JP2006035294A - Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion - Google Patents

Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion Download PDF

Info

Publication number
JP2006035294A
JP2006035294A JP2004222257A JP2004222257A JP2006035294A JP 2006035294 A JP2006035294 A JP 2006035294A JP 2004222257 A JP2004222257 A JP 2004222257A JP 2004222257 A JP2004222257 A JP 2004222257A JP 2006035294 A JP2006035294 A JP 2006035294A
Authority
JP
Japan
Prior art keywords
plating
zinc
based alloy
plated steel
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004222257A
Other languages
Japanese (ja)
Inventor
Shinji Kodama
真二 児玉
Hideki Hamaya
秀樹 濱谷
Nobuo Mizuhashi
伸雄 水橋
Kenichi Asai
謙一 浅井
Kiyokazu Ishizuka
清和 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004222257A priority Critical patent/JP2006035294A/en
Publication of JP2006035294A publication Critical patent/JP2006035294A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined portion having excellent corrosion resistance by preventing elution of plating components caused by galvanic corrosion on the joined portion when joining zinc-based alloy plated steel plates. <P>SOLUTION: Zinc-based alloy plated steel plates 1 in which aluminum content A in the plating component is ≥3 mass%, the coating weight B per one side satisfies inequalities 150≥B≥300/A, and the thickness exceeds 3 mm are used and welded by using stainless steel welding material or copper alloy welding material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主に、建材、自動車部材として使用される亜鉛系合金めっき鋼板の接合方法に関し、特に、耐食性に優れた接合部を得るためのステンレス系溶接材料または銅合金接合材料を用いた亜鉛系合金めっき鋼板の接合方法に関する。   The present invention mainly relates to a method for joining zinc-based alloy-plated steel sheets used as building materials and automobile members, and in particular, zinc using a stainless-based welding material or a copper alloy joining material for obtaining a joint having excellent corrosion resistance. The present invention relates to a method for joining an alloy-plated steel sheet.

亜鉛系合金めっき鋼板は、建築や自動車など構造部材の耐食性向上の観点から幅広く用いられている。従来、溶接構造物の耐食性向上に関しては、非めっき材を溶接加工後に、亜鉛系合金浴に浸漬し亜鉛系合金を鋼材および溶接部表面に付着させ、溶接構造物全体の耐食性を確保する方法が用いられていた。しかしながら、この方法は、溶接工程後にめっき付着工程を必要とするため生産性が劣るとともに、めっき浴等の付加的な設備が必要となるためコスト高になる。このような背景からも、事前にめっきの施された亜鉛めっき鋼板を溶接構造物に使用するようになってきた。   Zinc-based alloy-plated steel sheets are widely used from the viewpoint of improving the corrosion resistance of structural members such as buildings and automobiles. Conventionally, with regard to improving the corrosion resistance of welded structures, there is a method of ensuring the corrosion resistance of the entire welded structure by immersing the non-plated material in the zinc-based alloy bath and welding the zinc-based alloy to the steel material and the weld surface after welding. It was used. However, since this method requires a plating adhesion step after the welding step, productivity is inferior and additional equipment such as a plating bath is required, resulting in high costs. Against this background, galvanized steel sheets plated in advance have been used for welded structures.

亜鉛系合金めっき鋼板を溶接構造物として使用する場合、溶接時に溶融または加熱された溶接金属および溶接熱影響部(以下では、HAZと呼ぶ)は亜鉛系合金めっき鋼板の表面に施されためっき層が消失または損傷するため耐食性が劣化する。このため、従来、溶接部の耐食性を確保するために溶接部にジンクリッチペイント等の塗料を塗装することが一般的に行なわれている。しかしながらこの方法も、溶接の後工程での塗装作業が必要となるため生産性に難がある。また、このような塗料による防食は永年の使用環境において剥離したり、狭隘な個所への塗装が困難であるなどの問題のため、耐食性が十分であるとは言い難い。   When a zinc-based alloy-plated steel sheet is used as a welded structure, the weld metal that has been melted or heated during welding and the heat-affected zone (hereinafter referred to as HAZ) are plated layers applied to the surface of the zinc-based alloy-plated steel sheet. Disappears or is damaged, resulting in deterioration of corrosion resistance. For this reason, conventionally, in order to ensure the corrosion resistance of the welded portion, it is generally performed to apply a paint such as zinc rich paint on the welded portion. However, this method also has difficulty in productivity because it requires a painting operation in the post-welding process. In addition, the corrosion protection by such a paint cannot be said to have sufficient corrosion resistance due to problems such as peeling in a long-term use environment and difficulty in painting in narrow places.

一方、耐食性が要求されるステンレス鋼材の溶接に用いられる接合材料としてステンレス系溶接材料が知られている。この耐食性に優れたステンレス系溶接材料を用いて亜鉛系合金めっき鋼板を溶接することにより溶接部に形成される溶接金属の耐食性が向上することが期待される。   On the other hand, a stainless steel welding material is known as a joining material used for welding a stainless steel material that requires corrosion resistance. It is expected that the corrosion resistance of the weld metal formed in the welded portion is improved by welding the zinc-based alloy-plated steel sheet using the stainless steel welding material having excellent corrosion resistance.

しかしながら、ステンレス系溶接材料を用いて亜鉛系合金めっき鋼板を溶接する場合には、ステンレス系成分の溶接金属とその周囲の亜鉛系合金めっきとの異種金属間の接触腐食により溶接部で局所的な耐食が生じるという新たな問題が生じる。   However, when welding a zinc-based alloy-plated steel sheet using a stainless steel-based welding material, local corrosion occurs at the weld due to contact corrosion between dissimilar metals between the stainless steel-based weld metal and the surrounding zinc-based alloy plating. A new problem arises that corrosion resistance occurs.

一般に異種金属が接触する部位では、水などを媒体として異種金属間で所謂電池が形成され、異種金属間の電子移動により電位の低い側の金属が選択的に腐食される、異種金属接触腐食(ガルバニック腐食ともいう)という現象が生じる。   In general, at a portion where different metals contact, a so-called battery is formed between the different metals using water as a medium, and the metal on the lower potential side is selectively corroded by the electron transfer between the different metals. A phenomenon called galvanic corrosion) occurs.

従来、亜鉛系合金めっき鋼板とステンレス鋼板とを接合する場合には、亜鉛めっきとステンレス鋼とが接合または接触する部位では、これらの異種金属間で局部的な接触腐食が生じるため、亜鉛系合金めっきとステンレス鋼との接合または接触部に絶縁物を介在させたり、ステンレス鋼を亜鉛系合金めっき鋼板に代替し、異種金属間の接合または接触を回避する方法が用いられている(例えば、特許文献1参照)。
したがって、ステンレス系接合材料または銅合金接合材料を用いて亜鉛系合金めっき鋼板を接合する場合に、接合部での異種金属接触腐食の発生を抑制し、耐食性に優れた溶接部が得られる亜鉛系合金めっき鋼板の接合方法の開発が望まれている。
Conventionally, when joining a zinc-based alloy-plated steel plate and a stainless steel plate, local contact corrosion occurs between these dissimilar metals at the part where the zinc plating and stainless steel are joined or contacted. A method is used in which an insulator is interposed in the joint or contact portion between the plating and stainless steel, or the stainless steel is replaced with a zinc-based alloy-plated steel plate to avoid joining or contact between dissimilar metals (for example, patents). Reference 1).
Therefore, when joining a zinc-based alloy-plated steel sheet using a stainless steel-based bonding material or a copper alloy bonding material, a zinc-based alloy that suppresses the occurrence of dissimilar metal contact corrosion at the joint and provides a welded portion with excellent corrosion resistance. Development of the joining method of an alloy plating steel plate is desired.

特開2001−173180号公報JP 2001-173180 A

前述の従来技術の現状を踏まえ、本発明は、ステンレスまたは銅合金の接合材料を用いて亜鉛系合金めっき鋼板を接合する際に、接合部での異種金属接触腐食によるめっき成分の溶出を防止し、耐食性に優れた接合部が得られる亜鉛系合金めっき鋼板の接合方法を提供することを目的とする。 Based on the above-described current state of the prior art, the present invention prevents elution of plating components due to contact corrosion of dissimilar metals at the joint when joining a zinc-based alloy plated steel sheet using a joining material of stainless steel or copper alloy. An object of the present invention is to provide a method for joining zinc-based alloy-plated steel sheets that can provide a joint having excellent corrosion resistance.

本発明者らは、上記課題を解決するために鋭意検討した結果、ステンレスまたは銅合金接合材料を用いて亜鉛系合金めっき鋼板を接合する際の接合部における異種金属接触腐食は、亜鉛系合金めっき鋼板のめっき付着量及びめっき成分中のアルミ含有量に依存し、これらの条件を規定することにより異種金属接触腐食の発生を抑制できることを知見した。本発明は、この知見を基になされたものであり、その要旨とするところは以下の通りである。   As a result of intensive studies to solve the above problems, the present inventors have found that the dissimilar metal contact corrosion at the joint when joining a zinc-based alloy-plated steel sheet using a stainless steel or copper alloy bonding material is a zinc-based alloy plating. It was found that depending on the coating adhesion amount of the steel sheet and the aluminum content in the plating components, the occurrence of dissimilar metal contact corrosion can be suppressed by defining these conditions. The present invention has been made based on this finding, and the gist thereof is as follows.

(1) 亜鉛系合金めっき鋼板の接合方法において、ステンレス系溶接材料を用いて、めっき成分中のアルミ含有量Aが3質量%以上であり、片面当たりのめっき付着量Bが下記(1)式を満足し、かつ板厚が3mmを超える亜鉛系合金めっき鋼板をアーク溶接することを特徴とする接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法。
150≧B≧300/A ・・・(1)
但し、Bは片面当たりのめっき付着量[g/m]、Aはめっき成分中のアルミ含有量[質量%]をそれぞれ示す。
(1) In the joining method of zinc-based alloy-plated steel sheet, using a stainless steel welding material, the aluminum content A in the plating component is 3% by mass or more, and the plating adhesion amount B on one side is the following formula (1) A zinc-based alloy-plated steel sheet having excellent corrosion resistance at the joint, characterized by arc welding of a zinc-based alloy-plated steel sheet having a thickness of more than 3 mm.
150 ≧ B ≧ 300 / A (1)
However, B shows the plating adhesion amount per side [g / m < 2 >], A shows aluminum content [mass%] in a plating component, respectively.

(2) 亜鉛系合金めっき鋼板の接合方法において、ステンレス系溶接材料を用いて、めっき成分中のアルミ含有量Aが3質量%以上であり、片面当たりのめっき付着量Bが下記(1)式を満足し、かつ板厚が3mm以下の亜鉛系合金めっき鋼板を溶接入熱量Pが下記(2)式を満足する溶接入熱でアークスポット溶接することを特徴とする接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法。
150≧B≧300/A ・・・(1)
P[kJ]=I×E×t/1000≦1.5×T ・・・(2)
但し、Bは片面当たりのめっき付着量[g/m]、Aはめっき成分中のアルミ含有量[質量%]、Iは溶接電流値[A]、Eはアーク電圧値[V]、tは溶接時間[s]、Tは亜鉛系合金めっき鋼板の板厚[mm]をそれぞれ示す。
(2) In the joining method of zinc-based alloy-plated steel sheet, using a stainless steel welding material, the aluminum content A in the plating component is 3% by mass or more, and the plating adhesion amount B on one side is the following formula (1) Excellent in corrosion resistance of the joint, characterized in that arc spot welding is performed on a zinc-based alloy-plated steel sheet having a thickness of 3 mm or less with welding heat input P satisfying the following equation (2): Joining method of zinc-based alloy plated steel sheet.
150 ≧ B ≧ 300 / A (1)
P [kJ] = I × E × t / 1000 ≦ 1.5 × T 2 (2)
However, B is the plating adhesion amount per side [g / m 2 ], A is the aluminum content [mass%] in the plating component, I is the welding current value [A], E is the arc voltage value [V], t Represents the welding time [s], and T represents the thickness [mm] of the zinc-based alloy plated steel sheet.

(3) 亜鉛系合金めっき鋼板の接合方法において、銅合金接合材料を用いて、めっき成分中のアルミ含有量Aが6質量%以上であり、かつ片面当たりのめっき付着量Bが下記(3)式を満足する亜鉛系合金めっき鋼板をろう付け接合することを特徴とする接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法。
B≧300/A ・・・(3)
但し、Bは片面当たりのめっき付着量[g/m]、Aはめっき成分中のアルミ含有量[質量%]をそれぞれ示す。
(3) In the joining method of zinc-based alloy-plated steel sheets, using a copper alloy joining material, the aluminum content A in the plating component is 6% by mass or more, and the plating adhesion amount B per one surface is (3) A method for joining zinc-based alloy plated steel sheets excellent in corrosion resistance of joints, characterized by brazing and joining zinc-based alloy plated steel sheets satisfying the formula.
B ≧ 300 / A (3)
However, B shows the plating adhesion amount per side [g / m < 2 >], A shows aluminum content [mass%] in a plating component, respectively.

(4) 前記亜鉛系合金めっきがZn−Al系合金めっき、Zn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきの何れかであることを特徴とする上記(1)〜(3)項の何れかに記載の接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法。   (4) The above-described (1), wherein the zinc-based alloy plating is any one of Zn-Al-based alloy plating, Zn-Al-Mg-based alloy plating, and Zn-Al-Mg-Si-based alloy plating. ) To (3), a method for joining zinc-based alloy plated steel sheets having excellent corrosion resistance at the joint.

本発明によれば、亜鉛系合金めっき鋼板をステンレスまたは銅合金の接合材料を用いて亜鉛系合金めっき鋼板を接合する際に、接合部での異種金属接触腐食を防止し、耐食性に優れた溶接部を有する溶接継手を提供することができる。
したがって、本発明の亜鉛系合金めっき鋼板の溶接継手を建築や自動車分野などの溶接構造部材に適用することにより、耐久性や安全性を従来に比べ向上できるため、本発明の産業上にもたらす貢献は多大なものである。
According to the present invention, when joining a zinc-based alloy-plated steel sheet to a zinc-based alloy-plated steel sheet using a joining material of stainless steel or copper alloy, it is possible to prevent dissimilar metal contact corrosion at the joint and to provide excellent corrosion resistance. A welded joint having a portion can be provided.
Therefore, by applying the welded joint of the zinc-based alloy-plated steel sheet of the present invention to a welded structural member in the field of construction or automobiles, the durability and safety can be improved as compared with the conventional one. Is tremendous.

以下に本発明の詳細について説明する。   Details of the present invention will be described below.

ステンレスまたは銅合金の接合材料を用いて亜鉛系合金めっき鋼板を接合する場合には、接合部においてステンレスまたは銅合金と亜鉛系合金めっきとの異種金属接触腐食が生じるため、従来、これらの接合材料を用いて亜鉛系合金めっき鋼板を接合することは試みられなかった。   When joining zinc-based alloy-plated steel sheets using a joining material of stainless steel or copper alloy, since different metal contact corrosion between stainless steel or copper alloy and zinc-based alloy plating occurs at the joint, these joining materials have heretofore been used. No attempt was made to join a zinc-based alloy-plated steel sheet with the use of.

そこで、本発明者らは、亜鉛系合金めっき鋼板のめっき成分組成を変えて、ステンレスまたは銅合金の接合材料を用いて亜鉛系合金めっき鋼板を接合し、接合部の異種金属接触腐食の発生形態を詳細に調査検討した。   Therefore, the present inventors changed the plating component composition of the zinc-based alloy-plated steel sheet, joined the zinc-based alloy-plated steel sheet using a joining material of stainless steel or copper alloy, and the occurrence of dissimilar metal contact corrosion at the joint. Were investigated in detail.

図1は、亜鉛系合金めっき鋼板の接合試験体を示す模式図を示す。   FIG. 1 is a schematic view showing a bonded specimen of a zinc-based alloy plated steel sheet.

図1に示す溶接試験体は、Ni:12%、Cr:24%を含有する309系のフラックス入りステンレス溶接材料(JIS Z 3323 YF309LC相当)を用いて板厚2mmの亜鉛系合金めっき鋼板1をアーク溶接法にて隅肉溶接2をすることで作製した。供試材は、SS400鋼を母材鋼板とし、その表面に付着量90g/mで亜鉛系合金めっき成分系が異なる亜鉛系合金めっきが施された亜鉛系合金めっき鋼板を用いた。溶接条件は、溶接電流I:140A、溶接電圧E:19V、溶接速度v:60cm/minとし、シールドガスに炭酸ガスを用いた。接合部の耐食性の評価はJASOに基づく複合サイクル腐食試験にて行い、溶接金属および溶接止端部の熱影響部の錆び発生状況を評価した。複合サイクル腐食試験は塩水噴霧(5%NaCl)を35℃で2時間、乾燥(湿度30%)を60℃で4時間、湿潤(湿度95%)を50℃で2時間を1サイクルとし50サイクル繰り返した状態での赤錆発生状況を評価した。 The weld specimen shown in FIG. 1 is made of a 309 series flux-cored stainless steel welding material (corresponding to JIS Z 3323 YF309LC) containing Ni: 12% and Cr: 24%. It was produced by performing fillet welding 2 by arc welding. The test material used was a zinc-based alloy-plated steel plate in which SS400 steel was used as a base material steel plate, and zinc-based alloy plating with a different zinc-based alloy plating component system was applied to the surface with an adhesion amount of 90 g / m 2 . The welding conditions were welding current I: 140 A, welding voltage E: 19 V, welding speed v: 60 cm / min, and carbon dioxide gas was used as the shielding gas. The corrosion resistance of the joint was evaluated by a combined cycle corrosion test based on JASO, and the state of rust occurrence in the heat affected zone of the weld metal and weld toe was evaluated. Combined cycle corrosion test consists of 50 cycles of salt spray (5% NaCl) for 2 hours at 35 ° C, dry (30% humidity) for 4 hours at 60 ° C, wet (95% humidity) for 2 hours at 50 ° C. The occurrence of red rust in the repeated state was evaluated.

図2にめっき中のAl含有量が異なる2種の亜鉛系合金めっき鋼板をそれぞれステンレス接合材料を用いて溶接した場合の溶接止端部周囲の模式図を示す。   FIG. 2 shows a schematic diagram of the periphery of the weld toe when two types of zinc-based alloy plated steel sheets having different Al contents during plating are welded using stainless steel joining materials.

一般の亜鉛めっき鋼板をステンレス接合材料を用いて溶接した場合(図2(a)、参照)は、熱影響部3は溶接時の入熱により亜鉛めっき5中の亜鉛成分が蒸発し、溶接止端近傍に母材界面に亜鉛めっきが存在しない亜鉛めっき消失部5が形成される。これに対して、Zn中にAlを11%含有するZn−Al系合金めっき鋼板を用いた場合(図2(b)、参照)は、熱影響部3は溶接時の入熱により亜鉛めっき5中の亜鉛成分は蒸発するものの、亜鉛に比べ融点(沸点)が高いアルミ成分6は蒸発せずに残存し、溶接止端部近傍に凝縮する。   When a general galvanized steel sheet is welded using a stainless steel joining material (see Fig. 2 (a)), the heat-affected zone 3 evaporates the zinc component in the galvanizing 5 due to heat input during welding and stops welding. In the vicinity of the end, a galvanized disappearance portion 5 in which galvanization does not exist at the base material interface is formed. On the other hand, when a Zn-Al alloy-plated steel sheet containing 11% Al in Zn is used (see FIG. 2B), the heat-affected zone 3 is galvanized 5 by heat input during welding. Although the zinc component therein evaporates, the aluminum component 6 having a higher melting point (boiling point) than zinc remains without evaporating and condenses in the vicinity of the weld toe.

また、本発者らは、溶接止端部近傍の残存めっきの成分分析により溶接止端部近傍に残存したアルミ成分6は酸化物として存在していることを確認した。これらから、Zn−Al系合金めっき鋼板を用いる場合(図2(a)、参照)には、溶接止端部近傍の残存したAl酸化物が、溶接止端部近傍の母材界面の保護層として作用するとともに、ステンレス溶接金属と亜鉛系合金めっき間の絶縁体として作用し、耐食性の向上および異種金属接触腐食の抑制効果が期待できる。   Moreover, the present inventors confirmed that the aluminum component 6 remaining in the vicinity of the weld toe exists as an oxide by component analysis of the residual plating in the vicinity of the weld toe. Accordingly, when using a Zn-Al alloy-plated steel sheet (see FIG. 2 (a)), the remaining Al oxide near the weld toe is a protective layer at the base metal interface near the weld toe. In addition, it acts as an insulator between the stainless weld metal and the zinc-based alloy plating, and can be expected to improve the corrosion resistance and suppress the effect of dissimilar metal contact corrosion.

図3は、ステンレス溶接材料を用いて接合する場合の亜鉛系合金めっき鋼板のめっき付着量及びめっき成分中のアルミ含有量と接合部の耐食性との関係を示す。
なお、ステンレス溶接材料、溶接方法及び条件、腐食性評価は上述した図1の溶接試験体を作製した条件と同じである。
FIG. 3 shows the relationship between the coating adhesion amount of the zinc-based alloy-plated steel sheet and the aluminum content in the plating component and the corrosion resistance of the joint when joining using a stainless steel welding material.
The stainless steel welding material, the welding method and conditions, and the corrosive evaluation are the same as the conditions for producing the above-described welded specimen of FIG.

図3から、亜鉛系合金めっき鋼板のめっき成分中のアルミ含有量Aが3%以上で、かつ、めっき付着量Bが下記(1)式の関係を満足する条件で溶接止端部近傍における異種金属接触腐食の抑制され、溶接金属および母材熱影響部共に優れた耐食性が得られる。
150≧B≧300/A ・・・(1)
但し、Bは片面当たりのめっき付着量[g/m]、Aはめっき成分中のアルミ含有量[質量%]をそれぞれ示す。
FIG. 3 shows that the aluminum content A in the plating component of the zinc-based alloy-plated steel sheet is 3% or more and the coating adhesion amount B is different in the vicinity of the weld toe portion under the condition satisfying the relationship of the following expression (1). Metal contact corrosion is suppressed, and excellent corrosion resistance is obtained for both the weld metal and the base metal heat-affected zone.
150 ≧ B ≧ 300 / A (1)
However, B shows the plating adhesion amount per side [g / m < 2 >], A shows aluminum content [mass%] in a plating component, respectively.

上記条件において溶接止端部に残存したアルミが強固な不働態酸化被膜を形成し、かつステンレス溶接金属と亜鉛系合金めっきとの異種金属間の絶縁体として作用することにより異種金属接触腐食(めっき成分の溶出)を抑制し、その結果、特に溶接止端部の耐食性を向上させたと考えられる。   Under the above conditions, the aluminum remaining on the weld toe forms a strong passive oxide film, and acts as an insulator between the dissimilar metals of the stainless weld metal and the zinc-based alloy plating (plating of dissimilar metals) It is considered that the corrosion resistance of the weld toe portion was improved as a result.

一方、めっき成分中のアルミ含有量Aが3%未満の条件、または、めっき付着量Bが(300/A)[g/m]未満の条件では、特に、溶接止端部近傍の母材熱影響部において耐食性が低下し赤錆が発生する。
また、めっき付着量が200[g/m]を超える条件では、溶接時に多量のめっき蒸気が発生することによりブローホール欠陥やスパッタが多発した。
On the other hand, in the condition where the aluminum content A in the plating component is less than 3% or the plating adhesion amount B is less than (300 / A) [g / m 2 ], the base material in the vicinity of the weld toe is particularly good. Corrosion resistance decreases and red rust occurs in the heat affected zone.
Also, under conditions where the plating adhesion amount exceeded 200 [g / m 2 ], a large amount of plating vapor was generated during welding, resulting in frequent blowhole defects and spatters.

以上から、本発明では、ステンレス系溶接材料を用いて溶接する場合に、特に溶接止端部の異種金属接触腐食を抑制し、耐食性を向上するために、亜鉛系合金めっき鋼板のめっき成分中のアルミ含有量Aを3質量%以上とし、かつ片面当たりのめっき付着量Bが上記(1)式を満足させる。   From the above, in the present invention, when welding using a stainless steel welding material, particularly in order to suppress the dissimilar metal contact corrosion at the weld toe and improve the corrosion resistance, in the plating component of the zinc-based alloy plated steel sheet The aluminum content A is 3% by mass or more, and the plating adhesion amount B per one surface satisfies the above formula (1).

なお、本発明において、ステンレス系溶接材料としては、例えば、309系ステンレス溶接材料(ステンレスと軟鋼の溶接用)や329系ステンレス溶接材料(2相ステンレス用)等を用いることができる。   In the present invention, as the stainless steel welding material, for example, 309 stainless steel welding material (for welding stainless steel and mild steel), 329 stainless steel welding material (for duplex stainless steel), or the like can be used.

本発明において、ステンレス系溶接材料を用いて亜鉛系合金めっき鋼板を連続でアーク溶接する場合には、亜鉛系合金めっき鋼板の板厚が3mm以下の薄い条件では、溶接時の入熱により接合部の鋼板裏面の亜鉛系合金めっきが蒸発し、めっきの損傷が生じ、鋼板裏面の耐食性の劣化を招くことがある。   In the present invention, when a zinc-based alloy-plated steel sheet is continuously arc-welded using a stainless steel-based welding material, the joining portion is formed by heat input during welding under a thin condition where the thickness of the zinc-based alloy-plated steel sheet is 3 mm or less. The zinc-based alloy plating on the back surface of the steel plate may evaporate, resulting in damage to the plating, leading to deterioration of the corrosion resistance on the back surface of the steel plate.

一般に、鋼板表面(溶接側)と鋼板裏面では腐食環境が異なり、例えば、角鋼管の溶接部のように裏面側が閉空間となる場合は耐食性の劣化が問題とならない場合もある。しかしながら、裏面側が厳しい腐食環境に曝される場合を想定すると、鋼板裏面の耐食性を確保することが好ましい。   Generally, the corrosion environment differs between the steel plate surface (welding side) and the steel plate back surface. For example, when the back surface is a closed space like a welded portion of a square steel pipe, deterioration of corrosion resistance may not be a problem. However, assuming that the back side is exposed to a severe corrosive environment, it is preferable to ensure the corrosion resistance of the back side of the steel sheet.

そこで、発明者者らは、接合部の鋼板裏面のめっき損傷が問題となる板厚が3mm以下の亜鉛系合金めっき鋼板1を用いて、図4に示すようにアークスポット溶接(アーク溶接による点付け溶接)8を行い、種々の溶接入熱条件で図5に示す接合部の鋼板裏面におけるめっき損傷部(めっき蒸発範囲)9の損傷度合いを評価した。   Therefore, the inventors used a zinc-based alloy-plated steel sheet 1 having a thickness of 3 mm or less, which causes plating damage on the back surface of the steel sheet at the joint, as shown in FIG. 8), and the degree of damage of the plating damage portion (plating evaporation range) 9 on the back surface of the steel plate of the joint shown in FIG. 5 was evaluated under various welding heat input conditions.

なお、損傷部(めっき蒸発範囲)9の損傷度合いの評価は、図5に示すように、損傷部(めっき蒸発範囲)9を目視で観察し、損傷部(めっき蒸発範囲)9の最大長さ10が3mm以上の場合を不良(×)、3mm未満を良好(○)と判断した。   In addition, as shown in FIG. 5, the damage degree (plating evaporation range) 9 is visually observed, and the maximum length of the damaged portion (plating evaporation range) 9 is evaluated. The case where 10 was 3 mm or more was judged as defective (x), and the case where it was less than 3 mm was judged as good (◯).

損傷部(めっき蒸発範囲)の損傷度合いが良好(○)とした損傷部の最大長さが3mm以下の場合は、亜鉛系合金めっきによる犠牲防食効果、すなわち、鋼板母材母材よりもイオン化傾向の大きい亜鉛を溶出させることによってめっき蒸発部の鋼板母材の腐食を抑制し、耐食性を良好に確保できる。なお、鋼板と亜鉛の接触電位差(0.3V程度)は、ステンレスおよび銅合金と亜鉛の接触電位差(0.6〜0.8V程度)よりも小さいため、本願発明の課題である異種金属接触腐食は問題にならない。   When the damage part (plating evaporation range) has a good degree of damage (○) and the maximum length of the damaged part is 3 mm or less, the sacrificial anti-corrosion effect by the zinc-based alloy plating, that is, more ionization tendency than the steel plate base material By eluting the large zinc, corrosion of the steel plate base material in the plating evaporation portion can be suppressed, and good corrosion resistance can be secured. In addition, since the contact potential difference (about 0.3V) of a steel plate and zinc is smaller than the contact potential difference (about 0.6-0.8V) of stainless steel and a copper alloy, and zinc, the dissimilar metal contact corrosion which is a subject of this invention Is not a problem.

図6に、ステンレス溶接材料を用いてアーク溶接する場合の溶接入熱及び鋼板板厚と接合部の鋼板裏面におけるめっき損傷度合いとの関係を示す。   In FIG. 6, the relationship between the welding heat input in the case of arc welding using a stainless steel welding material, a steel plate thickness, and the plating damage degree in the steel plate back surface of a junction part is shown.

ステンレス溶接材料は309系ステンレス溶接ワイヤを用い、溶接電流Iが140〜180A、アーク電圧Eが18〜22V、溶接時間tが0.8〜5秒の範囲で下記(2)式で定義される溶接入熱量Pを変化させ、溶接部の鋼板裏面におけるめっき損傷部の損傷度合い(めっき蒸発範囲)を評価した。
P[kJ]=I×E×t/100 ・・・(2)
但し、Iは溶接電流値[A]、Eはアーク電圧値[V]、tは溶接時間[s]を示す。
The stainless steel welding material is a 309 stainless steel welding wire, and is defined by the following equation (2) within a range of welding current I of 140 to 180 A, arc voltage E of 18 to 22 V, and welding time t of 0.8 to 5 seconds. The amount of welding heat input P was changed, and the degree of damage (plating evaporation range) of the plating damage portion on the back surface of the steel plate of the welded portion was evaluated.
P [kJ] = I × E × t / 100 (2)
Here, I represents the welding current value [A], E represents the arc voltage value [V], and t represents the welding time [s].

図6から、上記(2)式で定義される溶接熱量P(kJ)が、亜鉛系合金めっき鋼板の板厚Tとの関係で、下記(2)’式を満足する条件で、溶接部の鋼板裏面のめっき損傷度合い(めっき蒸発範囲)を3mm以下に抑制し、良好な耐食性を確保することが可能となる。
P[kJ]=I×E×t/100≦1.5T ・・・(2)’
但し、I[A]は溶接電流値、E[V]は溶接電圧値、t[s]は溶接時間、T[mm]は亜鉛系合金めっき鋼板の板厚をそれぞれ示す。
From FIG. 6, the welding heat quantity P (kJ) defined by the above equation (2) is related to the thickness T of the zinc-based alloy-plated steel sheet and satisfies the following equation (2) ′. The degree of plating damage (plating evaporation range) on the back surface of the steel sheet can be suppressed to 3 mm or less, and good corrosion resistance can be ensured.
P [kJ] = I × E × t / 100 ≦ 1.5T 2 (2) ′
Here, I [A] is the welding current value, E [V] is the welding voltage value, t [s] is the welding time, and T [mm] is the thickness of the zinc-based alloy plated steel sheet.

したがって、本発明では、板厚が3mm以下の亜鉛系合金めっき鋼板をアーク溶接する場合に、接合部の鋼板裏面のめっき損傷を抑制し、良好な耐食性を確保するために、溶接入熱量Pを上記(2)’式 満足するように規定する。   Therefore, in the present invention, when arc welding a zinc-based alloy-plated steel sheet having a thickness of 3 mm or less, in order to suppress plating damage on the back surface of the steel sheet at the joint and ensure good corrosion resistance, the welding heat input P is set to Formula (2) 'is defined so as to satisfy.

本発明では、上記実施形態の他の実施形態として、上記ステンレス系溶接材料と同様に耐食性に優れた銅合金材料を用いて亜鉛系合金めっき鋼板を接合することができる。   In the present invention, as another embodiment of the above-described embodiment, a zinc-based alloy-plated steel sheet can be joined using a copper alloy material having excellent corrosion resistance in the same manner as the stainless-steel welding material.

銅合金材料を用いて亜鉛系合金めっき鋼板を接合する場合は、銅合金の融点がステンレス溶接材料に比較して低いため、溶接入熱の6割程度の低い入熱条件で、鋼板母材はほとんど溶けないロウ付け接合が可能となる。   When joining zinc-based alloy-plated steel sheets using copper alloy materials, the melting point of copper alloys is lower than that of stainless steel welding materials. Brazing joining that hardly melts is possible.

銅合金材料を用いて亜鉛系合金めっき鋼板を接合する場合も、通常のアーク溶接と同様に、銅合金接合材料と亜鉛系合金めっき鋼板の接合部との間でアークを発生させ、その熱エネルギーで銅合金接合材料を溶融させロウ付けを行うことで図1に示す接合試験体を作製できる。   When joining zinc-based alloy-plated steel sheets using copper alloy materials, an arc is generated between the copper-alloy-bonded material and the joint between the zinc-based alloy-plated steel sheets, as in normal arc welding. 1 is produced by melting the copper alloy bonding material and performing brazing.

銅合金接合材料を用いたロウ付け接合では、ステンレス系溶接材料を用いた接合に比べ、入熱が低いため接合時のめっき蒸気発生による接合不安定やスパッタ発生の問題はなくなる。しかし、ステンレス系溶接材料を用いた接合と同様に接合部における銅合金接合金属と亜鉛系合金めっきとの異種金属接触腐食の発生を抑制するため、亜鉛系合金めっき鋼板のめっき成分中のアルミ含有量とめっき付着量を同様に規定する必要がある。   In brazing joining using a copper alloy joining material, heat input is lower than joining using a stainless steel welding material, so that there is no problem of joining instability or spattering due to generation of plating vapor during joining. However, in order to suppress the occurrence of dissimilar metal contact corrosion between the copper alloy bonding metal and the zinc alloy plating in the joint as well as the joining using the stainless steel welding material, the aluminum content in the plating component of the zinc alloy plating steel sheet is included. It is necessary to specify the amount and the amount of plating adhesion as well.

図7は、銅合金接合材料を用いて接合する場合の亜鉛系合金めっき鋼板のめっき付着量及びめっき成分中のアルミ含有量と接合部の耐食性との関係を示す。
銅合金接合材料はSiを3%含有する珪素青銅のワイヤ(JIS Z3341 YCuSiB相当)とした。
FIG. 7 shows the relationship between the coating amount of the zinc-based alloy-plated steel sheet and the aluminum content in the plating component and the corrosion resistance of the joint when joining using a copper alloy joining material.
The copper alloy bonding material was a silicon bronze wire (corresponding to JIS Z3341 YCuSiB) containing 3% of Si.

なお、本発明において、銅合金接合材料は他の銅合金としてAlを7〜11%およびNiを0.5〜5%含有するアルミ青銅のワイヤも適用可能である。
銅合金の接合金属は、ステンレス溶接金属に比べて、亜鉛系合金めっきとの異種金属接触腐食が発生しやすい傾向にあり、耐食性を充分に向上するにはめっき成分中のアルミ含有量Aを6%以上とする必要がある。
図7から、亜鉛系合金めっき鋼板のめっき成分中のアルミ含有量Aが6%以上で、かつ、めっき付着量Bが下記(3)式の関係を満足する条件で溶接止端部近傍における異種金属接触腐食の抑制され、溶接金属および母材熱影響部共に優れた耐食性が得られる。なお、銅合金接合材料を用いたロウ付け接合では、溶接時に比べ入熱が低いため接合時のめっき蒸気発生による接合不安定は生じないため、めっき付着量Bの上限を特に限定する必要はない。
B≧300/A ・・・(3)
但し、Bは片面当たりのめっき付着量 [g/m]、Aはめっき成分中のアルミ含有量[質量%]をそれぞれ示す。
In the present invention, as the copper alloy bonding material, an aluminum bronze wire containing 7 to 11% Al and 0.5 to 5% Ni can be applied as another copper alloy.
Copper alloy joint metals tend to be subject to different metal contact corrosion with zinc-based alloy plating compared to stainless steel weld metal. To sufficiently improve corrosion resistance, the aluminum content A in the plating component is 6 % Or more is necessary.
FIG. 7 shows that the aluminum content A in the plating component of the zinc-based alloy-plated steel sheet is 6% or more and the coating adhesion amount B is different in the vicinity of the weld toe portion under the condition satisfying the relationship of the following expression (3). Metal contact corrosion is suppressed, and excellent corrosion resistance is obtained for both the weld metal and the base metal heat-affected zone. In addition, in brazing joining using a copper alloy joining material, since heat input is lower than during welding, joining instability due to generation of plating vapor during joining does not occur, so there is no need to specifically limit the upper limit of the plating adhesion amount B. .
B ≧ 300 / A (3)
However, B shows the plating adhesion amount per side [g / m < 2 >], A shows aluminum content [mass%] in a plating component, respectively.

本発明で規定する上記含有範囲でAlを含有する亜鉛系合金めっき鋼板としては、Zn−Al系合金めっき、Zn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきの何れかが鋼板表面に施された亜鉛系合金めっき鋼板が挙げられる。Zn−Al系合金めっきでは、Al:0.18〜5%を含有し、さらに、Mg:0.01〜0.5%、La:0.001〜0.5%、および、Ce:0.001〜0.5%のうちのいずれか1種または2種以上を含有し、残部がZnからなり、Zn−Al−Mg系合金めっきでは、Al:2〜19%、Mg:0.5〜10%、残部Znからなるめっきからなり、Zn−Al−Mg−Si系合金めっきでは、Al:2〜19%、Mg:0.5〜10%、Si:0.01〜2%、残部Znからなるめっきが一般に用いられるが、本発明ではこれらのめっき成分組成に限定されるものではない。   The zinc-based alloy-plated steel sheet containing Al in the above-described content range defined in the present invention includes Zn-Al-based alloy plating, Zn-Al-Mg-based alloy plating, and Zn-Al-Mg-Si-based alloy plating. A zinc-based alloy-plated steel sheet in which any one is applied to the steel sheet surface can be mentioned. In Zn-Al type alloy plating, Al: 0.18-5% is contained, Furthermore, Mg: 0.01-0.5%, La: 0.001-0.5%, and Ce: 0.00. Any one or two or more of 001 to 0.5% are contained, and the balance is made of Zn. In Zn—Al—Mg based alloy plating, Al: 2 to 19%, Mg: 0.5 to It consists of 10% plating with the balance Zn. In Zn-Al-Mg-Si alloy plating, Al: 2 to 19%, Mg: 0.5 to 10%, Si: 0.01 to 2%, balance Zn In general, the present invention is not limited to these plating component compositions.

本発明の効果について以下の実施例に基づいて具体的に説明する。
SS400鋼を母材とし、表1に示すめっき中のAl含有量、片面当たりめっき付着量で、Zn−Al系合金めっき(A、B、F、G)、Zn−Al−Mg系合金めっき(C)、Zn−Al−Mg−Si系合金めっき(D、E)、Znめっき(H)が表面に施された亜鉛系合金めっき鋼板を、表2に示す接合材料及び接合条件で接合継手を作製した。接合継手の形状は、図8に示すように、(a)隅肉継手、(b)重ね隅肉継手、および(c)拝み継手とした。
The effects of the present invention will be specifically described based on the following examples.
Using SS400 steel as the base material, the Al content in the plating shown in Table 1 and the plating adhesion amount per side, Zn-Al alloy plating (A, B, F, G), Zn-Al-Mg alloy plating ( C), Zn-Al-Mg-Si-based alloy plating (D, E), and zinc-based alloy-plated steel sheet with Zn plating (H) on the surface. Produced. As shown in FIG. 8, the shape of the joint joint was (a) fillet joint, (b) lap fillet joint, and (c) mourning joint.

表1において、接合材料としてステンレス系溶接材料を用いる場合は、A〜Eは、めっき中のAl含有量およびめっき付着量が本発明で規定する範囲を満足する発明例に相当する亜鉛系合金めっき鋼板であり、F〜Hは、めっき中のAl含有量およびめっき付着量が本発明で規定する範囲から外れた比較例に相当する亜鉛系合金めっき鋼板である。また、接合材料として銅合金接合材料を用いる場合は、B〜Eは、めっき中のAl含有量およびめっき付着量が本発明で規定する範囲を満足する発明例に相当する亜鉛系合金めっき鋼板であり、A、F〜Hは、めっき中のAl含有量およびめっき付着量が本発明で規定する範囲から外れた比較例に相当する亜鉛系合金めっき鋼板である。なお、Hはめっき中にAlを含有しない通常の亜鉛めっき鋼板である。   In Table 1, when a stainless steel welding material is used as the joining material, A to E are zinc-based alloy plating corresponding to the invention examples in which the Al content and the plating adhesion amount in the plating satisfy the ranges specified in the present invention. F to H are zinc-based alloy-plated steel sheets corresponding to comparative examples in which the Al content and the coating adhesion amount deviate from the ranges defined in the present invention. When a copper alloy bonding material is used as the bonding material, B to E are zinc-based alloy plated steel sheets corresponding to the invention examples in which the Al content during plating and the plating adhesion amount satisfy the ranges specified in the present invention. A and F to H are zinc-based alloy-plated steel sheets corresponding to comparative examples in which the Al content during plating and the plating adhesion amount deviate from the ranges specified in the present invention. H is a normal galvanized steel sheet that does not contain Al during plating.

Figure 2006035294
Figure 2006035294

表2において、S1の接合材料はNi:12%、Cr:24%を含有する309系フラックス入りステンレスワイヤであり、C1の接合材料はSi:3%を含有する珪素青銅の銅合金ワイヤ、S2の接合材料はAlを9%含有するアルミ青銅の銅合金ワイヤ、F1の接合材料はSi−Mn鋼用溶接ワイヤ(YGW12)であり、いずれもワイヤ径が1.2mmφのものを用いた。なお、S1、C1、S2の接合材料は本発明で規定するステンレス系溶接材料および銅合金接合材料に相当し、F1の接合材料は本発明の規定対象外の普通鋼用接合材料に相当する。   In Table 2, the bonding material of S1 is a 309 series flux-cored stainless steel wire containing Ni: 12% and Cr: 24%, and the bonding material of C1 is a copper bronze copper alloy wire containing Si: 3%, S2. The bonding material was aluminum bronze copper alloy wire containing 9% Al, and the bonding material of F1 was a welding wire for Si—Mn steel (YGW12), both of which had a wire diameter of 1.2 mmφ. Note that the joining materials S1, C1, and S2 correspond to the stainless steel welding material and the copper alloy joining material defined in the present invention, and the joining material F1 corresponds to the joining material for ordinary steel that is not defined in the present invention.

Figure 2006035294
Figure 2006035294

表3に各接合継ぎ手を作製する際の接合条件および溶接部の耐食性評価結果を示す。   Table 3 shows the joining conditions when producing each joint and the corrosion resistance evaluation results of the welds.

Figure 2006035294
Figure 2006035294

表3に示される点付け溶接の場合の接合入熱量は、入熱量:P[kJ]=I×E×t/1000[kJ]と定義する。   The joining heat input in the case of spot welding shown in Table 3 is defined as heat input: P [kJ] = I × E × t / 1000 [kJ].

溶接部の耐食性評価はJASOの複合サイクル腐食試験を実施し、溶接金属、接合止端部(接合金属とめっきが接触する母材熱影響部)、接合部の鋼板裏面熱影響部の錆び発生状況を評価した。複合サイクル腐食試験を50サイクルは、塩水噴霧(5%NaCl)を35℃で2時間、乾燥(湿度30%)を60℃で4時間、湿潤(湿度95%)を50℃で2時間を1サイクルとし繰り返した状態での赤錆発生状況を評価した。   Corrosion resistance of welds is evaluated by performing a combined cycle corrosion test of JASO, and the rust generation status of weld metal, joint toes (base metal heat-affected zone where the joint metal and plating are in contact), and steel plate back surface heat-affected zone of the joint Evaluated. 50 cycles of the combined cycle corrosion test are: salt spray (5% NaCl) for 2 hours at 35 ° C, dry (humidity 30%) for 4 hours at 60 ° C, wet (95% humidity) for 2 hours at 50 ° C. The occurrence of red rust in the repeated state was evaluated.

表3において、No.1〜6はステンレス系溶接材料を用いて溶接した本発明例であり、No.2は板厚が4mmの亜鉛系合金めっきを連続溶接し、No.1および3〜6は板厚が1.2〜3mmの亜鉛系合金めっきを点付け(スポット)溶接した。何れの場合もステンレス系溶接材料を用いる場合の亜鉛系合金めっきの板厚、めっき成分中のアルミ含有量(3%以上)およびめっき付着量が本発明規定範囲内であるため、接合金属および接合止端部におけるステンレス接合金属と亜鉛系合金めっきとの異種金属接触腐食、溶接部の鋼板裏面熱影響部のめっき損傷に起因する耐食性低下は抑制され、すべての耐食性評価は良好であった。   In Table 3, no. Nos. 1 to 6 are examples of the present invention welded using a stainless steel welding material. No. 2 continuously welds a zinc-based alloy plating with a plate thickness of 4 mm. 1 and 3 to 6 were spot-welded with zinc-based alloy plating having a plate thickness of 1.2 to 3 mm. In any case, since the thickness of the zinc-based alloy plating, the aluminum content (3% or more) in the plating component, and the coating adhesion amount when the stainless steel-based welding material is used are within the specified range of the present invention, the joining metal and joining Corrosion resistance degradation due to dissimilar metal contact corrosion between the stainless steel joint metal and zinc-based alloy plating at the toe and plating damage at the heat-affected zone on the back surface of the steel sheet in the welded portion was suppressed, and all corrosion resistance evaluations were good.

また、No.7〜10は、銅合金接合材料を用いて板厚が1.2〜4mmの亜鉛系合金めっき鋼板をろう付け接合(連続)した本発明例である。何れの場合も銅合金接合材料を用いる場合のめっき成分中のアルミ含有量(6%以上)およびめっき付着量が本発明規定範囲内であるため、接合金属および接合止端部における銅合金接合金属と亜鉛系合金めっきとの異種金属接触腐食は抑制され、耐食性評価は良好であった。また、ろう付け接合の入熱量は溶接に比べて低いため、連続接合においても溶接部の鋼板裏面熱影響部のめっき損傷は発生せず、鋼板裏面熱影響部の耐食性評価は良好であった。   No. 7 to 10 are examples of the present invention in which a zinc-based alloy plated steel sheet having a plate thickness of 1.2 to 4 mm is brazed and joined (continuous) using a copper alloy joining material. In any case, since the aluminum content (6% or more) in the plating component and the plating adhesion amount when the copper alloy bonding material is used are within the specified range of the present invention, the bonding metal and the copper alloy bonding metal at the joint toe portion The contact corrosion of different metals between the zinc alloy plating and the zinc alloy plating was suppressed, and the corrosion resistance evaluation was good. Moreover, since the heat input of the brazing joint was lower than that of welding, plating damage did not occur in the heat affected zone of the steel plate back surface even in continuous joining, and the corrosion resistance evaluation of the heat affected zone of the steel plate back was good.

一方、No.11〜No.17は本発明で規定する範囲から外れた比較例を示す。   On the other hand, no. 11-No. Reference numeral 17 denotes a comparative example that deviates from the range defined by the present invention.

No.11〜14はステンレス系溶接材料を用いて亜鉛系合金めっき鋼板を溶接した例である。   No. 11-14 is the example which welded the zinc system alloy plating steel plate using the stainless steel type welding material.

No.11および12は、ステンレス系溶接材料を用いる場合のめっき成分中のアルミ含有量(3%以上)およびめっき付着量が本発明規定範囲内であるため、接合金属および接合止端部におけるステンレス接合金属と亜鉛系合金めっきとの異種金属接触腐食は抑制され、耐食性評価は良好であった。しかし、No.11は板厚1.6mmの亜鉛系合金めっき鋼板を点付け溶接する際の接合入熱条件が本発明で規定する範囲から高く外れ、No.12は、板厚1.2mmの亜鉛系合金めっき鋼板を連続溶接したため、いずれも、溶接部の鋼板裏面熱影響部のめっき損傷が発生し、鋼板裏面熱影響部に赤錆が発生し、耐食性評価は不良となった。   No. 11 and 12, since the aluminum content (3% or more) in the plating component and the plating adhesion amount in the case of using a stainless steel welding material are within the range specified in the present invention, the joining metal and the stainless joining metal at the joint toe The contact corrosion of different metals between the zinc alloy plating and the zinc alloy plating was suppressed, and the corrosion resistance evaluation was good. However, no. No. 11 deviates from the range specified in the present invention by a high heat input condition for spot welding of a 1.6 mm thick zinc-based alloy plated steel sheet. No. 12 is a continuous weld of a zinc-based alloy-plated steel sheet having a thickness of 1.2 mm, so that in all cases, plating damage occurs in the heat affected zone of the steel plate back surface of the weld, red rust occurs in the heat affected zone of the steel plate back surface, and corrosion resistance is evaluated. Became bad.

No.13およびNo.14は、ステンレス系溶接材料を用いて板厚が2mmの亜鉛系合金めっき鋼板を点付け溶接する際に接合入熱条件が本発明で規定する範囲内であるため、いずれも、溶接部の鋼板裏面熱影響部のめっき損傷は抑制され、鋼板裏面熱影響部の耐食性評価は良好である。しかし、めっき付着量が本発明規定範囲から低く外れるため、接合止端部におけるステンレス接合金属と亜鉛系合金めっきとの異種金属接触腐食が発生し、局所的にめっきが溶出し、耐食性評価は不好であった。   No. 13 and no. No. 14 is a steel plate of a welded part because the welding heat input condition is within the range specified by the present invention when spot welding a zinc-based alloy plated steel plate having a thickness of 2 mm using a stainless steel welding material. The plating damage of the back surface heat affected zone is suppressed, and the corrosion resistance evaluation of the back surface heat affected zone of the steel sheet is good. However, since the amount of plating adhesion falls outside the range specified in the present invention, dissimilar metal contact corrosion between the stainless steel joining metal and zinc-based alloy plating occurs at the joint toe, resulting in local dissolution of the plating and poor corrosion resistance evaluation. It was good.

No.15および16は、銅合金接合材料を用いて板厚が2mmの亜鉛系合金めっき鋼板をろう付け接合(連続)した比較例である。   No. 15 and 16 are comparative examples in which a zinc-based alloy plated steel sheet having a thickness of 2 mm is brazed and joined (continuous) using a copper alloy joining material.

No.15は、銅合金接合材料を用いる場合のめっき成分中のアルミ含有量(6%以上)が本発明規定範囲から低く外れるため、接合止端部における銅合金接合金属と亜鉛系合金めっきとの異種金属接触腐食が発生し、局所的にめっきが溶出し、耐食性評価は不好であった。   No. No. 15, since the aluminum content (6% or more) in the plating component when using a copper alloy bonding material deviates from the range specified in the present invention, the dissimilarity between the copper alloy bonding metal and the zinc-based alloy plating at the bonded toe portion Metal contact corrosion occurred, plating was eluted locally, and the corrosion resistance evaluation was unfavorable.

No.16は、銅合金接合材料を用いる場合のめっき付着量が本発明規定範囲から低く外れるため、接合止端部における銅合金接合金属と亜鉛系合金めっきとの異種金属接触腐食が発生し、局所的にめっきが溶出し、耐食性評価は不良であった。
No.17は、軟鋼用接合材料を用いて板厚が4mmの亜鉛系合金めっき鋼板を連続溶接した比較例であり、接合材料が本発明で規定するステンレス接合材料および銅合金接合材料のいずれでもないため、接合金属および接合止端部に赤錆が発生し、耐食性評価は不良であった。
No. No. 16, since the amount of plating adhesion when using a copper alloy bonding material deviates from the scope of the present invention, dissimilar metal contact corrosion between the copper alloy bonding metal and the zinc-based alloy plating occurs at the joint toe, and is locally The plating was eluted, and the corrosion resistance evaluation was poor.
No. 17 is a comparative example in which a zinc-based alloy-plated steel sheet having a thickness of 4 mm is continuously welded using a joining material for mild steel, and the joining material is neither a stainless steel joining material nor a copper alloy joining material defined in the present invention. Further, red rust was generated at the joint metal and the joint toe, and the corrosion resistance evaluation was poor.

亜鉛系合金めっき鋼板の接合試験体を示す図である。It is a figure which shows the joining test body of a zinc-type alloy plating steel plate. めっき中のAl含有量が異なる2種の亜鉛系合金めっき鋼板をそれぞれをステンレス系溶接材料用いて溶接した場合の溶接止端部周囲を示す図である。(a)は一般のZnめっき鋼板を用いた場合、(b)はZn−Al系合金めっき鋼板を用いた場合を示す。It is a figure which shows the periphery of a welding toe part at the time of welding two types of zinc type alloy plating steel plates in which Al content in plating differs using a stainless steel type welding material, respectively. (A) shows the case where a general Zn plating steel plate is used, and (b) shows the case where a Zn-Al system alloy plating steel plate is used. ステンレス溶接材料を用いて接合する場合の亜鉛系合金めっき鋼板のめっき付着量及びめっき成分中のアルミ含有量と接合部の耐食性との関係を示す図である。It is a figure which shows the relationship between the plating adhesion amount of the zinc system alloy plating steel plate in the case of joining using a stainless steel welding material, the aluminum content in a plating component, and the corrosion resistance of a junction part. 点付け溶接(アークスポット)溶接の例を示す図である。It is a figure which shows the example of spot welding (arc spot) welding. 点付け溶接における鋼板裏面の熱影響部のめっき蒸発状況を示す図である。It is a figure which shows the plating evaporation condition of the heat affected zone of the steel plate back surface in spot welding. ステンレス溶接材料を用いてアークスポット溶接する場合の溶接入熱及び鋼板板厚と接合部の鋼板裏面におけるめっき損傷度合いとの関係を示す図である。It is a figure which shows the relationship between the welding heat input in the case of arc spot welding using a stainless steel welding material, a steel plate thickness, and the plating damage degree in the steel plate back surface of a junction part. 銅合金接合材料を用いて接合する場合の亜鉛系合金めっき鋼板のめっき付着量及びめっき成分中のアルミ含有量と接合部の耐食性との関係を示すを示す図である。It is a figure which shows the relationship between the plating adhesion amount of the zinc type alloy plating steel plate in the case of joining using a copper alloy joining material, the aluminum content in a plating component, and the corrosion resistance of a junction part. 溶接継手の例を示す図である。(a)隅肉溶接継手、(b)重ね隅肉溶接継手、(c)拝み継手を示す。It is a figure which shows the example of a welded joint. (A) fillet welded joint, (b) lap fillet welded joint, (c) dignified joint.

符号の説明Explanation of symbols

1:亜鉛系合金めっき鋼板
2:隅肉溶接部(溶接金属)
3:熱影響部
4:溶接始端部のめっき損傷範囲
5:亜鉛めっき消失部
6:溶接止端部に残存するアルミ成分
7:亜鉛系合金めっき(熱影響を受けない領域)
8:点付け溶接部
9:点付け溶接部の鋼板裏面のめっき損傷部(めっき蒸発範囲)
10:めっき損傷部(めっき蒸発範囲)の最大長さ
11:溶接線
1: Zinc-based alloy-plated steel sheet 2: Fillet weld (welded metal)
3: Heat-affected zone 4: Range of plating damage at the weld end
5: Zinc plating disappearance 6: Aluminum component remaining at the weld toe 7: Zinc-based alloy plating (region not affected by heat)
8: Spot welding part 9: Plating damage part (plating evaporation range) on the back of the steel plate of the spot welding part
10: Maximum length of damaged portion of plating (plating evaporation range) 11: Welding line

Claims (4)

亜鉛系合金めっき鋼板の接合方法において、ステンレス系溶接材料を用いて、めっき成分中のアルミ含有量Aが3質量%以上であり、片面当たりのめっき付着量Bが下記(1)式を満足し、かつ板厚が3mmを超える亜鉛系合金めっき鋼板をアーク溶接することを特徴とする接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法。
150≧B≧300/A ・・・(1)
但し、Bは片面当たりのめっき付着量[g/m2]、Aはめっき成分中のアルミ含有量[質量%]をそれぞれ示す。
In the joining method of zinc-based alloy-plated steel sheet, using a stainless steel welding material, the aluminum content A in the plating component is 3% by mass or more and the plating adhesion amount B per one side satisfies the following formula (1). A method for joining zinc-based alloy plated steel sheets having excellent corrosion resistance at joints, characterized by arc welding a zinc-based alloy plated steel sheet having a thickness of more than 3 mm.
150 ≧ B ≧ 300 / A (1)
However, B shows the plating adhesion amount per side [g / m < 2 >], A shows aluminum content [mass%] in a plating component, respectively.
亜鉛系合金めっき鋼板の接合方法において、ステンレス系溶接材料を用いて、めっき成分中のアルミ含有量Aが3質量%以上であり、片面当たりのめっき付着量Bが下記(1)式を満足し、かつ板厚が3mm以下の亜鉛系合金めっき鋼板を溶接入熱量Pが下記(2)式を満足する溶接入熱でアークスポット溶接することを特徴とする接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法。
150≧B≧300/A ・・・(1)
P[kJ]=I×E×t/1000≦1.5×T2 ・・・(2)
但し、Bは片面当たりのめっき付着量[g/m2]、Aはめっき成分中のアルミ含有量[質量%]、Iは溶接電流値[A]、Eはアーク電圧値[V]、tは溶接時間[s]、Tは亜鉛系合金めっき鋼板の板厚[mm]をそれぞれ示す。
In the joining method of zinc-based alloy-plated steel sheet, using a stainless steel welding material, the aluminum content A in the plating component is 3% by mass or more and the plating adhesion amount B per one side satisfies the following formula (1). A zinc-based alloy having excellent corrosion resistance at the joint, characterized by arc-welding a zinc-based alloy-plated steel sheet having a thickness of 3 mm or less with welding heat input P satisfying the following formula (2): Bonding method of plated steel sheets.
150 ≧ B ≧ 300 / A (1)
P [kJ] = I × E × t / 1000 ≦ 1.5 × T 2 (2)
However, B is the plating adhesion amount per side [g / m 2 ], A is the aluminum content [mass%] in the plating component, I is the welding current value [A], E is the arc voltage value [V], t Indicates the welding time [s], and T indicates the thickness [mm] of the zinc-based alloy plated steel sheet.
亜鉛系合金めっき鋼板の接合方法において、銅合金接合材料を用いて、めっき成分中のアルミ含有量Aが6質量%以上であり、かつ片面当たりのめっき付着量Bが下記(3)式を満足する亜鉛系合金めっき鋼板をろう付け接合することを特徴とする接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法。
B≧300/A ・・・(3)
但し、Bは片面当たりのめっき付着量[g/m2]、Aはめっき成分中のアルミ含有量[質量%]をそれぞれ示す。
In the joining method of zinc-based alloy-plated steel sheets, using a copper alloy joining material, the aluminum content A in the plating component is 6% by mass or more, and the plating adhesion amount B on one side satisfies the following formula (3) A method for joining zinc-based alloy-plated steel sheets having excellent corrosion resistance at joints, characterized by brazing and joining zinc-based alloy-plated steel sheets.
B ≧ 300 / A (3)
However, B shows the plating adhesion amount per side [g / m < 2 >], A shows aluminum content [mass%] in a plating component, respectively.
前記亜鉛系合金めっきがZn−Al系合金めっき、Zn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきの何れかであることを特徴とする請求項1〜3の何れかに記載の接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法。   The zinc-based alloy plating is any one of a Zn-Al-based alloy plating, a Zn-Al-Mg-based alloy plating, and a Zn-Al-Mg-Si-based alloy plating. A method for joining zinc-based alloy-plated steel sheets excellent in corrosion resistance of the joints according to any one of the above.
JP2004222257A 2004-07-29 2004-07-29 Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion Withdrawn JP2006035294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222257A JP2006035294A (en) 2004-07-29 2004-07-29 Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222257A JP2006035294A (en) 2004-07-29 2004-07-29 Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion

Publications (1)

Publication Number Publication Date
JP2006035294A true JP2006035294A (en) 2006-02-09

Family

ID=35900835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222257A Withdrawn JP2006035294A (en) 2004-07-29 2004-07-29 Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion

Country Status (1)

Country Link
JP (1) JP2006035294A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194724A (en) * 2007-02-13 2008-08-28 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas-shielded arc welding, and welding method of galvanized steel sheet and stainless steel sheet
WO2009004865A1 (en) * 2007-07-03 2009-01-08 Taiyo Nippon Sanso Corporation Shield gas for mag welding of galvanized steel sheet and welding method using the shield gas
JP2009214171A (en) * 2008-03-13 2009-09-24 Nisshin Steel Co Ltd Method for welding galvannealed steel member
JP2011208264A (en) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd Vehicle chassis member excellent in corrosion resistance and method of manufacturing the same
JP2011206842A (en) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same
JP2012035268A (en) * 2010-08-03 2012-02-23 Miki Seisakusho:Kk Welding method of galvanized steel
JP2015003340A (en) * 2014-06-30 2015-01-08 日新製鋼株式会社 Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same
CN112195429A (en) * 2020-09-25 2021-01-08 河钢股份有限公司承德分公司 Zinc-free flower 900g/m2Production method of double-sided super-thick zinc layer galvanized plate
KR20220085496A (en) * 2020-12-15 2022-06-22 주식회사 포스코 Structure having excellent earthquake resistant property and method for manufacturing thereof
WO2022139370A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Welded structural member having excellent crack resistance and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194724A (en) * 2007-02-13 2008-08-28 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas-shielded arc welding, and welding method of galvanized steel sheet and stainless steel sheet
WO2009004865A1 (en) * 2007-07-03 2009-01-08 Taiyo Nippon Sanso Corporation Shield gas for mag welding of galvanized steel sheet and welding method using the shield gas
JP2009214171A (en) * 2008-03-13 2009-09-24 Nisshin Steel Co Ltd Method for welding galvannealed steel member
JP2011208264A (en) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd Vehicle chassis member excellent in corrosion resistance and method of manufacturing the same
JP2011206842A (en) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same
JP2012035268A (en) * 2010-08-03 2012-02-23 Miki Seisakusho:Kk Welding method of galvanized steel
JP2015003340A (en) * 2014-06-30 2015-01-08 日新製鋼株式会社 Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same
CN112195429A (en) * 2020-09-25 2021-01-08 河钢股份有限公司承德分公司 Zinc-free flower 900g/m2Production method of double-sided super-thick zinc layer galvanized plate
KR20220085496A (en) * 2020-12-15 2022-06-22 주식회사 포스코 Structure having excellent earthquake resistant property and method for manufacturing thereof
KR102521720B1 (en) * 2020-12-15 2023-04-14 주식회사 포스코 Structure having excellent earthquake resistant property and method for manufacturing thereof
WO2022139370A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Welded structural member having excellent crack resistance and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4256879B2 (en) Method of joining iron-based material and aluminum-based material and joint
CA2617767C (en) Method for arc or beam brazing/welding of workpieces of identical or different metals or metal alloys with additional materials of sn base alloys; sn base alloy wire
JP5198528B2 (en) Dissimilar material joining material and dissimilar material joining method
JP4303655B2 (en) Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
WO2018155492A1 (en) Laser brazing method and production method for lap joint member
JP2006035294A (en) Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion
JP4614223B2 (en) Dissimilar material joining material and dissimilar material joining method
JP2006224147A (en) Method for joining different materials and filler metal therefor
JP3529359B2 (en) Flux-cored wire for welding galvanized steel sheet with excellent pit and blow hole resistance
JP4980294B2 (en) Coated arc welding rod for galvanized steel sheet
JPH0639558A (en) Resistance welding method of aluminum and steel
JP5727346B2 (en) Method of repairing welded portion of welded zinc-aluminum alloy plated steel and welded structure
WO2018155508A1 (en) Method for mig brazing, method for manufacturing lap joint member, and lap joint member
JP4256892B2 (en) Dissimilar material joining method
JP2857329B2 (en) Gas shielded arc welding method
JP3513382B2 (en) Arc welding method for galvanized steel sheet
JP2006283110A (en) Steel sheet to be jointed with aluminum-based material by brazing, jointing method using the steel sheet, and coupling joint
JP2004351507A (en) Method and joint for spot-welding of ferrous material to aluminum material
JP2006088174A (en) Method for joining dissimilar materials
JP4452205B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP2000176644A (en) ARC WELDING METHOD OF Al BASE PLATED STEEL SHEET
JP3223259B2 (en) Flux-cored wire for galvanized steel welding
JP2001321985A (en) Gas shielded arc welding wire for thin steel sheet and pulse mag welding method using the same
JP2022061813A (en) Method for manufacturing weld joint, and flux-cored cut wire for groove filling
JP2023145267A (en) Welding member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002