no molten metal embrittlement cracking was observed in the examples of the present invention in which the CO 2 concentration in the shielding gas was 7% or less. The plating layer evaporation region length L in the examples of the present invention is 0.3 mm or more, and in particular, the plating layer evaporation region length L in the example in which the CO 2 concentration is less than 5% is 0.6 mm or more. It was.

1、1’ 母材
2 溶接ビード
3 ビード止端部
5 Zn−Al−Mg系合金層
6 Fe−Al系合金層
7 めっき層
8 Zn−Al−Mg系溶融金属
9 めっき層蒸発領域
10 溶融凝固領域
11 めっき層未溶融領域
14 試験片
15 ボス
16 溶接ビード
17 ビード重なり部分
31 溶接トーチ
32 溶接ワイヤ
33 電極
34 シールドガス
35 アーク
DESCRIPTION OF SYMBOLS 1, 1 'base material 2 Weld bead 3 Bead toe part 5 Zn-Al-Mg type alloy layer 6 Fe-Al type alloy layer 7 Plating layer 8 Zn-Al-Mg type molten metal 9 Plating layer evaporation area 10 Melt solidification Area 11 Plating layer unmelted area 14 Test piece 15 Boss 16 Weld bead 17 Bead overlap part 31 Welding torch 32 Welding wire 33 Electrode 34 Shielding gas 35 Arc

Claims (4)

ガスシールドアーク溶接(ただし、フラックス入りワイヤを使用する場合を除く。)にて鋼材同士を接合して溶接構造部材を製造するに際し、少なくとも接合する一方の部材を溶融Zn−Al−Mg系めっき鋼板部材とし、CO 2 :0〜7体積%、残部:Ar、Heの1種以上である組成を有するシールドガスを使用する、耐溶融金属脆化割れ性に優れるZn−Al−Mg系めっき鋼板アーク溶接構造部材の製造法。 When manufacturing a welded structural member by joining steel materials by gas shielded arc welding (except when a flux-cored wire is used), at least one member to be joined is a molten Zn—Al—Mg-based plated steel sheet. and member, CO 2: 0 to 7% by volume, remainder: Ar, using a shielding gas having a composition is one or more of He, Zn-Al-Mg-based plated steel sheet arcs having excellent liquid metal embrittlement cracking resistance Manufacturing method for welded structural members. 前記溶融Zn−Al−Mg系めっき鋼板は、質量%で、Al:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.5%、残部Znおよび不可避的不純物からなるめっき層を有するものである請求項1に記載の耐溶融金属脆化割れ性に優れるZn−Al−Mg系めっき鋼板アーク溶接構造部材の製造法。   The molten Zn—Al—Mg-based plated steel sheet is, by mass, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, and B: 0. 2. The molten metal embrittlement resistance according to claim 1, comprising a plating layer comprising 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.5%, the balance Zn and inevitable impurities. A method for producing a Zn-Al-Mg-based plated steel sheet arc welded structural member having excellent crackability. 前記溶融Zn−Al−Mg系めっき鋼板は、片面当たりのめっき付着量が20〜250g/m2である請求項1または2に記載の耐溶融金属脆化割れ性に優れるZn−Al−Mg系めっき鋼板アーク溶接構造部材の製造法。 3. The Zn—Al—Mg system having excellent resistance to molten metal embrittlement cracking according to claim 1, wherein the molten Zn—Al—Mg based plated steel sheet has a plating adhesion amount of 20 to 250 g / m 2 per one side. Manufacturing method of plated steel arc welded structural members. 前記シールドガスは、CO2濃度が0体積%以上5.0体積%未満に調整されたものである、請求項1〜3のいずれか1項に記載の耐溶融金属脆化割れ性に優れるZn−Al−Mg系めっき鋼板アーク溶接構造部材の製造法。 The shielding gas, CO 2 concentration is one which is adjusted to less than 0 vol% to 5.0 vol%, excellent in liquid metal embrittlement cracking resistance according to any one of claims 1 to 3 Zn -Method for producing an Al-Mg plated steel sheet arc welded structural member.
JP2012134660A 2011-07-13 2012-06-14 Method for producing Zn-Al-Mg plated steel sheet arc welded structural member Active JP6080391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012134660A JP6080391B2 (en) 2011-07-13 2012-06-14 Method for producing Zn-Al-Mg plated steel sheet arc welded structural member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011155268 2011-07-13
JP2011155268 2011-07-13
JP2012134660A JP6080391B2 (en) 2011-07-13 2012-06-14 Method for producing Zn-Al-Mg plated steel sheet arc welded structural member

Publications (2)

Publication Number Publication Date
JP2013035060A JP2013035060A (en) 2013-02-21
JP6080391B2 true JP6080391B2 (en) 2017-02-15

Family

ID=47885178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012134660A Active JP6080391B2 (en) 2011-07-13 2012-06-14 Method for producing Zn-Al-Mg plated steel sheet arc welded structural member

Country Status (1)

Country Link
JP (1) JP6080391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089858A1 (en) * 2009-02-04 2010-08-12 国立大学法人信州大学 Process for producing carbon nanotubes

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015198627A1 (en) * 2014-06-27 2017-04-20 日新製鋼株式会社 Arc welding method for molten Zn-Al-Mg-based plated steel sheet, method for producing welded member, and arc welded member
JP6412817B2 (en) * 2015-03-24 2018-10-24 岩谷産業株式会社 Welding method of galvanized steel sheet
JP6114785B2 (en) * 2015-05-29 2017-04-12 日新製鋼株式会社 Arc welding method for hot-dip Zn-based plated steel sheet with excellent weld appearance and weld strength, and method for producing welded member
CN105522263A (en) * 2016-02-29 2016-04-27 上海瑞尔实业有限公司 Welding equipment of cast magnesium alloy and welding process thereof
CN106166640A (en) * 2016-08-18 2016-11-30 上海闵轩钢结构工程有限公司 A kind of high-strength steel and the welding procedure of aluminium alloy
KR102043516B1 (en) 2017-12-20 2019-11-12 주식회사 포스코 Method of welding coated steel sheet and austenite based stianless pipe
CN113751840A (en) * 2021-09-02 2021-12-07 唐山钢铁集团有限责任公司 Method for improving quality of welding seam of gas metal arc welding of zinc-aluminum-magnesium plating plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732152A (en) * 1993-07-22 1995-02-03 Nippon Steel Corp Method for gas shielded metal-arc welding of galvanized steel sheet and auxiliary wire
JP2005230912A (en) * 2004-01-22 2005-09-02 Nippon Steel Corp Arc welding flux cored wire superior in liquid metal embrittlement crack resistance, and arc welding method
JP4303655B2 (en) * 2004-07-29 2009-07-29 新日本製鐵株式会社 Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
FR2903623B1 (en) * 2006-07-12 2008-09-19 L'air Liquide METHOD FOR LASER-ARC HYBRID WELDING OF ALUMINUM METALLIC PARTS
JP2010179353A (en) * 2009-02-09 2010-08-19 Daihen Corp Gas-shield arc welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089858A1 (en) * 2009-02-04 2010-08-12 国立大学法人信州大学 Process for producing carbon nanotubes

Also Published As

Publication number Publication date
JP2013035060A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP6080391B2 (en) Method for producing Zn-Al-Mg plated steel sheet arc welded structural member
JP5372217B2 (en) Manufacturing method of arc-welded structural members
JP5098217B2 (en) Welded joints of galvanized steel sheets excellent in corrosion resistance and zinc embrittlement cracking resistance of welds and methods for producing the same
JP5194586B2 (en) Stainless steel flux-cored welding wire for galvanized steel sheet welding
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
JP5689492B2 (en) Dissimilar material joining filler metal and dissimilar material welding structure
JP5980128B2 (en) Manufacturing method of arc-welded structural members
JP2014133259A (en) Manufacturing method of arc welding structural member
JP4303655B2 (en) Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
TW201815499A (en) Welding member and method for producing same
JP2012081514A (en) Fillet arc welding method of galvanized steel sheet
JP6632839B2 (en) Aluminum alloy filler metal and aluminum alloy welding method
JP2013530052A (en) Method of arc welding metal parts coated with aluminum using an inert gas containing nitrogen
US20150231726A1 (en) METHOD FOR PRODUCING ARC-WELDED Zn-Al-Mg ALLOY COATED STEEL PLATE STRUCTURAL MEMBER
US20240042541A1 (en) Welded structural member having excellent crack resistance and manfuacturing method thereof
JP2012125821A (en) Different material joint structure
JP5337665B2 (en) Solid wire for MAG welding
JP2007054868A (en) WELDING WIRE FOR Zn-BASED PLATED STEEL SHEET AND WELDING METHOD FOR Zn-BASED PLATED STEEL SHEET
KR102305743B1 (en) Welded structural member having excellent crack resistance and manufacturing method of the same
JPH06210490A (en) Welding wire of zinc galvanized steel sheet and welding method
JP4857013B2 (en) Bonding structure
JP2004136342A (en) Steel wire for gas shielded arc welding
JP2004209513A (en) Arc welding method of galvannealed steel plate
JPH05305477A (en) Wire for galvanized steel sheet having excellent arc weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6080391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350