JP5137412B2 - Gas shielded arc welding method for galvanized steel bar and stainless steel plate - Google Patents
Gas shielded arc welding method for galvanized steel bar and stainless steel plate Download PDFInfo
- Publication number
- JP5137412B2 JP5137412B2 JP2007032013A JP2007032013A JP5137412B2 JP 5137412 B2 JP5137412 B2 JP 5137412B2 JP 2007032013 A JP2007032013 A JP 2007032013A JP 2007032013 A JP2007032013 A JP 2007032013A JP 5137412 B2 JP5137412 B2 JP 5137412B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- stainless steel
- flux
- steel plate
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Nonmetallic Welding Materials (AREA)
- Arc Welding In General (AREA)
Description
本発明は、亜鉛めっき棒鋼とステンレス鋼板の溶接に使用され、溶接割れが発生せず、溶接金属中または表面にブローホールまたはピットの発生が極めて少く、タッチアップ等の後処理を行わなくとも耐食性が良好で、溶接作業性が良好なガスシールドアーク溶接用フラックス入りワイヤおよび亜鉛めっき棒鋼とステンレス鋼板の溶接方法に関する。 The present invention is used for welding galvanized steel bars and stainless steel plates, does not generate weld cracks, has very few blowholes or pits in the weld metal or on the surface, and is corrosion resistant even without post-treatment such as touch-up. The present invention relates to a flux-cored wire for gas shielded arc welding with good welding workability and a method for welding galvanized steel bar and stainless steel plate.
近年、自動車排気系部品特に、排気マニフォルドは、燃費向上や軽量化の動きの中で厚肉構造の耐熱鋳物から薄板や薄肉鋼管を利用した溶接構造物へと変遷し、これによりフェライト系ステンレス鋼板の使用量が拡大した。これまで、フェライト系ステンレス鋼板としてSUS430LX(低C―17%Cr−Nb)等が用いられてきた。現在は、高価なCr量を低減して1%程度のSiを含有させることにより耐酸化性や高温強度の確保を図った新しいタイプのSUS425、SUS429(低C−1%Si−13〜15%Cr−Nb系)等が開発され、この種の低コスト指向フェライト系ステンレス鋼の適用が急増してきている。溶接方法としては、シールドガスとしてAr−2%O2やAr−20%CO2を用いたミグまたはマグ溶接の適用例が多い。また、Nbを含まないSUS430L系溶接用ワイヤも適用されているが、炭酸ガスを含むシールドガスを用いたマグ溶接ではシールドガスからのCのピックアップの影響によりフェライト相とその粒界の一部がマルテンサイト変態した二相組織となり、繰返し熱サイクルを伴う環境下では、熱疲労特性にも難があった。 In recent years, automobile exhaust system parts, especially exhaust manifolds, have changed from heat-resistant casts with thick structures to welded structures using thin plates and thin steel pipes as a result of improvements in fuel economy and weight reduction. The amount of use increased. So far, SUS430LX (low C-17% Cr—Nb) or the like has been used as a ferritic stainless steel sheet. At present, new types of SUS425 and SUS429 (low C-1% Si-13-15%) which have secured the oxidation resistance and high temperature strength by reducing the amount of expensive Cr and containing about 1% Si. Cr-Nb) has been developed, and the application of this type of low cost oriented ferritic stainless steel has increased rapidly. As a welding method, there are many application examples of MIG or MAG welding using Ar-2% O 2 or Ar-20% CO 2 as a shielding gas. In addition, SUS430L welding wire that does not contain Nb is also applied, but in mag welding using a shielding gas containing carbon dioxide, the ferrite phase and a part of its grain boundary are partly affected by the pickup of C from the shielding gas. In a martensitic transformed two-phase structure, the thermal fatigue properties were also difficult in an environment with repeated thermal cycles.
フェライト系ステンレス鋼板の溶接で溶接割れを軽減するために、鋼中のP、S等の不純物元素を抑制することは周知の事実であるが、その低減には経済的にも限界があり、十分な効果が得られなかった。さらに、従来から種々のフェライト系ステンレス鋼板の溶接用ワイヤが提案されている。これらは溶接ワイヤ中に微細化元素の添加を行って、力学的あるいはミクロ偏析の見地から溶接割れ感受性の低下を図ろうというものである。例えば、溶接ワイヤ中に微細化元素であるTi、Al、Nを添加したソリッドワイヤが開示されている(例えば、特許文献1参照)。しかしながら、このような微細化元素の添加を行うだけの手法では、溶接割れは防止できるが、耐酸化性に極めて有害なNを添加することから、窒化アルミ(AlN)を酸化皮膜上に形成する。窒化アルミ自体は耐酸化性の効果を持たないことから、これを起点として酸化が進行し異常酸化現象を生じさせることが知られており、溶接金属の清浄度を悪くさせ結果的に耐食性を損なうことになる。 In order to reduce weld cracking in the welding of ferritic stainless steel sheets, it is a well-known fact that impurity elements such as P and S in steel are suppressed, but there is an economical limit to the reduction, which is sufficient. The effect was not obtained. Furthermore, various welding wires for ferritic stainless steel sheets have been proposed. These are intended to reduce weld cracking susceptibility from the standpoint of mechanical or microsegregation by adding finer elements to the welding wire. For example, a solid wire is disclosed in which Ti, Al, and N, which are refined elements, are added to a welding wire (see, for example, Patent Document 1). However, with such a technique of simply adding a finer element, weld cracking can be prevented, but since N that is extremely harmful to oxidation resistance is added, aluminum nitride (AlN) is formed on the oxide film. . Since aluminum nitride itself does not have an oxidation resistance effect, it is known that oxidation proceeds from this point to cause an abnormal oxidation phenomenon, which deteriorates the cleanliness of the weld metal and consequently deteriorates the corrosion resistance. It will be.
