JP4173990B2 - Zinc-based alloy-plated steel for welding and its ERW steel pipe - Google Patents

Zinc-based alloy-plated steel for welding and its ERW steel pipe Download PDF

Info

Publication number
JP4173990B2
JP4173990B2 JP2002382256A JP2002382256A JP4173990B2 JP 4173990 B2 JP4173990 B2 JP 4173990B2 JP 2002382256 A JP2002382256 A JP 2002382256A JP 2002382256 A JP2002382256 A JP 2002382256A JP 4173990 B2 JP4173990 B2 JP 4173990B2
Authority
JP
Japan
Prior art keywords
based alloy
zinc
welding
steel
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002382256A
Other languages
Japanese (ja)
Other versions
JP2004211158A (en
Inventor
真二 児玉
秀樹 濱谷
伸雄 水橋
明博 宮坂
一実 西村
卓也 原
暁 田中
順一 小林
謙一 浅井
学 高橋
康秀 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002382256A priority Critical patent/JP4173990B2/en
Publication of JP2004211158A publication Critical patent/JP2004211158A/en
Application granted granted Critical
Publication of JP4173990B2 publication Critical patent/JP4173990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主に、建築、自動車などの溶接構造部材に使用される引張強さ400MPa級の亜鉛系合金めっき鋼材およびその電縫鋼管に関し、特に、このような亜鉛系合金めっき鋼材を種々の方法で溶接する際、さらには、亜鉛系合金めっき鋼材を用いて造管後、電縫溶接する際に、溶接熱影響部における液体金属脆化割れ(以下、亜鉛めっき割れということもある)の発生を抑制できる溶接用亜鉛系合金めっき鋼材およびその電縫鋼管に関する。
【0002】
【従来の技術】
Znめっき鋼材は、建築や自動車の構造部材の耐食性向上の観点から幅広く用いられ、最近ではZnめっき中にAl、MgまたはSiを添加したZn−Al−Mg系合金めっき、Zn−Al−Mg−Si系合金めっきなどの亜鉛系合金めっきを鋼材表面に施した耐食性に優れた亜鉛系合金めっき鋼材が特許文献1および特許文献2で知られている。これら亜鉛系合金めっき鋼材は、種々の溶接法により溶接して溶接鋼構造物として使用される場合が多い。
【0003】
また、これら亜鉛系合金めっき鋼材を用いて管状に成形後、突合せ端部を高周波誘導溶接および高周波抵抗溶接(以下、電縫溶接という。)等により溶接した鋼管や角管も多く使用されている。
【0004】
しかし、これら亜鉛系合金めっき鋼材を溶接する際に、鋼材の溶接熱影響部(以下、溶接HAZ部という。)では、溶接入熱により溶融された亜鉛系合金めっきが鋼材表面に溶融状態のまま残留しやすく、かつ、鋼材組織は結晶粒が成長、粗大化した組織となりやすい。このような状態で鋼材に引張応力が働いた場合には、鋼材の溶接HAZ部組織によっては、溶融めっきが鋼材表面の結晶粒界に侵入して粒界が脆化した領域、つまり脆化域が形成され、割れが発生する場合がある。特に被溶接部材が著しく拘束された状態での溶接時に溶接HAZ部の脆化域で割れが発生することがある。
【0005】
一方、従来から、鋼材を溶接して得られた溶接構造物を高温溶融亜鉛合金めっき浴中でめっき処理する際にも、溶接構造物の溶接部、特に溶接止端部(溶接ビード(溶接金属)と鋼材との境界)近傍に残留した引張応力(以下、残留引張応力という)やめっき浴中で発生する熱歪みなどが作用し同様な割れが発生することが知られていた。
【0006】
これらのように、高温で或る種の液体金属が或る種の固体金属表面に接触し、かつ固体金属表面にある大きさの引張応力が作用する場合に、固体金属表面に脆化域が形成され、割れが発生する現象を液体金属脆化割れ:LME(Liquid Metal Embrittlement)と称され、例えば、非特許文献1で知られている。
【0007】
従来、溶接継ぎ手を高温溶融めっき浴中でめっきする際に発生する液体金属脆化割れ(LME)を抑制するための手法としては、鋼材の成分規定による組織制御が試みられており、LME炭素当量式がJIS(例えば、鋼材用はJIS G3219−1995、また、鋼管用はJIS G 3474−1995)で規格化されている。
【0008】
また、特許文献3では、Zn−Al合金めっきが施される鋼材に対して鋼材の各成分を限定するとともに、特にBに対しては0.0002%以下の厳しい制約を設けている。
【0009】
しかし、上記LME炭素当量式は、溶接継ぎ手を高温溶融めっき浴でめっき処理する際の液体金属脆化割れ(LME)を対象とし、その割れが発生する温度域はめっき浴の温度:450℃(めっき金属の融点)程度であり、亜鉛系合金めっき鋼材を溶接する際のピーク温度:1500℃に比べて非常に低い温度条件で発生する液体金属脆化割れ(LME)を対象とする。これに対して、亜鉛系合金めっき鋼材を溶接する際に発生する液体金属脆化割れ(LME)は、1500℃程度の鋼材が溶融する高温域から450℃程度のめっき金属の融点までの広い温度域で発生するため、従来のLME炭素当量式を溶接用の亜鉛系合金めっき鋼材に適用しても、溶接時の液体金属脆化割れ(LME)を充分に抑制することは困難であった。
【0010】
また、従来、プレス成形性が要求される極低炭素のIF(Interstitial Free)鋼材のろう付けにおいて、はんだ脆性による上記液体金属脆化割れの発生が知られており、その対策として、例えば、特許文献4では、Cが0.0005〜0.03%と低くいIF鋼に対して、Tiを0.01〜0.2%添加してNを固定するとともに、Bを0.0002〜0.003%添加することにより溶融金属の粒界への進入を防ぎ、割れ発生を抑制している。
【0011】
この方法は、成形性が要求される低強度で極低炭素のIF鋼を対象とし、また、その割れが発生する温度域がはんだ付けのピーク温度:900〜1000℃(はんだの融点に相当)程度である場合を前提とするものである。一方、IF鋼より強度が高く(引張強度:350MPa以上程度)、高炭素(C:0.01〜0.3%程度)である高張力鋼を母材とした亜鉛系合金めっき鋼材を、ピーク温度が1500℃(鋼材の融点に相当)程度の条件で溶接する場合には、900℃より低い温度域でも液体金属脆化割れは発生するため、上記の方法を高張力鋼の溶接に適用しても液体金属脆化割れを充分に抑制することは困難である。
【0012】
近年、特に、自動車分野などでは、亜鉛系合金めっき鋼板として、自動車の軽量化及び燃費向上、ひいては地球環境を配慮して、従来の成形性を重視した低炭IF鋼板に替えて、より引張強さが高く、Cや合金元素などの含有量が高い高強度鋼を母材とし、かつその母材表面に従来のZnめっきよりも耐食性が高いZn−Al系、Zn−Al−Mg系、Zn−Al−Mg−Si系などの亜鉛系合金めっきを施した鋼板が適用されるようになり、それに伴って従来は問題にならなかった鋼材溶接時の液体金属脆化割れの発生が顕在化するようになってきた。
【0013】
また、従来の自動車、建築分野においては、普通鋼材を溶接後、その溶接構造物を高温亜鉛めっき浴中でめっき処理する、後付けめっき処理が主流であったが、近年、工程省略、製造コスト削減の観点からめっき鋼材またはその成形部材を溶接する、プレめっき鋼材の溶接施工が適用されるようになり、溶接時に発生するめっき割れを抑制するための技術に対する産業上の意義が大きくなってきた。
【0014】
また、耐食性に優れた鋼管を製造する方法として、生産性向上および製造コスト低減の観点から、従来の電縫鋼管製品を後付けめっき処理する方法に替えて、近年、亜鉛系合金めっき鋼板を用いて管状に成形後、突合せ端部を電縫溶接する方法も実用化されている。
【0015】
しかし、造管後の電縫溶接時には、大きなスプリングバック力(加工反力)、成形歪または熱収縮力が作用するため、Zn−Al−Mg系合金めっき、Zn−Al−Mg−Si系合金めっきなどの亜鉛系合金めっきの成分系の種類によっては、900℃より低い温度域で溶接熱影響部表面に残留した溶融亜鉛系合金めっきが鋼材表面から粒界に浸入して液体金属脆化割れが発生する。
【0016】
従来、このような亜鉛系合金めっき鋼板の電縫溶接時の割れ抑制技術として、例えば、特許文献5では、Zn−Al−Mg系合金めっき鋼板を造管してその突合せ端部を溶接する際にアップセット量を制御することで、溶接止端部の形状をなだらかにして引張応力の集中を低減し、割れを解消する技術が開示されている。しかし、このアップセット量制御による引張応力集中の低減が可能となる条件は一部の鋼管サイズや特定鋼種に限定され、幅広い条件で安定した効果を発揮することは困難である。
【0017】
【特許文献1】
特開平10−226865号公報
【特許文献2】
特開2000−64061号公報
【特許文献3】
特開平05−156406号公報
【特許文献4】
特開昭60−92453号公報
【特許文献5】
特開2002−115793号公報
【非特許文献1】
Journal of Institute of Metals (1914) p.108. (A.K.Huntington)
【0018】
【発明が解決しようとする課題】
本発明は、上述したような従来技術の問題点を踏まえ、例えば、引張強さ400MPa級のめっき鋼材、特に、Zn−Al系合金めっき、Zn−Al−Mg系合金めっき、Zn−Al−Mg−Si系合金めっきなどを施した亜鉛合金系めっき鋼材を種々の方法で溶接する際、さらには、亜鉛系合金めっき鋼材を用いて造管後、電縫溶接する際に、溶接熱影響部における液体金属脆化割れの発生を抑制でき、溶接部品質に優れた引張強さ400MPa級の溶接用亜鉛系合金めっき鋼材およびその電縫鋼管を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨は次の通りである。
(1)亜鉛系合金めっき層を鋼材表面に設けた亜鉛系合金めっき鋼材において、前記鋼材が、質量%で、
C:0.01〜0.3%
Si:0.01〜2.0%
Mn:0.5〜3.0%
S:0.015%以下
Al:0.001〜0.5%
B: 0.0003〜0.004%
N:0.0005〜0.006%
を含有し、残部がFeおよび不可避的不純物からなることを特徴とする引張強さ400MPa級の溶接用亜鉛系合金めっき鋼材。(2)前記鋼材が、さらに、質量%で、Ti:0.001〜0.5%を含有し、かつ下記(1)式で与えられる条件を満足することを特徴とする上記(1)に記載の溶接用亜鉛系合金めっき鋼材。
【0020】
0.5≧[%Ti]+[%Al]≧0.001 … (1)
但し、[%X]は、合金元素Xの質量%で表した含有量を示す。
(3)前記鋼材におけるS含有量が、質量%で、0.003%以下であることを特徴とする上記(1)または(2)記載の溶接用亜鉛系合金めっき鋼材。
(4)前記鋼材が、さらに、質量%で、P:0.02〜0.05%を含有することを特徴とする上記(1)から(3)のうちの何れかに記載の溶接用亜鉛系合金めっき鋼材。
(5)前記亜鉛系合金めっきが、Zn−Al系合金めっき、Zn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきのうちの何れか1種であることを特徴とする上記(1)から(4)のうちの何れかに記載の溶接用亜鉛系合金めっき鋼材。
(6)前記Zn−Al系合金めっきが、質量%で、Al:0.18〜5%を含有し、さらに、Mg:0.01〜0.5%、La:0.001〜0.5%、および、Ce:0.001〜0.5%のうちのいずれか1種または2種以上を含有し、残部がZnおよび不可避的不純物であることを特徴とする上記(5)に記載の溶接用亜鉛系合金めっき鋼材。
(7)前記Zn−Al−Mg系合金めっきが、質量%で、Al:2〜19%、Mg:0.5〜10%を含有し、残部がZnおよび不可避的不純物であることを特徴とする上記(5)に記載の溶接用亜鉛系合金めっき鋼材。
(8)前記Zn−Al−Mg−Si系合金めっきが、質量%で、Al:2〜19%、Mg:1〜10%、Si:0.01〜2%を含有し、残部がZnおよび不可避的不純物であることを特徴とする上記(5)に記載の溶接用亜鉛系合金めっき鋼材。
(9)質量%で、
C:0.01〜0.15%
Si:0.01〜2.0%
Mn:0.5〜3.0%
S:0.015%以下
Al:0.001〜0.5%
B: 0.0006〜0.0015%
N:0.0005〜0.006%
を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に亜鉛系合金めっき層を設けた引張強さ400MPa級の亜鉛系合金めっき鋼板を管状に成形後、その突合せ端部を電縫溶接したことを特徴とする亜鉛系合金めっき電縫鋼管。
(10)前記鋼板が、さらに、質量%で、Ti:0.001〜0.5%を含有し、かつ下記(1)式で与えられる条件を満足することを特徴とする上記(9)に記載の亜鉛系合金めっき電縫鋼管。
【0021】
0.5≧[%Ti]+[%Al]≧0.001 … (1)
但し、[%X]は、合金元素Xの質量%で表した含有量を示す。
(11)前記鋼板におけるS含有量が、質量%で、0.003%以下であることを特徴とする上記(9)または(10)記載の亜鉛系合金めっき電縫鋼管。
(12)前記鋼板が、さらに、質量%で、P:0.02〜0.05%を含有することを特徴とする上記(9)から(11)のうちの何れかに記載の亜鉛系合金めっき電縫鋼管。
(13)前記亜鉛系合金めっきが、Zn−Al系合金めっき、Zn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきのうちの何れか1種であることを特徴とする上記(9)から(12)のうちの何れかに記載の亜鉛系合金めっき電縫鋼管。
(14)前記Zn−Al系合金めっきが、質量%で、Al:0.18〜5%を含有し、さらに、Mg:0.01〜0.5%、La:0.001〜0.5%、および、Ce:0.001〜0.5%のうちのいずれか1種または2種以上を含有し、残部がZnおよび不可避的不純物であることを特徴とする上記(13)に記載の亜鉛系合金めっき電縫鋼管。
(15)前記Zn−Al−Mg系合金めっきが、質量%で、Al:2〜19%、Mg:0.5〜10%を含有し、残部がZnおよび不可避的不純物であることを特徴とする上記(13)記載の亜鉛系合金めっき電縫鋼管。
(16)前記Zn−Al−Mg−Si系合金めっきが、質量%で、Al:2〜19%、Mg:1〜10%、Si:0.01〜2%を含有し、残部がZnおよび不可避的不純物であることを特徴とする上記(13)に記載の亜鉛系合金めっき電縫鋼管。
【0022】
【発明の実施の形態】
一般に、鋼材を溶接した後の溶接部は、溶融した溶接金属が凝固した後、室温までの冷却過程で熱収縮するため、溶接部に外力が加わっていない状態でも溶接部の溶接金属および母材熱影響部には熱収縮に伴う引張応力が発生する。Zn−Al系、Zn−Al−Mg系、Zn−Al−Mg−Si系などの特定成分系の亜鉛系合金めっきを施した鋼材を溶接する場合に発生する液体金属脆化割れは、溶接後に蒸発せずに溶接熱影響部表面に残存した溶融亜鉛系合金めっきが、溶接熱影響部の熱収縮に伴って発生した引張応力を引き金として、結晶粒界に浸入して起きるものと考えられる。
【0023】
溶接後の熱収縮に伴って発生する引張応力は、温度に応じて変化する溶接部周囲の鋼材の高温強度により変化し、例えば、溶接部が900℃程度の高温状態で生じる引張応力は比較的小さいのに対し、亜鉛系合金めっきの融点に相当する400〜500℃程度の低温域では溶接部周囲の高温強度の回復並びに熱収縮量の増加により大きな引張応力が働く。また、鋼材の高温強度は通常その冷間強度に依存するため、被溶接鋼材の引張強さが高くなるほど熱収縮に伴う引張応力は大きくなる。また、その熱収縮に伴う引張応力の大きさは、溶接時の溶接部の拘束状態によっても変化し、溶接変形抑制のために治具などで溶接部近傍を機械的に拘束して溶接する場合や、電縫鋼管製造プロセスにおける管状成形後の端部突合せ溶接などの加工反力が大きい継ぎ手形状で溶接する場合などでは、熱収縮に伴う引張応力は増大する。
【0024】
従来の極低炭素のIF鋼材のろう付けの場合の割れ発生は、はんだの融点である約900℃以上の高温域でのみで発生じていたのに対して、亜鉛系合金めっき鋼材の溶接では、900℃より低い温度からめっき融点に相当する400℃程度の低温域までの広い温度範囲で割れが発生し、その割れは溶接部の熱収縮に伴う大きな引張応力が作用して発生する点で従来のIF鋼材のろう付けの脆化割れと異なる。
【0025】
本発明は、亜鉛系合金めっき鋼材の溶接施工において、900℃以上の高温域だけでなく、それより低い温度から400℃程度の低温域までの範囲で多く発生するめっき割れを抑制するために、溶接時に溶接熱影響部(以下、これを溶接HAZ部と称する)の引張応力に対する耐力、つまり粒界強度を向上させることを技術思想とするものである。
【0026】
本発明は、この技術思想を基に、母材の引張強さが350MPa程度以上、800MPa程度以下程度と、IF鋼よりも高い強度の鋼材で、その表面に亜鉛系合金めっきが施された亜鉛系合金めっき鋼材を対象とし、その溶接時の液体金属脆化割れ防止策を詳細に検討した結果、母材成分としてCを質量%で0.01〜0.3%含有する鋼材にBを0.0003〜0.004%添加することにより溶接部の靭性を確保しつつ、溶接時の液体金属脆化割れを防止できるという新たな知見を得てこれをもとに発明がなされたものである。
【0027】
以下に本発明を詳細に説明する。
【0028】
先ず、溶接過程において大きな引張応力の発生する比較的低温域での割れの防止を検証した結果、Cによる焼き入れ性の向上が有効であるという知見を得た。理由は明確ではないが、おそらく溶融状態の亜鉛系合金めっきが残存する鋼材の溶接HAZ部の強度の増化により引張応力に伴う塑性歪が低減されたことが有効に作用したと考えられる。
【0029】
しかしながら、溶接変形を防止する等の目的で、予め治具により拘束して溶接する場合には、熱収縮による引張応力がより大きくなるため、このような拘束状態での極めて厳しい溶接条件での溶接では、依然として割れが発生するという問題が残っている。特に、耐食性に優れた鋼管を製造するプロセスにおいて、亜鉛系合金めっき鋼板を管状に成形加工後、突合せ端部を電縫溶接する場合には、溶接部に熱収縮力と合わせて、成形加工に起因して大きなスプリングバック力(加工反力)が作用するため、溶融亜鉛系合金めっき割れが生じやすくなる。
【0030】
このような厳しい溶接条件では、溶接HAZ部の引張応力が比較的穏やかと考えられる高温域においても所定の引張応力が発生し液体金属脆化割れにつながると思われるため、C含有量の制御だけでは不十分である。
【0031】
そこで、所定C量を含有する鋼材におけるBの影響を検討した。
【0032】
従来から、はんだ脆化割れ防止技術として、極低炭素のIF鋼材のろう付けの際にB添加により約900℃以上のオーステナイト温度域でBの粒界偏析・濃化により低融点溶融金属の粒界侵入の抑制効果があることが知られている。本発明は、はんだ付けに比べて溶接ピーク温度が1500℃(鋼材融点に相当)以上と非常に高い溶接条件での溶接割れを対象とするので、高温域での脆化割れの抑制に対してはこのようなBの粒界偏析・濃化による溶融状態の亜鉛系合金めっきの粒界への侵入抑制効果が同様に得られるものと考えられる。このBの粒界偏析は、オーステナイト-フェライト二相域以上の温度で起こり、粒界の空孔・欠陥にBが浸入することにより界面エネルギーが低下し、溶融しためっき成分の粒界侵入・拡散の抵抗となるが、温度低下に応じてBの粒界偏析は起き難くなる。
【0033】
本発明者らの検討の結果、上記Bの作用効果に加えて、新たな知見として、Bはオーステナイト−フェライト二相域より低い温度域においても、溶接HAZ部のように冷却速度が比較的速い領域では、Bは旧オーステナイト粒界の強化元素として働くため、熱収縮によって溶接HAZ部に発生する引張応力に対する粒界強度の向上、ひいては低温度域での溶融めっき割れ防止に有効であることがわかった。
【0034】
C量およびB量を変化させた鋼材の表面に亜鉛系合金めっきが施された亜鉛系合金めっき鋼材をアーク溶接したときの実験結果として、図1に溶接部の割れ深さ状況、図2に溶接部の靭性の劣化率を示す。図1における割れ深さは、母材板厚に対する割れ深さの比で表現し、図2における靭性の劣化率は、B無添加鋼材(B量0%)のHAZ靭性値に対する各々のB量添加鋼材のHAZ靭性値の比で表現した。また、亜鉛系合金めっき鋼材には板厚6mmで11%Al+3%Mg+0.2%Si+Znめっき層が施されたものを用いた。
【0035】
溶接部の割れの評価方法としては、図4(a)、(b)に示すように厚手鋼材1の内側に評価対象となるめっき鋼材2を嵌め込み溶接3し、さらにめっき鋼材2上に丸鋼4を円周溶接5することによって円周溶接5の溶接ビードのクレータ部(終端部)に発生する割れの深さを測定し、評価した。厚手鋼材1にめっき鋼材2を溶接することにより、めっき鋼材2を円周溶接5する際の拘束条件を厳しくした。
【0036】
なお、溶接部の割れ深さは溶接部断面を観察し、鋼材表面から割れの伸展している板厚方向の長さを測定することによって求めた。
【0037】
図1から、鋼材中のC量に係わらずB量の増加により溶接部の割れは低下する傾向にあるものの、低C材(C:0.005%)に比べて、中C材(C:0.01%)、高C材(C:0.15%)では、B量が0.0003%と比較的少ない量でも溶接部の割れが急激に低下され、B量が0.0005%以上で溶接部の割れ発生はほぼなくなることがわかる。一方、低C材(C:0.005%)または中C材(C:0.01%)の場合でも、B量を0.0020%以上または0.0040%以上と多量に添加すると溶接部の割れは比較的小さくなるが、図2に示すように溶接部の靭性値が低下し、目標とする靱性(80%以上)が得られないことがわかる。これは、高C材に比べて低C材、中C材では、結晶粒が粗大化しやすいためB量の増加に伴ってBの粒界偏析による靭性値の低下が大きくなったと考えられる。図1及び図2からC:0.01%以上の中C材、高C材を母材とする亜鉛系合金めっき鋼材をアーク溶接する際に、溶接部の目標とする靭性を確保しつつ溶融亜鉛系合金めっき割れを防止するための鋼材中のB含有量は0.0003〜0.004%とする必要がある。
【0038】
さらに、C量およびB量を変化させた鋼材の表面に亜鉛系合金めっきが施された亜鉛系合金めっき鋼板を用いて、これを管状に成形加工後、突合せ端部を電縫溶接して鋼管を製造したときの実験結果として、図3に溶接部の割れ深さおよび靭性の劣化率を示す。なお、溶接部の割れ深さは溶接部断面を観察し、鋼材表面から割れの伸展している板厚方向の長さを測定することによって求めた。溶接部の割れ深さおよび靭性の劣化率は、上述の図1および2と同じ方法で求めた。また、亜鉛系合金めっき鋼板は板厚6mmで11%Al+3%Mg+0.3%Si+Znめっき層が施されたものを用いた。
【0039】
図3から、鋼管の電縫溶接時の溶融亜鉛系合金めっき割れについては、C量が0.15%以下の中C材、低C材においてB添加量の増加によりその割れは効果的に低下しB添加量が0.0006%以上で溶接部の割れ発生はほぼなくなるが、C量が0.35%程度の高C材では、B添加による割れ低減効果はほとんど得られない。一方、C量が0.15%以下の中C材、低C材においてB添加量を増加するとともに溶接部の靭性値は低下する。目標とする靱性(80%以上)を確保しつつ鋼管の電縫溶接時の溶融亜鉛系合金めっき割れを防止するための鋼材中のB含有量は0.0006〜0.0015%とする必要がある。
【0040】
以上の知見踏まえて、本発明の溶接用亜鉛系合金めっき鋼材の母材成分およびその含有量の範囲を以下の通りとする。なお、以下の%は、特に説明がない限り質量%を示すものとする。
【0041】
C:本発明では、Cは350MPa以上の引っ張り強さを確保するために必要であると共に、上述のように溶接時の熱収縮により生じる引張応力に対して、溶接HAZ部の焼入れ向上すなわち応力集中部の塑性歪の低減による割れ防止のために必須な元素である。上記図1及び図2からB添加との組み合わせにより溶接部の割れ発生を充分防止でき、かつ良好な靱性を確保できるC含有量として、その下限を0.01%とした。なお、Cの過剰の添加は溶接HAZ部を硬化させ曲げ性能低下や遅れ割れの発生につながるのみならず、Fe−C−B析出物を形成しやすくなりBのめっき脆化抑制効果を低減してしまうためC含有量の上限を0.3%とした。
【0042】
また、図3に示すように鋼管の電縫溶接時、または溶接部周囲を高い拘束力で拘束した状態で溶接する時には、溶接HAZ部の割れが発生しやすくなるためにC含有量の上限を0.15%とするのが好ましい。
【0043】
Si:Siは母材の脱酸のために必要であり、その含有量の下限値を0.01%とした。また、Siは固溶強化作用があり下記のMnとともに母材強度の調整に用いる。なお、過剰のSi添加は熱間圧延時の酸化スケールの増加、延性低下につながるためその含有量の上限は2.0%とした。
【0044】
また、熱延鋼板にめっきする場合には問題ないが、冷延鋼板にめっきする場合にはめっき付着性が劣化するためSi量は0.1%以下にすることがより好ましい。
【0045】
Mn:Mnは鋼材の熱間脆性の原因となる鋼中の不可避的不純物のSをMnSとして固定して無害化するためその含有量の下限値を0.1%とするところ、実施例1の表1中「記号4」のMn量、および、実施例2の表2中「記号8〜11」のMn量に基づいて、0.5%(好ましい下限値)とした。一方、Mnの過剰の添加は溶接HAZ部を硬化させ曲げ性能低下や遅れ割れの発生につながるためその含有量の上限を3.0%とした。
【0046】
S:Sは鋼材の熱間加工性を低下させる元素であるから少ないほど好ましく、上限値を0.015%とした。
【0047】
また、Sは、溶接時のめっき脆化割れ抑制の観点からは、低S化することにより脆化抑制効果が認められるため、その含有量の上限を0.003%とするのが好ましい。
【0048】
Al:Alは鋼の脱酸元素であるとともに、鋼中のNを固定する作用を有するために、Bが窒化物として析出するのを防ぎ溶融亜鉛系合金めっきの液体金属脆化割れを抑制する効果もある。これらの効果を得るために0.001%以上添加する必要がある。一方、過剰にAlを添加すると粗大な非金属介在物を生成して鋼材の靭性等の性能を低下させるので上限値は0.5%とした。
【0049】
B:Bは上述のように溶接時のオーステナイト域またはオーステナイト−フェライト二相域以上の温度で、粒界に偏析・濃化または粒界の空孔・欠陥に浸入して界面エネルギーを低下して溶融状態の亜鉛系合金めっきの粒界への浸入・拡散を抑制する作用効果がある。また、溶接部の冷却過程では、Bは焼入れ性向上元素であり、ベーナイトあるはマルテンサイト組織の形成を促進し、組織の微細化および、熱収縮による引張応力に対して特に溶接HAZ部の粒界強化により応力、塑性歪の低減効果も得られる。図1から所定C量の下で溶接部の割れ発生を充分防止できるB含有量として、その下限を0.0003%とし、一方、上記図2から溶接部の靭性劣化抑制のためB含有量の上限を0.0040%とする。
【0050】
また、図3に示すように鋼管の電縫溶接時、または溶接部周囲を高い拘束力で拘束した状態で溶接する時には、溶接HAZ部の割れが発生しやすくなるためにB含有量の下限を0.0006%とし、溶接部の靭性劣化抑制のためB含有量の上限を0.0015%とするのが好ましい。
【0051】
N:Nは鋼材の強度を上昇させる一方で、多大なNの添加は鋼材の靭性を低下させるとともに、BをBNなどの窒化物として析出させ、Bのめっき脆化抑制効果も損ねてしまう。そこで、上限値を0.006%とした。Nは少ないほど好ましいが0.0005%以下にすることはコストの増加を招くため下限値を0.0005%とした。
【0052】
本発明では、上記成分に加えて以下の理由でさらに以下の成分添加量を規定する。
【0053】
Ti:Tiは、鋼中のNを窒化物として固定し、BがBNなどの窒化物として析出するのを防ぐ作用があるため、溶融亜鉛系合金めっきの液体金属脆化割れをさらに抑制するためには、0.001%以上添加することが好ましい。一方、Tiは0.5%を超えて添加しても割れ抑制効果が飽和し、いたずらに合金添加コストが上昇するだけであるのでその含有量の上限値を0.5%とした。
【0054】
また、Tiの含有量は、Tiと同様にNを固定する作用を有するAlの含有量との合計量が0.001%以上、0.5%以下となるように調整することが好ましい。
【0055】
P:Pは、高温割れ等の一般に溶接性向上の観点からは低減化することが望ましいが、溶接時のめっき脆化割れに対してはPの粒界偏析による割れ低減効果が認められるため、0.02%以上添加することが好ましい。一方、過度の添加は、高温割れを発生させるため、その含有量の上限値を0.05%とするのが好ましい。
【0056】
また、本発明において、上記成分を含有する鋼材の表面に施される亜鉛系合金めっきとしては、特許文献1に記載されているようなZn−Al−Mg系、特許文献2に記載されているようなZn−Al−Mg−Si系、或いはZn−Al系の亜鉛系合金めっきをいう。因みに、Zn−Al系合金めっきでは、Al:0.18〜5%を含有し、さらに、Mg:0.01〜0.5%、La:0.001〜0.5%、および、Ce:0.001〜0.5%のうちのいずれか1種または2種以上を含有し、残部がZnからなり、Zn−Al−Mg系合金めっきでは、Al:2〜19%、Mg:0.5〜10%、残部Znからなるめっきからなり、Zn−Al−Mg−Si系合金めっきでは、Al:2〜19%、Mg:0.5〜10%、Si:0.01〜2%、残部Znからなるめっきからなる。本発明は、これらの亜鉛系合金めっきのうちの何れか1種のめっきが施された亜鉛系合金めっき鋼材を溶接して溶接構造物とする際に上述した顕著な効果を発揮する。
【0057】
また、本発明における亜鉛系合金めっき電縫鋼管は、これらの亜鉛系合金めっき鋼板を用い、この鋼板を管状に成形加工後、その突合せ端部を高周波誘導溶接または高周波抵抗溶接などの電縫溶接を行うことにより製造した電縫鋼管である。
【0058】
本発明の亜鉛系合金めっき電縫鋼管は、亜鉛系合金めっき鋼板を電縫溶接して製造した溶接部割れのない品質に優れた鋼管であり、従来の電縫鋼管製品を後付けめっき処理する方法によって製造した亜鉛系合金めっき電縫鋼管に比べて、溶接部の品質を良好に維持しつつ、生産性の向上および製造コストの低減が可能となる。
【0059】
なお、上記の本発明の実施形態の説明では、溶接方法をアーク溶接、または、鋼管の電縫溶接に限って説明したが、これらの溶接方法に限定するものではない。例えば、レーザ溶接、スポット溶接、プロジェクション溶接でもアーク溶接と同様の熱サイクルを受け、溶接部近傍には引張応力が働くため、溶接部の液体金属脆化割れが生じる可能性があり、本発明の適用により同様に溶接時のめっき割れ防止効果が得られる。
【0060】
【実施例】
[実施例1]
表1に示す成分を含有する母材鋼材に、目付量片面90g/m2のMg:3%、Al:11%、Si:0.3%、残部Znからなる亜鉛系合金めっきを施した引張強さ:400MPa級の6mm厚の亜鉛系合金めっき鋼材をアーク溶接し前記評価方法と同様に溶接部の割れおよび靱性の評価を行った。なお、上記Zn−Al−Mg−Si合金めっきは従来の単なるZnめっきに比較して極めて優れた耐食性を示すことが知られている。
【0061】
溶接はパルスMAGアーク溶接で溶接電流200A、溶接電圧23V、溶接速度30cm/minとし、溶接ワイヤにはYGW−12を使用した。なお、溶接部の割れの検査は、図4(a)、(b)に示すように円周溶接5の溶接ビードで発生しやすい溶接終端部において断面観察し割れ深さ(表1は母材板厚に対する割れ深さの比で示した)を求めた。また、靭性の劣化率はB無添加(B量0%)の場合の溶接HAZ部の靭性値に対する各B量を添加した場合の溶接HAZ部の靭性値の比で評価した。なお、割れ深さ率および靭性劣化率は、各々5%以下、80%以上を良好と判断した。
【0062】
表1に母材鋼材中の主要な成分と割れおよび靱性の劣化率の結果を示す。記号1〜10は本発明例である。記号1〜10の発明例においてC量が0.03と比較的少ない場合(記号1)は僅かに割れが生じたが、実用上無視できる程度であり、その他は割れが皆無であった。また、いずれの発明例も溶接HAZ靭性の大幅な低下は見られなかった。
【0063】
一方、記号11〜14は本発明の鋼材成分範囲から外れた比較例である。
【0064】
記号11および12はB量が本発明で規定する範囲より少ないため液体金属脆化割れが生じた。
【0065】
記号13はC量が本発明で規定する範囲より少ないために溶接HAZ靭性の低下が激しかった。
【0066】
記号14は本発明で規定する範囲に比べBが多いため、発生した割れは極めて小さかったが、溶接HAZ部の靭性値の低下が激しかった。
【0067】
以上の実施例では溶接方法としてアーク溶接を用いたが、同様にレーザ溶接、スポット溶接、プロジェクション溶接を用いた試験においても、溶接部の液体金属脆化割れは抑制でき、かつ溶接HAZ部の靭性は良好であった。
【0068】
【表1】

Figure 0004173990
【0069】
[実施例2]
表2に示す成分を含有する母材鋼板に、目付量片面90g/m2のMg:3%、Al:11%、Si:0.3%、残部Znからなる亜鉛系合金めっきを施した引張強さ:400MPa級の6mm厚の亜鉛系合金めっき鋼板を用いて、これを管状に成形後、その突合せ端部を溶接速度:30m/min、高周波パワー:450kW、アプセット量:3mmの条件で電縫溶接し、外径355mmの電縫鋼管を製造した。電縫鋼管の溶接HAZ部の割れ長さ(板厚方向の割れの深さ)は断面観察により計測し、母材板厚に対する割れ深さの比で評価した。また、室温でのシャルピー試験によって鋼板の溶接HAZ部の靭性を計り、靭性の劣化率はB無添加(B量0%)の場合の溶接HAZ部の靭性値に対する各B量を添加した場合の溶接HAZ部の靭性値の比で評価した。なお、割れ深さ率および靭性劣化率は、各々5%以下、80%以上を良好と判断した。
【0070】
表2に母材鋼材中の主要な成分と割れおよび靱性の劣化率の結果を示す。記号1〜11は本発明例である。記号1〜11の発明例において溶接部の割れは実用上無視できる程度か、または皆無であった。また、いずれの発明例も溶接HAZ靭性の大幅な低下は見られなかった。
【0071】
一方、記号12〜24は本発明の鋼材成分範囲から外れた比較例である。
【0072】
記号12から20はB量が本発明で規定する範囲より少ないため液体金属脆化割れが生じた。
【0073】
記号21および22は本発明で規定する範囲に比べBが多いため、割れは皆無であったが、溶接HAZ部の靭性値の低下が激しかった。
【0074】
記号23および24はC量およびB量が本発明で規定する範囲より多いために割れの程度大きくかつ溶接HAZ靭性の低下が激しかった。
【0075】
【表2】
Figure 0004173990
【0076】
【発明の効果】
以上述べたように、本発明は、建築、自動車などの溶接構造部材として使用される亜鉛系合金めっき鋼材を種々の方法で溶接する際、さらには、亜鉛系合金めっき鋼材を用いて造管後、電縫溶接する際に、溶接熱影響部における液体金属脆化割れを抑制でき、溶接部品質に優れた亜鉛系合金めっき鋼材およびその電縫鋼管を提供することが可能となる。
【図面の簡単な説明】
【図1】CおよびB添加量とアーク溶接による溶接部の割れ深さの度合いを示す図。
【図2】CおよびB添加量とアーク溶接による溶接HAZ部の靱性劣化の度合いを示す図。
【図3】鋼管の電縫溶接における溶接部の割れ深さおよび溶接HAZ部の靭性劣化の度合いを示す図。
【図4】アーク溶接における液体金属脆化割れの評価方法を示す図。
【符号の説明】
1…厚手鋼板
2…めっき鋼板
3…嵌め込み溶接
4…丸鋼
5…円周溶接[0001]
BACKGROUND OF THE INVENTION
  The present invention is mainly used for welded structural members such as buildings and automobiles.Tensile strength of 400 MPa classRegarding zinc-based alloy-plated steel and its electric-welded steel pipe, in particular, when welding such zinc-based alloy-plated steel by various methods, further, after making pipes using zinc-based alloy-plated steel, electric resistance welding is performed. In particular, the present invention relates to a zinc-based alloy-plated steel material for welding capable of suppressing the occurrence of liquid metal embrittlement cracking (hereinafter sometimes referred to as galvanizing cracking) in a weld heat-affected zone, and an ERW steel pipe thereof.
[0002]
[Prior art]
Zn-plated steel materials are widely used from the viewpoint of improving the corrosion resistance of structural members of buildings and automobiles. Recently, Zn-Al-Mg-based alloy plating in which Al, Mg or Si is added during Zn plating, Zn-Al-Mg-- Patent Document 1 and Patent Document 2 disclose zinc-based alloy-plated steel materials having excellent corrosion resistance obtained by applying zinc-based alloy plating such as Si-based alloy plating to the steel material surface. These zinc-based alloy plated steel materials are often used as welded steel structures after being welded by various welding methods.
[0003]
In addition, steel pipes and square tubes are often used in which these galvanized alloy plated steel materials are formed into a tubular shape and then the butt ends are welded by high-frequency induction welding or high-frequency resistance welding (hereinafter referred to as electric resistance welding). .
[0004]
  However, when welding these zinc-based alloy-plated steel materials, the zinc-based alloy plating melted by the welding heat input remains in a molten state on the steel material surface in the heat affected zone of the steel material (hereinafter referred to as welded HAZ portion). It tends to remain, and the steel structure tends to be a structure in which crystal grains grow and become coarse. In this stateTensile stressIf this occurs, depending on the welded HAZ structure of the steel material, when the hot-dip plating penetrates into the crystal grain boundaries on the steel material surface and the grain boundaries become brittle, that is, an embrittled zone is formed and cracking occurs. There is. In particular, cracks may occur in the embrittled region of the welded HAZ portion during welding with the member to be welded being significantly constrained.
[0005]
On the other hand, conventionally, when a welded structure obtained by welding steel materials is plated in a high-temperature hot-dip zinc alloy plating bath, the welded portion of the welded structure, particularly the weld toe (weld bead (welded metal) ) And the steel material)) It was known that similar cracking occurs due to the residual tensile stress (hereinafter referred to as residual tensile stress) and thermal strain generated in the plating bath.
[0006]
As described above, when a certain liquid metal comes into contact with a certain solid metal surface at a high temperature and a certain amount of tensile stress acts on the solid metal surface, there is an embrittlement region on the solid metal surface. The phenomenon of formation and cracking is called liquid metal embrittlement cracking: LME (Liquid Metal Embrittlement), and is known, for example, in Non-Patent Document 1.
[0007]
Conventionally, as a method for suppressing liquid metal embrittlement cracking (LME) that occurs when plating a welded joint in a high-temperature hot-dipping bath, structural control based on the steel component definition has been attempted. The expression is standardized by JIS (for example, JIS G3219-1995 for steel materials and JIS G 3474-1995 for steel pipes).
[0008]
Moreover, in patent document 3, while limiting each component of steel materials with respect to the steel materials in which Zn-Al alloy plating is given, especially severe restrictions of 0.0002% or less are provided with respect to B.
[0009]
  However, the above LME carbon equivalent formula targets liquid metal embrittlement cracking (LME) when the welding joint is plated with a high temperature hot dip plating bath, and the temperature range where the crack occurs is the temperature of the plating bath: 450 ° C. ( The melting point of the plated metal), and when welding zinc-based alloy plated steelpeakTemperature: It targets liquid metal embrittlement cracking (LME) that occurs at very low temperature conditions compared to 1500 ° C. On the other hand, liquid metal embrittlement cracking (LME) that occurs when welding zinc-based alloy-plated steel materials is a wide temperature from the high temperature range where steel materials of about 1500 ° C. melt to the melting point of plated metals of about 450 ° C. Therefore, even if the conventional LME carbon equivalent formula is applied to a zinc-based alloy-plated steel material for welding, it has been difficult to sufficiently suppress liquid metal embrittlement cracking (LME) during welding.
[0010]
Conventionally, in the brazing of extremely low carbon IF (Interstitial Free) steel, which requires press formability, the occurrence of the above-mentioned liquid metal embrittlement crack due to solder brittleness is known. In Reference 4, 0.01 to 0.2% of Ti is added to the IF steel having a low C of 0.0005 to 0.03% to fix N, and B is 0.0002 to 0.03%. Addition of 003% prevents the molten metal from entering the grain boundaries and suppresses the generation of cracks.
[0011]
  This method is intended for low-strength, ultra-low carbon IF steels that require formability, and the temperature range where cracks occur is soldering.peakTemperature: It is assumed that the temperature is about 900 to 1000 ° C. (corresponding to the melting point of solder). On the other hand, a zinc-based alloy-plated steel material having a higher strength than IF steel (tensile strength: about 350 MPa or more) and high carbon steel (C: about 0.01 to 0.3%) as a base material,peakWhen welding is performed at a temperature of about 1500 ° C. (corresponding to the melting point of steel), liquid metal embrittlement cracking occurs even in a temperature range lower than 900 ° C. Therefore, the above method is applied to welding of high strength steel. However, it is difficult to sufficiently suppress the liquid metal embrittlement cracking.
[0012]
  In recent years, especially in the automotive field, as a zinc-based alloy-plated steel sheet, in consideration of the reduction in weight and fuel consumption of automobiles, and in consideration of the global environment, instead of conventional low-carbon IF steel sheets that emphasized formability,Tensile strengthZn-Al, Zn-Al-Mg, Zn-, which is high-strength steel with a high content of C and alloy elements and has higher corrosion resistance than the conventional Zn plating on the surface of the base material. Steel plates plated with zinc-based alloy plating such as Al-Mg-Si have come to be applied, and along with that, the occurrence of liquid metal embrittlement cracks during steel welding that was not a problem in the past becomes apparent It has become.
[0013]
Also, in the conventional automobile and construction fields, after welding ordinary steel materials, plating the welded structure in a high-temperature galvanizing bath was the mainstream, but in recent years the process has been omitted and manufacturing costs have been reduced. From the point of view, welding of pre-plated steel, which welds a plated steel or a molded member thereof, has been applied, and the industrial significance of technology for suppressing plating cracks that occur during welding has increased.
[0014]
In addition, as a method of manufacturing steel pipes with excellent corrosion resistance, from the viewpoint of improving productivity and reducing manufacturing costs, instead of using a conventional post-plating method for ERW steel pipe products, zinc-based alloy-plated steel sheets have recently been used. A method of electro-welding the butt end after forming into a tubular shape has also been put into practical use.
[0015]
However, during spring welding after pipe making, a large springback force (working reaction force), forming strain or heat shrinkage force acts, so Zn-Al-Mg alloy plating, Zn-Al-Mg-Si alloy Depending on the type of component system of zinc alloy plating such as plating, the molten zinc alloy plating remaining on the surface of the heat affected zone at temperatures below 900 ° C enters the grain boundary from the surface of the steel material and causes liquid metal embrittlement cracking. Will occur.
[0016]
  Conventionally, as a crack suppression technique at the time of electric-welding welding of such a zinc-based alloy-plated steel sheet, for example, in Patent Document 5, when a Zn-Al-Mg-based alloy-plated steel sheet is piped and its butt ends are welded By controlling the amount of upset, the shape of the weld toe becomes gentle.Tensile stressA technique for reducing the concentration of cracks and eliminating cracks is disclosed. However, with this upset amount controlTensile stressConditions that enable concentration reduction are limited to some steel pipe sizes and specific steel types, and it is difficult to exert stable effects over a wide range of conditions.
[0017]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-226865
[Patent Document 2]
JP 2000-64061 A
[Patent Document 3]
JP 05-156406 A
[Patent Document 4]
JP 60-92453 A
[Patent Document 5]
JP 2002-115793 A
[Non-Patent Document 1]
Journal of Institute of Metals (1914) p.108. (A.K.Huntington)
[0018]
[Problems to be solved by the invention]
  The present invention is based on the problems of the prior art as described above, for example,Tensile strength of 400 MPa classWhen welding plated steel materials, in particular zinc alloy plated steel materials with Zn-Al-Mg alloy plating, Zn-Al-Mg-Si alloy plating, etc. by various methods, Can suppress the occurrence of liquid metal embrittlement cracking in the heat affected zone when welding by electro-sewing after pipe making using zinc-based alloy plated steel, and has excellent weld qualityTensile strength of 400 MPa classAn object is to provide a zinc-based alloy-plated steel material for welding and an ERW steel pipe thereof.
[0019]
[Means for Solving the Problems]
  The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) In the zinc-based alloy-plated steel material in which the zinc-based alloy plating layer is provided on the surface of the steel material, the steel material is in mass%,
C: 0.01 to 0.3%
Si: 0.01 to 2.0%
Mn:0.5~ 3.0%
S: 0.015% or less
Al: 0.001 to 0.5%
B:0.0003-0.004%
N: 0.0005 to 0.006%
And the balance consists of Fe and inevitable impuritiesTensile strength of 400 MPa classZinc-based alloy plated steel for welding. (2) In the above (1), the steel material further contains, by mass%, Ti: 0.001 to 0.5% and satisfies the condition given by the following formula (1): Zinc-based alloy-plated steel for welding as described.
[0020]
    0.5 ≧ [% Ti] + [% Al] ≧ 0.001 (1)
  However, [% X] indicates the content expressed by mass% of the alloy element X.
(3) The zinc content alloy-plated steel material for welding according to the above (1) or (2), wherein the S content in the steel material is 0.003% by mass or less.
(4) The welding zinc as set forth in any one of (1) to (3), wherein the steel material further contains P: 0.02 to 0.05% by mass. Alloy-plated steel.
(5) The zinc alloy plating is any one of Zn—Al alloy plating, Zn—Al—Mg alloy plating, and Zn—Al—Mg—Si alloy plating. The zinc-based alloy-plated steel material for welding according to any one of (1) to (4) above.
(6) The said Zn-Al type alloy plating contains Al: 0.18-5% by the mass%, Furthermore, Mg: 0.01-0.5%, La: 0.001-0.5 % And Ce: 0.001 to 0.5% of any one or two or more, the balance being Zn and unavoidable impurities as described in (5) above Zinc-based alloy plated steel for welding.
(7) The Zn—Al—Mg-based alloy plating contains, in mass%, Al: 2 to 19%, Mg: 0.5 to 10%, and the balance being Zn and inevitable impurities. The zinc-based alloy plated steel material for welding as described in (5) above.
(8) The Zn—Al—Mg—Si based alloy plating contains, in mass%, Al: 2 to 19%, Mg: 1 to 10%, Si: 0.01 to 2%, with the balance being Zn and The zinc-based alloy-plated steel material for welding as described in (5) above, which is an inevitable impurity.
(9) In mass%,
C: 0.01 to 0.15%
Si: 0.01 to 2.0%
Mn:0.5~ 3.0%
S: 0.015% or less
Al: 0.001 to 0.5%
B:0.0006-0.0015%
N: 0.0005 to 0.006%
A zinc-based alloy plating layer is provided on the surface of a steel plate containing the balance of Fe and inevitable impurities.Tensile strength of 400 MPa classA zinc-based alloy-plated electric-welded steel pipe, characterized in that a zinc-based alloy-plated steel sheet is formed into a tubular shape, and the butt end portion thereof is electro-welded.
(10) In the above (9), the steel sheet further contains, by mass%, Ti: 0.001 to 0.5%, and satisfies the condition given by the following formula (1): Zinc-based alloy plated ERW steel pipe.
[0021]
0.5 ≧ [% Ti] + [% Al] ≧ 0.001 (1)
However, [% X] indicates the content expressed by mass% of the alloy element X.
(11) The zinc-based alloy-plated electric-welded steel pipe according to (9) or (10) above, wherein the S content in the steel sheet is 0.003% or less by mass%.
(12) The zinc-based alloy according to any one of (9) to (11) above, wherein the steel sheet further contains P: 0.02 to 0.05% by mass. Plating ERW steel pipe.
(13) The zinc alloy plating is any one of Zn—Al alloy plating, Zn—Al—Mg alloy plating, and Zn—Al—Mg—Si alloy plating. The zinc alloy-plated ERW steel pipe according to any one of (9) to (12) above.
(14) The Zn—Al-based alloy plating contains, by mass%, Al: 0.18 to 5%, Mg: 0.01 to 0.5%, La: 0.001 to 0.5. % And Ce: 0.001 to 0.5% of any one or two or more types, and the balance is Zn and inevitable impurities as described in (13) above Zinc alloy plated ERW steel pipe.
(15) The Zn—Al—Mg-based alloy plating contains, by mass%, Al: 2 to 19%, Mg: 0.5 to 10%, and the balance being Zn and inevitable impurities. The zinc-based alloy plated ERW steel pipe according to (13) above.
(16) The Zn—Al—Mg—Si based alloy plating contains, in mass%, Al: 2 to 19%, Mg: 1 to 10%, Si: 0.01 to 2%, with the balance being Zn and The zinc-based alloy-plated ERW steel pipe according to (13) above, which is an inevitable impurity.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
  In general, the welded part after welding the steel material heat shrinks in the cooling process to room temperature after the molten weld metal solidifies, so the weld metal and base metal of the welded part are not affected by any external force applied to the welded part. Heat-affected zone is accompanied by heat shrinkageTensile stressWill occur. Liquid metal embrittlement cracks that occur when welding steel materials plated with zinc-based alloy plating of specific components such as Zn-Al, Zn-Al-Mg, and Zn-Al-Mg-Si Hot-dip zinc-based alloy plating that remained on the surface of the weld heat affected zone without evaporating occurred with the heat shrinkage of the weld heat affected zoneTensile stressThis is considered to occur by entering the crystal grain boundary with
[0023]
  Occurs with thermal shrinkage after weldingTensile stressVaries depending on the high-temperature strength of the steel around the weld, which changes according to the temperature. For example, the tensile stress generated in the weld at a high temperature of about 900 ° C. is relatively small, whereas the melting point of zinc-based alloy plating In the corresponding low temperature range of about 400 to 500 ° C., it is large due to the recovery of the high temperature strength around the weld and the increase in the amount of heat shrinkage.Tensile stressWork. In addition, the high temperature strength of steel usually depends on its cold strength.Tensile strengthThe higher the value, the greater the heat shrinkageTensile stressWill grow. Also accompanying the heat shrinkageTensile stressThe size of the weld also changes depending on the restraint state of the welded part during welding. When welding with the welded part being mechanically restrained by a jig or the like to suppress welding deformation, When welding with a joint shape that has a large processing reaction force such as end butt welding after molding, it is accompanied by thermal shrinkage.Tensile stressWill increase.
[0024]
  In the case of brazing of conventional ultra-low carbon IF steel, cracking occurred only in the high temperature range of about 900 ° C or higher, which is the melting point of solder, whereas in welding of zinc-based alloy plated steel , Cracks occur in a wide temperature range from a temperature lower than 900 ° C. to a low temperature range of about 400 ° C. corresponding to the melting point of plating, and the cracks are large due to thermal contraction of the weld zone.Tensile stressThis is different from the embrittlement cracking of brazing of conventional IF steel materials in that it is generated by the action of.
[0025]
  In the welding construction of the zinc-based alloy plated steel material, in order to suppress plating cracks that frequently occur not only in a high temperature range of 900 ° C. or higher but also in a range from a lower temperature to a low temperature range of about 400 ° C., Of welding heat-affected zone during welding (hereinafter referred to as welded HAZ zone)Tensile stressThe technical idea is to improve the proof stress, that is, the grain boundary strength.
[0026]
  The present invention is based on this technical idea.Tensile strengthIs about 350MPa or more and about 800MPa or less, steel material with higher strength than IF steel, zinc-based alloy plated steel material with zinc-based alloy plating on its surface, liquid metal embrittlement cracking at the time of welding As a result of examining the prevention measures in detail, the toughness of the welded portion is ensured by adding 0.0003 to 0.004% B to a steel material containing 0.01 to 0.3% by mass C as a base material component. However, the inventors have obtained a new knowledge that liquid metal embrittlement cracking during welding can be prevented, and the present invention has been made based on this.
[0027]
The present invention is described in detail below.
[0028]
First, as a result of verifying the prevention of cracking in a relatively low temperature region where a large tensile stress is generated in the welding process, it was found that the improvement of the hardenability by C is effective. Although the reason is not clear, it is considered that the plastic strain accompanying the tensile stress was effectively reduced by increasing the strength of the welded HAZ portion of the steel material in which the molten zinc-based alloy plating remained.
[0029]
  However, in the case of welding restrained with a jig in advance for the purpose of preventing welding deformation, etc.,Tensile stressTherefore, there remains a problem that cracking still occurs in welding under extremely severe welding conditions in such a restrained state. In particular, in the process of manufacturing a steel pipe with excellent corrosion resistance, after forming a zinc-based alloy-plated steel sheet into a tubular shape and then subjecting the butt end to electro-welding, the welded portion is combined with the heat shrinkage force to form the steel. As a result, a large springback force (working reaction force) acts, so that hot dip zinc alloy plating cracks are likely to occur.
[0030]
  Under such severe welding conditions, even in a high temperature range where the tensile stress of the welded HAZ portion is considered to be relatively mild, a predetermined value is required.Tensile stressIs considered to lead to liquid metal embrittlement cracking, so it is not sufficient to control the C content alone.
[0031]
Then, the influence of B in the steel material containing predetermined C amount was examined.
[0032]
Conventionally, as a technique for preventing solder embrittlement cracking, low melting point molten metal grains are segregated and concentrated by grain boundary segregation / concentration of B in the austenite temperature range of about 900 ° C. or higher by addition of B when brazing ultra-low carbon IF steel materials. It is known that there is an effect of suppressing the intrusion of the field. Since the present invention is directed to weld cracking under welding conditions where the welding peak temperature is 1500 ° C. (corresponding to the melting point of the steel material) or higher compared to soldering, it is possible to suppress embrittlement cracking at high temperatures. It is considered that the effect of suppressing the penetration of the zinc-based alloy plating in the molten state into the grain boundaries by the grain boundary segregation / concentration of B is obtained similarly. This grain boundary segregation of B occurs at a temperature higher than the austenite-ferrite two-phase region, and B enters the vacancies / defects of the grain boundary to lower the interfacial energy, so that the molten plating component penetrates and diffuses into the grain boundary. The grain boundary segregation of B becomes difficult to occur as the temperature decreases.
[0033]
  As a result of the study by the present inventors, in addition to the effect of B described above, as a new finding, B has a relatively high cooling rate as in the welded HAZ part even in a temperature range lower than the austenite-ferrite two-phase region. In the region, B acts as a strengthening element of the prior austenite grain boundary, and is generated in the welded HAZ portion by heat shrinkage.Tensile stressIt has been found that it is effective in improving the grain boundary strength against hot dip, and thus preventing hot-dip cracking at low temperatures.
[0034]
Fig. 1 shows the crack depth of the weld and Fig. 2 shows the experimental results when arc welding was performed on a zinc-based alloy-plated steel material with zinc-based alloy plating applied to the surface of the steel material with varying amounts of C and B. Indicates the rate of deterioration of the toughness of the weld. The crack depth in FIG. 1 is expressed by the ratio of the crack depth to the base metal plate thickness, and the toughness deterioration rate in FIG. 2 is the respective B amount relative to the HAZ toughness value of the B-free steel material (B amount 0%). It was expressed as a ratio of HAZ toughness values of the added steel materials. Further, a zinc-based alloy plated steel material having a plate thickness of 6 mm and an 11% Al + 3% Mg + 0.2% Si + Zn plating layer applied thereto was used.
[0035]
As shown in FIGS. 4 (a) and 4 (b), as a method for evaluating cracks in the welded portion, a plated steel material 2 to be evaluated is fitted into the thick steel material 1 and welded 3, and further round steel is applied on the plated steel material 2. The depth of the crack which generate | occur | produces in the crater part (terminal part) of the weld bead of circumferential welding 5 was measured and evaluated by carrying out circumferential welding 5 of 4. By welding the plated steel material 2 to the thick steel material 1, the restraint conditions when the plated steel material 2 was circumferentially welded 5 were tightened.
[0036]
In addition, the crack depth of the welded portion was obtained by observing a cross section of the welded portion and measuring the length in the thickness direction in which the crack extends from the steel surface.
[0037]
  From FIG. 1, although the crack of the welded portion tends to decrease with an increase in the B content regardless of the C content in the steel material, the medium C material (C: 0.005%) compared to the low C material (C: 0.005%). 0.01%) and high C material (C: 0.15%)0.0003%And even with a relatively small amount, cracks in the welded portion are drastically reduced, and the B amount is reduced.0.0005%From the above, it can be seen that the occurrence of cracks in the welded portion is almost eliminated. On the other hand, even in the case of low C material (C: 0.005%) or medium C material (C: 0.01%), the amount of B is0.0020%Or more0.0040%When added in a large amount as described above, cracks in the welded portion become relatively small, but the toughness value of the welded portion decreases as shown in FIG. 2, and it is understood that the target toughness (80% or more) cannot be obtained. This is thought to be due to the fact that the grain size of the low C and medium C materials is likely to be coarser than that of the high C material, so that the decrease in toughness due to segregation of B grain boundaries increases with the increase in the amount of B. 1 and 2 C: When arc welding a zinc-based alloy-plated steel material having a medium C material and a high C material of 0.01% or more as a base material, melting while ensuring the target toughness of the welded portion B content in steel to prevent zinc alloy plating cracking is0.0003-0.004%It is necessary to.
[0038]
Further, a steel pipe in which the zinc content is plated on the surface of the steel material in which the C content and the B content are changed is formed into a tubular shape, and then the butt end portion is electro-welded and welded to the steel pipe FIG. 3 shows the crack depth and the toughness deterioration rate of the welded portion as the experimental results when manufacturing the steel. In addition, the crack depth of the welded portion was obtained by observing a cross section of the welded portion and measuring the length in the thickness direction in which the crack extends from the steel surface. The crack depth and toughness deterioration rate of the weld were determined by the same method as in FIGS. The zinc-based alloy-plated steel sheet used was a plate thickness of 6 mm and was provided with an 11% Al + 3% Mg + 0.3% Si + Zn plating layer.
[0039]
  From FIG. 3, about the hot galvanized alloy plating crack at the time of electric resistance welding of a steel pipe, C content is 0.15% or less of medium C material,Low C materialIn B, the increase in the amount of B added effectively reduces the cracking, and the amount of B added0.0006%Although cracking of the weld zone is almost eliminated as described above, the effect of reducing cracking due to the addition of B is hardly obtained with a high C material having a C content of about 0.35%. On the other hand, medium C material with a C content of 0.15% or less,Low C materialAs the amount of B added increases, the toughness value of the weld decreases. B content in steel to prevent hot-dip zinc alloy plating cracking during electric resistance welding of steel pipe while ensuring target toughness (80% or more)0.0006-0.0015%It is necessary to.
[0040]
  The above knowledgeTheIn light of the above, the base material components of the zinc-based alloy-plated steel material for welding of the present invention and the ranges of the contents thereof are as follows. In addition, the following% shall show the mass% unless there is particular description.
[0041]
  C: In the present invention, C is necessary for securing a tensile strength of 350 MPa or more, and is caused by thermal shrinkage during welding as described above.Tensile stressOn the other hand, it is an essential element for improving the quenching of the welded HAZ part, that is, for preventing cracking by reducing the plastic strain in the stress concentrated part. From the above FIG. 1 and FIG. 2, the lower limit was set to 0.01% as the C content that can sufficiently prevent the occurrence of cracking in the welded portion and ensure good toughness by combination with addition of B. Excessive addition of C not only hardens the welded HAZ and leads to bending performance degradation and delayed cracking, but also facilitates the formation of Fe-C-B precipitates and reduces the effect of suppressing the embrittlement of B plating. Therefore, the upper limit of the C content is set to 0.3%.
[0042]
In addition, as shown in FIG. 3, when welding with a steel pipe, or when welding around the welded portion with a high restraining force, cracking of the welded HAZ portion is likely to occur, so the upper limit of the C content is limited. 0.15% is preferable.
[0043]
  Si: Si is necessary for deoxidation of the base material, and the lower limit of its content was set to 0.01%. Si is solid solution strengtheningUseYes Used to adjust the base material strength together with the following Mn. In addition, since excessive Si addition leads to an increase in oxide scale during hot rolling and a decrease in ductility, the upper limit of the content was set to 2.0%.
[0044]
Further, there is no problem when plating on a hot-rolled steel sheet, but when plating on a cold-rolled steel sheet, the plating adhesion deteriorates, so the Si amount is more preferably 0.1% or less.
[0045]
  Mn: Since Mn is made harmless by fixing S as an inevitable impurity in steel which causes hot brittleness of steel as MnS, the lower limit of the content is 0.1%.Therefore, 0.5% (preferable lower limit value) based on the Mn amount of “Symbol 4” in Table 1 of Example 1 and the Mn amount of “Symbols 8 to 11” in Table 2 of Example 2It was. On the other hand, excessive addition of Mn hardens the welded HAZ part and leads to bending performance degradation and delayed cracking, so the upper limit of its content was made 3.0%.
[0046]
S: Since S is an element which reduces the hot workability of steel materials, the smaller the amount, the better. The upper limit is set to 0.015%.
[0047]
In addition, from the viewpoint of suppressing plating embrittlement cracking during welding, S has an effect of suppressing embrittlement by lowering S, so the upper limit of its content is preferably made 0.003%.
[0048]
Al: Al is a deoxidizing element of steel and has an action of fixing N in the steel, so that B is prevented from precipitating as a nitride and suppresses liquid metal embrittlement cracking in hot dip zinc alloy plating. There is also an effect. In order to obtain these effects, it is necessary to add 0.001% or more. On the other hand, if Al is added excessively, coarse non-metallic inclusions are formed and the performance such as toughness of the steel material is lowered, so the upper limit value was set to 0.5%.
[0049]
  B: As described above, B is segregated / concentrated at the grain boundary or penetrated into pores / defects at the grain boundary at the temperature of the austenite region or the austenite-ferrite two-phase region at the time of welding to lower the interfacial energy. It has the effect of suppressing the penetration and diffusion of the molten zinc-based alloy plating into the grain boundaries. Further, in the cooling process of the weld zone, B is an element for improving hardenability, promotes the formation of bainite or martensite structure, and refines the structure and causes heat shrinkage.Tensile stressOn the other hand, the effect of reducing stress and plastic strain can be obtained by strengthening the grain boundary in the welded HAZ part. As the B content that can sufficiently prevent the occurrence of cracks in the welded portion under a predetermined C amount from FIG.0.0003%On the other hand, from FIG. 2 above, the upper limit of the B content is to suppress the deterioration of the toughness of the weld.0.0040%And
[0050]
  Also, as shown in FIG. 3, when welding with steel pipes or when welding around the welded part with a high restraining force, cracking of the welded HAZ part tends to occur, so the lower limit of the B content is set.0.0006%And the upper limit of B content to suppress toughness deterioration of the weld zone.0.0015%Is preferable.
[0051]
While N: N increases the strength of the steel material, the addition of a large amount of N decreases the toughness of the steel material and precipitates B as a nitride such as BN, which also impairs the effect of suppressing the embrittlement of B. Therefore, the upper limit is set to 0.006%. N is preferably as small as possible, but if it is 0.0005% or less, the cost is increased, so the lower limit is set to 0.0005%.
[0052]
In the present invention, in addition to the above components, the following component addition amounts are further defined for the following reasons.
[0053]
Ti: Ti has the effect of fixing N in steel as a nitride and preventing B from precipitating as a nitride such as BN, thereby further suppressing liquid metal embrittlement cracking in hot dip zinc alloy plating. Is preferably added in an amount of 0.001% or more. On the other hand, even if Ti is added in excess of 0.5%, the effect of suppressing cracking is saturated, and the alloy addition cost only increases unnecessarily, so the upper limit of its content was set to 0.5%.
[0054]
  In addition, the Ti content is the same as that of Ti with the content of Al having the function of fixing N.With quantityIt is preferable to adjust so that the total amount of is 0.001% or more and 0.5% or less.
[0055]
  P: P is generally desirable to reduce from the viewpoint of improving weldability, such as hot cracking, but because of the effect of reducing cracks due to P grain boundary segregation against plating embrittlement cracking during welding, It is preferable to add 0.02% or more. On the other hand, excessive addition causes hot cracking.ForThe upper limit of the content is preferably 0.05%.
[0056]
Further, in the present invention, the zinc-based alloy plating applied to the surface of the steel material containing the above components is described in Zn-Al-Mg system as described in Patent Document 1 and Patent Document 2. Such Zn-Al-Mg-Si-based or Zn-Al-based zinc-based alloy plating is used. Incidentally, the Zn—Al-based alloy plating contains Al: 0.18 to 5%, Mg: 0.01 to 0.5%, La: 0.001 to 0.5%, and Ce: It contains any one or more of 0.001 to 0.5%, and the balance is made of Zn. In Zn—Al—Mg alloy plating, Al: 2 to 19%, Mg: 0.00. It consists of 5-10% and the remaining Zn plating. In Zn-Al-Mg-Si alloy plating, Al: 2-19%, Mg: 0.5-10%, Si: 0.01-2%, It consists of plating which consists of remainder Zn. The present invention exhibits the above-described remarkable effects when welding a zinc-based alloy-plated steel material that has been plated with any one of these zinc-based alloy platings to form a welded structure.
[0057]
Moreover, the zinc-based alloy-plated electric resistance welded steel pipe in the present invention uses these zinc-based alloy-plated steel sheets, and after forming the steel sheet into a tubular shape, the butt end portion is subjected to electric-resistance welding such as high-frequency induction welding or high-frequency resistance welding. It is an electric resistance welded steel pipe manufactured by performing
[0058]
The zinc-based alloy-plated ERW steel pipe of the present invention is a steel pipe excellent in quality without weld cracking manufactured by electro-welding a zinc-based alloy-plated steel sheet, and a method for post-plating a conventional ERW steel pipe product Compared with the zinc-based alloy-plated electric resistance welded steel pipe manufactured by the above, it is possible to improve the productivity and reduce the manufacturing cost while maintaining a good quality of the welded portion.
[0059]
  In the above description of the embodiment of the present invention, the welding method has been described only with respect to arc welding or electric welding of steel pipes, but is not limited to these welding methods. For example, laser welding, spot welding, and projection welding are subjected to the same thermal cycle as arc welding,Tensile stressCan cause liquid metal embrittlement cracks in welds,The present inventionSimilarly, the effect of preventing plating cracking during welding can be obtained.
[0060]
【Example】
[Example 1]
  The base material steel containing the components shown in Table 1 has a basis weight of 90 g / m per side.2Zinc-based alloy plating composed of Mg: 3%, Al: 11%, Si: 0.3%, and the balance Zn was applied.Tensile strength: A 400 MPa class 6 mm-thick zinc-based alloy-plated steel material was arc-welded and cracks and toughness of the welded portion were evaluated in the same manner as in the evaluation method. In addition, it is known that the said Zn-Al-Mg-Si alloy plating shows the extremely superior corrosion resistance compared with the conventional simple Zn plating.
[0061]
  Welding was performed by pulse MAG arc welding with a welding current of 200 A, a welding voltage of 23 V, a welding speed of 30 cm / min, and YGW-12 was used as the welding wire. In addition, as shown in FIGS. 4 (a) and 4 (b), the crack of the welded portion is inspected by observing a cross section at the weld end portion that is likely to occur in the weld bead of the circumferential weld 5 (Table 1 shows the base metal). (Determined by the ratio of crack depth to plate thickness). Moreover, the deterioration rate of toughness was evaluated by the ratio of the toughness value of the welded HAZ part when each B content was added to the toughness value of the welded HAZ part when B was not added (B content 0%). In addition, crack depth rate and toughnessdeteriorationThe rates were determined to be good at 5% or less and 80% or more, respectively.
[0062]
  Table 1 shows the main components, cracks and toughness in the base steel.deteriorationRate results are shown. Symbols 1 to 10 are examples of the present invention. In the invention examples of symbols 1 to 10, when the amount of C was relatively small as 0.03 (symbol 1), a slight crack occurred, but it was practically negligible, and in other cases, there was no crack. Moreover, in any of the inventive examples, no significant reduction in welded HAZ toughness was observed.
[0063]
On the other hand, the symbols 11 to 14 are comparative examples deviating from the steel component range of the present invention.
[0064]
Symbols 11 and 12 had liquid metal embrittlement cracks because the amount of B was less than the range specified in the present invention.
[0065]
Since the symbol 13 has a C amount less than the range defined in the present invention, the weld HAZ toughness was severely lowered.
[0066]
Since symbol 14 has more B than the range defined in the present invention, the cracks generated were extremely small, but the toughness value of the welded HAZ part was severely lowered.
[0067]
In the above examples, arc welding was used as the welding method. Similarly, in tests using laser welding, spot welding, and projection welding, liquid metal embrittlement cracking of the welded portion can be suppressed, and the toughness of the welded HAZ portion can be suppressed. Was good.
[0068]
[Table 1]
Figure 0004173990
[0069]
[Example 2]
  A base material steel plate containing the components shown in Table 2 has a basis weight of 90 g / m per side.2Zinc-based alloy plating composed of Mg: 3%, Al: 11%, Si: 0.3%, and the balance Zn was applied.Tensile strength: 400MPa class 6mm-thick zinc-based alloy plated steel sheet was formed into a tubular shape, and its butt end was welded under conditions of welding speed: 30m / min, high-frequency power: 450kW, upset amount: 3mm Thus, an electric resistance steel pipe having an outer diameter of 355 mm was manufactured. The crack length (depth of crack in the plate thickness direction) of the welded HAZ portion of the ERW steel pipe was measured by cross-sectional observation and evaluated by the ratio of the crack depth to the base metal plate thickness. In addition, the toughness of the welded HAZ part of the steel sheet is measured by a Charpy test at room temperature, and the deterioration rate of toughness is obtained when each B amount is added to the toughness value of the welded HAZ part when B is not added (B amount is 0%). It evaluated by the ratio of the toughness value of the welding HAZ part. In addition, crack depth rate and toughnessdeteriorationThe rates were determined to be good at 5% or less and 80% or more, respectively.
[0070]
  Table 2 shows the main components, cracks and toughness in the base steel.deteriorationRate results are shown. Symbols 1 to 11 are examples of the present invention. In the inventive examples 1 to 11, cracks in the welded portion were negligible in practical use or none at all. Moreover, in any of the inventive examples, no significant reduction in welded HAZ toughness was observed.
[0071]
On the other hand, symbols 12 to 24 are comparative examples that deviate from the steel component range of the present invention.
[0072]
Symbols 12 to 20 caused liquid metal embrittlement cracking because the amount of B was less than the range specified in the present invention.
[0073]
Symbols 21 and 22 had more B than the range defined in the present invention, so there were no cracks, but the toughness value of the welded HAZ part was severely reduced.
[0074]
Symbols 23 and 24 had a larger amount of C and B than the ranges specified in the present invention, so the degree of cracking was large and the weld HAZ toughness was severely degraded.
[0075]
[Table 2]
Figure 0004173990
[0076]
【The invention's effect】
As described above, the present invention is suitable for welding zinc-based alloy-plated steel materials used as welded structural members for buildings, automobiles, etc. by various methods. When carrying out electric resistance welding, it is possible to suppress the liquid metal embrittlement cracking in the heat affected zone, and to provide a zinc-based alloy plated steel material having excellent weld quality and its electric resistance welded pipe.
[Brief description of the drawings]
FIG. 1 is a diagram showing the amount of addition of C and B and the degree of crack depth of a welded part by arc welding.
FIG. 2 is a view showing the amount of addition of C and B and the degree of toughness deterioration of a welded HAZ portion by arc welding.
FIG. 3 is a diagram showing a crack depth of a welded portion and a degree of toughness deterioration of a welded HAZ portion in electric resistance welding of a steel pipe.
FIG. 4 is a view showing a method for evaluating liquid metal embrittlement cracking in arc welding.
[Explanation of symbols]
1. Thick steel plate
2 ... Plated steel sheet
3 ... Fitting welding
4. Round steel
5. Circumferential welding

Claims (16)

亜鉛系合金めっき層を鋼材表面に設けた亜鉛系合金めっき鋼材において、前記鋼材が、質量%で、
C:0.01〜0.3%
Si:0.01〜2.0%
Mn:0.5〜3.0%
S:0.015%以下
Al:0.001〜0.5%
B:0.0003〜0.004%
N:0.0005〜0.006%
を含有し、残部がFeおよび不可避的不純物からなることを特徴とする引張強さ400MPa級の溶接用亜鉛系合金めっき鋼材。
In the zinc-based alloy plated steel material provided with a zinc-based alloy plating layer on the steel material surface, the steel material is in mass%,
C: 0.01 to 0.3%
Si: 0.01 to 2.0%
Mn: 0.5 to 3.0%
S: 0.015% or less Al: 0.001-0.5%
B: 0.0003 to 0.004%
N: 0.0005 to 0.006%
A zinc-based alloy-plated steel material for welding having a tensile strength of 400 MPa , characterized in that the balance is made of Fe and inevitable impurities.
前記鋼材が、さらに、質量%で、Ti:0.001〜0.5%を含有し、かつ下記(1)式で与えられる条件を満足することを特徴とする請求項1に記載の溶接用亜鉛系合金めっき鋼材。
0.5≧[%Ti]+[%Al]≧0.001 … (1)
但し、[%X]は、合金元素Xの質量%で表した含有量を示す。
2. The welding material according to claim 1, wherein the steel material further contains, in mass%, Ti: 0.001 to 0.5% and satisfies a condition given by the following expression (1): Zinc-based alloy plated steel.
0.5 ≧ [% Ti] + [% Al] ≧ 0.001 (1)
However, [% X] indicates the content expressed by mass% of the alloy element X.
前記鋼材におけるS含有量が、質量%で、0.003%以下であることを特徴とする請求項1または2記載の溶接用亜鉛系合金めっき鋼材。  3. The zinc-based alloy-plated steel material for welding according to claim 1, wherein an S content in the steel material is 0.003% by mass or less. 前記鋼材が、さらに、質量%で、P:0.02〜0.05%を含有することを特徴とする請求項1から3のうちの何れかに記載の溶接用亜鉛系合金めっき鋼材。  4. The zinc-based alloy-plated steel material for welding according to claim 1, wherein the steel material further contains P: 0.02 to 0.05% by mass. 前記亜鉛系合金めっきが、Zn−Al系合金めっき、Zn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきのうちの何れか1種であることを特徴とする請求項1から4のうちの何れかに記載の溶接用亜鉛系合金めっき鋼材。  The zinc-based alloy plating is any one of Zn-Al-based alloy plating, Zn-Al-Mg-based alloy plating, and Zn-Al-Mg-Si-based alloy plating. Item 5. A zinc-based alloy plated steel material for welding according to any one of Items 1 to 4. 前記Zn−Al系合金めっきが、質量%で、Al:0.18〜5%を含有し、さらに、Mg:0.01〜0.5%、La:0.001〜0.5%、および、Ce:0.001〜0.5%のうちのいずれか1種または2種以上を含有し、残部がZnおよび不可避的不純物であることを特徴とする請求項5に記載の溶接用亜鉛系合金めっき鋼材。  The Zn—Al-based alloy plating contains, by mass%, Al: 0.18 to 5%, Mg: 0.01 to 0.5%, La: 0.001 to 0.5%, and Ce: Any one or more of 0.001 to 0.5% is contained, and the balance is Zn and unavoidable impurities, The zinc system for welding according to claim 5 Alloy plated steel. 前記Zn−Al−Mg系合金めっきが、質量%で、Al:2〜19%、Mg:0.5〜10%を含有し、残部がZnおよび不可避的不純物であることを特徴とする請求項5記載の溶接用亜鉛系合金めっき鋼材。  The Zn-Al-Mg-based alloy plating contains, in mass%, Al: 2 to 19%, Mg: 0.5 to 10%, and the balance being Zn and inevitable impurities. 5. A zinc-based alloy-plated steel material for welding according to 5. 前記Zn−Al−Mg−Si系合金めっきが、質量%で、Al:2〜19%、Mg:1〜10%、Si:0.01〜2%を含有し、残部がZnおよび不可避的不純物であることを特徴とする請求項5に記載の溶接用亜鉛系合金めっき鋼材。  The Zn—Al—Mg—Si based alloy plating contains, in mass%, Al: 2 to 19%, Mg: 1 to 10%, Si: 0.01 to 2%, the balance being Zn and inevitable impurities The zinc-based alloy-plated steel material for welding according to claim 5, wherein: 質量%で、
C:0.01〜0.15%
Si:0.01〜2.0%
Mn:0.5〜3.0%
S:0.015%以下
Al:0.001〜0.5%
B: 0.0006〜0.0015%
N:0.0005〜0.006%
を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に亜鉛系合金めっき層を設けた引張強さ400MPa級の亜鉛系合金めっき鋼板を管状に成形後、その突合せ端部を電縫溶接したことを特徴とする亜鉛系合金めっき電縫鋼管。
% By mass
C: 0.01 to 0.15%
Si: 0.01 to 2.0%
Mn: 0.5 to 3.0%
S: 0.015% or less Al: 0.001-0.5%
B: 0.0006 to 0.0015%
N: 0.0005 to 0.006%
After forming a 400 MPa-grade zinc-based alloy-plated steel sheet with a zinc-based alloy plating layer on the surface of a steel sheet that contains Fe and inevitable impurities, the butt end of the butt end is electro-welded A zinc-based alloy-plated ERW steel pipe.
前記鋼板が、さらに、質量%で、Ti:0.001〜0.5%を含有し、かつ下記(1)式で与えられる条件を満足することを特徴とする請求項9に記載の亜鉛系合金めっき電縫鋼管。
0.5≧[%Ti]+[%Al]≧0.001 … (1)
但し、[%X]は、合金元素Xの質量%で表した含有量を示す。
The zinc-based steel according to claim 9, wherein the steel sheet further contains, by mass%, Ti: 0.001 to 0.5% and satisfies a condition given by the following formula (1). Alloy-plated ERW steel pipe.
0.5 ≧ [% Ti] + [% Al] ≧ 0.001 (1)
However, [% X] indicates the content expressed by mass% of the alloy element X.
前記鋼板におけるS含有量が、質量%で、0.003%以下であることを特徴とする請求項9または10記載の亜鉛系合金めっき電縫鋼管。  11. The zinc-based alloy-plated electric-welded steel pipe according to claim 9, wherein the S content in the steel sheet is 0.003% by mass or less. 前記鋼板が、さらに、質量%で、P:0.02〜0.05%を含有することを特徴とする請求項9から11のうちの何れかに記載の亜鉛系合金めっき電縫鋼管。  The zinc-based alloy plated electric-welded steel pipe according to any one of claims 9 to 11, wherein the steel sheet further contains P: 0.02 to 0.05% in terms of mass%. 前記亜鉛系合金めっきが、Zn−Al系合金めっき、Zn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきのうちの何れか1種であることを特徴とする請求項9から12のうちの何れかに記載の亜鉛系合金めっき電縫鋼管。  The zinc-based alloy plating is any one of Zn-Al-based alloy plating, Zn-Al-Mg-based alloy plating, and Zn-Al-Mg-Si-based alloy plating. Item 13. A zinc-based alloy plated electric-welded steel pipe according to any one of Items 9 to 12. 前記Zn−Al系合金めっきが、質量%で、Al:0.18〜5%を含有し、さらに、Mg:0.01〜0.5%、La:0.001〜0.5%、および、Ce:0.001〜0.5%のうちのいずれか1種または2種以上を含有し、残部がZnおよび不可避的不純物であることを特徴とする請求項13に記載の亜鉛系合金めっき電縫鋼管。  The Zn—Al-based alloy plating contains, by mass%, Al: 0.18 to 5%, Mg: 0.01 to 0.5%, La: 0.001 to 0.5%, and The zinc-based alloy plating according to claim 13, characterized in that any one or more of Ce: 0.001 to 0.5% is contained, and the balance is Zn and inevitable impurities. ERW steel pipe. 前記Zn−Al−Mg系合金めっきが、質量%で、Al:2〜19%、Mg:0.5〜10%を含有し、残部がZnおよび不可避的不純物であることを特徴とする請求項13記載の亜鉛系合金めっき電縫鋼管。  The Zn-Al-Mg-based alloy plating contains, in mass%, Al: 2 to 19%, Mg: 0.5 to 10%, and the balance being Zn and inevitable impurities. 13. Zinc-based alloy-plated ERW steel pipe. 前記Zn−Al−Mg−Si系合金めっきが、質量%で、Al:2〜19%、Mg:1〜10%、Si:0.01〜2%を含有し、残部がZnおよび不可避的不純物であることを特徴とする請求項13に記載の亜鉛系合金めっき電縫鋼管。  The Zn—Al—Mg—Si based alloy plating contains, in mass%, Al: 2 to 19%, Mg: 1 to 10%, Si: 0.01 to 2%, the balance being Zn and inevitable impurities The zinc-based alloy plated electric-welded steel pipe according to claim 13, wherein
JP2002382256A 2002-12-27 2002-12-27 Zinc-based alloy-plated steel for welding and its ERW steel pipe Expired - Fee Related JP4173990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382256A JP4173990B2 (en) 2002-12-27 2002-12-27 Zinc-based alloy-plated steel for welding and its ERW steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382256A JP4173990B2 (en) 2002-12-27 2002-12-27 Zinc-based alloy-plated steel for welding and its ERW steel pipe

Publications (2)

Publication Number Publication Date
JP2004211158A JP2004211158A (en) 2004-07-29
JP4173990B2 true JP4173990B2 (en) 2008-10-29

Family

ID=32817874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382256A Expired - Fee Related JP4173990B2 (en) 2002-12-27 2002-12-27 Zinc-based alloy-plated steel for welding and its ERW steel pipe

Country Status (1)

Country Link
JP (1) JP4173990B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264235B2 (en) * 2008-03-24 2013-08-14 日新製鋼株式会社 High yield ratio type Zn-Al-Mg plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP5264234B2 (en) * 2008-03-24 2013-08-14 日新製鋼株式会社 Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP6024865B2 (en) * 2011-10-27 2016-11-16 株式会社Ihi Laser arc hybrid weld cracking test method
KR20160077397A (en) 2014-12-22 2016-07-04 주식회사 포스코 METHOD FOR MANUFACTURING Zn ALLOY PLATED STEEL TUBE HAVING EXCELLNT CORROSION RESISTANCE
JP6459636B2 (en) * 2015-02-27 2019-01-30 新日鐵住金株式会社 Zinc-based alloy plating welded H-section steel and its manufacturing method
WO2018162937A1 (en) 2017-03-07 2018-09-13 Arcelormittal Resistance spot welding method for joining zinc coated steel sheets
WO2018234839A1 (en) 2017-06-20 2018-12-27 Arcelormittal Zinc coated steel sheet with high resistance spot weldability
WO2020225936A1 (en) * 2019-05-09 2020-11-12 日本製鉄株式会社 Steel sheet and method for manufacturing same
CN110923600B (en) * 2019-12-09 2021-12-14 福建安能新材料股份有限公司 Steel plate with zinc-manganese-magnesium-silicon alloy hot-dip coating and production method thereof
CN112281079B (en) * 2020-09-25 2021-11-19 河钢股份有限公司承德分公司 Hot-base galvanized steel coil and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891162A (en) * 1981-11-18 1983-05-31 Nisshin Steel Co Ltd Manufacture of galvanized steel plate
JPH0814013B2 (en) * 1987-06-26 1996-02-14 日新製鋼株式会社 Copper-plated steel sheet with excellent weld crack resistance and its manufacturing method
JPH02232342A (en) * 1989-03-06 1990-09-14 Nippon Steel Corp Sheet metal for deep drawing free from brittle fracture at the time of welding and joining with molten metal and its production
JP3179401B2 (en) * 1996-12-13 2001-06-25 日新製鋼株式会社 Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same
JP3648013B2 (en) * 1997-03-25 2005-05-18 日新製鋼株式会社 Zn-Al hot-dip galvanized steel sheet for heat-resistant members with excellent workability and method of using the same
JP3179446B2 (en) * 1998-07-02 2001-06-25 新日本製鐵株式会社 Coated steel sheet and coated steel sheet excellent in corrosion resistance and method for producing the same
JP2000248338A (en) * 1998-12-28 2000-09-12 Kobe Steel Ltd Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof
JP4418077B2 (en) * 2000-03-29 2010-02-17 新日本製鐵株式会社 Steel pipe with excellent formability and manufacturing method thereof
JP4475787B2 (en) * 2000-10-06 2010-06-09 日新製鋼株式会社 Zn-Al-Mg alloy-plated steel pipe and method for producing the same
JP4696364B2 (en) * 2001-01-24 2011-06-08 Jfeスチール株式会社 Hot-dip galvanized steel sheet with excellent corrosion resistance and surface appearance

Also Published As

Publication number Publication date
JP2004211158A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP5079795B2 (en) Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and method for producing the same
JP4776951B2 (en) Zinc-based alloy-plated steel for welding with excellent weldability
JP6777173B2 (en) High-strength galvanized steel sheet for spot welding
JP4791992B2 (en) Method for producing alloyed hot-dip galvanized steel sheet for spot welding
JP6049516B2 (en) High-strength plated steel sheet for welded structural members and its manufacturing method
JP2006265671A (en) High tensile galvannealed steel sheet having excellent workability and molten metal embrittlement crack reistance
JP5641741B2 (en) High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance
JP7059979B2 (en) Spot welded member
KR102514674B1 (en) spot welding parts
KR101585721B1 (en) Galvanized steel having good weldabity and method for manufacturing the same
JP4601502B2 (en) Manufacturing method of high strength ERW steel pipe
WO2020212781A1 (en) A method for resistance spot welding of zinc-coated high strength steels
KR102155981B1 (en) Resistance spot welding method for joining galvanized steel sheets
JP4173990B2 (en) Zinc-based alloy-plated steel for welding and its ERW steel pipe
JP5264234B2 (en) Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP5283402B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP2010235989A (en) High strength zn-al-mg based plated steel sheet excellent in liquid metal embrittlement resistant characteristics and production method therefor
JP5323552B2 (en) Hardened steel plate with excellent cross tensile strength for spot welded joints
KR20190078436A (en) High manganese coated steel welded structure with superior spot weldability and method for manufacturing same
JP5053652B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
KR20190078437A (en) Zinc coated high manganese steel sheet with superior spot weldability and method for manufacturing same
JP4580403B2 (en) Hot-dip hot-dip steel sheet for deep drawing and method for producing the same
JP3758515B2 (en) High tensile galvanized steel sheet with excellent resistance weldability
JP2007146201A (en) Hot-dip aluminum-plated steel sheet having excellent spot weldability to aluminum material
JP7327676B2 (en) Resistance spot welding member and its resistance spot welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080815

R151 Written notification of patent or utility model registration

Ref document number: 4173990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees