JP2012081514A - Fillet arc welding method of galvanized steel sheet - Google Patents

Fillet arc welding method of galvanized steel sheet Download PDF

Info

Publication number
JP2012081514A
JP2012081514A JP2010231900A JP2010231900A JP2012081514A JP 2012081514 A JP2012081514 A JP 2012081514A JP 2010231900 A JP2010231900 A JP 2010231900A JP 2010231900 A JP2010231900 A JP 2010231900A JP 2012081514 A JP2012081514 A JP 2012081514A
Authority
JP
Japan
Prior art keywords
welding
steel sheet
galvanized steel
welding wire
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010231900A
Other languages
Japanese (ja)
Inventor
Shinji Kodama
真二 児玉
Kinya Ishida
欽也 石田
Seiji Furusako
誠司 古迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010231900A priority Critical patent/JP2012081514A/en
Publication of JP2012081514A publication Critical patent/JP2012081514A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve high joint strength by stabilizing fillet arc welding of a high strength galvanized steel sheet, as cracks due to hydrogen embrittlement occurs even when a low temperature transformation welding material is used for the steel sheet, and a droplet transforming mode is unstable even when a flux-cored wire having high rates of Oand metal powder is used, in arc welding of a high strength galvanized steel sheet (pulse MAG welding, in particular).SOLUTION: In this fillet arc welding method of a galvanized steel sheet, welding wire components include: 0.15-0.5% C; 0.3-1.5% Si; 0.2-3.0% Mn; 0.1-0.4% SiO, AlO, TiO, NaO, and KO; 0.05-0.25% O; and the remainder being Fe. The flux-cored welding wire having a filling rate of 5-12% is used, and a cracking parameter (PcmS) of the steel sheet and a cracking parameter (PcmW) of the welding wire have the following relation: -0.86×PcmS+0.51≤PcmW≤-1.9×PcmS+1.0.

Description

本発明は、自動車等の構造部材として用いられる亜鉛めっき鋼板の溶接に関し、特にブローホールやピット等の溶接欠陥の発生を防止しつつ、良好な継手疲労強度を得ることができる亜鉛めっき鋼板の隅肉アーク溶接方法(特にパルスMAG溶接方法)およびその溶接継手に関するものである。   The present invention relates to welding of galvanized steel sheets used as structural members for automobiles and the like, and in particular, corners of galvanized steel sheets capable of obtaining good joint fatigue strength while preventing the occurrence of welding defects such as blow holes and pits. The present invention relates to a meat arc welding method (particularly, a pulse MAG welding method) and a welded joint thereof.

近年、自動車分野では車体重量軽減による燃費向上の観点から、高張力鋼板の適用による鋼材の薄厚化が進められている。さらに、鋼材の薄厚化に伴い、腐食による鋼材の穴開きが懸念されるようになり、腐食防止の観点から高強度亜鉛めっき鋼板の適用が検討されている。
溶接部の強度特性としては、溶接継手の疲労強度の確保が必要となる。しかしながら、例えば780MPa級の高強度鋼板を用いても、その継手疲労強度は440MPa程度の軟鋼と同程度の強度しか確保できないとされている。この点が高強度鋼板の継手疲労強度向上の課題となる。
継手疲労強度向上に関しては、従来技術として、低温変態溶接材料の適用が知られている。この技術は、溶接金属のマルテンサイト変態温度を下げ、溶接金属冷却時に低温側で溶接金属を変態膨張させ、溶接部に圧縮の残留応力を導入するものである。(特許文献1、特許文献2参照)
特許文献1では、低温変態可能な溶接材料成分を規定すると共に、溶接スラグ低減のためのフラックス成分を提案している。
特許文献2では、比較的低価格な合金成分で変態温度低減を図ると共に、溶接時のシールドガスに純Arを適用することによって溶接ビード形状を改善し継手疲労強度を向上させている。
In recent years, in the automobile field, from the viewpoint of improving fuel consumption by reducing the weight of a vehicle body, the thickness of a steel material has been reduced by applying a high-tensile steel plate. Further, as the thickness of the steel material is reduced, there is a concern about the perforation of the steel material due to corrosion, and the application of a high-strength galvanized steel sheet is being studied from the viewpoint of preventing corrosion.
As the strength characteristics of the welded portion, it is necessary to ensure the fatigue strength of the welded joint. However, even if a high strength steel plate of 780 MPa class is used, for example, it is said that the joint fatigue strength can be ensured only as high as that of a mild steel of about 440 MPa. This is an issue of improving the joint fatigue strength of high-strength steel sheets.
Regarding the improvement of joint fatigue strength, the application of a low-temperature transformation welding material is known as a prior art. This technique lowers the martensitic transformation temperature of the weld metal, transforms and expands the weld metal on the low temperature side during cooling of the weld metal, and introduces compressive residual stress into the weld. (See Patent Document 1 and Patent Document 2)
In Patent Document 1, a welding material component that can be transformed at a low temperature is specified, and a flux component for reducing welding slag is proposed.
In Patent Document 2, the transformation temperature is reduced with a relatively low-cost alloy component, and the weld bead shape is improved and the joint fatigue strength is improved by applying pure Ar to the shielding gas at the time of welding.

一方、亜鉛めっき鋼板のアーク溶接では、溶接時のスパッタ増加や溶接部のブローホール欠陥が、継手強度を低下させるため問題となる(図1)。つまり、溶接に伴う入熱で多量の亜鉛めっきが蒸発するため、溶接時の溶滴移行状態が不安定となりスパッタ11が増加するとともに、溶融金属14内に亜鉛蒸気が混入することによってブローホール12やピット13が発生する。亜鉛めっき鋼板溶接時のスパッタおよびブローホールを低減させる技術として、例えば特許文献3、および特許文献4が知られている。   On the other hand, in arc welding of galvanized steel sheets, an increase in spatter during welding and blowhole defects in the weld are problematic because the joint strength is reduced (FIG. 1). That is, since a large amount of zinc plating evaporates due to heat input accompanying welding, the state of droplet transfer during welding becomes unstable and spatter 11 increases, and zinc vapor is mixed into the molten metal 14, thereby causing the blowhole 12. And pits 13 are generated. For example, Patent Document 3 and Patent Document 4 are known as techniques for reducing spatter and blow holes during galvanized steel sheet welding.

特許文献3では、比較的スパッタの少ない溶接法として自動車分野で普及しているパルスMAG溶接におけるブローホールを抑制する手段として、シールドガス中の酸素(O2)量を増加させている。 In Patent Document 3, the amount of oxygen (O 2 ) in the shielding gas is increased as means for suppressing blowholes in pulse MAG welding, which is widely used in the automobile field as a welding method with relatively little spatter.

特許文献4では、O2添加量が500〜5000ppm、C添加量が0.15〜0.35%、さらにフラックス成分中の金属粉を70%以上としたメタル系のフラックス入りワイヤを用いたCO2ガスシールドアーク溶接によって、溶融金属からの亜鉛蒸気排出を促進し、ブローホール低減を図っている。しかしながら、本溶接材料を用いてパルスMAG溶接を行うと、溶滴移行形態が不安定となりスパッタが増加するという問題がある。
特許文献4では、亜鉛めっき鋼板のめっき付着量に応じてO2添加量を2000〜10000ppmの範囲で適正化したメタル系のフラックス入りワイヤを用いたAr+CO2混合ガスシールド溶接によってブローホール低減を図っている。
In Patent Document 4, a CO 2 gas shielded arc using a metal-based flux-cored wire in which the O 2 addition amount is 500 to 5000 ppm, the C addition amount is 0.15 to 0.35%, and the metal powder in the flux component is 70% or more. By welding, zinc vapor discharge from molten metal is promoted to reduce blowholes. However, when pulse MAG welding is performed using this welding material, there is a problem that the droplet transfer form becomes unstable and spatter increases.
In Patent Document 4, blowholes reduced by Ar + CO 2 mixed gas shielded welding using flux-cored wire optimizing the metal system in the range of 2000~10000ppm the O 2 amount in accordance with the coating weight of the galvanized steel sheet I am trying.

特開2007−136547号公報JP 2007-136547 A 特開2007−289965号公報JP 2007-289965 A 特開平10−258367号公報JP-A-10-258367 特開昭64−31596号公報Japanese Unexamined Patent Publication No. 64-31596 特開平8−66792号公報JP-A-8-66792

高強度亜鉛めっき鋼板のパルスMAG溶接において、特許文献1および2に記載のように溶接金属の変態温度低下による継手疲労強度向上を図ったとしても、溶接金属の硬化による水素脆化が発生し易く、継手疲労強度を低下させる一因となっている。つまり、継手疲労強度を向上させるため高強度亜鉛めっき鋼板に低温変態溶接材料を適用しても、水素脆化により溶接部に割れが発生するという問題がある。   In pulse MAG welding of high-strength galvanized steel sheets, hydrogen embrittlement is likely to occur due to hardening of the weld metal even if joint fatigue strength is improved by lowering the transformation temperature of the weld metal as described in Patent Documents 1 and 2. This contributes to a decrease in joint fatigue strength. That is, even if a low-temperature transformation welding material is applied to a high-strength galvanized steel sheet to improve joint fatigue strength, there is a problem that cracks occur in the weld due to hydrogen embrittlement.

また、特許文献3および4に記載のように、パルスMAG溶接において溶接材料成分の酸素(O2)量等の適正化による溶接部のブローホール低減ならびにスパッタ低減を図ったとしても、本発明者らが確認したところ、特許文献3の方法では多量のO2添加により溶滴移行形態が不安定となり溶接ビード形状が凸凹な不整ビードが発生し、特許文献4の方法では溶滴移行形態が不安定となりスパッタが増加するだけでなく、特許文献3と同様に溶接材料の酸素量が高すぎて溶接ビード形状が不整となるという問題があることが確認された。つまり、O2量を高く規定したメタル系のフラックス入りワイヤを用いて亜鉛めっきに起因するブローホールを抑制し、さらに、フラックス成分中の金属粉の比率を高くして溶接部を覆う凝固スラグを減らしブローホールの排出を促進しても、溶滴移行形態の不安定化に伴うスパッタ増加が問題となる。 In addition, as described in Patent Documents 3 and 4, even if an attempt is made to reduce the blowhole and spatter of the weld by optimizing the amount of oxygen (O2) of the welding material component in pulse MAG welding, the present inventors As a result, in the method of Patent Document 3, the addition of a large amount of O 2 causes the droplet transfer form to become unstable and an irregular bead with an uneven weld bead shape occurs. In the method of Patent Document 4, the droplet transfer form is unstable. In addition to the increase in spatter, it was confirmed that there was a problem that the weld bead shape was irregular because the oxygen content of the welding material was too high, as in Patent Document 3. In other words, a metal-based flux-cored wire with a high O 2 content is used to suppress blowholes caused by galvanizing, and furthermore, a solidified slag covering the welded portion by increasing the ratio of metal powder in the flux component. Even if the reduction and promotion of blowhole discharge are promoted, an increase in spatter due to instability of the droplet transfer form becomes a problem.

以上の問題を解決すべく、本発明は、高強度亜鉛めっき鋼板のパルスMAG溶接、特にパルスMAG隅肉溶接の安定化による高強度継手強度の実現と、それに適した溶接材料の具現化を課題とする。   In order to solve the above problems, the present invention aims to realize high strength joint strength by stabilizing pulse MAG welding of a high strength galvanized steel sheet, particularly pulse MAG fillet welding, and to realize a welding material suitable for it. And

本発明者らは、低温変態可能な溶接材料成分、並びに溶接材料成分の酸素(O2)量を増加させたメタル系フラックス入りワイヤにて、パルスMAG溶接による亜鉛めっき鋼板溶接時の割れ発生状況やスパッタ発生状況を詳細に解析し、検討した結果、母材の割れ感受性指数に応じて溶接材料の割れ感受性指数を適合させることによって水素脆化が抑制されること、さらにフラックス入りワイヤ中のSiO2やNa2O等のスラグ剤成分を低く設定すると共に、溶接ワイヤの鋼製外皮の内部に充填するスラグ剤および金属粉の比率を下げることによって、安定した溶滴移行特性が得られることを見出し、本発明を成すに至った。本発明の要旨は、以下の通りである。 The inventors of the present invention have reported that cracking occurs during welding of a galvanized steel sheet by pulse MAG welding with a welding material component capable of low-temperature transformation and a metal-based flux-cored wire in which the amount of oxygen (O 2 ) in the welding material component is increased. As a result of detailed analysis and examination of the state of occurrence of spatter and sputtering, hydrogen embrittlement is suppressed by adapting the cracking susceptibility index of the welding material according to the cracking susceptibility index of the base metal, and SiO in the flux-cored wire Stable liquid droplet transfer characteristics can be obtained by setting the slag agent components such as 2 and Na 2 O low and reducing the ratio of the slag agent and metal powder filled in the steel outer sheath of the welding wire. The headline and the present invention were made. The gist of the present invention is as follows.

(1)亜鉛めっき鋼板の隅肉アーク溶接方法(特にパルスMAG溶接方法)において、
溶接ワイヤの外皮およびフラックスを合わせたフラックス入り溶接ワイヤの成分が質量%で、
C:0.15〜0.5%、
Si:0.3〜1.5%、
Mn:0.2〜3.0%、
SiO2、Al23、TiO2、Na2OおよびK2Oのうち1種または2種以上の合計で0.1〜0.4%、
O:0.05〜0.25%、
残部Feおよび不可避的不純物であって、
前記溶接ワイヤの外皮内に充填される金属粉および酸化物の充填率:5〜12%
であるメタル系フラックス入り溶接ワイヤを用い、かつ
亜鉛めっき鋼板の母材となる鋼板の割れ感受性指数(PcmS)および溶接ワイヤの割れ感受性指数(PcmW)が以下の関係を満足することを特徴とする亜鉛めっき鋼板の隅肉アーク溶接方法。
−0.86×PcmS+0.51 ≦ PcmW ≦ −1.9×PcmS+1.0
(2)前記溶接ワイヤの成分において、さらに
Ni:0.5〜5%
Cr:0.1〜3.0%
のうち、1種または2種を含有することを特徴とする(1)に記載の亜鉛めっき鋼板の隅肉アーク溶接方法。
(3)前記亜鉛めっき鋼板が、板厚1.0〜4.0mm、引張り強度440〜980MPa、亜鉛めっき付着量が鋼板片面当り20〜60g/m2の亜鉛めっき鋼板であることを特徴とする(1)または(2)に記載の亜鉛めっき鋼板の隅肉アーク溶接。
(4)亜鉛めっき鋼板の隅肉アーク溶接継手(特にパルスMAG溶接継手)において、
溶接ワイヤの外皮およびフラックスを合わせたフラックス入り溶接ワイヤの成分が質量%で、
C:0.15〜0.5%、
Si:0.3〜1.5%、
Mn:0.2〜3.0%、
SiO2、Al23、TiO2、Na2OおよびK2Oのうち1種または2種以上の合計で0.1〜0.4%、
O:0.05〜0.25%、
残部Feおよび不可避的不純物であって、
前記溶接ワイヤの外皮内に充填される金属粉および酸化物の充填率:5〜12%
であるメタル系フラックス入り溶接ワイヤを用い、かつ
亜鉛めっき鋼板の母材となる鋼板の割れ感受性指数(PcmS)および溶接ワイヤの割れ感受性指数(PcmW)が以下の関係を満足することを特徴とする亜鉛めっき鋼板の隅肉アーク溶接継手。
−0.86×PcmS+0.51 ≦ PcmW ≦ −1.9×PcmS+1.0
(1) In fillet arc welding method (especially pulse MAG welding method) of galvanized steel sheet,
The component of the flux-cored welding wire that combines the outer sheath of the welding wire and the flux is mass%
C: 0.15-0.5%
Si: 0.3 to 1.5%,
Mn: 0.2 to 3.0%
0.1 to 0.4% in total of one or more of SiO 2 , Al 2 O 3 , TiO 2 , Na 2 O and K 2 O,
O: 0.05-0.25%
Remaining Fe and unavoidable impurities,
Filling rate of metal powder and oxide filled in the outer sheath of the welding wire: 5 to 12%
The crack sensitivity index (PcmS) and the crack sensitivity index (PcmW) of the welding wire satisfy the following relationship, using a metal-based flux-cored welding wire: Fillet arc welding method for galvanized steel sheet.
−0.86 × PcmS + 0.51 ≦ PcmW ≦ −1.9 × PcmS + 1.0
(2) In the component of the welding wire, Ni: 0.5 to 5%
Cr: 0.1-3.0%
Among them, the fillet arc welding method for a galvanized steel sheet according to (1), comprising one or two of them.
(3) The galvanized steel sheet is a galvanized steel sheet having a plate thickness of 1.0 to 4.0 mm, a tensile strength of 440 to 980 MPa, and a zinc plating adhesion amount of 20 to 60 g / m 2 per one surface of the steel sheet. Fillet arc welding of the galvanized steel sheet according to (1) or (2).
(4) In fillet arc welded joints (particularly pulse MAG welded joints) of galvanized steel sheets,
The component of the flux-cored welding wire that combines the outer sheath of the welding wire and the flux is mass%
C: 0.15-0.5%
Si: 0.3 to 1.5%,
Mn: 0.2 to 3.0%
0.1 to 0.4% in total of one or more of SiO 2 , Al 2 O 3 , TiO 2 , Na 2 O and K 2 O,
O: 0.05-0.25%
Remaining Fe and unavoidable impurities,
Filling rate of metal powder and oxide filled in the outer sheath of the welding wire: 5 to 12%
The crack sensitivity index (PcmS) and the crack sensitivity index (PcmW) of the welding wire satisfy the following relationship, using a metal-based flux-cored welding wire: Fillet arc welded joint of galvanized steel sheet.
−0.86 × PcmS + 0.51 ≦ PcmW ≦ −1.9 × PcmS + 1.0

本発明に係る亜鉛めっき鋼板の接合方法によれば、低温変態溶接材料によるアーク溶接(特にパルスMAG溶接)を行っても水素脆化による溶接部の割れが発生することがなく、また、ブローホール発生抑制のための高酸素含有溶接材料であっても、溶滴移行形態が安定し、スパッタの発生も抑えられるという顕著な効果を奏する。これにより、亜鉛めっき鋼板の隅肉溶接において、欠陥の少ない、高強度で高品質な溶接継手を得ることができる。   According to the method for joining galvanized steel sheets according to the present invention, there is no occurrence of cracks in the weld due to hydrogen embrittlement even when arc welding (particularly pulse MAG welding) with a low-temperature transformation welding material is performed. Even with a high oxygen content welding material for suppressing generation, the droplet transfer mode is stable, and the occurrence of spatter can be suppressed. Thereby, in fillet welding of a galvanized steel sheet, a high-strength and high-quality welded joint with few defects can be obtained.

重ね隅肉継手の概要を示す図。The figure which shows the outline | summary of a lap fillet joint. フラックス充填率とスパッタ量の関係を示す図。The figure which shows the relationship between a flux filling factor and the amount of sputtering. 重ね隅肉継手の断面と水素脆化割れの概要を示す図。The figure which shows the outline | summary of the cross section of a lap fillet joint, and a hydrogen embrittlement crack. 鋼板の割れ感受性と溶接材料の割れ感受性と、水素脆化割れ発生有無の関係を示す図。The figure which shows the relationship between the crack sensitivity of a steel plate, the crack sensitivity of a welding material, and the presence or absence of hydrogen embrittlement crack. 実施例における隅肉溶接の要領を示す図。The figure which shows the point of the fillet welding in an Example.

本発明の詳細について、亜鉛めっき鋼板の重ね隅肉パルスMAG溶接を例として説明する。
まず、パルスMAG溶接時のスパッタ低減のための適正な溶接材料の検討をおこなった。フラックス入りワイヤは、鋼製の外皮の内部に金属粉および酸化物を充填することによって製造されており、ワイヤの成分は鋼製外皮および充填成分の合計値として規定される。しかしながら、鋼製外皮の成分や充填する金属粉の成分を調整することによって、同一ワイヤ成分でありながら、フラックスの充填率が異なるフラックス入りワイヤを製造することができる。本発明者らは、このフラックス充填率に着目して、亜鉛めっき鋼板のパルスMAGを評価したところ、フラックス充填率を低く設定することによってスパッタの低減が可能であることを見出した。以下に、検討結果を示す。
The details of the present invention will be described by way of an example of lap fillet pulse MAG welding of a galvanized steel sheet.
First, an appropriate welding material for reducing spatter during pulse MAG welding was examined. A flux-cored wire is manufactured by filling a steel powder with metal powder and an oxide, and the wire component is defined as a total value of the steel shell and a filling component. However, by adjusting the components of the steel outer sheath and the metal powder to be filled, flux-cored wires having the same wire component but different flux filling rates can be manufactured. The inventors of the present invention evaluated the pulse MAG of the galvanized steel sheet by paying attention to the flux filling rate, and found that the spatter can be reduced by setting the flux filling rate low. The examination results are shown below.

供試鋼材として、板厚2.3mmの780MPa級鋼板に、鋼板の片面当り亜鉛めっき付着量45g/m2の合金化溶融亜鉛めっきを施した高強度亜鉛めっき鋼板と使用した。溶接材料はメタル系のフラックス入りワイヤとし、Ar+20%CO2ガスを用いたパルスMAG溶接にて評価した。なお、継手形式は図1に示すように重ね隅肉継手とした。 As a test steel material, a high-strength galvanized steel sheet obtained by subjecting a 780 MPa class steel sheet having a thickness of 2.3 mm to galvannealing with a galvanized coating amount of 45 g / m 2 per side of the steel sheet was used. The welding material was a metal-based flux-cored wire and was evaluated by pulse MAG welding using Ar + 20% CO 2 gas. The joint type was a lap fillet joint as shown in FIG.

フラックスにおける合金成分はFe、Si、Mnを主成分とし、フラックスにおける酸化物(スラグ剤)成分はSiO2、K2Oとした。溶接ワイヤの外皮およびフラックス成分を合わせた溶接材料成分は、C:0.35%、Si:0.5%、Mn:2.5%、Ni:2.0%、Cr:1.0%とし、酸化物成分はSiO2:0.2%、K2O:0.1%とした。溶接ワイヤの外皮およびフラックスの成分バランスを調整することによりフラックス充填率は5〜18%の範囲で変化させた。また、溶接材料における酸素量はフラックス成分として添加するFe、FeOの比率を変えて、1000〜2500ppmの範囲になるよう調整した。 Alloy components in the flux are mainly composed of Fe, Si, and Mn, and oxide (slag agent) components in the flux are SiO 2 and K 2 O. The welding material composition including the welding wire shell and flux component is C: 0.35%, Si: 0.5%, Mn: 2.5%, Ni: 2.0%, Cr: 1.0% The oxide components were SiO 2 : 0.2% and K 2 O: 0.1%. The flux filling rate was changed in the range of 5 to 18% by adjusting the balance of the welding wire sheath and flux components. Further, the oxygen amount in the welding material was adjusted to be in the range of 1000 to 2500 ppm by changing the ratio of Fe and FeO added as flux components.

図2に、溶接ワイヤのフラックス充填率を変化させた場合のスパッタ発生量を示す。非めっき材の溶接では、フラックス充填率を増加させてもスパッタ量の顕著な増加は見られなかったが、亜鉛めっき鋼板の溶接ではフラックス充填率が12%を超えるとスパッタが大幅に増加することが確認された。パルスMAG溶接では、パルス電流波形に同期させて溶接ワイヤ先端の溶滴を母材側に移行させるが、フラックス(メタル粉)の充填率が高くなると、メタル粉が溶融する際に生じる内部ガスの影響で、溶接ワイヤの溶融形態が不安定となり、さらに入熱量が多くなるため溶接時の亜鉛蒸気の発生が多くなり、その影響を受けやすくなったためと考えられる。このため、フラックス充填率は12%以下とすることが望ましい。   FIG. 2 shows the amount of spatter generated when the flux filling rate of the welding wire is changed. In the welding of non-plated materials, even when the flux filling rate was increased, there was no significant increase in the amount of spatter, but in the welding of galvanized steel sheets, the spatter increased significantly when the flux filling rate exceeded 12%. Was confirmed. In pulse MAG welding, the droplet at the tip of the welding wire is moved to the base metal side in synchronization with the pulse current waveform. However, if the filling rate of the flux (metal powder) increases, the internal gas generated when the metal powder melts This is considered to be due to the fact that the molten form of the welding wire becomes unstable and the amount of heat input increases, so that the generation of zinc vapor at the time of welding is increased and the welding wire is easily affected. For this reason, the flux filling rate is desirably 12% or less.

一方で、フラックス充填率を5%未満にすると、溶接ワイヤの製造上の品質のばらつきが生じ易くなるため現実的ではない。そのため、充填率の下限は5%とした。
即ち、フラックス充填率を5〜12%とすることにより、溶滴移行形態が安定化し、スパッタ量を低く抑えることができることがわかった。なお、より溶滴移行形態が安定化させ、スパッタ量を低減するためには、望ましくは、フラックス充填率を5〜10%、さらには5〜9%にするとよい。
On the other hand, if the flux filling rate is less than 5%, it is not practical because variations in the quality of the welding wire are likely to occur. Therefore, the lower limit of the filling rate is 5%.
That is, it has been found that by setting the flux filling rate to 5 to 12%, the droplet transfer form is stabilized and the amount of spatter can be kept low. In order to stabilize the droplet transfer form and reduce the amount of spatter, the flux filling rate is desirably 5 to 10%, and further 5 to 9%.

次に、低温変態溶接材料適用時の課題である、溶接部の水素脆化割れについて検討した。低温変態溶接材料はマルテンサイト変態温度を下げるために、C当量が高く設計されている。従来の非めっき鋼板の溶接では、水素脆化割れが発生することはなかったが、亜鉛めっき鋼板の溶接では溶接ビードのルート部(鋼板の隅肉溶接における上板31と下板32および溶接金属14の境界部において、溶接金属14の溶接ワイヤ15と反対側に位置する部分)に割れ33が発生する場合が散見された(図3)。   Next, hydrogen embrittlement cracking in the weld zone, which is a problem when applying low temperature transformation welding materials, was examined. The low temperature transformation welding material is designed to have a high C equivalent in order to lower the martensitic transformation temperature. In conventional welding of non-plated steel sheets, hydrogen embrittlement cracking did not occur, but in welding of galvanized steel sheets, the root portion of the weld bead (the upper plate 31, the lower plate 32 and the weld metal in fillet welding of the steel plates). In some cases, cracks 33 occur in the boundary portion of the weld metal 14 on the opposite side of the weld metal 14 from the welding wire 15 (FIG. 3).

亜鉛めっき鋼板では、めっき表面に水分が吸着しやすいこと、また、溶接後の水素放出過程ではめっき層が障壁となり溶接部に拡散性水素が集まりやすいことが要因と考えられる。そのため、亜鉛めっき鋼板の溶接では、水素割れの抑制が重要な課題となる。そこで、割れ感受性指数Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B、を指標に亜鉛めっき鋼板溶接部の割れ発生状況を調査した。ここで鋼板の割れ感受性指数をPcmSとし、溶接ワイヤの割れ感受性指数をPcmWとする。   In galvanized steel sheets, it is considered that moisture is likely to be adsorbed on the plating surface, and that diffusible hydrogen is likely to collect at the welded part because the plating layer becomes a barrier in the hydrogen release process after welding. Therefore, suppression of hydrogen cracking is an important issue in welding galvanized steel sheets. Therefore, cracks occurred in galvanized steel plate welds using the crack sensitivity index Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B as an index. The situation was investigated. Here, the crack sensitivity index of the steel sheet is PcmS, and the crack sensitivity index of the welding wire is PcmW.

まず、溶接ワイヤの割れ感受性指数PcmWを0.14〜0.26の範囲で変化させて、割れ発生状況を調査した。なお、母材には780MPa級(PcmS=0.19)、590MPa級(PcmS=0.26)、440MPa級(PcmS=0.14)の合金化溶融亜鉛めっき鋼板を使用した。各々の鋼板の割れ感受性指数PcmSは、0.19、0.26、0.14である。   First, the crack occurrence state was investigated by changing the cracking sensitivity index PcmW of the welding wire in the range of 0.14 to 0.26. Note that 780 MPa class (PcmS = 0.19), 590 MPa class (PcmS = 0.26), and 440 MPa class (PcmS = 0.14) alloyed hot-dip galvanized steel sheets were used as the base material. The crack sensitivity index PcmS of each steel plate is 0.19, 0.26, and 0.14.

結果を図4に示す。亜鉛めっき鋼板の場合は鋼材PcmSおよび溶接材料PcmWがともに高い領域で水素脆化割れが発生した。実験結果より、水素脆化を抑制するためには、PcmW≦−1.9×PcmS+1.0とする関係が必要であることが導かれた。   The results are shown in FIG. In the case of a galvanized steel sheet, hydrogen embrittlement cracking occurred in a region where both the steel PcmS and the welding material PcmW were high. From the experimental results, it was derived that a relationship of PcmW ≦ −1.9 × PcmS + 1.0 is necessary to suppress hydrogen embrittlement.

一方、溶接材料のPcmWが低い領域では、十分な低温変態効果が得られなかった。この実験結果から、−0.86×PcmS+0.51≦PcmWの関係が必要であることを導いた。
即ち、溶接ワイヤのわれ感受性(PcmW)と亜鉛めっき鋼板の母材の割れ感受性(PcmS)との関係が、−0.86×PcmS+0.51≦ PcmW ≦−1.9×PcmS+1.0 であれば、水素脆化割れが発生せず、十分な低温変態効果も得られることがわかった。
なお、非めっき鋼板を使用した場合は、いずれの鋼板、溶接材料の組み合わせにおいても水素脆化割れは発生しなかった。
On the other hand, in the region where the PcmW of the welding material is low, a sufficient low temperature transformation effect could not be obtained. From this experimental result, it was derived that the relationship of −0.86 × PcmS + 0.51 ≦ PcmW is necessary.
That is, if the relationship between the crack sensitivity (PcmW) of the welding wire and the crack sensitivity (PcmS) of the base material of the galvanized steel sheet is −0.86 × PcmS + 0.51 ≦ PcmW ≦ −1.9 × PcmS + 1.0 It has been found that hydrogen embrittlement cracking does not occur and a sufficient low temperature transformation effect is obtained.
In addition, when an unplated steel plate was used, hydrogen embrittlement cracking did not occur in any combination of steel plates and welding materials.

次に溶接材料の各種成分の範囲について説明する。
C:0.15〜0.5%
マルテンサイト変態点(Ms点)を低下させ溶接金属の低温変態化を図るために重要な元素である。低温変態効果を得るために0.15%以上の炭素(C)が必要である。Cの下限は、望ましくは0.16%、更に望ましくは0.18%である。
Next, the range of various components of the welding material will be described.
C: 0.15-0.5%
It is an important element for lowering the martensitic transformation point (Ms point) and achieving low temperature transformation of the weld metal. In order to obtain a low temperature transformation effect, 0.15% or more of carbon (C) is required. The lower limit of C is desirably 0.16%, and more desirably 0.18%.

一方、Cは焼入れ性が高く、割れ感受性の高い元素であるため、0.5%を超えると亜鉛めっき鋼板の溶接時に水素脆化割れが発生しやすくなるため上限を0.5%とした。水素脆化割れの発生を極力抑えるためには、Cの上限は、望ましくは0.48%、さらに望ましくは0.45%以下とするとよい。   On the other hand, since C is an element having high hardenability and high cracking sensitivity, if it exceeds 0.5%, hydrogen embrittlement cracking is likely to occur during welding of the galvanized steel sheet, so the upper limit was made 0.5%. In order to suppress the occurrence of hydrogen embrittlement cracking as much as possible, the upper limit of C is desirably 0.48%, and more desirably 0.45% or less.

Si:0.3〜1.5%
溶接金属の脱酸効果並びに溶接ビード形状をなだらかにする効果を得るために下限を0.3%とした。一方、Siが1.5%を超えると溶融金属の粘性が高くなり、溶接部にブローホールが残存しやすくなる。このため、上限を1.5%とした。なお、望ましくは下限は0.5%であり、上限は1.4%とするとよい。
Si: 0.3 to 1.5%
In order to obtain the deoxidizing effect of the weld metal and the effect of smoothing the weld bead shape, the lower limit was made 0.3%. On the other hand, when Si exceeds 1.5%, the viscosity of the molten metal increases, and blowholes are likely to remain in the welded portion. For this reason, the upper limit was made 1.5%. Desirably, the lower limit is 0.5%, and the upper limit is 1.4%.

Mn:0.2〜3.0%
溶接金属の強度確保に必要な元素であり、0.2%を下限とした。過剰な添加は溶接金属の靭性を低下さるため、上限を3%とした。なお、望ましくは下限は0.5%であり、上限は2.5%とするとよい。
Mn: 0.2 to 3.0%
It is an element necessary for ensuring the strength of the weld metal, and the lower limit was 0.2%. Since excessive addition reduces the toughness of the weld metal, the upper limit was made 3%. Desirably, the lower limit is 0.5%, and the upper limit is 2.5%.

Ni:0.5〜5%
溶接金属の変態開始温度を低くして継手疲労強度の向上を図ると共に、溶接金属の靭性を向上させるために有効な元素である。この効果を得るために下限を0.5%した。一方、過剰に添加すると逆に、変態開始温度を上昇させるため上限を5%とした。
Ni: 0.5-5%
It is an effective element for lowering the transformation start temperature of the weld metal to improve the joint fatigue strength and improving the toughness of the weld metal. In order to obtain this effect, the lower limit was made 0.5%. On the other hand, if added excessively, the upper limit was made 5% in order to raise the transformation start temperature.

Cr:0.1〜3.0%
溶接金属の変態開始温度の低減および溶接金属の強度を高くする効果がある。この効果を得るためには0.1%以上必要である。一方、過剰に添加すると溶接金属の靭性をさげるため上限は3%とした。
NiとCrについては、どちらも変態開始温度を低減し、溶接金属強度を高める効果をあるので、どちらか1種または両方を選択的に添加することにより、その効果を得ることができる。
Cr: 0.1-3.0%
This has the effect of reducing the transformation start temperature of the weld metal and increasing the strength of the weld metal. In order to obtain this effect, 0.1% or more is necessary. On the other hand, if added excessively, the upper limit was made 3% in order to reduce the toughness of the weld metal.
Since both Ni and Cr have the effect of reducing the transformation start temperature and increasing the weld metal strength, the effect can be obtained by selectively adding either one or both.

次にフラックス成分について述べる。
SiO2、Al23、Na2O、およびK2Oのうち1種または2種以上:0.1〜0.4%
これらの酸化物元素はスラグ剤と呼ばれ、溶接ワイヤの製造工程で所定のワイヤ径まで線引きする工程での加工性を確保すると共に、溶接アークを安定して発生させるためのアーク安定剤として作用する。これらの効果を得るためには、これらの酸化物のうち1種または2種以上の合計で0.1%以上が必要である。
Next, the flux component will be described.
One or more of SiO 2 , Al 2 O 3 , Na 2 O, and K 2 O: 0.1 to 0.4%
These oxide elements are called slag agents and act as arc stabilizers to ensure the workability in the process of drawing to a predetermined wire diameter in the welding wire manufacturing process and to stably generate a welding arc. To do. In order to obtain these effects, 0.1% or more in total of one or more of these oxides is required.

一方、過剰な添加は溶接部の凝固スラグを増やすため、亜鉛めっき鋼板溶接時のスパッタ量増加と亜鉛蒸気が抜けにくくなるためブローホールやピット生成につながるため上限を0.4%とした。なお、望ましくは下限は0.2%であり、上限は0.3%とするとよい。   On the other hand, excessive addition increases the solidification slag of the welded portion, so that the amount of spatter during welding of the galvanized steel sheet is increased and zinc vapor is difficult to escape. Desirably, the lower limit is 0.2%, and the upper limit is 0.3%.

O:0.05〜0.25%
溶接時の溶融金属の粘性を下げ亜鉛蒸気の排出を促進することによって、ブローホールを低減する効果がある。この効果を得るためには0.05%以上は必要である。一方、過剰な添加は凝固スラグを増加させるため、上限を0.25%とした。なお、望ましくは下限は0.07%であり、上限は0.18%とするとよい。
O: 0.05-0.25%
By reducing the viscosity of the molten metal during welding and promoting the discharge of zinc vapor, there is an effect of reducing blowholes. In order to obtain this effect, 0.05% or more is necessary. On the other hand, excessive addition increases solidification slag, so the upper limit was made 0.25%. Desirably, the lower limit is 0.07%, and the upper limit is 0.18%.

本発明に有効な亜鉛めっき鋼板は前述した本発明に係る供試材に限定されることなく、合金化溶融亜鉛めっきの他、一般的な溶融亜鉛めっき鋼板、電気めっき鋼板、合金化亜鉛めっき鋼板、高耐食めっきとして知られているZn-Al-Mg−Siめっき鋼板などがあげられ、鋼板表面に亜鉛を含むめっき層を有した鋼板であれば、本発明を適用することにより、その効果を得ることができる。また、形状も板である必然性はなく、鋼管と鋼板を組み合わせることも可能である。   The galvanized steel sheet effective for the present invention is not limited to the above-described test material according to the present invention, and other than galvannealed steel, general galvanized steel, electroplated steel, galvanized steel For example, a Zn-Al-Mg-Si plated steel plate known as high corrosion-resistant plating can be used. If the steel plate has a plated layer containing zinc on the steel plate surface, the effect of the present invention can be obtained by applying the present invention. Obtainable. Further, the shape is not necessarily a plate, and a steel pipe and a steel plate can be combined.

以下に本発明の実施例を示す。実施例に用いた鋼板を表1に示す。
鋼板は板厚2.3mmの合金化溶融亜鉛めっき鋼板(片面当たりめっき付着量45g/m2)とし、強度クラスは780MPa級、590MPa級、440MPaとした。
Examples of the present invention are shown below. Table 1 shows steel plates used in the examples.
The steel plate was an alloyed hot-dip galvanized steel plate having a thickness of 2.3 mm (plating adhesion amount per side of 45 g / m 2), and the strength classes were 780 MPa class, 590 MPa class, and 440 MPa.

Figure 2012081514
Figure 2012081514

使用した溶接ワイヤの成分およびわれ感受性(PcmW)を表2に示す。ワイヤ径はいずれも1.2mmφで、A〜Iが本発明の溶接ワイヤで、J〜Qが比較例の溶接ワイヤである。なお、P、Qはソリッドワイヤとした。   Table 2 shows the components and crack sensitivity (PcmW) of the welding wire used. Each of the wire diameters is 1.2 mmφ, A to I are welding wires of the present invention, and J to Q are welding wires of comparative examples. P and Q were solid wires.

Figure 2012081514
Figure 2012081514

溶接電源には、パルスMAG溶接電源を使用し、図5ように重ね隅肉溶接を行った。溶接条件は、トーチ高さを15mm、トーチ角度60°に固定し、溶接電流200A、アーク電圧24V、溶接速度100cm/minとした。   As the welding power source, a pulse MAG welding power source was used, and lap fillet welding was performed as shown in FIG. The welding conditions were a torch height of 15 mm, a torch angle of 60 °, a welding current of 200 A, an arc voltage of 24 V, and a welding speed of 100 cm / min.

表3に実施例の結果を示す。No1〜No12は本発明の結果で、No13〜No23が比較例である。評価項目は、水素脆化割れの有無、スパッタ発生量、継手疲労強度、ブローホール発生状況、溶接ビード表面のスラグ付着量とした。   Table 3 shows the results of the examples. No1 to No12 are the results of the present invention, and No13 to No23 are comparative examples. Evaluation items were presence / absence of hydrogen embrittlement cracking, spatter generation amount, joint fatigue strength, blowhole generation status, and slag adhesion amount on the weld bead surface.

水素脆化割れは溶接ビードの断面観察を行い、溶接ビードのルート部の割れの有無を確認した。   For hydrogen embrittlement cracking, the cross section of the weld bead was observed to check for cracks in the root portion of the weld bead.

スパッタ発生状況は単位時間当たりのスパッタ重量で比較した。ソリッドワイヤ使用時のスパッタ重量を目安に、3g/min以下のスパッタ発生量を良好と判断した。   The spatter generation situation was compared by the sputter weight per unit time. The spatter generation amount of 3 g / min or less was judged to be good based on the spatter weight when using a solid wire.

継手疲労強度は、両方振りの繰り返し曲げ疲労試験における200万回の応力振幅で評価した。従来のソリッドワイヤを使用した溶接継手の疲労強度は、780MPa級、590MPa級、440MPa級鋼板に対して各々、210MPa、190MPa、150MPa程度であったため、その30%以上向上を疲労強度の目標値とした。すなわち、780MPa級、590MPa級、440MPa級鋼板に対して各々、273MPa、247MPa、195MPa以上の継ぎ疲労強度となる場合を良好とした。   The joint fatigue strength was evaluated based on the stress amplitude of 2 million times in the repeated bending fatigue test of both swings. Fatigue strength of welded joints using conventional solid wires was about 210 MPa, 190 MPa, and 150 MPa for steel plates of 780 MPa, 590 MPa, and 440 MPa, respectively. did. That is, the case where the joint fatigue strength of 273 MPa, 247 MPa, 195 MPa or more was obtained for each of the 780 MPa class, the 590 MPa class, and the 440 MPa class steel sheet was determined to be good.

ブローホール発生状況は、溶接ビードをX線透過撮影し、溶接ビード長さに対するブローホール長さの総和の比率で評価した。ブローホール率を15%以下にすることにより、母材の静的強度と同等の継手強度を満足するため、ブローホール比率が15%以下を良好とした。
スラグ付着量は、溶接ビード長さ250mmに対するスラグ発生量で評価し、ソリッドワイヤ使用時のスラグ付着量である0.1g以下を良好とした。
The state of blowhole occurrence was evaluated by X-ray transmission imaging of the weld bead and the ratio of the sum of the blowhole length to the weld bead length. By setting the blowhole ratio to 15% or less, the joint strength equivalent to the static strength of the base material is satisfied, so that the blowhole ratio is 15% or less.
The slag adhesion amount was evaluated by the slag generation amount with respect to the weld bead length of 250 mm, and the slag adhesion amount at the time of using the solid wire was 0.1 g or less.

水素脆化割れは、溶接ビードのルート部に発生し継手の静的な強度特性を低下させる。溶接スパッタは、溶接施工過程で発生し、溶接機器や溶接部の周辺に付着するとスパッタ除去する必要が生じるために生産性を低下させる。継手の疲労亀裂は溶接ビードの止端部で発生し、継手の耐久性を低下させる。ブローホールは、溶接ビードのルート部に発生し継手の静的な強度特性を低下させる。溶接スラグは溶接ビードの表面に付着し、防錆塗料の密着性を低下させるため、溶接部材の耐食性を低下させる。これらの項目は、いずれも継手の品質、生産性において重要な項目であるため、これら全ての項目を満足する場合を、本発明とした。   Hydrogen embrittlement cracks occur in the root part of the weld bead and reduce the static strength characteristics of the joint. Weld spatter is generated in the welding process, and if it adheres to the periphery of the welding equipment or weld, it is necessary to remove the spatter, which reduces productivity. Fatigue cracks in the joint occur at the toe of the weld bead and reduce the durability of the joint. The blow hole is generated at the root portion of the weld bead and deteriorates the static strength characteristic of the joint. The weld slag adheres to the surface of the weld bead and reduces the adhesion of the anticorrosive paint, thus reducing the corrosion resistance of the welded member. Since these items are all important items in the quality and productivity of the joint, the case where all these items are satisfied was regarded as the present invention.

No.13は、溶接ワイヤ割れPcmWが低く設計されているため、マルテンサイト変態温度が高くなった結果継手疲労強度が低下した。No.14はPcmWが高く割れが発生した。No.15はPcmWは適正範囲であるが、鋼板のPcmSが高いため、この組み合わせでは割れが発生した。No.16はワイヤにおけるスラグ剤の合計量が高いために、溶接ビードのスラグも増加した。No.17はスラグ剤の合計量が低いために、アークが不安定となりスパッタが増加した。No.18はワイヤに対するフラックス充填率が高いために、パルスアーク溶接性が低下しスパッタが増加した。No.19はワイヤの酸素量が少ないために溶融金属からのブローホール排出性が低下し、ブローホール率が増加した。No.20は溶接ワイヤの酸素ガスが多いために溶融金属の酸化が進行しスラグが増加した。
なお、No.14、No.15、No.19は溶接ビードに水素脆化割れやブローホールが発生しているにもかかわらず、疲労強度が高い値となっている。これは、実際の部材において疲労亀裂が発生しやすい溶接止端部の疲労評価を目的とした試験を行ったためである。
No.21、No.22、No.23は従来のソリッドワイヤであるが継ぎ手疲労強度が低く、ブローブローホール率も増加した。
No. Since No. 13 was designed with a low weld wire crack PcmW, the joint fatigue strength decreased as a result of the high martensitic transformation temperature. No. No. 14 had high PcmW and cracks occurred. No. Although PcmW of 15 is an appropriate range, since PcmS of the steel plate is high, cracks occurred in this combination. No. Since the total amount of slag agent in the wire 16 was high, the slag of the weld bead also increased. No. In No. 17, since the total amount of slag agent was low, the arc became unstable and spatter increased. No. Since No. 18 has a high flux filling rate to the wire, the pulse arc weldability was lowered and the spatter increased. No. In No. 19, since the amount of oxygen in the wire was small, the ability to discharge blowholes from the molten metal decreased, and the blowhole rate increased. No. In No. 20, since there was a lot of oxygen gas in the welding wire, oxidation of the molten metal progressed and slag increased.
In addition, No. 14, no. 15, no. No. 19 has a high fatigue strength despite the occurrence of hydrogen embrittlement cracks and blowholes in the weld bead. This is because a test was conducted for the purpose of fatigue evaluation of the weld toe where fatigue cracks are likely to occur in actual members.
No. 21, no. 22, no. Although 23 is a conventional solid wire, the joint fatigue strength is low, and the blow blow hole rate is also increased.

Figure 2012081514
Figure 2012081514

以上、本発明について実施例も含めて詳細に説明したが、本発明の実施形態は上記に記載した実施形態に限定されるものではないことは言うまでもない。   As mentioned above, although this invention was demonstrated in detail including the Example, it cannot be overemphasized that embodiment of this invention is not limited to embodiment described above.

本発明は、亜鉛めっき鋼板のアーク溶接を使う産業であれば、いかなる産業においても利用することができる。   The present invention can be used in any industry that uses arc welding of a galvanized steel sheet.

Claims (4)

亜鉛めっき鋼板の隅肉パルスMAG溶接方法において、
溶接ワイヤの外皮およびフラックスを合わせたフラックス入り溶接ワイヤの成分が質量%で、
C:0.15〜0.5%、
Si:0.3〜1.5%、
Mn:0.2〜3.0%、
SiO2、Al23、TiO2、Na2OおよびK2Oのうち1種または2種以上の合計で0.1〜0.4%、
O:0.05〜0.25%、
残部Feおよび不可避的不純物であって、
前記溶接ワイヤの外皮内に充填される金属粉および酸化物の充填率:5〜12%
であるメタル系フラックス入り溶接ワイヤを用い、かつ
亜鉛めっき鋼板の母材となる鋼板の割れ感受性指数(PcmS)および溶接ワイヤの割れ感受性指数(PcmW)が以下の関係を満足することを特徴とする亜鉛めっき鋼板の隅肉アーク溶接方法。
−0.86×PcmS+0.51 ≦ PcmW ≦ −1.9×PcmS+1.0
In the fillet pulse MAG welding method of galvanized steel sheet,
The component of the flux-cored welding wire that combines the outer sheath of the welding wire and the flux is mass%
C: 0.15-0.5%
Si: 0.3 to 1.5%,
Mn: 0.2 to 3.0%
0.1 to 0.4% in total of one or more of SiO 2 , Al 2 O 3 , TiO 2 , Na 2 O and K 2 O,
O: 0.05-0.25%
Remaining Fe and unavoidable impurities,
Filling rate of metal powder and oxide filled in the outer sheath of the welding wire: 5 to 12%
The crack sensitivity index (PcmS) and the crack sensitivity index (PcmW) of the welding wire satisfy the following relationship, using a metal-based flux-cored welding wire: Fillet arc welding method for galvanized steel sheet.
−0.86 × PcmS + 0.51 ≦ PcmW ≦ −1.9 × PcmS + 1.0
前記溶接ワイヤの成分において、さらに
Ni:0.5〜5%
Cr:0.1〜3.0%
のうち、1種または2種を含有することを特徴とする請求項1に記載の亜鉛めっき鋼板の隅肉アーク溶接方法。
In the components of the welding wire, Ni: 0.5 to 5%
Cr: 0.1-3.0%
The fillet arc welding method for galvanized steel sheet according to claim 1, wherein one or two of them are contained.
前記亜鉛めっき鋼板が、板厚1.0〜4.0mm、引張り強度440〜980MPa、亜鉛めっき付着量が鋼板片面当り20〜60g/m2の亜鉛めっき鋼板であることを特徴とする請求項1または2に記載の亜鉛めっき鋼板の隅肉アーク溶接。 The galvanized steel sheet is a galvanized steel sheet having a thickness of 1.0 to 4.0 mm, a tensile strength of 440 to 980 MPa, and a galvanized coating amount of 20 to 60 g / m 2 per one surface of the steel sheet. Or fillet arc welding of the galvanized steel sheet according to 2; 亜鉛めっき鋼板の隅肉パルスMAG溶接継手において、
溶接ワイヤの外皮およびフラックスを合わせたフラックス入り溶接ワイヤの成分が質量%で、
C:0.15〜0.5%、
Si:0.3〜1.5%、
Mn:0.2〜3.0%、
SiO2、Al23、TiO2、Na2OおよびK2Oのうち1種または2種以上の合計で0.1〜0.4%、
O:0.05〜0.25%、
残部Feおよび不可避的不純物であって、
前記溶接ワイヤの外皮内に充填される金属粉および酸化物の充填率:5〜12%
であるメタル系フラックス入り溶接ワイヤを用い、かつ
亜鉛めっき鋼板の母材となる鋼板の割れ感受性指数(PcmS)および溶接ワイヤの割れ感受性指数(PcmW)が以下の関係を満足することを特徴とする亜鉛めっき鋼板の隅肉アーク溶接継手。
−0.86×PcmS+0.51 ≦ PcmW ≦ −1.9×PcmS+1.0
In fillet pulse MAG welding joint of galvanized steel sheet,
The component of the flux-cored welding wire that combines the outer sheath of the welding wire and the flux is mass%.
C: 0.15-0.5%
Si: 0.3 to 1.5%,
Mn: 0.2 to 3.0%
0.1 to 0.4% in total of one or more of SiO 2 , Al 2 O 3 , TiO 2 , Na 2 O and K 2 O,
O: 0.05-0.25%
Remaining Fe and unavoidable impurities,
Filling rate of metal powder and oxide filled in the outer sheath of the welding wire: 5 to 12%
The crack sensitivity index (PcmS) and the crack sensitivity index (PcmW) of the welding wire satisfy the following relationship, using a metal-based flux-cored welding wire: Fillet arc welded joint of galvanized steel sheet.
−0.86 × PcmS + 0.51 ≦ PcmW ≦ −1.9 × PcmS + 1.0
JP2010231900A 2010-10-14 2010-10-14 Fillet arc welding method of galvanized steel sheet Withdrawn JP2012081514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231900A JP2012081514A (en) 2010-10-14 2010-10-14 Fillet arc welding method of galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231900A JP2012081514A (en) 2010-10-14 2010-10-14 Fillet arc welding method of galvanized steel sheet

Publications (1)

Publication Number Publication Date
JP2012081514A true JP2012081514A (en) 2012-04-26

Family

ID=46240942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231900A Withdrawn JP2012081514A (en) 2010-10-14 2010-10-14 Fillet arc welding method of galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2012081514A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016087622A (en) * 2014-10-31 2016-05-23 日鐵住金溶接工業株式会社 Flux-cored wire for gas shield arc welding of high-tensile steel
WO2016175154A1 (en) * 2015-04-28 2016-11-03 株式会社神戸製鋼所 Flux cored wire for gas-shielded arc welding and welding method
JP2017074599A (en) * 2015-10-14 2017-04-20 日鐵住金溶接工業株式会社 METALLIC FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP2019150872A (en) * 2014-04-04 2019-09-12 リンカーン グローバル, インコーポレイテッドLincoln Global, Inc. Method and system using ac welding waveform, and reinforced consumable material improving welding of galvanized workpiece
US10518351B2 (en) 2014-11-27 2019-12-31 Nippon Steel Nisshin Co., Ltd. Arc welding method for Zn plated steel sheet and arc welded joint
CN110839341A (en) * 2018-06-18 2020-02-25 株式会社Posco Welded member of plated steel sheet having excellent weld porosity resistance and fatigue characteristics, and method for producing same
US11318567B2 (en) * 2016-04-28 2022-05-03 Kobe Steel, Ltd. Flux-cored wire
CN115023313A (en) * 2020-04-28 2022-09-06 株式会社Posco Welding wire for obtaining giga-order weld bead, welded structure manufactured using same, and welding method thereof
US11815127B2 (en) 2016-12-23 2023-11-14 Posco Co., Ltd Welded member for plated steel plate excellent in weld zone porosity resistance and fatigue properties and method for manufacturing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019150872A (en) * 2014-04-04 2019-09-12 リンカーン グローバル, インコーポレイテッドLincoln Global, Inc. Method and system using ac welding waveform, and reinforced consumable material improving welding of galvanized workpiece
JP2016087622A (en) * 2014-10-31 2016-05-23 日鐵住金溶接工業株式会社 Flux-cored wire for gas shield arc welding of high-tensile steel
US10518351B2 (en) 2014-11-27 2019-12-31 Nippon Steel Nisshin Co., Ltd. Arc welding method for Zn plated steel sheet and arc welded joint
KR102039878B1 (en) 2015-04-28 2019-11-04 가부시키가이샤 고베 세이코쇼 Flux cored wire and welding method for gas shielded arc welding
US10702955B2 (en) 2015-04-28 2020-07-07 Kobe Steel, Ltd. Flux-cored wire for gas-shielded arc welding and welding method
CN107530838A (en) * 2015-04-28 2018-01-02 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding and welding method
EP3290148A4 (en) * 2015-04-28 2018-09-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux cored wire for gas-shielded arc welding and welding method
KR20170128603A (en) * 2015-04-28 2017-11-22 가부시키가이샤 고베 세이코쇼 Flux cored wire and welding method for gas shield arc welding
JP2016203247A (en) * 2015-04-28 2016-12-08 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding, and welding method
WO2016175154A1 (en) * 2015-04-28 2016-11-03 株式会社神戸製鋼所 Flux cored wire for gas-shielded arc welding and welding method
CN107530838B (en) * 2015-04-28 2020-11-10 株式会社神户制钢所 Flux-cored wire for gas-shielded arc welding and welding method
JP2017074599A (en) * 2015-10-14 2017-04-20 日鐵住金溶接工業株式会社 METALLIC FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
US11318567B2 (en) * 2016-04-28 2022-05-03 Kobe Steel, Ltd. Flux-cored wire
US11815127B2 (en) 2016-12-23 2023-11-14 Posco Co., Ltd Welded member for plated steel plate excellent in weld zone porosity resistance and fatigue properties and method for manufacturing the same
JP2020528006A (en) * 2018-06-18 2020-09-17 ポスコPosco Welded parts Welded steel plate with excellent pore resistance and fatigue characteristics and its manufacturing method
CN110839341A (en) * 2018-06-18 2020-02-25 株式会社Posco Welded member of plated steel sheet having excellent weld porosity resistance and fatigue characteristics, and method for producing same
JP7023962B2 (en) 2018-06-18 2022-02-22 ポスコ Welded parts Plated steel plate welded members with excellent pore resistance and fatigue characteristics and their manufacturing methods
CN115023313A (en) * 2020-04-28 2022-09-06 株式会社Posco Welding wire for obtaining giga-order weld bead, welded structure manufactured using same, and welding method thereof
CN115023313B (en) * 2020-04-28 2024-04-12 株式会社Posco Welding wire for obtaining giga-level welding seam, welding structure manufactured by using welding wire and welding method of welding structure

Similar Documents

Publication Publication Date Title
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
JP5098217B2 (en) Welded joints of galvanized steel sheets excellent in corrosion resistance and zinc embrittlement cracking resistance of welds and methods for producing the same
CA2204339C (en) Metal-core weld wire for welding galvanized steels
JP2012081514A (en) Fillet arc welding method of galvanized steel sheet
JP4857015B2 (en) Gas shielded arc welding flux cored wire and welding method
JP6573056B1 (en) Solid wire for gas shielded arc welding to thin steel plate
WO2012086042A1 (en) Welding solid wire and welding metal
JP5372217B2 (en) Manufacturing method of arc-welded structural members
JP5980128B2 (en) Manufacturing method of arc-welded structural members
JP6594266B2 (en) Gas shield arc welding method and manufacturing method of welded structure
JP5244059B2 (en) Welded solid wire and weld metal
WO2018203513A1 (en) Arc welding method and welding wire
JP2014133259A (en) Manufacturing method of arc welding structural member
JP2006035293A (en) Welding method of galvanized steel plate having excellent corrosion resistance and zinc embrittlement cracking resistance of weld
WO2016175154A1 (en) Flux cored wire for gas-shielded arc welding and welding method
JP5137412B2 (en) Gas shielded arc welding method for galvanized steel bar and stainless steel plate
JP6373550B2 (en) Gas shield arc welding method
JP2005230912A (en) Arc welding flux cored wire superior in liquid metal embrittlement crack resistance, and arc welding method
JPH0833982A (en) Gas shielded metal arc welding method to enhance corrosion resistance after coating of weld zone and near this zone
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP5670305B2 (en) Solid wire for gas shielded arc welding of high strength steel sheet
JPH06210490A (en) Welding wire of zinc galvanized steel sheet and welding method
JPH1110391A (en) Flux cored wire for multielectrode vertical electrogas arc welding for extra thick plate
KR101856703B1 (en) Flux cored wire for galva-annealed steel welding
JPH09285891A (en) Electro gas arc welding fluxed core wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107