一方、めっき鋼板は、建築、橋梁、自動車などの分野において構造物材の耐食性向上の観点から幅広く用いられている。従来構造物の耐食性向上については、非めっき材を溶接し、その後、亜鉛またはクロム系合金浴に浸漬し、鋼材および溶接部表面に付着させ、構造物全体の耐食性を確保する方法が用いられてきた。しかし、この方法では溶接した後にめっき工程が行われるため、生産性が劣るとともに、めっき浴等の設備が必要になり、製造コストを増加させる原因になっていた。最近では、あらかじめめっきが施された鋼板を溶接し、製造を行う方法が適用されるようになってきた。しかし、亜鉛めっき鋼板を溶接して構造物を製造する場合には、めっき鋼板および溶接材料が溶融凝固して形成された溶接金属では、めっき層が蒸発離散するため、溶接部の耐食性が劣化するという課題があった。このため従来、亜鉛めっき鋼板を溶接して溶接構造物を製造する場合は、溶接部の耐食性を確保するために、JIS Z 3312 YGW11やJIS Z 3313 YFW−C50DR等の炭素鋼ワイヤを適用した溶接部に、タッチアップと呼ばれる刷毛塗りやスプレーによる補修塗装が行われているが、溶接後に塗装作業が必要となるため構造物の生産性の低下をもたらすという課題があった。また、溶接部表面に塗装した防食塗料は永年の使用環境において剥離し、特に塗装が困難である狭隘な個所の耐食性は不十分であった。 On the other hand, plated steel sheets are widely used from the viewpoint of improving the corrosion resistance of structural materials in fields such as architecture, bridges, and automobiles. In order to improve the corrosion resistance of conventional structures, a method has been used in which a non-plated material is welded and then immersed in a zinc or chromium alloy bath to adhere to the surface of the steel material and the welded portion to ensure the corrosion resistance of the entire structure. It was. However, in this method, since the plating process is performed after welding, the productivity is inferior, and equipment such as a plating bath is required, which increases the manufacturing cost. Recently, a method of welding and manufacturing a pre-plated steel sheet has been applied. However, when a galvanized steel sheet is welded to produce a structure, the weld layer formed by melting and solidifying the plated steel sheet and the welding material causes the plating layer to evaporate and disperse, so the corrosion resistance of the welded portion deteriorates. There was a problem. For this reason, conventionally, when manufacturing a welded structure by welding galvanized steel sheets, welding using a carbon steel wire such as JIS Z 3312 YGW11 or JIS Z 3313 YFW-C50DR to ensure the corrosion resistance of the welded portion. The part is subjected to repair coating by brushing or spraying, which is called touch-up, but there is a problem in that the productivity of the structure is lowered because painting work is required after welding. In addition, the anticorrosion paint painted on the surface of the welded part peels off in a long-term use environment, and the corrosion resistance is particularly insufficient in narrow places where painting is difficult.
ある建設物において、ステンレス鋼板のみまたは亜鉛めっき鋼板のみの構造物はほとんど存在しない。排気系部品を車両本体に装着する際、排気系部品に亜鉛めっきを施した棒状のハンガ−を接合し、車両に取り付けている。上述した通り、排気系部品にはフェライト系ステンレス鋼板が主流であり、JIS Z 3312 YGW11やJIS Z 3313 YFW−C50DR等の炭素鋼ワイヤを用いると、溶接金属が完全なマルテンサイト組織となり、溶接割れが発生することは必至である。このため溶接部に耐食性をもたせるためステンレス鋼溶接材料を使用されるケースが多くなっている。例えば、ステンレス鋼と炭素鋼の異材すみ肉溶接において健全な溶接金属が得られるとしているが(例えば、特許文献2参照)、炭素鋼に塗装処理が施されている異材すみ肉溶接においてはその健全性が得られなし、Niを9%程度、Crを28%程度含有しており、非常に高価で製造コストが上がり実用的ではない。また、ハンガーの鋼種をステンレス鋼板に変更することが検討されているが、これも製造コストが上がり実用的ではない。また、最近、環境問題等により、六価クロム規制が始まり、めっき方法がクロムめっきから亜鉛めっきへとめっき方法が変更されてきているが、耐食性の観点から、亜鉛めっき付着量が厚めっき傾向にある。そのため従来使用されてきた安価なステンレス鋼ソリッドワイヤを用いても溶接金属中に多量の気孔欠陥(ブローホールまたはピット)が発生し、腐食環境下で生じた孔食や粒界腐食が、それを起点として溶接金属を貫通する割れへと進展する可能性がある。 In some constructions, there are almost no structures of only stainless steel plates or only galvanized steel plates. When the exhaust system parts are mounted on the vehicle body, rod-shaped hangers that are galvanized are joined to the exhaust system parts and attached to the vehicle. As described above, ferritic stainless steel plates are the mainstream for exhaust system parts. When carbon steel wires such as JIS Z 3312 YGW11 and JIS Z 3313 YFW-C50DR are used, the weld metal becomes a complete martensite structure and weld cracking occurs. It is inevitable that this occurs. For this reason, in order to give corrosion resistance to a welding part, the case where a stainless steel welding material is used is increasing. For example, it is said that a sound weld metal can be obtained in dissimilar fillet welding of stainless steel and carbon steel (see, for example, Patent Document 2), but in dissimilar fillet welding in which carbon steel is coated, the sound Therefore, Ni is contained in about 9% and Cr is contained in about 28%, so that it is very expensive and the production cost increases and is not practical. Moreover, although changing the steel type of a hanger to the stainless steel plate is examined, this also raises manufacturing cost and is not practical. Recently, hexavalent chromium regulations have been started due to environmental problems, and the plating method has been changed from chrome plating to galvanization. However, from the viewpoint of corrosion resistance, the amount of zinc plating tends to be thick plating. is there. For this reason, even with the use of inexpensive stainless steel solid wires that have been used in the past, a large amount of pore defects (blowholes or pits) occur in the weld metal, and pitting corrosion and intergranular corrosion that occur in corrosive environments There is a possibility of developing into a crack that penetrates the weld metal as a starting point.
本発明は、亜鉛めっき棒鋼とステンレス鋼板を溶接する場合において、耐食性が良好で、ブローホールやピットの発生が極めて少なく、溶接作業性が良好なステンレス鋼溶接用フラックス入りワイヤおよび亜鉛めっき棒鋼とステンレス鋼板の溶接方法を提供することを目的とする。 The present invention, in the case of welding galvanized steel bar and stainless steel sheet, the corrosion resistance is good, the occurrence of blowholes and pits is extremely small, weldability good stainless steel welding flux cored wire and zinc-plated steel bar and stainless It aims at providing the welding method of a steel plate.
本発明の要旨は、以下のとおりである。 The gist of the present invention is as follows.
(1)金属外皮内にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、金属外皮およびフラックス中にワイヤ全質量に対して質量%で、
C:0.01〜0.03%、
Si:0.1〜0.45%、
Mn:0.2〜1.0%、
Cr:13〜20%、
Nb:0.5〜1.0%、
Cu:0.01〜0.3%、
Al:0.2〜0.8%、
Ti:0.1〜0.8%、
アルカリ金属炭酸塩およびアルカリ土類金属炭酸塩の1種または2種以上:0.05〜0.25%、を含有し、
N:0.015%以下で、残部はFeおよび不可避的不純物からなるガスシールドアーク溶接用フラックス入りワイヤを用い、
亜鉛めっき棒鋼とステンレス鋼板のフレア継手を溶接することを特徴とする亜鉛めっき棒鋼とステンレス鋼板の溶接方法。
(1) In a flux-cored wire for gas shielded arc welding, in which a metal sheath is filled with a flux, the metal sheath and the flux in mass% with respect to the total mass of the wire,
C: 0.01 to 0.03 %,
Si: 0.1 to 0.45%,
Mn: 0.2 to 1.0%,
Cr: 13-20%,
Nb: 0.5 to 1.0%
Cu: 0.01 to 0.3%,
Al: 0.2-0.8%
Ti: 0.1 to 0.8%,
One or more of alkali metal carbonates and alkaline earth metal carbonates: 0.05 to 0.25%,
N: 0.015% or less, the balance using a flux-cored wire for gas shielded arc welding consisting of Fe and inevitable impurities ,
A welding method for galvanized steel bar and stainless steel plate, characterized by welding a flared joint of galvanized steel bar and stainless steel plate.
(2)前記ガスシールドアーク溶接用フラックス入りワイヤが、金属外皮およびフラックス中にワイヤ全質量に対して質量%で、さらに、Ni:0.2%以下を含有することを特徴とする上記(1)に記載の亜鉛めっき棒鋼とステンレス鋼板の溶接方法。 (2) said gas shielded arc welding flux cored wire is, by mass% with respect to total mass of the wire to the metal tube and the flux further, Ni: the characterized by containing 0.2% or less (1 ) The method for welding galvanized steel bar and stainless steel sheet as described above .
(3)シールドガスとしてArに5体積%以下のO2またはArに25体積%以下のCO2を混合したガスおよび溶接電源にパルス波形制御を用いることを特徴とする上記(1)または(2)に記載の亜鉛めっき棒鋼とステンレス鋼板の溶接方法。 (3) The pulse waveform control is used for a welding power source and a gas obtained by mixing 5 vol% or less of O 2 or Ar with 25 vol% or less of CO 2 as a shielding gas, and (2) ) The method for welding galvanized steel bar and stainless steel sheet as described above.
本発明の亜鉛めっき棒鋼とステンレス鋼板の溶接方法によれば、亜鉛めっき棒鋼とステンレス鋼板を溶接する場合において、溶接後めっき処理工程が不用で、耐食性が良好で、ブローホールやピットの発生が極めて少なく、溶接作業性が良好であり、高能率で高品質な溶接部を低コストで製造することができる。 According to the welding method of the galvanized steel bar and the stainless steel plate of the present invention, when welding the galvanized steel bar and the stainless steel plate, the post-welding plating process is unnecessary, the corrosion resistance is good, and the occurrence of blowholes and pits is extremely high. There are few, welding workability | operativity is favorable, and a highly efficient and high quality welded part can be manufactured at low cost.
以下、本発明におけるガスシールドアーク溶接用フラックス入りワイヤ全質量に対する含有成分の組成限定理由について説明する。 Hereinafter, the reasons for limiting the composition of the contained components with respect to the total mass of the flux-cored wire for gas shielded arc welding in the present invention will be described.
C:0.01〜0.03質量%
Cは、Crと炭化物を形成し、溶接金属の高温酸化性および耐塩害腐食性を低下させる。一方、Cはオーステナイト安定化元素としてフェライトの成長を抑制し、Nbと炭化物を形成して等軸晶の生成に有効で、溶接割れの抑制に効果がある。Cが0.01質量%(以下、%という。)未満の場合、等軸晶の生成効果が期待できない。Cが0.05%を超えると、溶摘移行がスムーズに行かずスパッタ発生量が増大する。また、溶接金属の耐酸化性を低下させる。
C: 0.01~ 0.03 mass%
C forms carbides with Cr and lowers the high temperature oxidation resistance and salt corrosion resistance of the weld metal. On the other hand, C suppresses the growth of ferrite as an austenite stabilizing element, forms carbides with Nb and is effective in generating equiaxed crystals, and is effective in suppressing weld cracking. When C is less than 0.01% by mass (hereinafter referred to as “%”), the effect of forming equiaxed crystals cannot be expected. When C exceeds 0.05%, the transition to the melting does not proceed smoothly, and the amount of spatter generated increases. It also reduces the oxidation resistance of the weld metal.
さらに、亜鉛めっき鋼板または亜鉛めっき棒鋼(以下、亜鉛めっき鋼板という。)とステンレス鋼板との溶接を行う場合は、異材溶接となり溶接金属にマルテンサイト組織が析出する可能性があり、オーステナイト安定化元素の添加を抑える必要がある。特に、Cは割れ感受性を最も敏感にする元素であるため、CO2ガスを含有するシールドガスの使用を想定し、Cを0.03%以下とする。 Furthermore, when welding a galvanized steel sheet or a galvanized steel bar (hereinafter referred to as a galvanized steel sheet) and a stainless steel sheet, there is a possibility that a martensitic structure precipitates in the weld metal due to dissimilar material welding. It is necessary to suppress the addition of. In particular, since C is an element that makes the cracking sensitivity most sensitive, C is set to 0.03% or less assuming the use of a shielding gas containing CO 2 gas.
Si:0.1〜0.45%
Siは、フェライト安定化元素として溶接金属の柱状組織の粗大化を促進する作用があり、さらに脱酸効果があり酸化物として粒界に偏析して脆弱化させる作用も有するため、梨型ビード形状割れと延性低下での割れによる溶接割れ感受性を高める元素である。
Si: 0.1 to 0.45%
Si has the effect of promoting the coarsening of the columnar structure of the weld metal as a ferrite stabilizing element, and also has the effect of deoxidizing and segregating at the grain boundaries as an oxide to make it brittle, so that the pear-shaped bead shape It is an element that increases the weld cracking susceptibility due to cracking and cracking due to reduced ductility.
一方、SiはCrとの共存で耐酸化性を改善する作用がある。また、アーク安定性やビード形状を良化させる作用も有する。Siが0.1%未満では、溶接金属の耐酸化性およびアーク安定性やビード形状を良化させる作用が不十分である。0.45%を超えると、耐溶接割れ性が劣化する。また、亜鉛めっきから発生する蒸気と結合し、ピット発生の要因となる。 On the other hand, Si has the effect of improving oxidation resistance when coexisting with Cr. It also has the effect of improving arc stability and bead shape. If Si is less than 0.1%, the effect of improving the oxidation resistance and arc stability of the weld metal and the bead shape is insufficient. If it exceeds 0.45%, the weld crack resistance deteriorates. Moreover, it couple | bonds with the vapor | steam which generate | occur | produces from zinc plating, and becomes a factor of pit generation.
Mn:0.2〜1.0%
Mnは、高融点のMnSを形成して高温割れ抑制に有効である。0.2%未満ではその効果が不十分であり、1.0%を超えると、溶接金属の高温酸化性を劣化させる。また、溶接金属を硬化させるとともに、亜鉛めっき棒鋼を溶接する際に発生する蒸気を溶接金属内に閉じ込めやすくなり、ブローホールの原因となるため、上限を1.0%とする。
Mn: 0.2 to 1.0%
Mn forms a high melting point MnS and is effective in suppressing hot cracking. If it is less than 0.2%, the effect is insufficient, and if it exceeds 1.0%, the high temperature oxidation of the weld metal is deteriorated. Moreover, while hardening a weld metal, it becomes easy to contain the vapor | steam which generate | occur | produces when welding a galvanized steel bar in a weld metal, and it becomes a cause of a blowhole, Therefore An upper limit is 1.0%.
Cr:13〜20%
Crは、フェライト系ステンレス鋼の主要な元素である。Crは、高温でCr2O3主体の酸化物を形成し、緻密で酸素の拡散が阻止できるので、耐酸化性の機能を発揮する。また、高温強度および耐塩害腐食性などの耐食性を確保する上でも必須である。Crが13%未満だとマルテンサイト組織が析出しやすくなり溶接割れを助長する。一方、20%を超えると溶接金属の延性低下が懸念され耐溶接割れ性が劣化する。
Cr: 13-20%
Cr is a main element of ferritic stainless steel. Cr forms an oxide mainly composed of Cr 2 O 3 at a high temperature and is dense and can prevent diffusion of oxygen, and thus exhibits an oxidation resistance function. It is also essential to ensure corrosion resistance such as high-temperature strength and salt corrosion resistance. If Cr is less than 13%, a martensite structure is likely to precipitate, which promotes weld cracking. On the other hand, when it exceeds 20%, the ductility of the weld metal is concerned and the weld crack resistance is deteriorated.
Nb:0.5〜1.0%
Nbは、溶接金属のミクロ組織改善と梨型ビード形状割れの抑制に最も効果がある。Nbは、炭素および窒素と結合してフェライト形成核となる炭窒化物を生成する成分であり、炭窒化物を生成させ結晶粒の微細化および高温強度の改善が見込まれる。その効果を得るためには、炭素含有量の7倍の添加が必要であり0.5%以上とする。しかし、過剰な添加は、低融点のNbCを粒界に過剰形成させ、かえって溶接割れ感受性を高める作用があるため、上限を1.0%以下とする。
Nb: 0.5 to 1.0%
Nb is most effective in improving the microstructure of the weld metal and suppressing cracks in the pear-shaped bead shape. Nb is a component that combines with carbon and nitrogen to generate carbonitrides that form ferrite nuclei. Carbon nitride is generated, and crystal grain refinement and improvement in high-temperature strength are expected. In order to obtain the effect, addition of 7 times the carbon content is necessary, and the content is made 0.5% or more. However, excessive addition causes the low melting point NbC to be excessively formed at the grain boundary, and on the contrary, has the effect of increasing the weld cracking sensitivity, so the upper limit is made 1.0% or less.
Cu:0.01〜0.3%
Cuは、溶接時の溶融池の粘性を下げる効果があり、本発明のガスシールドアーク溶接用フラックス入りワイヤは、C、Siの添加を低く抑えているため溶接ビード形状を改善させる。また、亜鉛めっき鋼板とステンレス鋼板との溶接を行う場合、Crを含有していない亜鉛めっき棒鋼では、溶接金属のCr量が減少して耐食性が劣化するが、Cuを含むことによって溶接金属組織中の粒内を強化し、全面腐食の発生を抑制する効果がある。Cuが0.01%未満だとこの効果が期待できない。一方、0.3%を超えると溶接金属の融点が下がり、溶接割れを助長するとともに、重ね継手、T継手およびフレア継手の溶接時、溶接ビード形状が劣化する。
Cu: 0.01 to 0.3%
Cu has the effect of lowering the viscosity of the molten pool during welding, and the flux-cored wire for gas shielded arc welding of the present invention improves the weld bead shape because the addition of C and Si is kept low. In addition, when welding between a galvanized steel plate and a stainless steel plate, in a galvanized steel bar not containing Cr, the Cr content of the weld metal decreases and the corrosion resistance deteriorates. It has the effect of strengthening the inside of grains and suppressing the occurrence of general corrosion. If Cu is less than 0.01%, this effect cannot be expected. On the other hand, if it exceeds 0.3%, the melting point of the weld metal is lowered to promote weld cracking, and the weld bead shape deteriorates during welding of the lap joint, T joint and flare joint.
Al:0.2〜0.8%
Alは、等軸晶の生成には必須元素である。溶接金属の脱酸作用により酸化物を形成し、この酸化物が等軸晶の生成を促進して梨型ビード形状割れを防止する作用を有する。Alが0.2%未満では、これら効果は不十分である。一方、0.8%を超えると、スパッタ発生量が多くなり好ましくない。
Al: 0.2 to 0.8%
Al is an essential element for the formation of equiaxed crystals. An oxide is formed by the deoxidizing action of the weld metal, and this oxide has the action of promoting the formation of equiaxed crystals and preventing cracking of the pear-shaped bead shape. When Al is less than 0.2%, these effects are insufficient. On the other hand, if it exceeds 0.8%, the amount of spatter generated increases, which is not preferable.
Ti:0.1〜0.8%
Tiは、脱酸効果と等軸晶の生成に有効な元素である。等軸晶生成のメカニズムはAlと同じであり梨型ビード形状割れ防止する作用を有する。また、アーク安定性を良化させる作用がある。Tiが0.1%未満では、これら効果は不十分である。一方、0.8%を超えると、アーク吹付け力が過剰となり、スパッタ発生量が多くなるとともにビードが凸形状となるので好ましくない。
Ti: 0.1 to 0.8%
Ti is an element effective for the deoxidation effect and the formation of equiaxed crystals. The mechanism of equiaxed crystal formation is the same as that of Al, and has the effect of preventing pear-shaped bead shape cracking. Moreover, there exists an effect | action which improves arc stability. If Ti is less than 0.1%, these effects are insufficient. On the other hand, if it exceeds 0.8%, the arc spraying force becomes excessive, the amount of spatter generated increases, and the bead becomes convex, which is not preferable.
アルカリ金属炭酸塩およびアルカリ土類金属炭酸塩の1種または2種以上:0.05〜0.25%
Na2CO3,K2CO3,Li2CO3等のアルカリ金属炭酸塩およびCaCO3,BaCO3等のアルカリ土類金属炭酸塩は、アーク安定性作用とアーク集中性を高める。その効果は0.05%未満では得られない。一方、0.25%を超えると、アークの集中性が強すぎてスパッタ発生量が多くなる。したがって、本発明ではアルカリ金属炭酸塩およびアルカリ土類金属炭酸塩の1種または2種以上の含有量を0.05〜0.25%とした。
One or more of alkali metal carbonates and alkaline earth metal carbonates: 0.05 to 0.25%
Alkali metal carbonates such as Na 2 CO 3 , K 2 CO 3 , and Li 2 CO 3 and alkaline earth metal carbonates such as CaCO 3 and BaCO 3 enhance arc stability and arc concentration. The effect cannot be obtained at less than 0.05%. On the other hand, if it exceeds 0.25%, the concentration of the arc is too strong and the amount of spatter generated increases. Therefore, in the present invention, the content of one or more alkali metal carbonates and alkaline earth metal carbonates is set to 0.05 to 0.25%.
N:0.015%以下
Nは、オーステナイト安定化元素してフェライト相析出を抑制する効果がある。しかし、本発明の対象とする金属組織は、フェライト単相組織であり溶接のままの状態では延性が少なく、オーステナイト安定化元素であるNの添加は、更なる延性劣化の要因となる。亜鉛めっき棒鋼とステンレス鋼板との溶接を行う場合、異材溶接となり溶接金属にマルテンサイト組織が析出する可能性があり、耐食性が劣化するためオーステナイト安定化元素の添加を抑える必要がる。また、亜鉛めっき棒鋼を溶接する際に発生する蒸気とともにブローホールの原因となるため、0.015%以下とする。
N: 0.015% or less N has an effect of suppressing ferrite phase precipitation as an austenite stabilizing element. However, the metal structure targeted by the present invention is a ferrite single-phase structure and has a low ductility in the as-welded state, and the addition of N, which is an austenite stabilizing element, causes further ductility deterioration. When welding between a galvanized steel bar and a stainless steel plate, it is necessary to suppress the addition of an austenite stabilizing element since the martensitic structure may be deposited on the weld metal due to the dissimilar material welding and the corrosion resistance deteriorates. Moreover, since it causes a blowhole with the vapor | steam generate | occur | produced when welding a galvanized steel bar , it is 0.015% or less.
Ni:0.2%以下
Niは、オーステナイト安定化元素であり、溶接金属組織中のオーステナイト相を安定化させ溶接金属の延性を得るが、非常に高価な原料であり、コスト上昇にもつながる。特に、亜鉛めっき棒鋼とステンレス鋼板との溶接を行う場合、異材溶接となり溶接金属にマルテンサイト組織が析出する可能性があり、耐食性が劣化してしまう。また、多量の添加はP、S等の割れに有害な微量成分の偏析を促進し、溶接割れが発生しやすくなるため0.2%以下とする。
Ni: 0.2% or less Ni is an austenite stabilizing element, which stabilizes the austenite phase in the weld metal structure and obtains the ductility of the weld metal, but is a very expensive raw material, leading to an increase in cost. In particular, when welding a galvanized steel bar and a stainless steel plate, different materials are welded, and a martensite structure may be deposited on the weld metal, resulting in a deterioration in corrosion resistance. Further, the addition of a large amount promotes the segregation of trace components harmful to cracks such as P and S and tends to cause weld cracks, so the content is made 0.2% or less.
シールドガスとしてArに5体積%以下(ただし、0%は含まない)のO2またはArに25体積%以下(ただし、0%は含まない)のCO2を混合したガス
Arガスを主体とした混合ガスは、溶接金属組織の清浄度が上がり耐食性が向上する。また、溶接時のアークを安定させ、溶接作業性を良好にする効果がある。Arに5%を超えるO2を混合したガスを用いると、溶接金属中にTi、Si等と結合した酸化物が溶接部表面に多量に発生し、ビード外観を損ないビード形状を劣化させる。Arに25%を超えるCO2を混合したガスを用いると、アークがグロビュール移行となりスパッタが多量に発生し溶接作業性を劣化させる。また、亜鉛めっき棒鋼とステンレス鋼の溶接の場合、異材溶接となりマルテンサイト組織が析出する可能性があるため、ワイヤ成分を規定してもシールドガス中のCのピックアップにより、組織変態の要因となるとともに耐食性を劣化させる要因となる。
As a shielding gas, a gas mainly composed of 5% by volume or less (but not including 0%) of O 2 in Ar or 25% or less (but not including 0%) of CO 2 in Ar. The mixed gas increases the cleanliness of the weld metal structure and improves the corrosion resistance. In addition, there is an effect of stabilizing the arc during welding and improving the welding workability. If a gas in which more than 5% of O2 is mixed with Ar is used, a large amount of oxides combined with Ti, Si and the like are generated in the weld metal on the surface of the weld, deteriorating the bead appearance and degrading the bead shape. When a gas in which more than 25% of CO2 is mixed with Ar is used, the arc shifts to globules, and a large amount of spatter is generated, which deteriorates welding workability. Also, in the case of welding of galvanized steel bar and stainless steel, there is a possibility that a martensite structure will be deposited due to dissimilar material welding, so even if the wire component is specified, it will be a factor of structural transformation by picking up C in the shielding gas. At the same time, it becomes a factor that degrades the corrosion resistance.
溶接電源のパルス波形制御
パルス波形制御によって溶接を行うことにより、アークが安定し、スパッタの飛散の少ない良好な溶接作業性が得られる。亜鉛めっき棒鋼とステンレス鋼板の溶接時には、パルスの振幅により発生した振動が、亜鉛めっきが蒸発して発生した気泡を溶融池に浮上させ、ブローホールおよびピットの発生を抑制する効果がある。インバータ制御またはサイリスタ制御の溶接電源を使用しても、溶融池に与える振動が小さくなるためブローホールおよびピットの発生を抑制する効果が得にくい。
Pulse waveform control of the welding power source By performing the welding with the pulse waveform control, the arc becomes stable and good welding workability with less spatter scattering can be obtained. When welding a galvanized steel bar and a stainless steel plate, the vibration generated by the amplitude of the pulse has the effect of suppressing the generation of blowholes and pits by floating the bubbles generated by the evaporation of the galvanizing to the molten pool. Even if an inverter-controlled or thyristor-controlled welding power source is used, it is difficult to obtain the effect of suppressing the occurrence of blowholes and pits because the vibration applied to the molten pool is reduced.
なお、本発明のガスシールドアーク溶接用フラックス入りワイヤにおいては、上記成分以外の成分組成は、特に規定されない。従って溶着金属の化学組成、機械的性質および溶接作業性を考慮して、Mo、W等の組成を種々に調整できる。しかし、高温割れを助長するPおよびSはできるだけ少ないのが好ましく、Pは0.025%以下、Sは0.015%以下でP+Sで0.030%以下であることが好ましい。 In the flux-cored wire for gas shield arc welding of the present invention, the component composition other than the above components is not particularly defined. Therefore, the composition of Mo, W, etc. can be variously adjusted in consideration of the chemical composition, mechanical properties and welding workability of the deposited metal. However, P and S that promote hot cracking are preferably as small as possible. P is preferably 0.025% or less, S is 0.015% or less, and P + S is preferably 0.030% or less.
フラックスの充填率は特に限定はしないが、溶接作業性の安定および溶接金属の機械的性質を考慮して、ワイヤ全質量対し18%以上、ワイヤ製造時の断線等を防止するため23%以下であることが好ましい。 The filling rate of the flux is not particularly limited, but considering the stability of the welding workability and the mechanical properties of the weld metal, it is 18% or more with respect to the total mass of the wire, and 23% or less in order to prevent disconnection during wire production. Preferably there is.
また、フラックス入りワイヤの断面形状は、図1(a)に形状例を示すように、外皮1内にフラックス2を内包した合わせ目3がなくとも、図1(b)〜(d)に示すように合わせ目3がある形状のフラックス入りワイヤいずれも使用することができる。
Moreover, the cross-sectional shape of the flux-cored wire is shown in FIGS. 1B to 1D even if there is no seam 3 including the
また、Cuの添加に関しては、金属外皮中およびフラックス中に添加する方法とは別に、ワイヤ表面にCuめっきを施すこともできる。 Moreover, regarding addition of Cu, Cu plating can also be given to the wire surface separately from the method of adding in a metal shell and a flux.
以下、実施例により本発明の効果をさらに詳細に説明する。 Hereinafter, the effect of the present invention will be described in more detail with reference to examples.
表1に示す化学成分の金属外皮を用いて、表2に示す化学成分のフラックス入りワイヤを試作した。ワイヤ径は1.2mmであり、またフラックス充填率は18〜23%とした。 Using the metal sheath of the chemical component shown in Table 1, a flux-cored wire having the chemical component shown in Table 2 was prototyped. The wire diameter was 1.2 mm, and the flux filling rate was 18-23%.
表2のワイヤと亜鉛めっき処理(めっき膜厚:12μm)した表3に示す成分の丸棒(母材記号M1)と表4に示すフェライト系ステンレス鋼板の母材記号M2を使用し、図2に示すフレア継手部を片側約100mmずつすみ肉溶接姿勢で、表5に示す溶接条件で溶接を行い、耐割れ性、耐気孔性、溶接作業性および耐食性の調査を行った。 Using the wire in Table 2 and the round bar (base material symbol M1) of the components shown in Table 3 that has been galvanized (plating film thickness: 12 μm) and the base material symbol M2 of the ferritic stainless steel plate shown in Table 4 , FIG. The flare joint shown in Fig. 5 was welded at a fillet welding posture of about 100 mm on each side under the welding conditions shown in Table 5 to investigate crack resistance, porosity resistance, welding workability, and corrosion resistance.
割れの有無は、染色浸透探傷試験を行った。ピット発生の有無確認は、目視により評価した。ブローホール発生の有無確認は、溶接割れおよびピットの発生が無い試験例で行い、片側の溶接ビードを溶接ビード長手方向に切断し、断面を観察した。評価方法は、気孔発生率(%)=ブローホール長さ(mm)/溶接長さ(mm)×100を算出し、10%以下の場合を良好とした。 The presence or absence of cracks was determined by a dye penetration test. The presence or absence of pit generation was visually evaluated. The presence or absence of blowholes was confirmed in a test example in which no weld cracks or pits occurred, and one side of the weld bead was cut in the longitudinal direction of the weld bead and the cross section was observed. As the evaluation method, the porosity generation rate (%) = blow hole length (mm) / welding length (mm) × 100 was calculated, and the case of 10% or less was considered good.
溶接作業性評価試験は、耐気孔性試験時の官能評価により評価した。なお、溶接作業性は、アークの安定性、スパッタの発生量およびビード形状を観察することにより評価した。スパッタ発生量は、スパッタの飛散状況および母材へのスパッタ付着状況より評価した。また、ビード形状については、図2に示すフレア継手部の溶接金属6の平滑性および長手方向の端部の直進性により評価した。
The welding workability evaluation test was evaluated by sensory evaluation during the porosity resistance test. The welding workability was evaluated by observing the stability of the arc, the amount of spatter generated, and the bead shape. The amount of spatter generated was evaluated from the state of spatter scattering and the state of spatter adhesion to the base material. Further, the bead shape was evaluated by the smoothness of the
耐食性は、耐気孔性試験において、割れおよびピットが生じなかった試験例のもう片側の溶接部を用い、フレア継手のままの状態でJIS Z 2371の塩水噴霧試験(SST)に準拠し、試験時間を48時間とした。評価は、目視による外観検査を行い、母材切断端面部を除き、溶接部および熱影響部の赤さび発生状況の観察を行い、さび発生なしを良好とした。それらの結果を表6にまとめて示す。 Corrosion resistance is determined based on the salt spray test (SST) of JIS Z 2371 using the welded part on the other side of the test example in which no cracks or pits occurred in the porosity resistance test, while still in the flare joint. Was 48 hours. In the evaluation, visual appearance inspection was performed, and the occurrence of red rust was observed in the welded portion and the heat-affected zone, excluding the base metal cut end face portion, and no rust was observed. The results are summarized in Table 6 .
表2中、試験No.T1〜T11が本発明例、試験No.T12〜T20は比較例である。本発明例である試験No.T1〜T5およびT8〜T11は、ワイヤ記号S32〜S36の化学成分、シールドガス、溶接電源の制御形態が適正であるので、溶接作業性が良好で溶接割れがなく、耐気孔性も良好で耐食性に優れていた。試験No.6およびNo.7は、溶接電源がインバータ制御であるので、気孔発生率が若干大きくなった。 In Table 2, test no. T1 to T11 are examples of the present invention, test No. T12 to T20 are comparative examples. Test No. which is an example of the present invention. T1 to T5 and T8 to T11 are suitable for the chemical composition of the wire symbols S32 to S36, shield gas, and control mode of the welding power source, so that the welding workability is good, there are no weld cracks, the porosity is good, and the corrosion resistance is good. It was excellent. Test No. 6 and no. In No. 7, since the welding power source was controlled by an inverter, the porosity generation rate was slightly increased.
比較例中、試験No.T12はワイヤ記号S37のCが多く、試験No.T14はワイヤ記号S39のMnが少なく、試験No.T16はワイヤ記号S41のNiが多いのでいずれも溶接割れが生じた。 In the comparative examples, the test No. T12 has many Cs of wire symbol S37. T14 has a small Mn of the wire symbol S39. Since T16 has a large amount of Ni of the wire symbol S41, welding cracks occurred in all cases.
試験No.T13は、ワイヤ記号S38のSiが多く、ピットが発生した。また、溶接割れが生じた。 Test No. T13 had a lot of Si of wire symbol S38, and pits were generated. In addition, weld cracks occurred.
試験No.T15は、ワイヤ記号S40のMnが多いため、ブローホールの発生が多く気孔発生率が高くなった。また、シールドガス中のCO2比率が高いため、スパッタ発生量が多く、耐食性も不良であった。 Test No. In T15, since the Mn of the wire symbol S40 is large, the generation of blowholes is large and the porosity generation rate is high. Further, since the CO 2 ratio in the shielding gas is high, the amount of spatter generated is large and the corrosion resistance is also poor.
試験No.T17は、ワイヤ記号S42のNが高いため、ブローホールの発生が多く気孔発生率が高くなった。また、耐食性も不良であった。 Test No. In T17, since the N of the wire symbol S42 is high, the generation of blowholes is large and the porosity generation rate is high. Moreover, the corrosion resistance was also poor.
試験No.T18は、ワイヤ記号S43のCが少ないため、スパッタ発生量が多く、Crが少ないので、溶接割れが生じた。 Test No. T18 has a small amount of spatter due to a small amount of C in the wire symbol S43, and a small amount of Cr. Therefore, a weld crack occurred.
試験No.T19は、ワイヤ記号S44にCuを含まないため、耐食性が不良であった。また、パルス波形制御を用いていないため、ブローホールが発生して気孔発生率がやや高くなった。 Test No. T19 had poor corrosion resistance because the wire symbol S44 did not contain Cu. Further, since the pulse waveform control was not used, blow holes were generated and the porosity generation rate was slightly increased.
試験No.T20は、ワイヤ記号S45のCuが多いため溶接割れが生じた。また、シールドガス中のO2比率が高いため、ビード外観および形状が不良であった。 Test No. T20 had a weld crack due to the large amount of Cu of wire symbol S45. Moreover, since the O 2 ratio in the shielding gas was high, the bead appearance and shape were poor.
1 外皮
2 フラックス
3 合わせ目
5 母材
6 溶接金属
7 亜鉛皮膜
1
5
Claims (3)
C:0.01〜0.03%、
Si:0.1〜0.45%、
Mn:0.2〜1.0%、
Cr:13〜20%、
Nb:0.5〜1.0%、
Cu:0.01〜0.3%、
Al:0.2〜0.8%、
Ti:0.1〜0.8%、
アルカリ金属炭酸塩およびアルカリ土類金属炭酸塩の1種または2種以上:0.05〜0.25%、を含有し、
N:0.015%以下で、残部はFeおよび不可避的不純物からなるガスシールドアーク溶接用フラックス入りワイヤを用い、
亜鉛めっき棒鋼とステンレス鋼板のフレア継手を溶接することを特徴とする亜鉛めっき棒鋼とステンレス鋼板の溶接方法。 In a flux-cored wire for gas shielded arc welding, in which a metal sheath is filled with a flux, the metal sheath and flux are in mass% with respect to the total mass of the wire,
C: 0.01 to 0.03 %,
Si: 0.1 to 0.45%,
Mn: 0.2 to 1.0%,
Cr: 13-20%,
Nb: 0.5 to 1.0%
Cu: 0.01 to 0.3%,
Al: 0.2-0.8%
Ti: 0.1 to 0.8%,
One or more of alkali metal carbonates and alkaline earth metal carbonates: 0.05 to 0.25%,
N: 0.015% or less, the balance using a flux-cored wire for gas shielded arc welding consisting of Fe and inevitable impurities ,
A welding method for galvanized steel bar and stainless steel plate, characterized by welding a flared joint of galvanized steel bar and stainless steel plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007032013A JP5137412B2 (en) | 2007-02-13 | 2007-02-13 | Gas shielded arc welding method for galvanized steel bar and stainless steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007032013A JP5137412B2 (en) | 2007-02-13 | 2007-02-13 | Gas shielded arc welding method for galvanized steel bar and stainless steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008194724A JP2008194724A (en) | 2008-08-28 |
JP5137412B2 true JP5137412B2 (en) | 2013-02-06 |
Family
ID=39754157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007032013A Expired - Fee Related JP5137412B2 (en) | 2007-02-13 | 2007-02-13 | Gas shielded arc welding method for galvanized steel bar and stainless steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5137412B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103949796A (en) * | 2014-05-05 | 2014-07-30 | 常州新德焊材科技有限公司 | Austenitic stainless steel flux-cored wire having no oxidation tint on surface of welding joint |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5187833B2 (en) * | 2008-03-13 | 2013-04-24 | 日新製鋼株式会社 | Welding method for zinc-based alloy plated steel |
TWI604912B (en) * | 2011-07-13 | 2017-11-11 | Illinois Tool Works | Cored welding wires, the method for making the same and its use |
FR3008333B1 (en) * | 2013-07-10 | 2015-08-07 | Air Liquide Welding France | FERRITIC STAINLESS STEEL WELDING YARN |
CN106513943B (en) * | 2016-12-13 | 2018-09-04 | 江苏振光电力设备制造有限公司 | A kind of metal powder-cored wire high-efficiency welding method |
JP6914923B2 (en) * | 2017-02-28 | 2021-08-04 | Jfeスチール株式会社 | Laminated fillet arc welded joint and its manufacturing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4318489B2 (en) * | 2003-06-09 | 2009-08-26 | 日鐵住金溶接工業株式会社 | Flux-cored wire for ferritic stainless steel welding |
JP2006035294A (en) * | 2004-07-29 | 2006-02-09 | Nippon Steel Corp | Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion |
-
2007
- 2007-02-13 JP JP2007032013A patent/JP5137412B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103949796A (en) * | 2014-05-05 | 2014-07-30 | 常州新德焊材科技有限公司 | Austenitic stainless steel flux-cored wire having no oxidation tint on surface of welding joint |
CN103949796B (en) * | 2014-05-05 | 2016-08-31 | 常州新德焊材科技有限公司 | A kind of face of weld non-oxidation color austenitic stainless steel flux-cored wire |
Also Published As
Publication number | Publication date |
---|---|
JP2008194724A (en) | 2008-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5098217B2 (en) | Welded joints of galvanized steel sheets excellent in corrosion resistance and zinc embrittlement cracking resistance of welds and methods for producing the same | |
JP5194586B2 (en) | Stainless steel flux-cored welding wire for galvanized steel sheet welding | |
KR101231949B1 (en) | Stainless steel flux-cored welding wire for the welding of galvanized steel sheets and process for arc welding of galvanized steel sheets with the same | |
US8748778B2 (en) | Stainless steel flux-cored welding wire for welding of zinc-coated steel sheet and arc welding method of zinc-coated steel sheet using same | |
JP5137412B2 (en) | Gas shielded arc welding method for galvanized steel bar and stainless steel plate | |
JP4303655B2 (en) | Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance | |
JP2012081514A (en) | Fillet arc welding method of galvanized steel sheet | |
JP6594266B2 (en) | Gas shield arc welding method and manufacturing method of welded structure | |
JP2009161836A (en) | Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part | |
JP2009185382A (en) | Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film | |
JP4980294B2 (en) | Coated arc welding rod for galvanized steel sheet | |
JP3559806B2 (en) | Basic flux cored wire for low temperature steel | |
KR20200108093A (en) | Method of manufacturing flux-enclosed wire, method of manufacturing flux-enclosed wire and welded joint | |
JP2006159273A (en) | High-speed gas-shielded arc welding method of zinc-based metal-plated steel plate | |
JP5187833B2 (en) | Welding method for zinc-based alloy plated steel | |
KR101243006B1 (en) | Aluminium plated ferritic stainless steel welding method | |
JPH07232294A (en) | Welding wire for galvanized steel sheet and welding method | |
JP3819755B2 (en) | Welding method of high corrosion resistance high Mo austenitic stainless steel | |
KR102246519B1 (en) | Manufacturing method of flux-cored wire, flux-cored wire, and manufacturing method of welded joint | |
JP3817087B2 (en) | Manufacturing method of welded steel pipe with excellent weather resistance | |
Kodama et al. | Development of stainless steel welding wire for galvanized steel sheets | |
JPH06210490A (en) | Welding wire of zinc galvanized steel sheet and welding method | |
JP2001262273A (en) | Weather resistant steel tube excellent in weldability | |
JP7564227B2 (en) | Welding wire capable of producing giga-class welds, welded structure manufactured using the same, and welding method thereof | |
JP7508013B1 (en) | Welded joint and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090826 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121113 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151122 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |