JP2011208264A - Vehicle chassis member excellent in corrosion resistance and method of manufacturing the same - Google Patents

Vehicle chassis member excellent in corrosion resistance and method of manufacturing the same Download PDF

Info

Publication number
JP2011208264A
JP2011208264A JP2010079669A JP2010079669A JP2011208264A JP 2011208264 A JP2011208264 A JP 2011208264A JP 2010079669 A JP2010079669 A JP 2010079669A JP 2010079669 A JP2010079669 A JP 2010079669A JP 2011208264 A JP2011208264 A JP 2011208264A
Authority
JP
Japan
Prior art keywords
alloy layer
welding
plating
alloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010079669A
Other languages
Japanese (ja)
Other versions
JP5700394B2 (en
Inventor
Kazuaki Hosomi
和昭 細見
Masaaki Uranaka
将明 浦中
Tsutomu Shudo
努 首藤
Takeshi Shimizu
剛 清水
Shuntaro Sudo
俊太郎 須藤
Masazumi Igarashi
正純 五十嵐
Takahisa Sudo
尊久 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Nisshin Steel Co Ltd filed Critical Toyota Motor Corp
Priority to JP2010079669A priority Critical patent/JP5700394B2/en
Publication of JP2011208264A publication Critical patent/JP2011208264A/en
Application granted granted Critical
Publication of JP5700394B2 publication Critical patent/JP5700394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle chassis member excellent in the corrosion resistance in an arc welding part and having high strength.SOLUTION: The vehicle chassis member has the arc welding joint of molten Zn-Al-Mg alloy-plated steel sheet members having a sheet thickness of 1.0-3.0 mm, wherein the steel sheet surface that has had a plated layer before welding is covered with a Zn-Al-Mg alloy layer up to a welding bead end part continuously, an Al-Mg alloy layer exists between the Zn-Al-Mg alloy layer and the steel substrate. In the steel sheet surface within 2.0 mm from the welding bead end part, the Zn-Al-Mg alloy layer has an average Al concentration of 0.2-22.0 mass% and an average Mg concentration of 1.0-10.0 mass%, and Fe-Al alloy layer has an average Fe concentration of at most 70.0 mass%.

Description

本発明は、鋼板をアーク溶接法で接合して組み立てるフレーム、足廻り部材等の自動車シャシ部材に関し、特にアーク溶接部の耐食性に優れる自動車シャシ部材およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to an automobile chassis member such as a frame and a suspension member that are assembled by joining steel plates by an arc welding method, and more particularly to an automobile chassis member excellent in corrosion resistance of an arc welded portion and a manufacturing method thereof.

自動車の足廻り部材等のシャシ部材は、主に熱延鋼板をプレス成形等により所定の形状の鋼板部材に成形し、それらをアーク溶接法で接合することによって組み立てられる。その後、塗膜密着性を付与するためにリン酸塩処理を施した後、カチオン電着塗装を施して使用に供される。   Chassis members such as automobile suspension members are assembled by forming hot-rolled steel plates into steel plate members of a predetermined shape mainly by press forming or the like, and joining them by arc welding. Then, after giving a phosphate process in order to provide coating-film adhesiveness, a cationic electrodeposition coating is given and it uses.

カチオン電着塗装を施した熱延鋼板では飛び石によるチッピングにより塗膜が損傷するとその部分を起点に腐食が進行する。また、自動車用シャシ部材のアーク溶接では重ねすみ肉溶接を行う場合が多いが、溶接ビード部およびビード止端部近傍部ではアーク溶接時の溶接入熱により鋼板表面にFeスケールが生成し、走行中の振動による疲労によりFeスケールがカチオン電着塗膜とともに剥離して耐食性が低下する。このため、自動車用シャシ部材では腐食による板厚減少量を見込んで強度設計する必要がある。具体的には、従来、衝突安全性の観点から引張強さ340〜440MPa級の鋼種からなる板厚3〜4mmの高強度熱延鋼板を使用することが多かった。   In hot-rolled steel sheets that have been subjected to cationic electrodeposition coating, if the coating film is damaged by chipping with stepping stones, corrosion proceeds from that part. In addition, overlapped fillet welding is often performed in arc welding of automobile chassis members, but in the vicinity of the weld bead portion and the bead toe portion, Fe scale is generated on the surface of the steel sheet due to welding heat input during arc welding, and traveling The Fe scale peels off together with the cationic electrodeposition coating film due to fatigue caused by vibrations therein, resulting in a decrease in corrosion resistance. For this reason, it is necessary to design the strength of an automobile chassis member in anticipation of a reduction in plate thickness due to corrosion. Specifically, conventionally, a high-strength hot-rolled steel sheet having a thickness of 3 to 4 mm made of a steel type having a tensile strength of 340 to 440 MPa has been often used from the viewpoint of collision safety.

近年、更なる衝突安全性の向上と軽量化が望まれるようになり、シャシ部材用の鋼板には590MPa以上の高強度鋼板を使用するニーズが高まっている。また、長寿命化のための防錆性能向上も求められている。そこで、引張強度が590MPa以上の鋼板に合金化溶融亜鉛系めっきを施した鋼板が自動車用シャシ部材に使用され始めている。しかしながら、亜鉛系めっき鋼板にアーク溶接を施すと、特に高温に曝される溶接ビード止端部の近くではめっき層が蒸発して消失し、その部分にFeスケールが生成してしまう。このためFeスケールごと塗膜が剥離しやすいという従前の熱延鋼板の欠点は、亜鉛系めっき鋼板を用いても改善されていない。また、溶接時にめっき層が溶融した部分では後述するように鋼素地との界面にFe濃度の高いFe−Al系合金層が生成し、亜鉛系めっき層本来の耐食性を阻害するという問題も顕在化した。   In recent years, further improvement in collision safety and weight reduction have been desired, and the need to use a high-strength steel plate of 590 MPa or higher is increasing as a steel plate for chassis members. There is also a demand for improved rust prevention performance for longer life. Therefore, steel plates obtained by subjecting steel plates having a tensile strength of 590 MPa or more to alloying hot dip galvanizing have begun to be used for automobile chassis members. However, when arc welding is performed on a galvanized steel sheet, the plating layer evaporates and disappears in the vicinity of the weld bead toe exposed to a high temperature, and Fe scale is generated in that portion. For this reason, the fault of the conventional hot-rolled steel sheet that a coating film is easy to peel with Fe scale is not improved even if it uses a zinc plating steel plate. In addition, at the part where the plating layer is melted during welding, a Fe-Al alloy layer with a high Fe concentration is formed at the interface with the steel substrate, as will be described later, and the problem of hindering the original corrosion resistance of the zinc-based plating layer is also manifested. did.

特許文献1には、一般的な溶融亜鉛めっき鋼板よりも耐食性の高い溶融Zn−Al系合金めっき鋼板や溶融Zn−Al−Mg系合金めっき鋼板をアーク溶接で接合する方法が開示されている。それによると、ステンレス鋼または銅合金の接合材料を用いて、適切な条件でアーク溶接を行えば、溶接時にビード止端部近傍部でZnは蒸発するものの、Znに比べて沸点の高いAlが残存し、Al酸化物として鋼板表面を被覆するために耐食性が向上するとされる。しかし、発明者らの検討によれば、Al酸化物はリン酸塩結晶の生成を阻害するためにカチオン電着塗膜の密着性を低下させる要因となる。このため、特許文献1の技術はチッピングや振動疲労による塗膜剥離が起きない建材には適用できるが、自動車シャシ部材では耐食性が不足する。   Patent Document 1 discloses a method of joining a hot-dip Zn-Al alloy-plated steel plate or a hot-dip Zn-Al-Mg alloy-plated steel plate having higher corrosion resistance than a general hot-dip galvanized steel plate by arc welding. According to it, if arc welding is performed under appropriate conditions using a joining material of stainless steel or copper alloy, Zn evaporates in the vicinity of the bead toe during welding, but Al having a higher boiling point than Zn is present. It is said that the corrosion resistance is improved because it remains and coats the steel sheet surface as an Al oxide. However, according to studies by the inventors, the Al oxide is a factor that reduces the adhesion of the cationic electrodeposition coating film because it inhibits the formation of phosphate crystals. For this reason, although the technique of patent document 1 is applicable to the building material in which the coating film peeling by chipping or vibration fatigue does not occur, the automobile chassis member lacks corrosion resistance.

また、特許文献1の技術は板厚が3mmを超える亜鉛系めっき鋼板に適用されるものである。これは、板厚が3mm以下と薄い条件では、溶接時の入熱により接合部の鋼板裏面のめっき層が蒸発してめっき損傷が生じ、鋼板裏面の耐食性の劣化を招くことがあるためである。この点でも特許文献1の技術は自動車シャシ部材の軽量化ニーズには十分対応できない。   Moreover, the technique of patent document 1 is applied to the zinc-plated steel plate in which plate | board thickness exceeds 3 mm. This is because, when the plate thickness is as thin as 3 mm or less, the plating layer on the back surface of the steel plate at the joint portion evaporates due to heat input during welding, resulting in plating damage, which may lead to deterioration of the corrosion resistance on the back surface of the steel plate. . In this respect as well, the technology of Patent Document 1 cannot sufficiently meet the needs for reducing the weight of automobile chassis members.

さらに、溶融Zn−Al−Mg系合金めっき鋼板をアーク溶接すると、溶融金属脆化割れが発生しやすいことが知られている(特許文献2)。この場合、アーク溶接部の疲労強度が低下して問題となることがある。特許文献1の技術では、この溶融金属脆化割れに対する特段の配慮はなされていない。   Furthermore, it is known that molten metal embrittlement cracking is likely to occur when arc welding is performed on a molten Zn—Al—Mg alloy-plated steel sheet (Patent Document 2). In this case, the fatigue strength of the arc welded portion may be reduced, causing a problem. In the technique of Patent Document 1, no special consideration is given to the molten metal embrittlement crack.

特開2006−35294号公報JP 2006-35294 A 特開2003−3238号公報JP 2003-3238 A

上述のように、アーク溶接で組み立てられる従来の自動車シャシ部材では、アーク溶接部の耐食性が不十分であるため薄肉化の設計が難しく、長寿命化と高強度・軽量化の両方を満足することができなかった。本発明は、これらの問題点を解決し、アーク溶接部の耐食性に優れる高強度の自動車シャシ部材を提供することを目的とする。   As mentioned above, with conventional automobile chassis members assembled by arc welding, the corrosion resistance of the arc welded part is insufficient, making it difficult to design a thin wall and satisfy both long life and high strength and light weight. I could not. An object of the present invention is to solve these problems and to provide a high-strength automobile chassis member excellent in corrosion resistance of an arc welded portion.

発明者らは詳細な研究の結果、特定のアーク溶接条件で溶融Zn−Al−Mg系めっき鋼板をアーク溶接したときに、ビード止端部近くでめっき層が蒸発しても、その周囲で溶融しためっき金属が溶接後の降温過程でビード止端部まで速やかに濡れ拡がる現象を実現させることが可能となることを見出した。そして、濡れ拡がったZn−Al−Mg系合金層および、その下地に形成されるFe−Al系合金層の組成などを、溶接条件によって適切にコントロールすれば、溶接部での耐食性を安定して向上させることができることがわかった。本発明はこのような知見に基づいて完成したものである。   As a result of detailed studies, the inventors have found that even when a molten Zn-Al-Mg based steel sheet is arc welded under specific arc welding conditions, even if the plating layer evaporates near the bead toe, it melts around it. It has been found that it is possible to realize a phenomenon in which the plated metal is rapidly wetted and spreads to the bead toe in the temperature lowering process after welding. And, if the composition of the Zn-Al-Mg alloy layer that has spread and the Fe-Al alloy layer formed under the wet condition is appropriately controlled according to the welding conditions, the corrosion resistance at the welded portion can be stabilized. It was found that it can be improved. The present invention has been completed based on such findings.

すなわち、本発明では、板厚1.0〜3.0mmの溶融Zn−Al−Mg系合金めっき鋼板部材同士をアーク溶接で接合した接合部を持つ部材であって、
溶接前にめっき層を有していた鋼板表面は溶接ビード止端部まで連続的にZn−Al−Mg系合金層で覆われており、そのZn−Al−Mg系合金層と鋼素地の間にはFe−Al系合金層が存在し、
溶接ビード止端部からの距離が2mm以内の鋼板表層部において、Zn−Al−Mg系合金層は平均Al濃度:0.2〜22.0質量%、平均Mg濃度:1.0〜10.0質量%、且つFe−Al系合金層は平均Fe濃度:70.0質量%以下である自動車シャシ部材が提供される。
That is, in the present invention, a member having a joined portion obtained by joining the molten Zn-Al-Mg-based alloy plated steel plate members having a plate thickness of 1.0 to 3.0 mm by arc welding,
The surface of the steel plate having a plating layer before welding is continuously covered with a Zn-Al-Mg alloy layer up to the weld bead toe, and between the Zn-Al-Mg alloy layer and the steel substrate. Has an Fe-Al alloy layer,
In the steel plate surface layer portion whose distance from the weld bead toe is within 2 mm, the Zn—Al—Mg-based alloy layer has an average Al concentration of 0.2 to 22.0 mass% and an average Mg concentration of 1.0 to 10. An automobile chassis member having 0 mass% and an Fe-Al alloy layer having an average Fe concentration of 70.0 mass% or less is provided.

溶融Zn−Al−Mg系合金めっき鋼板部材とは、溶融Zn−Al−Mg系合金めっき鋼板を素材として成形加工した部材であって、切断端面、打抜き面、穴開け部など板厚方向の断面が露出している部分を除く表面に溶融Zn−Al−Mg系合金めっき層を有するものをいう。板厚は、めっき層を含めない「めっき原板」の板厚を意味する。溶接ビード止端部は、母材の面と溶接ビードの表面とが交わる位置である。   A molten Zn-Al-Mg alloy-plated steel sheet member is a member formed from a molten Zn-Al-Mg alloy-plated steel sheet as a raw material, and includes a cross section in the plate thickness direction such as a cut end face, a punched surface, and a punched portion. It has a molten Zn—Al—Mg-based alloy plating layer on the surface excluding the exposed portion. The plate thickness means the plate thickness of the “plating original plate” not including the plating layer. The weld bead toe is a position where the surface of the base material and the surface of the weld bead intersect.

前記溶融Zn−Al−Mg系合金めっきの組成は、質量%で、Al:3.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.0%、残部Znおよび不可避的不純物からなるものであることがより好適である。   The composition of the molten Zn—Al—Mg alloy plating is mass%, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, B : 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.0%, balance Zn and inevitable impurities are more preferable.

前記溶融Zn−Al−Mg系合金めっき鋼板のめっき原板は、質量%で、C:0.05〜0.25%、Si:0.10〜1.50%、Mn:1.00〜2.50%、Al:0.010〜0.100%、Ti:0.010〜0.100%、B:0.0001〜0.0100%であり、必要に応じてさらにNb、Cr、Mo、Pの1種以上を合計1.00%以下の範囲で含有し、残部Feおよび不可避的不純物からなるものであることがより好適である。   The plating base plate of the hot-dip Zn—Al—Mg alloy-plated steel sheet is in mass%, C: 0.05 to 0.25%, Si: 0.10 to 1.50%, Mn: 1.02 to 2. 50%, Al: 0.010 to 0.100%, Ti: 0.010 to 0.100%, B: 0.0001 to 0.0100%, and if necessary, Nb, Cr, Mo, P It is more preferable that one or more of these be contained in a total amount of 1.00% or less, and the remaining Fe and unavoidable impurities.

上記の自動車シャシ部材の製造方法として、溶融Zn−Al−Mg系合金めっき鋼板部材同士をアーク溶接接合するに際し、片面当たりのめっき付着量が20〜250g/m2の溶融Zn−Al−Mg系合金めっき鋼板部材を使用し、下記(1)式で表される溶接入熱Q(J/cm)をめっき付着量に応じて下記(2)式の成立範囲にコントロールする製造法が採用できる。
Q=(I×V)/v …(1)
13W+1140≦Q≦15W+8720 …(2)
ただし、I:溶接電流(A)、V:アーク電圧(V)、v:溶接速度(cm/sec)、W:片面当たりのめっき付着量(g/m2
As a manufacturing method of the above-mentioned automobile chassis member, when the molten Zn-Al-Mg alloy-plated steel sheet members are arc-welded to each other, a molten Zn-Al-Mg system having a plating adhesion amount per side of 20 to 250 g / m 2 A manufacturing method that uses an alloy-plated steel plate member and controls the welding heat input Q (J / cm) represented by the following formula (1) within the range established by the following formula (2) according to the amount of plating applied can be adopted.
Q = (I × V) / v (1)
13W + 1140 ≦ Q ≦ 15W + 8720 (2)
However, I: Welding current (A), V: Arc voltage (V), v: Welding speed (cm / sec), W: Plating adhesion amount per side (g / m 2 )

本発明によれば、従来の自動車シャシ部材で問題となっていたアーク溶接部のビード止端部近傍部における耐食性低下が回避され、高強度と高耐食性に優れた自動車シャシを構築することが可能となった。これにより、部材の長寿命化が実現され、また薄肉化による軽量化のニーズにも対応できる。   ADVANTAGE OF THE INVENTION According to this invention, the corrosion resistance fall in the bead toe part vicinity part of the arc welding part which was a problem with the conventional automobile chassis member is avoided, and it is possible to construct an automobile chassis with high strength and high corrosion resistance. It became. Thereby, the lifetime improvement of a member is implement | achieved and the need for weight reduction by thickness reduction can also be responded.

重ねすみ肉溶接継手の溶接部断面構造を模式的に示した図。The figure which showed typically the welding part cross-section of a lap fillet welded joint. 鋼板部材が従来の熱延鋼板である場合の溶接継手断面構造を模式的に示した図。The figure which showed typically the welded joint cross-section in case a steel plate member is the conventional hot-rolled steel plate. 高強度溶融Zn−Al−Mg系めっき鋼板のアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示した図。The figure which showed typically the cross-sectional state of the high temperature welded part immediately after the arc passed at the time of arc welding of a high intensity | strength molten Zn-Al-Mg type plated steel plate. 図3の状態から冷却された従来の高強度溶融Zn−Al−Mg系めっき鋼板溶接継手の断面構造を模式的に示した図。The figure which showed typically the cross-section of the conventional high intensity | strength molten Zn-Al-Mg type plated steel plate welded joint cooled from the state of FIG. 図3の状態から冷却された本発明の高強度溶融Zn−Al−Mg系めっき鋼板溶接継手の断面構造を模式的に示した図。The figure which showed typically the cross-section of the high intensity | strength molten Zn-Al-Mg type plated steel plate welded joint of this invention cooled from the state of FIG. 溶融Zn−Al−Mgめっき鋼板をアーク溶接した場合の止端部近傍の被覆状態と溶接部外観に及ぼすめっき付着量Wと溶接入熱Qの影響を例示したグラフ。The graph which illustrated the influence of the plating adhesion amount W and the welding heat input Q exerted on the coating state in the vicinity of the toe portion and the appearance of the welded portion when arc welding was performed on a molten Zn-Al-Mg plated steel sheet. 耐溶融金属脆化割れ性を調べるための溶接実験方法を示した図。The figure which showed the welding experiment method for investigating the molten metal embrittlement cracking resistance. 耐食性試験等に用いた重ねすみ肉溶接継手の形状を模式的に示した図。The figure which showed typically the shape of the lap fillet weld joint used for the corrosion resistance test. 複合腐食試験(CCT)条件を示した図。The figure which showed the composite corrosion test (CCT) conditions.

図1に、重ねすみ肉溶接継手の溶接部断面構造を模式的に例示する。自動車シャシにはアーク溶接によるこの種の溶接継手が多用されている。鋼板部材である母材1、母材1’が重ねられて配置され、母材1の表面と母材1’の端面に溶接ビード2が形成され、両部材が接合されている。   FIG. 1 schematically illustrates a cross-sectional structure of a welded portion of a lap fillet welded joint. This type of welded joint by arc welding is frequently used in automobile chassis. A base material 1 and a base material 1 ′, which are steel plate members, are arranged so as to overlap each other, a weld bead 2 is formed on the surface of the base material 1 and an end surface of the base material 1 ′, and both members are joined.

図2〜図5は、図1に示した止端部3の近傍に相当する部位の溶接継手断面構造を拡大して模式的に示したものである。
図2に、鋼板部材が従来の熱延鋼板である場合の溶接継手断面構造を模式的に示す。母材1の表面には、溶接ビード2の止端部3の近傍に、溶接入熱で母材1が高温に曝されたことに起因してFeスケール4が形成されている。Feスケール4は母材1との密着性に劣るため、このような状態で塗装を施した場合には、自動車の振動が繰り返されると止端部3近傍の塗膜がFeスケール4と共に母材から剥離して脱落しやすい。塗膜が脱落すればその部分の耐食性が確保されないため、腐食しろを見込んで厚肉の設計を余儀なくされる。なお、図2中のFeスケール4の厚さは誇張して描いてある。
2 to 5 schematically show an enlarged cross-sectional structure of a weld joint in a portion corresponding to the vicinity of the toe portion 3 shown in FIG.
FIG. 2 schematically shows a welded joint cross-sectional structure when the steel plate member is a conventional hot-rolled steel plate. An Fe scale 4 is formed on the surface of the base material 1 in the vicinity of the toe portion 3 of the weld bead 2 due to the base material 1 being exposed to high temperature by welding heat input. Since the Fe scale 4 is inferior in adhesion to the base material 1, when coating is performed in such a state, the coating film in the vicinity of the toe portion 3 together with the Fe scale 4 is formed when the automobile is repeatedly vibrated. Easy to peel off from. If the coating film falls off, the corrosion resistance of that part is not ensured, so it is necessary to design a thick wall in anticipation of corrosion. Note that the thickness of the Fe scale 4 in FIG. 2 is exaggerated.

図3に、高強度溶融Zn−Al−Mg系めっき鋼板のアーク溶接時において、アークが通り過ぎた直後の高温の溶接部近傍の断面状態を模式的に示す。母材1の表面は、溶接前に均一なめっき層7に覆われていたが、アークの通過によって止端部3の近くでは溶融しためっき層由来金属が蒸発して消失している(めっき層蒸発領域9)。それより止端部3からの距離が大きい部分では、元のめっき層7が溶融してZn−Al−Mg系溶融金属8となるが、蒸発による消失には至っていない。さらに止端部3からの距離が大きくなると、元のめっき層7が溶融せずに存在している。なお、図3中、Zn−Al−Mg系溶融金属8およびめっき層7の厚さは誇張して描いてある。   FIG. 3 schematically shows a cross-sectional state in the vicinity of a high-temperature welded portion immediately after the arc has passed during arc welding of a high-strength molten Zn—Al—Mg-based steel sheet. The surface of the base material 1 was covered with the uniform plating layer 7 before welding, but the molten plating layer-derived metal evaporated and disappeared near the toe portion 3 due to the passage of the arc (plating layer). Evaporation area 9). In the portion where the distance from the toe portion 3 is larger than that, the original plating layer 7 is melted to become the Zn—Al—Mg based molten metal 8, but has not disappeared due to evaporation. When the distance from the toe 3 is further increased, the original plating layer 7 exists without melting. In FIG. 3, the thicknesses of the Zn—Al—Mg-based molten metal 8 and the plating layer 7 are exaggerated.

図4に、図3の状態から冷却された従来の高強度溶融Zn−Al−Mg系めっき鋼板溶接継手の断面構造を模式的に示す。溶接時にめっき層が蒸発した止端部3近傍の領域(図3のめっき層蒸発領域9)にはFeスケール4が形成されている。その隣には溶融凝固領域10があり、この領域には蒸発せずに残ったZn−Al−Mg系溶融金属(図3の符号8)が凝固して存在している。さらに止端部3から遠い領域にはめっき層未溶融領域11があり、この領域には元のめっき層(図3の符号7)が存在している。符号5はZn−Al−Mg系合金層であり、これは、溶融凝固した金属と元のめっき層の部分によって構成される。Zn−Al−Mg系合金層5と母材1との間にはFe−Al系合金層6が介在している。Fe−Al系合金層6は母材成分のFeとめっき成分のAlが反応したものであり、Zn−Al−Mg系合金層5と母材1との密着性を担う。ただし、溶融凝固領域10のFe−Al系合金層6は、元のめっき層の下に存在するものより厚く成長する。この層が過度に成長すると逆にめっき密着性が低下する。また、Fe−Al系合金層6中のFe濃度が過大になると耐食性を損なうようになる。図4に示した断面構造ではFeスケール4の生成が塗膜剥離の原因となり、耐食性を劣化させる。なお、図4中、Feスケール4、Zn−Al−Mg系合金層5およびFe−Al系合金層6の厚さは誇張して描いてある。   FIG. 4 schematically shows a cross-sectional structure of a conventional high-strength molten Zn—Al—Mg-based plated steel plate welded joint cooled from the state of FIG. Fe scale 4 is formed in a region in the vicinity of toe 3 where the plating layer has evaporated during welding (plating layer evaporation region 9 in FIG. 3). Next to this, there is a melt-solidified region 10, in which Zn—Al—Mg-based molten metal (reference numeral 8 in FIG. 3) that remains without being evaporated solidifies. Further, a plating layer unmelted region 11 is present in a region far from the toe 3, and the original plating layer (reference numeral 7 in FIG. 3) is present in this region. Reference numeral 5 denotes a Zn—Al—Mg alloy layer, which is composed of a molten and solidified metal and an original plating layer. An Fe—Al alloy layer 6 is interposed between the Zn—Al—Mg alloy layer 5 and the base material 1. The Fe—Al-based alloy layer 6 is a reaction between Fe as a base material component and Al as a plating component, and is responsible for adhesion between the Zn—Al—Mg-based alloy layer 5 and the base material 1. However, the Fe—Al-based alloy layer 6 in the melt-solidified region 10 grows thicker than that existing under the original plating layer. Conversely, when this layer grows excessively, the plating adhesion deteriorates. Further, when the Fe concentration in the Fe—Al-based alloy layer 6 becomes excessive, the corrosion resistance is impaired. In the cross-sectional structure shown in FIG. 4, the formation of the Fe scale 4 causes peeling of the coating film and deteriorates the corrosion resistance. In FIG. 4, the thicknesses of the Fe scale 4, the Zn—Al—Mg alloy layer 5 and the Fe—Al alloy layer 6 are exaggerated.

図5に、図3の状態から冷却された本発明の高強度溶融Zn−Al−Mg系めっき鋼板溶接継手の断面構造を模式的に示す。この場合、溶接時にめっき層が蒸発した止端部3近傍の領域(図3のめっき層蒸発領域9)に図3のZn−Al−Mg系溶融金属8が濡れ拡がり、めっき層未溶融領域11より止端部3寄りの領域の全体が溶融凝固領域10となっている。すなわち、後述するようにアーク溶接条件を適正化することによって溶接後の冷却過程で速やかに図3のZn−Al−Mg系溶融金属8が止端部3まで流動して、母材1の鋼素地表面を覆い尽くす。このため、図4に示したFeスケール4は形成されない。このように溶接前にめっき層を有していた母材1の表面が、溶接時に未溶融であっためっき層から溶接ビード止端部まで連続的にZn−Al−Mg系合金層で覆われていて、且つ、止端部3近傍におけるZn−Al−Mg系合金層5、およびその下地に存在するFe−Al系合金層6の化学組成が適正範囲に調整されている場合に、溶接部近傍での良好な耐食性が維持される。そのような溶接継手は後述図6に示した適正範囲のアーク溶接条件によって実現される。なお、図5中、Zn−Al−Mg系合金層5およびFe−Al系合金層6の厚さは誇張して描いてある。   FIG. 5 schematically shows the cross-sectional structure of the high strength molten Zn—Al—Mg based plated steel plate welded joint of the present invention cooled from the state of FIG. In this case, the Zn—Al—Mg-based molten metal 8 in FIG. 3 wets and spreads in the region in the vicinity of the toe portion 3 (plating layer evaporation region 9 in FIG. 3) where the plating layer has evaporated during welding, and the plating layer unmelted region 11. The entire region closer to the toe 3 is a melt-solidified region 10. That is, by optimizing the arc welding conditions as described later, the Zn—Al—Mg based molten metal 8 of FIG. 3 quickly flows to the toe 3 in the cooling process after welding, and the steel of the base material 1. Cover the surface of the substrate. For this reason, the Fe scale 4 shown in FIG. 4 is not formed. In this way, the surface of the base material 1 having the plating layer before welding is continuously covered with the Zn—Al—Mg alloy layer from the plating layer that has not been melted at the time of welding to the weld bead toe. And the chemical composition of the Zn—Al—Mg alloy layer 5 in the vicinity of the toe 3 and the Fe—Al alloy layer 6 existing in the underlayer is adjusted to an appropriate range, Good corrosion resistance in the vicinity is maintained. Such a welded joint is realized by an arc welding condition in an appropriate range shown in FIG. In FIG. 5, the thicknesses of the Zn—Al—Mg alloy layer 5 and the Fe—Al alloy layer 6 are exaggerated.

〔アーク溶接条件〕
図6に、板厚2mm、めっき付着量20〜250g/m2の溶融Zn−6質量%Al−3質量%Mgめっき鋼板を用いて、アーク溶接により図1に示したタイプの重ねすみ肉溶接継手を作製し、めっき付着量Wと溶接入熱Qを種々変化させた場合の、止端部3近傍の被覆状態、およびアーク溶接部外観に及ぼす影響を調べた結果を例示する。溶接ガスはAr+20vol.%CO2とした。溶接入熱Qは溶接電流Iと溶接速度vを変化させることによって調整した。溶接入熱Q(J/cm)の値は前記(1)式により定まる。図5に対応する溶接部近傍の断面を走査型電子顕微鏡で観察した。ビード止端部3までZn−Al−Mg系合金層5が形成され、かつスパッタが発生しないか軽微であるものを○、ビード止端部3近傍のめっき層が蒸発により消失したままの箇所(Zn−Al−Mg系合金層不存在部)が見られるものを×とした。また、アーク溶接部の外観を目視観察して、スパッタの発生が多く製品としての良好な外観を有していないと判断されるものを△とした。そして、○評価のものを合格と判定した。
[Arc welding conditions]
FIG. 6 shows a lap fillet weld of the type shown in FIG. 1 by arc welding using a molten Zn-6 mass% Al-3 mass% Mg plated steel sheet having a thickness of 2 mm and a coating weight of 20 to 250 g / m 2 . The result of investigating the influence on the covering state in the vicinity of the toe portion 3 and the appearance of the arc welded portion when the joint is produced and the plating adhesion amount W and the welding heat input Q are variously changed will be exemplified. Welding gas was Ar + 20vol.% CO 2. The welding heat input Q was adjusted by changing the welding current I and the welding speed v. The value of welding heat input Q (J / cm) is determined by the equation (1). A cross section in the vicinity of the weld corresponding to FIG. 5 was observed with a scanning electron microscope. A portion where the Zn-Al-Mg-based alloy layer 5 is formed up to the bead toe 3 and no spatter is generated or is slight, and the plating layer in the vicinity of the bead toe 3 remains disappeared by evaporation ( The case where a Zn—Al—Mg-based alloy layer non-existing portion) was observed was evaluated as x. Further, the appearance of the arc welded portion was visually observed, and a case where it was judged that there was much spatter generation and it did not have a good appearance as a product was marked with Δ. And the thing of (circle) evaluation was determined to be a pass.

図6からわかるように、溶接入熱Qが前記(2)式の範囲内であればビード止端部3までZn−Al−Mg系合金層5が形成された。また、これらのものは止端部3近傍におけるZn−Al−Mg系合金層5の厚さおよび化学組成、並びにその下地に存在するFe−Al系合金層6の化学組成が後述する適正範囲に調整されており、溶接部近傍での耐食性に優れるものであることが別途確認されている。   As can be seen from FIG. 6, the Zn—Al—Mg based alloy layer 5 was formed up to the bead toe 3 when the welding heat input Q was within the range of the formula (2). Further, in these, the thickness and chemical composition of the Zn—Al—Mg alloy layer 5 in the vicinity of the toe portion 3 and the chemical composition of the Fe—Al alloy layer 6 existing in the underlayer are within an appropriate range described later. It has been separately confirmed that it has been adjusted and has excellent corrosion resistance in the vicinity of the weld.

これに対し、溶接入熱Qが図6中のQ<13W+1140の領域では、ビード止端部3までめっき層由来の溶融金属が到達しない状態となる。
一方、溶接入熱Qが図6中のQ>15W+8720の領域では、ビード止端部3までZn−Al−Mg系合金層5で覆われたが、入熱過多でスパッタが著しく発生した。スパッタが著しいと塗装外観を損ねるだけでなく、腐食の起点となり耐食性が低下する。また、溶接入熱Qが過大になると後述するようにFe−Al系合金層6が厚く成長するとともにFe濃度が高くなり、Zn−Al−Mg系合金層5中のAl濃度の低下や密着性低下を招く。
On the other hand, in the region where the welding heat input Q is Q <13W + 1140 in FIG. 6, the molten metal derived from the plating layer does not reach the bead toe 3.
On the other hand, in the region where the welding heat input Q is Q> 15W + 8720 in FIG. 6, the bead toe 3 was covered with the Zn—Al—Mg alloy layer 5, but spatter was significantly generated due to excessive heat input. If the spatter is significant, not only the appearance of the coating is impaired, but also the starting point of corrosion and the corrosion resistance decreases. Further, when the welding heat input Q is excessive, the Fe—Al-based alloy layer 6 grows thick and the Fe concentration increases as will be described later, and the Al concentration in the Zn—Al—Mg-based alloy layer 5 decreases or adheres. Incurs a decline.

板厚1mmおよび3mmの材料を用いて同様の調査を行った結果、溶接入熱Qが上記(2)式の範囲内であれば図6と同様の結果となることが確認された。なお、溶接入熱Qが本発明の範囲より小さい場合にめっき層が消失したままとなる原因は明確になっていないが、溶接入熱Qが元のめっき層7の溶融量あるいはZn−Al−Mg系溶融金属8(図3)の流動性に影響を及ぼしているものと推察される。   As a result of conducting a similar investigation using materials having a plate thickness of 1 mm and 3 mm, it was confirmed that the same result as in FIG. 6 was obtained if the welding heat input Q was within the range of the above equation (2). Although the reason why the plating layer remains lost when the welding heat input Q is smaller than the range of the present invention is not clear, the welding heat input Q is the melting amount of the original plating layer 7 or Zn—Al—. It is presumed that the fluidity of the Mg-based molten metal 8 (FIG. 3) is affected.

自動車シャシ部材を想定したアーク溶接において、止端部3近傍のめっき層が蒸発して消失するのは、通常、止端部から最大2mmまでの範囲となる。したがって、止端部3から2.0mm以内の領域(以下、単に「止端部近傍2mm領域」という)に形成される被覆層についての特性によって、溶接部の耐食性改善効果を評価することができる。図5中には、止端部近傍2mm領域を符号12で示した。
以下、各合金層、めっき浴、およびめっき原板の化学組成における「%」は特に断らない限り「質量%」を意味する。
In arc welding assuming an automobile chassis member, the plating layer in the vicinity of the toe portion 3 evaporates and disappears usually in a range from the toe portion up to 2 mm. Therefore, the effect of improving the corrosion resistance of the welded portion can be evaluated by the characteristics of the coating layer formed in a region within 2.0 mm from the toe portion 3 (hereinafter, simply referred to as “the 2 mm region in the vicinity of the toe portion”). . In FIG. 5, a 2 mm region in the vicinity of the toe portion is indicated by reference numeral 12.
Hereinafter, “%” in the chemical composition of each alloy layer, plating bath, and original plating plate means “% by mass” unless otherwise specified.

〔止端部近傍2mm領域におけるZn−Al−Mg系合金層〕
種々検討の結果、止端部近傍2mm領域において、Zn−Al−Mg系合金層5の平均Al濃度は0.2〜22.0%、平均Mg濃度は1.0〜10.0%である必要がある。この領域の平均Al濃度が0.2%未満では耐食性改善効果が不十分であり、22.0%を超えても耐食性改善効果は飽和する。また、この領域の平均Mg濃度が1.0%未満では耐食性改善効果が不十分であり、10.0%を超えても耐食性改善効果は飽和する。この領域でのZn−Al−Mg系合金層5の組成は、めっき層7の組成および溶接条件(特にFe−Al系合金層6の成長の仕方)によってコントロールすることができる。溶融めっき層7の組成を後述の範囲とすることがZn−Al−Mg系合金層5の組成を適正化する上で有利となる。
[Zn-Al-Mg-based alloy layer in the 2 mm region near the toe part]
As a result of various studies, the average Al concentration of the Zn-Al-Mg alloy layer 5 is 0.2 to 22.0% and the average Mg concentration is 1.0 to 10.0% in the 2 mm region near the toe portion. There is a need. If the average Al concentration in this region is less than 0.2%, the corrosion resistance improving effect is insufficient, and if it exceeds 22.0%, the corrosion resistance improving effect is saturated. Further, if the average Mg concentration in this region is less than 1.0%, the corrosion resistance improving effect is insufficient, and even if it exceeds 10.0%, the corrosion resistance improving effect is saturated. The composition of the Zn—Al—Mg alloy layer 5 in this region can be controlled by the composition of the plating layer 7 and the welding conditions (particularly, the growth method of the Fe—Al alloy layer 6). In order to optimize the composition of the Zn—Al—Mg-based alloy layer 5, it is advantageous to set the composition of the hot-dip plating layer 7 in the range described later.

止端部近傍2mm領域におけるZn−Al−Mg系合金層5の平均厚さは、1.0μm以上であることがより好ましい。それより薄くても耐食性改善効果は得られるが、高耐食性が得られる寿命を考慮すると1.0μm以上であることが有利となる。上限は、元のめっき層によって制約を受けるが、通常40μm以下の範囲で十分である。なお、この領域に生成されるZn−Al−Mg系合金層5には元のめっき層7に由来するTi、B、Si等の元素や母材1の成分元素(特にFe)が不可避的に含まれていて構わない。   The average thickness of the Zn—Al—Mg alloy layer 5 in the 2 mm region near the toe portion is more preferably 1.0 μm or more. Even if it is thinner than that, the effect of improving the corrosion resistance can be obtained, but considering the life in which the high corrosion resistance is obtained, it is advantageous to be 1.0 μm or more. The upper limit is limited by the original plating layer, but is usually in the range of 40 μm or less. The Zn—Al—Mg alloy layer 5 generated in this region inevitably contains elements such as Ti, B, and Si derived from the original plating layer 7 and component elements (particularly Fe) of the base material 1. It may be included.

〔止端部近傍2mm領域におけるFe−Al系合金層〕
Fe−Al系合金層6はアーク溶接後の冷却時にZn−Al−Mg系溶融金属8と母材1との合金化反応によって生成し、母材1とZn−Al−Mg系合金層5の密着性向上に寄与する。ただし、止端部近傍2mm領域におけるFe−Al系合金層6中の平均Fe濃度は70.0%以下であることが重要である。それを超えると、Fe−Al系合金層6が脆くなり密着性が低下することがわかった。
[Fe-Al alloy layer in the 2 mm region near the toe part]
The Fe—Al-based alloy layer 6 is generated by an alloying reaction between the Zn—Al—Mg-based molten metal 8 and the base material 1 during cooling after arc welding, and the base material 1 and the Zn—Al—Mg-based alloy layer 5 are formed. Contributes to improved adhesion. However, it is important that the average Fe concentration in the Fe—Al-based alloy layer 6 in the 2 mm region in the vicinity of the toe portion is 70.0% or less. When it exceeded that, it turned out that the Fe-Al type alloy layer 6 becomes weak and adhesiveness falls.

Fe−Al系合金層6の厚さが厚くなるほど、Fe−Al系合金層6を形成するために必要なAlがZn−Al−Mg系合金層5から消費されて、Zn−Al−Mg系合金層5の厚さおよびAl濃度が不足する状態が生じやすい。また、Fe−Al系合金層6は本質的に脆いので、過度に厚くなるとZn−Al−Mg系合金層5の密着性が低下しやすくなる。種々検討の結果、止端部近傍2mm領域において、各合金層の厚さには下記(3)式の関係が成立していることが、密着性の向上にはより効果的である。
[Fe−Al系合金層6の平均厚さ]/[Fe−Al系合金層6とZn−Al−Mg系合金層5からなる合金層全体の平均厚さ]≦0.5 …(3)
なお、この領域に生成されるFe−Al系合金層6には元のめっき層7に由来するTi、B、Si等の元素や母材のFe以外の成分元素が不可避的に含まれていて構わない。
As the thickness of the Fe—Al alloy layer 6 increases, Al necessary for forming the Fe—Al alloy layer 6 is consumed from the Zn—Al—Mg alloy layer 5, and the Zn—Al—Mg alloy is consumed. A state where the thickness of the alloy layer 5 and the Al concentration are insufficient is likely to occur. Further, since the Fe—Al-based alloy layer 6 is essentially brittle, if the thickness is excessively increased, the adhesion of the Zn—Al—Mg-based alloy layer 5 tends to be lowered. As a result of various studies, it is more effective for improving the adhesion that the relationship of the following formula (3) is established in the thickness of each alloy layer in the 2 mm region in the vicinity of the toe portion.
[Average thickness of Fe—Al-based alloy layer 6] / [Average thickness of entire alloy layer composed of Fe—Al-based alloy layer 6 and Zn—Al—Mg-based alloy layer 5] ≦ 0.5 (3)
Note that the Fe—Al-based alloy layer 6 generated in this region inevitably contains elements such as Ti, B, and Si derived from the original plating layer 7 and component elements other than Fe of the base material. I do not care.

〔元の溶融Zn−Al−Mg系合金めっき層〕
止端部近傍2mm領域におけるZn−Al−Mg系合金層5の組成を上述の適正範囲に調整するためには、元のめっき層7におけるAl濃度を3.0%以上、Mg濃度を1.0%以上としておくことが有利となる。特にAlは溶接入力Qが比較的大きい場合やめっき付着量が比較的少ない場合などに、Fe−Al系合金層6の成長に消費されやすい傾向があり、その場合には大幅な濃度低下が生じることもある。具体的な溶融Zn−Al−Mg系合金めっき層7の組成範囲としては、質量%で、Al:3.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.0%、残部Znおよび不可避的不純物からなるものが好適な対象となる。溶融めっき層の化学組成は、溶融めっき浴の組成をほぼ反映したものとなる。
[Original molten Zn-Al-Mg alloy plating layer]
In order to adjust the composition of the Zn—Al—Mg-based alloy layer 5 in the 2 mm region in the vicinity of the toe portion to the appropriate range described above, the Al concentration in the original plating layer 7 is 3.0% or more and the Mg concentration is 1. It is advantageous to keep it at 0% or more. In particular, Al tends to be consumed for the growth of the Fe—Al-based alloy layer 6 when the welding input Q is relatively large or the amount of plating adhesion is relatively small. In this case, a significant concentration drop occurs. Sometimes. Specifically, the composition range of the molten Zn—Al—Mg-based alloy plating layer 7 is mass%, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0. A suitable target is 0.10%, B: 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.0%, the balance Zn and inevitable impurities. The chemical composition of the hot dipping layer substantially reflects the composition of the hot dipping bath.

Alは、めっき鋼板の耐食性向上に有効であり、また、めっき浴においてMg酸化物系ドロスの発生を抑制する。溶融めっき浴のAl含有量を3.0%以上とすればこれらの作用を発揮させることができるが、4.0%以上とすることがより好ましい。一方、Al含有量が22.0%を超えると、めっき層7の下地に脆いFe−Al合金層6が過剰に成長するようになり、めっき密着性の低下を招く要因となる。優れためっき密着性を確保するには15.0%以下のAl含有量とすることが好ましく、10.0%以下に管理しても構わない。   Al is effective in improving the corrosion resistance of the plated steel sheet, and suppresses the generation of Mg oxide dross in the plating bath. If the Al content of the hot dipping bath is 3.0% or more, these effects can be exhibited, but it is more preferably 4.0% or more. On the other hand, if the Al content exceeds 22.0%, the brittle Fe—Al alloy layer 6 grows excessively on the base of the plating layer 7, which causes a decrease in plating adhesion. In order to ensure excellent plating adhesion, the Al content is preferably 15.0% or less, and may be controlled to 10.0% or less.

Mgは、めっき層表面に均一な腐食生成物を生成させてめっき鋼板の耐食性を著しく高める作用を呈する。その作用は溶融めっき浴のMg含有量が0.05%以上の範囲で発現するが、本発明では止端部近傍2mm領域におけるZn−Al−Mg系合金層5の平均Mg濃度を1.0%以上とするために、めっき層7中のMg濃度も1.0%以上とすることが有利となる。一方、Mg含有量が10.0%を超えるとMg酸化物系ドロスが発生し易くなり、高品質のめっき層を得ることが難しくなる。   Mg exhibits the effect | action which produces | generates a uniform corrosion product on the surface of a plating layer, and raises the corrosion resistance of a plated steel plate remarkably. The effect is manifested when the Mg content in the hot dipping bath is 0.05% or more. In the present invention, the average Mg concentration of the Zn—Al—Mg alloy layer 5 in the 2 mm region near the toe is 1.0. Therefore, it is advantageous that the Mg concentration in the plating layer 7 is also 1.0% or more. On the other hand, if the Mg content exceeds 10.0%, Mg oxide-based dross tends to occur, and it becomes difficult to obtain a high-quality plating layer.

溶融めっき浴中にTi、Bを含有させると、溶融めっき時における製造条件の自由度が拡大する等のメリットがある。このため、必要に応じてTi、Bの1種または2種を添加することができる。その添加量はTiの場合0.0005%以上、Bの場合0.0001%以上とすることがより効果的である。ただし、めっき層中のTiやBの含有量が過剰になると析出物の生成に起因しためっき層表面の外観不良を引き起こす要因となる。めっき浴にTiを添加する場合は0.10%以下の範囲、Bを添加する場合は0.05%以下の範囲とする。   When Ti and B are contained in the hot dipping bath, there are advantages such as an increase in the degree of freedom of manufacturing conditions during hot dipping. For this reason, 1 type or 2 types of Ti and B can be added as needed. It is more effective to add 0.0005% or more in the case of Ti and 0.0001% or more in the case of B. However, when the content of Ti or B in the plating layer becomes excessive, it causes a poor appearance of the plating layer surface due to the formation of precipitates. When Ti is added to the plating bath, the range is 0.10% or less, and when B is added, the range is 0.05% or less.

溶融めっき浴中にSiを含有させると、母材1とめっき層7の界面に生成するFe−Al合金層6の過剰な成長が抑制され、溶融Zn−Al−Mg系めっき鋼板の加工性を向上させる上で有利となる。したがって、必要に応じてSiを含有させることができる。その場合は、溶融めっき浴のSi含有量を0.005%以上とすることがより効果的である。ただし、過剰のSi含有は溶融めっき浴中のドロス量を増大させる要因となるので、めっき浴中のSi含有量は2.0%以下に制限される。   When Si is contained in the hot dip plating bath, excessive growth of the Fe—Al alloy layer 6 formed at the interface between the base material 1 and the plating layer 7 is suppressed, and the workability of the hot dip Zn—Al—Mg plated steel sheet is reduced. This is advantageous for improvement. Therefore, Si can be contained as necessary. In that case, it is more effective to set the Si content of the hot dipping bath to 0.005% or more. However, since excessive Si content increases the amount of dross in the hot dipping bath, the Si content in the plating bath is limited to 2.0% or less.

溶融めっき浴中には、鋼板を浸漬・通過させる関係上、一般にはFeの混入が避けられない。Zn−Al−Mg系めっき浴中のFe含有量は概ね2.0%程度まで許容される。   In general, it is unavoidable that Fe is mixed in the hot dipping bath because the steel sheet is immersed and passed. The Fe content in the Zn-Al-Mg plating bath is generally allowed to be up to about 2.0%.

溶融Zn−Al−Mg系めっき鋼板のめっき付着量(片面当たり)は20〜250g/m2とすることが好ましい。めっき付着量を片面当たり20g/m2以上とすることにより、アーク溶接時にビード止端部まで濡れ拡がるに足るZn−Al−Mg系溶融金属8(図3)の量を確保する溶接条件を設定しやすい。ただし、めっき付着量が250g/m2を超えると溶接時にブローホールが発生しやすくなる。ブローホールが発生すると溶接強度が低下する。 It is preferable that the coating amount (per one side) of the molten Zn—Al—Mg-based plated steel sheet is 20 to 250 g / m 2 . By setting the plating adhesion amount to 20 g / m 2 or more per side, a welding condition is set to ensure the amount of Zn—Al—Mg based molten metal 8 (FIG. 3) sufficient to wet and spread to the bead toe during arc welding. It's easy to do. However, if the plating adhesion amount exceeds 250 g / m 2 , blow holes are likely to occur during welding. When blow holes occur, the welding strength decreases.

〔めっき原板〕
自動車シャシ用の溶融Zn−Al−Mg系めっき鋼板としては高強度であり、耐溶融金属脆化割れ性に優れるものであることが特に好適な対象となる。そのような鋼板として、質量%で、C:0.05〜0.25%、Si:0.10〜1.50%、Mn:1.00〜2.50%、Al:0.010〜0.100%、Ti:0.010〜0.100%、B:0.0001〜0.0100%であり、必要に応じてさらにNb、Cr、Mo、Pの1種以上を合計1.00%以下の範囲で含有し、残部Feおよび不可避的不純物からなる鋼種をめっき原板に採用することが好ましい。各成分元素について簡単に説明する。
[Plating plate]
As a hot-dip Zn—Al—Mg-based plated steel sheet for automobile chassis, it is particularly suitable that it has high strength and excellent resistance to molten metal embrittlement cracking. As such a steel plate, in mass%, C: 0.05-0.25%, Si: 0.10-1.50%, Mn: 1.00-2.50%, Al: 0.010-0 .100%, Ti: 0.000 to 0.100%, B: 0.0001 to 0.0100%, and if necessary, one or more of Nb, Cr, Mo and P are further added to a total of 1.00%. It is preferable to use a steel type that is contained in the following range and includes the remaining Fe and inevitable impurities for the plating base plate. Each component element will be briefly described.

Cは、高強度化に必要な元素である。0.05%未満では590MPa以上の引張強度を得るのが難しくなり、0.25%を超えると延性が低下してプレス成形性が悪くなる。   C is an element necessary for increasing the strength. If it is less than 0.05%, it becomes difficult to obtain a tensile strength of 590 MPa or more. If it exceeds 0.25%, the ductility is lowered and the press formability is deteriorated.

Siは、延性を低下させることなく高強度化するのに有効な元素である。0.10%未満では強度向上効果が小さく、1.50%を超えると溶融めっきラインでの還元加熱時に鋼板表面にSiが濃化して酸化物となりめっき性を阻害する場合がある。   Si is an element effective for increasing the strength without reducing ductility. If it is less than 0.10%, the strength improving effect is small, and if it exceeds 1.50%, Si may be concentrated on the steel sheet surface during reduction heating in the hot dipping line to become an oxide, which may impair plating properties.

Mnは、Siと同様に高強度化に有効である。1.00%未満では強度向上効果が小さく、2.50%を超えると溶融めっきラインでの還元加熱時に鋼板表面にMnが濃化して酸化物となりめっき性を阻害しやすい。   Mn is effective for increasing the strength, similar to Si. If it is less than 1.00%, the effect of improving the strength is small, and if it exceeds 2.50%, Mn concentrates on the surface of the steel sheet during reduction heating in the hot dipping line and becomes an oxide, which tends to hinder plating properties.

Alは、製鋼時に脱酸剤として添加される。0.010%未満の含有量では脱酸効果が小さく、0.100%を超えるとSi、Mnと同様に還元加熱時に鋼板表面に濃化して酸化物となりめっき性を阻害する恐れがある。   Al is added as a deoxidizer during steelmaking. If the content is less than 0.010%, the deoxidation effect is small, and if it exceeds 0.100%, it may be concentrated on the surface of the steel sheet during reductive heating in the same manner as Si and Mn and become an oxide, which may impair the plating properties.

Tiは、炭化物の析出強化により強度向上に寄与する元素である。0.010%未満では強度向上効果が小さく、0.100%を超えると再結晶温度が著しく高くなる。   Ti is an element that contributes to strength improvement by precipitation strengthening of carbides. If it is less than 0.010%, the effect of improving the strength is small, and if it exceeds 0.100%, the recrystallization temperature becomes remarkably high.

Bは、アーク溶接時に熱影響部のオーステナイト粒界に偏析して、溶融したZn−Al−Mg系めっき層による溶融金属脆化割れを抑制する作用を呈する。0.0001%未満では溶融金属脆化割れ抑制効果が小さく、0.0100%を超えて添加しても効果が飽和するとともにコストアップとなる。   B segregates at the austenite grain boundary in the heat-affected zone during arc welding, and exhibits an effect of suppressing molten metal embrittlement cracking due to the molten Zn—Al—Mg-based plating layer. If it is less than 0.0001%, the effect of suppressing molten metal embrittlement cracking is small, and even if added over 0.0100%, the effect is saturated and the cost is increased.

Nb、Cr、Mo、Pは、Bと同様にアーク溶接時に熱影響部のオーステナイト粒界に偏析して溶融金属脆化割れを抑制する作用を呈する。このため必要に応じてこれらの元素の1種以上を含有する鋼種を採用すればよい。これらの元素の合計含有量が0.01%以上確保されていることがより効果的である。ただし、これらの合計含有量が1.0%を超えても効果が飽和するとともにコストアップとなる。個々の元素については、Nbは0.10%以下の範囲がより好ましく、0.01〜0.10%であることが一層効果的である。Crは0.70%以下の範囲がより好ましく、0.10〜0.70%であることが一層効果的である。Moは0.50%以下の範囲がより好ましく、0.10〜0.50%であることが一層効果的である。Pは0.50%以下の範囲がより好ましく、0.05〜0.50%であることが一層効果的である。   Nb, Cr, Mo, and P, like B, segregate at the austenite grain boundary in the heat-affected zone during arc welding and exhibit an effect of suppressing molten metal embrittlement cracking. For this reason, what is necessary is just to employ | adopt the steel type containing 1 or more types of these elements as needed. It is more effective that the total content of these elements is 0.01% or more. However, even if these total contents exceed 1.0%, the effect is saturated and the cost is increased. For individual elements, Nb is more preferably in the range of 0.10% or less, and more preferably in the range of 0.01 to 0.10%. Cr is more preferably in the range of 0.70% or less, and more preferably in the range of 0.10 to 0.70%. Mo is more preferably in the range of 0.50% or less, and more preferably in the range of 0.10 to 0.50%. P is more preferably in the range of 0.50% or less, and more preferably 0.05 to 0.50%.

〔めっき鋼板の板厚〕
自動車シャシ用途を考慮すると、上記の化学組成を有するめっき原板を使用した場合、板厚が1.0mm未満ではアーク溶接部の疲労強度が不足しやすい。一方、板厚が3.0mmを超えると溶接入熱Qを大きくする必要があり、スパッタが発生しやすくなる。板厚3.0mm以下であれば軽量化の観点からも従来の熱延鋼板材に対して有利となる。
[Thickness of plated steel sheet]
In consideration of automotive chassis applications, when a plating original plate having the above chemical composition is used, if the plate thickness is less than 1.0 mm, the fatigue strength of the arc welded portion tends to be insufficient. On the other hand, if the plate thickness exceeds 3.0 mm, it is necessary to increase the welding heat input Q, and sputtering is likely to occur. If it is 3.0 mm or less, it will become advantageous with respect to the conventional hot-rolled steel plate material also from a viewpoint of weight reduction.

〔アーク溶接〕
アーク溶接の手法は、本発明で規定した条件以外は特に限定されない。アーク溶接法ではシールドガスとして一般にAr、CO2またはAr+CO2の混合ガスが使用されるが、本発明ではシールドガスの種類、組成は特に限定されない。また、溶接ワイヤーも特に限定されず、軟鋼用のYGW12、Znめっき用のYGW14、590〜780MPa級高張力鋼用のYGW21等を用いればよい。
[Arc welding]
The method of arc welding is not particularly limited except for the conditions defined in the present invention. In the arc welding method, a mixed gas of Ar, CO 2 or Ar + CO 2 is generally used as a shielding gas, but in the present invention, the kind and composition of the shielding gas are not particularly limited. Also, the welding wire is not particularly limited, and YGW12 for mild steel, YGW14 for Zn plating, YGW21 for 590-780 MPa class high-tensile steel, or the like may be used.

表1に示す組成の板厚2mm、板幅1000mmの冷延鋼帯を溶融めっきラインに通板して表2に示すめっき条件で溶融Zn−Al−Mg系めっき鋼板を製造し、機械的性質と溶融金属脆化割れ性を調査した。   A cold-rolled steel strip having a thickness of 2 mm and a width of 1000 mm having the composition shown in Table 1 is passed through a hot dipping line to produce a hot-dip Zn-Al-Mg plated steel plate under the plating conditions shown in Table 2, and mechanical properties And the molten metal embrittlement cracking property was investigated.

Figure 2011208264
Figure 2011208264

Figure 2011208264
Figure 2011208264

〔機械的性質の試験方法〕
圧延方向と平行にJIS5号引張試験片を採取し、JIS Z2241に従い常温で引張試験を行い、0.2%耐力(YS)、引張強さ(TS)、全伸び(T.El)を測定した。
[Test method for mechanical properties]
A JIS No. 5 tensile test piece was taken in parallel with the rolling direction and subjected to a tensile test at room temperature in accordance with JIS Z2241, and 0.2% yield strength (YS), tensile strength (TS), and total elongation (T.El) were measured. .

〔耐溶融金属脆化割れ性の試験方法〕
図7に示すように、100mm×75mmの試験片14の中央部に直径20mm、長さ25mmの棒鋼のボス(突起)15を垂直に立て、アーク溶接した。溶接開始点からボス15の周囲を1周して、溶接開始点を過ぎた後もさらにビードを重ねて溶接を進め、溶接ビード16の重なり部分17ができたところで溶接を終了した。溶接中、試験片14は平板上に拘束された状態とした。この試験は実験的に溶接割れが生じやすい状況としたものである。溶接条件は以下のとおりである。
(アーク溶接条件)
・溶接電流:160A
・アーク電圧:20V
・溶接速度:0.4m/min
・溶接ワイヤー:YGW14
・シールドガス:Ar−20vol.%CO2、流量20L/min
[Test method for molten metal embrittlement crack resistance]
As shown in FIG. 7, a steel bar boss (protrusion) 15 having a diameter of 20 mm and a length of 25 mm was vertically set at the center of a 100 mm × 75 mm test piece 14 and arc-welded. One round of the circumference of the boss 15 was made from the welding start point, and after the welding start point was passed, the bead was further piled up and the welding proceeded. During welding, the test piece 14 was held on a flat plate. This test was conducted in a situation where welding cracks are likely to occur experimentally. The welding conditions are as follows.
(Arc welding conditions)
・ Welding current: 160A
・ Arc voltage: 20V
-Welding speed: 0.4 m / min
・ Welding wire: YGW14
Shield gas:. Ar-20vol% CO 2 , flow rate 20L / min

溶接後、ボス15の中心軸を通り、且つビード重なり部分17を通る切断面20について、ビード重なり部分17近傍の試験片14部分を光学顕微鏡で観察することにより、試験片14に観測される最も深い割れの深さ(最大割れ深さ)を測定した。この割れは「溶融金属脆化割れ」であると判断される。
これらの試験結果を表3に示す。
After welding, the cut surface 20 passing through the central axis of the boss 15 and passing through the bead overlap portion 17 is observed most in the test piece 14 by observing the test piece 14 near the bead overlap portion 17 with an optical microscope. The depth of the deep crack (maximum crack depth) was measured. This crack is judged to be a “molten metal embrittlement crack”.
These test results are shown in Table 3.

Figure 2011208264
Figure 2011208264

表3からわかるように、鋼A〜Lをめっき原板に用いた溶融Zn−Al−Mg系合金めっき鋼板は、張強さが590MPa以上であり、且つ優れた耐溶融金属脆化割れ性を呈する。鋼A〜Lは前述の化学組成を有するものである。したがって、特に耐溶融金属脆化割れ性を重視する場合は前述の化学組成を有するめっき原板を採用することが有利となる。   As can be seen from Table 3, the hot-dip Zn-Al-Mg alloy-plated steel sheet using steels A to L as the plating base plate has a tensile strength of 590 MPa or more and exhibits excellent molten metal embrittlement cracking resistance. Steels A to L have the aforementioned chemical composition. Therefore, when emphasizing the resistance to molten metal embrittlement cracking, it is advantageous to employ a plating base plate having the above-described chemical composition.

実施例1で用いた鋼A、C、E、F、H、I、K、Lの冷延鋼帯(板厚2mm、板幅1000mm)を溶融めっきラインに通板して、表4に示す種々のめっき条件で溶融Zn−Al−Mg系めっき鋼板を製造し、得られためっき鋼板から100mm×100mmのサンプルを採取し、同種のめっき鋼板サンプル2枚を図8に模式的に示すように重ねすみ肉アーク溶接にて接合した。溶接条件は表5に示す範囲で溶接電流とアーク電圧を変化させることにより種々の溶接入熱Qに調整した。得られた溶接継手サンプルの止端部近傍2mm領域におけるZn−Al−Mg系合金層5およびFe−Al系合金層6について、平均厚さ測定、元素分析を行った。また、溶接部のスパッタ発生状況、および溶接部の耐食性を調べた。   The cold-rolled steel strips (plate thickness 2 mm, plate width 1000 mm) of steels A, C, E, F, H, I, K, and L used in Example 1 were passed through a hot dipping line and shown in Table 4. As shown in FIG. 8, a hot-dip Zn—Al—Mg-based plated steel sheet is produced under various plating conditions, a 100 mm × 100 mm sample is taken from the obtained plated steel sheet, and two samples of the same kind of plated steel sheet are schematically shown in FIG. Joined by lap fillet arc welding. The welding conditions were adjusted to various welding heat inputs Q by changing the welding current and arc voltage within the range shown in Table 5. For the Zn—Al—Mg-based alloy layer 5 and the Fe—Al-based alloy layer 6 in the 2 mm region near the toe portion of the obtained welded joint sample, average thickness measurement and elemental analysis were performed. In addition, the spatter generation state of the welded part and the corrosion resistance of the welded part were examined.

Figure 2011208264
Figure 2011208264

Figure 2011208264
Figure 2011208264

〔止端部近傍2mm領域の各合金層の平均厚さ想定方法〕
溶接継手サンプルの溶接ビードに垂直な断面について、図5に模式的に示した断面に相当する部分をSEM観察し、ビード止端部3からの距離で0.1mm位置から1.9mm位置までほぼ等間隔で10視野の断面写真(倍率2000〜5000倍)を撮影し、各位置におけるZn−Al−Mg系合金層5およびFe−Al系合金層6の厚さを測定し、それらの平均値をそれぞれ止端部近傍2mm領域のZn−Al−Mg系合金層およびFe−Al系合金層の平均厚さとした。
[Method of assuming the average thickness of each alloy layer in the 2 mm area near the toe portion]
About the cross section perpendicular to the weld bead of the welded joint sample, a portion corresponding to the cross section schematically shown in FIG. 5 was observed with an SEM, and the distance from the bead toe 3 was approximately 0.1 mm to 1.9 mm. Cross-sectional photographs (magnification 2000 to 5000 times) of 10 fields are taken at equal intervals, the thicknesses of the Zn—Al—Mg alloy layer 5 and the Fe—Al alloy layer 6 at each position are measured, and the average value thereof is measured. Is the average thickness of the Zn—Al—Mg alloy layer and the Fe—Al alloy layer in the 2 mm region near the toe portion.

〔止端部近傍2mm領域の各合金層の元素分析方法〕
上記の厚さ測定(断面写真撮影)を行った各位置において、SEMに付設のエネルギー分散型蛍光X線分析装置を用いてZn−Al−Mg系合金層5中のAl濃度およびMg濃度、並びにFe−Al系合金層6中のFe濃度を測定し、各視野の平均値を止端部近傍2mm領域の上記各元素濃度とした。
[Elemental analysis method for each alloy layer in the 2 mm area near the toe]
At each position where the above thickness measurement (cross-section photography) was performed, using an energy dispersive X-ray fluorescence spectrometer attached to the SEM, the Al concentration and Mg concentration in the Zn—Al—Mg alloy layer 5, and The Fe concentration in the Fe—Al-based alloy layer 6 was measured, and the average value of each field of view was defined as the concentration of each element in the 2 mm region near the toe portion.

〔溶接部のスパッタ発生状況の調査方法〕
アーク溶接部の外観を目視観察して、スパッタの発生が認められないか軽微であるため製品として十分に良好な外観を有していると判断されるものを○(良好)、それ以外を×(不良)と判断した。
[Investigation method for spatter generation in welds]
The appearance of the arc welded part is visually observed, and the occurrence of spatter is not observed or is slight, so that it is judged as having a sufficiently good appearance as a product (good), otherwise x Judged (bad).

〔溶接部の耐食性試験方法〕
上記の溶接継手サンプルに表6に示す条件で表面調整とリン酸塩処理を施し、表7に示す条件でカチオン電着塗装を施した。カチオン電着塗装したサンプルに、振動による疲労をシミュレートするために溶接方向と垂直方向に応力50N/mm2、試験回数1×105回の試験条件で疲労試験を施した後、図9に示す条件の複合腐食試験(CCT)に供し、CCT250サイクル後の赤錆発生有無を調査した。溶接部に赤錆の発生が認められないものを○(良好)、それ以外を×(不良)と判定した。
結果を表8に示す。
[Method of testing corrosion resistance of welds]
The above welded joint sample was subjected to surface adjustment and phosphate treatment under the conditions shown in Table 6, and was subjected to cationic electrodeposition coating under the conditions shown in Table 7. A sample subjected to cationic electrodeposition coating was subjected to a fatigue test under the test conditions of a stress of 50 N / mm 2 in the direction perpendicular to the welding direction and a test number of 1 × 10 5 times in order to simulate fatigue due to vibration. It used for the composite corrosion test (CCT) of the conditions to show, and investigated the presence or absence of red rust generation | occurrence | production after CCT250 cycle. Those in which the occurrence of red rust was not observed in the welded portion were judged as ◯ (good), and the others were judged as x (bad).
The results are shown in Table 8.

Figure 2011208264
Figure 2011208264

Figure 2011208264
Figure 2011208264

Figure 2011208264
Figure 2011208264

表8に示すように、本発明に従う試験No.1〜15のものは溶接ビード止端部まで連続的にZn−Al−Mg系合金層で覆われており、スパッタの発生状況および溶接部耐食性は良好であった。   As shown in Table 8, test Nos. 1 to 15 according to the present invention are continuously covered with a Zn—Al—Mg alloy layer up to the weld bead toe, and the occurrence of spatter and the corrosion resistance of the weld Was good.

これに対し、比較例No.21、22は溶接ビード止端部まで連続的にZn−Al−Mg系合金層で覆われたが、止端部近傍2mm領域においてZn−Al−Mg系合金層5のAl濃度およびMg濃度が低く、また、Fe−Al系合金層6のFe濃度が高いために疲労試験で局部的にFe−Al系合金層6と母材1との界面で剥離して溶接部耐食性に劣った。No.23、25、27、29、31は溶接入熱Qが過小であったことにより溶接時に溶融しためっき層由来金属の濡れ拡がりが不十分となり、Zn−Al−Mg系合金層不存在部が生じ、その部分にFeスケール4が生成した。その結果、疲労試験でFeスケール4と母材1の界面で剥離して溶接部耐食性に劣った。No.24、26、28は溶接入熱Qが過大であったことによりスパッタが多く発生した。またFe−Al系合金層6のFe濃度が高くなり疲労試験で局部的にFe−Al系合金層6と母材1との界面で剥離して溶接部耐食性にも劣った。No.30、32は溶接入熱Qがかなり高いのでスパッタの発生が著しく増大し、溶接部で赤錆は発生しなかったもののスパッタが付着した部分を起点にして白錆が発生した。   On the other hand, Comparative Examples No. 21 and 22 were continuously covered with the Zn—Al—Mg alloy layer up to the weld bead toe, but the Zn—Al—Mg alloy layer in the 2 mm region near the toe. Since the Al concentration and Mg concentration of 5 are low, and the Fe concentration of the Fe—Al based alloy layer 6 is high, it peels locally at the interface between the Fe—Al based alloy layer 6 and the base material 1 in the fatigue test. It was inferior to the corrosion resistance of the weld. Nos. 23, 25, 27, 29, and 31 have insufficient welding heat input Q, so that wetting and spreading of the plating layer-derived metal melted at the time of welding becomes insufficient, and the Zn-Al-Mg alloy layer absent portion And Fe scale 4 was formed in that portion. As a result, in the fatigue test, it peeled off at the interface between the Fe scale 4 and the base material 1 and was inferior in the welded portion corrosion resistance. In Nos. 24, 26, and 28, a large amount of spatter was generated because the welding heat input Q was excessive. Further, the Fe concentration of the Fe—Al based alloy layer 6 was increased, and it was locally peeled at the interface between the Fe—Al based alloy layer 6 and the base material 1 in the fatigue test, resulting in poor corrosion resistance of the welded portion. In Nos. 30 and 32, since the welding heat input Q was considerably high, the occurrence of spatter was remarkably increased, and although no red rust was generated in the welded portion, white rust was generated starting from the portion where the spatter adhered.

1、1’ 母材
2 溶接ビード
3 止端部
4 Feスケール
5 Zn−Al−Mg系合金層
6 Fe−Al系合金層
7 めっき層
8 Zn−Al−Mg系溶融金属
9 めっき層蒸発領域
10 溶融凝固領域
11 めっき層未溶融領域
12 止端部近傍2mm領域
14 試験片
15 ボス
16 溶接ビード
17 ビード重なり部分
18 溶融Zn−Al−Mg系合金めっき鋼板
19 溶接ビード
20 切断面
DESCRIPTION OF SYMBOLS 1, 1 'Base material 2 Weld bead 3 Toe part 4 Fe scale 5 Zn-Al-Mg type alloy layer 6 Fe-Al type alloy layer 7 Plating layer 8 Zn-Al-Mg type molten metal 9 Plating layer evaporation area 10 Melt-solidified region 11 Plating layer unmelted region 12 Toe vicinity 2 mm region 14 Test piece 15 Boss 16 Weld bead 17 Bead overlap portion 18 Molten Zn-Al-Mg alloy-plated steel sheet 19 Weld bead 20 Cut surface

Claims (5)

板厚1.0〜3.0mmの溶融Zn−Al−Mg系合金めっき鋼板部材同士をアーク溶接で接合した接合部を持つ部材であって、
溶接前にめっき層を有していた鋼板表面は溶接ビード止端部まで連続的にZn−Al−Mg系合金層で覆われており、そのZn−Al−Mg系合金層と鋼素地の間にはFe−Al系合金層が存在し、
溶接ビード止端部からの距離が2mm以内の鋼板表層部において、Zn−Al−Mg系合金層は平均Al濃度:0.2〜22.0質量%、平均Mg濃度:1.0〜10.0質量%、且つFe−Al系合金層は平均Fe濃度:70.0質量%以下である自動車シャシ部材。
A member having a joined portion obtained by joining molten Zn—Al—Mg alloy-plated steel plate members having a plate thickness of 1.0 to 3.0 mm by arc welding,
The surface of the steel plate having a plating layer before welding is continuously covered with a Zn-Al-Mg alloy layer up to the weld bead toe, and between the Zn-Al-Mg alloy layer and the steel substrate. Has an Fe-Al alloy layer,
In the steel plate surface layer portion whose distance from the weld bead toe is within 2 mm, the Zn—Al—Mg-based alloy layer has an average Al concentration of 0.2 to 22.0 mass% and an average Mg concentration of 1.0 to 10. An automobile chassis member having 0 mass% and an Fe-Al alloy layer having an average Fe concentration of 70.0 mass% or less.
前記溶融Zn−Al−Mg系合金めっきの組成は、質量%で、Al:3.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.0%、残部Znおよび不可避的不純物からなるものである請求項1に記載の自動車シャシ部材。   The composition of the molten Zn—Al—Mg alloy plating is mass%, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, B The automobile chassis member according to claim 1, comprising: 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.0%, the balance Zn and unavoidable impurities. 前記溶融Zn−Al−Mg系合金めっき鋼板のめっき原板は、質量%で、C:0.05〜0.25%、Si:0.10〜1.50%、Mn:1.00〜2.50%、Al:0.010〜0.100%、Ti:0.010〜0.100%、B:0.0001〜0.0100%、残部Feおよび不可避的不純物からなるものである請求項1または2に記載の自動車シャシ部材。   The plating base plate of the hot-dip Zn—Al—Mg alloy-plated steel sheet is in mass%, C: 0.05 to 0.25%, Si: 0.10 to 1.50%, Mn: 1.02 to 2. 50%, Al: 0.010 to 0.100%, Ti: 0.010 to 0.100%, B: 0.0001 to 0.0100%, the balance Fe and unavoidable impurities. Or an automobile chassis member according to 2; めっき原板は、さらにNb、Cr、Mo、Pの1種以上を合計1.00%以下の範囲で含有する請求項3に記載の自動車シャシ部材。   The automobile chassis member according to claim 3, wherein the plating base plate further contains at least one of Nb, Cr, Mo, and P in a total range of 1.00% or less. 溶融Zn−Al−Mg系合金めっき鋼板部材同士をアーク溶接接合するに際し、片面当たりのめっき付着量が20〜250g/m2の溶融Zn−Al−Mg系合金めっき鋼板部材を使用し、下記(1)式で表される溶接入熱Q(J/cm)をめっき付着量に応じて下記(2)式の成立範囲にコントロールする請求項1〜4のいずれかに記載の自動車シャシ部材の製造法。
Q=(I×V)/v …(1)
13W+1140≦Q≦15W+8720 …(2)
ただし、I:溶接電流(A)、V:アーク電圧(V)、v:溶接速度(cm/sec)、W:片面当たりのめっき付着量(g/m2
When arc welding the molten Zn-Al-Mg alloy-plated steel sheet members, using a molten Zn-Al-Mg alloy-plated steel sheet member having a plating adhesion amount of 20 to 250 g / m 2 per side, The manufacture of an automobile chassis member according to any one of claims 1 to 4, wherein the welding heat input Q (J / cm) represented by the formula (1) is controlled within a range of the following formula (2) according to the amount of plating adhesion. Law.
Q = (I × V) / v (1)
13W + 1140 ≦ Q ≦ 15W + 8720 (2)
However, I: Welding current (A), V: Arc voltage (V), v: Welding speed (cm / sec), W: Plating adhesion amount per side (g / m 2 )
JP2010079669A 2010-03-30 2010-03-30 Automotive chassis member having excellent corrosion resistance and manufacturing method thereof Expired - Fee Related JP5700394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079669A JP5700394B2 (en) 2010-03-30 2010-03-30 Automotive chassis member having excellent corrosion resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079669A JP5700394B2 (en) 2010-03-30 2010-03-30 Automotive chassis member having excellent corrosion resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011208264A true JP2011208264A (en) 2011-10-20
JP5700394B2 JP5700394B2 (en) 2015-04-15

Family

ID=44939614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079669A Expired - Fee Related JP5700394B2 (en) 2010-03-30 2010-03-30 Automotive chassis member having excellent corrosion resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5700394B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198935A (en) * 2012-02-24 2013-10-03 Nisshin Steel Co Ltd Method for producing arc welded structural member
JP2014131809A (en) * 2013-01-04 2014-07-17 Nisshin Steel Co Ltd Method for manufacturing arc welding structural member
JP2014133259A (en) * 2013-01-11 2014-07-24 Nisshin Steel Co Ltd Manufacturing method of arc welding structural member
WO2015198627A1 (en) * 2014-06-27 2015-12-30 日新製鋼株式会社 METHOD FOR ARC WELDING OF HOT-DIP Zn-Al-Mg COATED STEEL SHEET, AND WELDED MEMBER
JP2018506644A (en) * 2014-12-24 2018-03-08 ポスコPosco Zinc alloy-plated steel material excellent in weldability and corrosion resistance of machined part and method for producing the same
CN113751840A (en) * 2021-09-02 2021-12-07 唐山钢铁集团有限责任公司 Method for improving quality of welding seam of gas metal arc welding of zinc-aluminum-magnesium plating plate
WO2023145824A1 (en) * 2022-01-31 2023-08-03 日本製鉄株式会社 Welded joint
WO2023145823A1 (en) * 2022-01-31 2023-08-03 日本製鉄株式会社 Welded joint

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005118797A (en) * 2003-10-15 2005-05-12 Nisshin Steel Co Ltd WELDING PROCESS FOR Zn-Al-Mg ALLOY-PLATED STEEL SHEET
JP2006035294A (en) * 2004-07-29 2006-02-09 Nippon Steel Corp Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion
JP2006218518A (en) * 2005-02-10 2006-08-24 Nisshin Steel Co Ltd Method for producing tailored blank material
JP2007313535A (en) * 2006-05-25 2007-12-06 Nisshin Steel Co Ltd METHOD FOR WELDING STEEL SHEET PLATED WITH Zn-Al-Mg-BASED ALLOY
JP2009113115A (en) * 2007-10-05 2009-05-28 Nisshin Steel Co Ltd METHOD FOR WELDING Zn-Al-Mg-BASED ALLOY PLATED STEEL SHEET
JP2011206842A (en) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005118797A (en) * 2003-10-15 2005-05-12 Nisshin Steel Co Ltd WELDING PROCESS FOR Zn-Al-Mg ALLOY-PLATED STEEL SHEET
JP2006035294A (en) * 2004-07-29 2006-02-09 Nippon Steel Corp Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion
JP2006218518A (en) * 2005-02-10 2006-08-24 Nisshin Steel Co Ltd Method for producing tailored blank material
JP2007313535A (en) * 2006-05-25 2007-12-06 Nisshin Steel Co Ltd METHOD FOR WELDING STEEL SHEET PLATED WITH Zn-Al-Mg-BASED ALLOY
JP2009113115A (en) * 2007-10-05 2009-05-28 Nisshin Steel Co Ltd METHOD FOR WELDING Zn-Al-Mg-BASED ALLOY PLATED STEEL SHEET
JP2011206842A (en) * 2010-03-30 2011-10-20 Nisshin Steel Co Ltd Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198935A (en) * 2012-02-24 2013-10-03 Nisshin Steel Co Ltd Method for producing arc welded structural member
RU2635581C2 (en) * 2012-06-14 2017-11-14 Ниссин Стил Ко., Лтд. Method for production of structural element welded by arc welding
AU2013275476B2 (en) * 2012-06-14 2017-07-06 Nisshin Steel Co., Ltd. Method for Producing Arc-Welded Structural Member
WO2013187197A1 (en) * 2012-06-14 2013-12-19 日新製鋼株式会社 Process for producing arc-welded structural member
CN104334308A (en) * 2012-06-14 2015-02-04 日新制钢株式会社 Process for producing arc-welded structural member
JP2014131809A (en) * 2013-01-04 2014-07-17 Nisshin Steel Co Ltd Method for manufacturing arc welding structural member
JP2014133259A (en) * 2013-01-11 2014-07-24 Nisshin Steel Co Ltd Manufacturing method of arc welding structural member
WO2015198627A1 (en) * 2014-06-27 2015-12-30 日新製鋼株式会社 METHOD FOR ARC WELDING OF HOT-DIP Zn-Al-Mg COATED STEEL SHEET, AND WELDED MEMBER
JPWO2015198627A1 (en) * 2014-06-27 2017-04-20 日新製鋼株式会社 Arc welding method for molten Zn-Al-Mg-based plated steel sheet, method for producing welded member, and arc welded member
JP2020169388A (en) * 2014-12-24 2020-10-15 ポスコPosco Zinc alloy plated steel material excellent in weldability and processed part corrosion resistance, and its manufacturing method
US10584407B2 (en) 2014-12-24 2020-03-10 Posco Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance and method of manufacturing same
JP2018506644A (en) * 2014-12-24 2018-03-08 ポスコPosco Zinc alloy-plated steel material excellent in weldability and corrosion resistance of machined part and method for producing the same
US11248287B2 (en) 2014-12-24 2022-02-15 Posco Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance
CN113751840A (en) * 2021-09-02 2021-12-07 唐山钢铁集团有限责任公司 Method for improving quality of welding seam of gas metal arc welding of zinc-aluminum-magnesium plating plate
WO2023145824A1 (en) * 2022-01-31 2023-08-03 日本製鉄株式会社 Welded joint
WO2023145823A1 (en) * 2022-01-31 2023-08-03 日本製鉄株式会社 Welded joint
JP7328608B1 (en) 2022-01-31 2023-08-17 日本製鉄株式会社 weld joint
JP7328607B1 (en) 2022-01-31 2023-08-17 日本製鉄株式会社 weld joint

Also Published As

Publication number Publication date
JP5700394B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5700394B2 (en) Automotive chassis member having excellent corrosion resistance and manufacturing method thereof
TWI437122B (en) Hot dip al-zn coated steel sheet and method for producing the same
US9592772B2 (en) Zn—Al—Mg based alloy hot-dip plated steel sheet, and method for producing the same
KR102014062B1 (en) Hot-dip galvanized steel plate with excellent coating adhesion and process for producing same
CN105121681B (en) High-strength plated steel sheet for welded structural member and method for manufacturing said sheet
KR102037648B1 (en) Hot-pressed member and manufacturing method therefor
BR112019021226A2 (en) method for making galvanized and annealed steel sheet, galvanized and annealed steel sheet, spot welded joint and use of galvanized and annealed steel sheet
JP7124990B1 (en) Welded joints and auto parts
EP3900866A1 (en) Spot welding member
JP2010275633A (en) Zn-Mg-BASED PLATED STEEL SHEET
JP2011206842A (en) Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same
JP5593810B2 (en) Zn-Mg plated steel sheet and method for producing the same
JP5660796B2 (en) Manufacturing method of hot dip galvanized high strength steel sheet
JP2020125510A (en) Aluminum plating steel sheet for butt welding, butt welding member, and hot-press molded article
JP7329692B2 (en) Welded structure manufacturing method and welded structure manufactured by this method
JP5283402B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP4173990B2 (en) Zinc-based alloy-plated steel for welding and its ERW steel pipe
JP4452204B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP2015003340A (en) Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same
JP5059455B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP4640995B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
WO2022230071A1 (en) Steel welded member
JP4610272B2 (en) Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking
JP5495921B2 (en) Manufacturing method of hot dip galvanized high strength steel sheet
JP3646685B2 (en) Hot-dip galvanized steel sheet excellent in spot weldability and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R150 Certificate of patent or registration of utility model

Ref document number: 5700394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees