JP2000248338A - Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof - Google Patents

Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof

Info

Publication number
JP2000248338A
JP2000248338A JP36100399A JP36100399A JP2000248338A JP 2000248338 A JP2000248338 A JP 2000248338A JP 36100399 A JP36100399 A JP 36100399A JP 36100399 A JP36100399 A JP 36100399A JP 2000248338 A JP2000248338 A JP 2000248338A
Authority
JP
Japan
Prior art keywords
induction hardening
steel sheet
less
quenching
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36100399A
Other languages
Japanese (ja)
Inventor
Tatsuya Asai
達也 浅井
Tetsuo Toyoda
哲夫 十代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP36100399A priority Critical patent/JP2000248338A/en
Publication of JP2000248338A publication Critical patent/JP2000248338A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a steel sheet for induction hardening excellent in hardenability, in which the hardened part is provided with toughness and which is excellent in impact absorbing characteristics, to produce an induction hardening strengthened member and to provide methods for producing them. SOLUTION: This steel sheet for induction hardening contains, by mass, 0.05 to 0.20% C, 0.3 to 2.5% Mn, <=0.02% P, <=0.02% S, <=0.06% Al, <=0.015% Ti, <=0.010% N, 0.0005 to 0.0040% B, and the balance Fe with inevitable impurities. In addition to the fundamental components, as elements for moreover improving the characteristics of the steel sheet, one or more kinds among Si, Cr, Mo, V, W, Cu and Ni can be incorporated respectively by <=1.0%. The steel sheet for induction hardening is formed to a prescribed shape, and, after that, the part to be imparted with improved strength is subjected to induction hardening, by which an induction hardening strengthened member can be obtd. The old austenite grain size in the hardened part is preferably controlled to <=20 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、自動車用部材等の
加工用素材鋼板に関し、特に必要な形状に加工後、所要
の部位を高周波焼入することで部材の高強度化を図るこ
とができる鋼板、高周波焼入強化部材およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material steel plate for working of a member for automobiles and the like, and in particular, after working into a required shape, a required portion is induction hardened to increase the strength of the member. The present invention relates to a steel plate, an induction hardening member and a method for manufacturing the same.

【0002】[0002]

【従来の技術】薄鋼板を加工した自動車用成形部材に
は、自動車衝突時にその部材が完全に破壊することな
く、変形することで、衝突時の衝撃エネルギーを吸収す
る特性が要求される場合がある。このような特性が要求
される部材には、衝撃エネルギー吸収用の補強材が付設
され、要求特性を満足するように設計される。例えば、
自動車側面の重要な部材であるセンターピラーは、衝突
時に3点曲げによる衝撃的な変形が生じるため、曲げ変
形が予想される部分に補強材が使用されている。
2. Description of the Related Art In some cases, a molded member for a vehicle made of a thin steel plate is required to have a characteristic of absorbing the impact energy at the time of collision by deforming the member without completely breaking it at the time of a vehicle collision. is there. Members requiring such characteristics are provided with a reinforcing material for absorbing impact energy, and are designed to satisfy the required characteristics. For example,
Since the center pillar, which is an important member on the side of the automobile, undergoes a shocking deformation due to three-point bending at the time of collision, a reinforcing material is used in a portion where bending deformation is expected.

【0003】一方、自動車の軽量化のためには、補強材
を省略することが望ましい。このためには、素材鋼板と
して高強度鋼板を用いることが考えられる。しかし、高
強度鋼板は成形性に劣るという問題がある。そこで、近
年、補強材あるいは高強度鋼板を使用する代わりに、比
較的強度の低い鋼板を用いて所定の形状に成形し、強度
を必要とする部位に対し、成形後に高周波焼入を施して
焼入強化する技術が適用されつつある。
On the other hand, in order to reduce the weight of an automobile, it is desirable to omit a reinforcing material. For this purpose, it is conceivable to use a high-strength steel sheet as the material steel sheet. However, there is a problem that high-strength steel sheets are inferior in formability. Therefore, in recent years, instead of using a reinforcing material or a high-strength steel plate, a relatively low-strength steel plate has been formed into a predetermined shape, and a portion requiring strength has been subjected to induction hardening after forming and quenching. Reinforcement technology is being applied.

【0004】かかる技術を適用する場合、素材鋼板の焼
入性を向上させる必要がある。鋼の焼入性を向上させる
手段としてB添加がよく用いられる。その際、焼入性に
関与するのは鋼中のフリーBであるが、Bは鋼中のNと
非常に結合しやすい元素であるため、BがNと結合して
窒化ホウ素(BN)を生成するとBの焼き入れ効果が消
失する。このため、BよりNと結合しやすいTiをN当
量以上に添加し、鋼中のNをTiNとして固定し、Nと
Bとの結合を防止し、フリーBを確保することが行われ
ている。
[0004] When such a technique is applied, it is necessary to improve the hardenability of the steel sheet. B is often used as a means for improving the hardenability of steel. At that time, it is free B in the steel that contributes to the hardenability, but since B is an element that is very easily bonded to N in the steel, B is bonded to N to form boron nitride (BN). When formed, the quenching effect of B disappears. For this reason, Ti, which is easier to bond with N than B, is added to N equivalent or more, N in steel is fixed as TiN, bonding between N and B is prevented, and free B is secured. .

【0005】[0005]

【発明が解決しようとする課題】自動車用部材であるセ
ンターピラーやバンパーリンフォース等は衝突時の衝撃
吸収特性が重要であり、これらの部材に対して焼入強化
を適用して強化を図る場合、焼入部は単に強化のために
高硬度化すればよいというものではなく、衝突変形時に
割れが発生せず、衝撃吸収エネルギーが大きいことが重
要である。
[0003] The impact absorption characteristics at the time of collision are important for automobile pillars such as center pillars and bumper reinforces. The quenched portion is not merely required to have a high hardness for strengthening, but it is important that no crack occurs at the time of collision deformation and the impact absorption energy is large.

【0006】ところが、TiによりNを固定し、Bを添
加した場合、焼入部に割れが発生しやすく、衝撃吸収特
性が必ずしも向上しないことが判明した。その原因を調
査したところ、破面に粗大なTiNが存在しており、こ
のTiNが割れの発生を招いているものと推定された。
TiNは鋼の溶製時に生成するために、粗大化して素材
中に分散する。さらに、焼入時の加熱では分解せず、焼
入後もそのまま存在する。従って、焼入部の割れを抑制
し、衝撃吸収特性を向上させるにはTi量を極力低減す
ることが有効である。しかし、そうするとTi量の低減
に従ってBの焼入性向上効果も期待できないようにな
る。
However, it has been found that, when N is fixed by Ti and B is added, cracks are easily generated in the quenched portion, and the shock absorption characteristics are not necessarily improved. When the cause was investigated, coarse TiN was present on the fractured surface, and it was presumed that this TiN caused cracking.
Since TiN is generated at the time of melting steel, it is coarsened and dispersed in the material. Furthermore, it does not decompose by heating during quenching, and remains as it is after quenching. Therefore, it is effective to reduce the amount of Ti as much as possible in order to suppress cracks in the quenched portion and improve the shock absorption characteristics. However, the effect of improving the hardenability of B cannot be expected as the amount of Ti decreases.

【0007】本発明はかかる問題に鑑みなされたもの
で、焼入性に優れ、しかも焼入部が靱性を備えた、衝撃
吸収特性に優れた高周波焼入用鋼板、高周波焼入強化部
材およびその製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a steel sheet for induction hardening, which is excellent in hardenability and has a toughness in a hardened portion, and which is excellent in shock absorption properties, and a member for strengthening induction hardening. It provides a method.

【0008】[0008]

【課題を解決するための手段】請求項1に記載した本発
明の高周波焼入用鋼板は、mass%で、C:0.05〜
0.20%、Mn:0.3〜2.5%、P:0.02%
以下、S:0.02%以下、Al:0.06%以下、T
i:0.015%以下、N:0.010%以下、B:
0.0005〜0.0040%を含み、残部Feおよび
不可避的不純物からなるものである。この鋼板による
と、Ti、N、Bを所定量に規制したので、Bによる焼
入性向上作用、焼入前オーステナイト粒の成長抑制作
用、結晶粒界の強化作用が相まって、高周波加熱のよう
な短時間の加熱で、しかも焼入温度が比較的低くても、
焼入効果を十分に発揮させることができ、また焼入部の
靱性向上により、衝撃吸収特性を向上させることができ
る。
The steel sheet for induction hardening according to the present invention described in claim 1 has a mass% of C: 0.05 to
0.20%, Mn: 0.3-2.5%, P: 0.02%
Hereinafter, S: 0.02% or less, Al: 0.06% or less, T
i: 0.015% or less, N: 0.010% or less, B:
0.0005 to 0.0040%, the balance being Fe and unavoidable impurities. According to this steel sheet, since Ti, N, and B are regulated to predetermined amounts, the effect of improving the quenchability by B, the effect of suppressing the growth of austenite grains before quenching, and the effect of strengthening the crystal grain boundaries are combined to achieve the effect of high-frequency heating. Even with a short heating time and a relatively low quenching temperature,
The quenching effect can be sufficiently exerted, and the shock absorption characteristics can be improved by improving the toughness of the quenched portion.

【0009】本発明の鋼板は、以上の基本的成分のほ
か、請求項2に記載したように、必要に応じてSi、C
r、Mo、V、W、Cu、Niのいずれか1種以上をそ
れぞれ1.0%以下含有することができ、これらの元素
の含有により衝撃吸収特性をより向上させることができ
ると考えられる。
[0009] In addition to the above basic components, the steel sheet of the present invention may further comprise Si, C
Any one or more of r, Mo, V, W, Cu, and Ni can be contained in an amount of 1.0% or less, and it is considered that the impact absorption characteristics can be further improved by the inclusion of these elements.

【0010】また、請求項3に記載した本発明の高周波
焼入強化部材は、前記高周波焼入用鋼板により形成さ
れ、強度を向上させる部位に高周波焼入が施されたもの
であり、衝撃吸収特性に優れる。
[0010] The induction hardening member of the present invention described in claim 3 is formed of the steel sheet for induction hardening, and is subjected to induction hardening in a part for improving strength, and is capable of absorbing shock. Excellent characteristics.

【0011】また、請求項4に記載した本発明の高周波
焼入強化部材は、前記高周波焼入用鋼板を素板とする溶
融亜鉛めっき鋼板により形成され、強度を向上させる部
位に高周波焼入が施され、焼入部にめっき層が残存して
なるものであり、衝撃吸収特性に優れ、しかも塗装性、
耐食性にも優れる。前記溶融亜鉛めっき鋼板には、合金
化溶融亜鉛めっき鋼板が含まれる。
Further, the induction hardening member according to the present invention described in claim 4 is formed of a hot-dip galvanized steel sheet having the steel sheet for induction hardening as a base plate. The coating layer is left in the quenched part and has excellent shock absorption characteristics,
Also excellent in corrosion resistance. The hot-dip galvanized steel sheet includes a galvannealed steel sheet.

【0012】これらの高周波焼入強化部材において、請
求項5に記載したように、焼入部において観察される、
焼入前の旧オーステナイト粒径が20μm 以下とするこ
とで、静動比(引張試験において変形速度が2.0mm/
sec 程度の低速変形の場合の最大応力をσA、変形速度
が10m/sec 程度の高速変形の場合の最大応力をσB
としたとき、静動比=σB/σA)を向上させることが
でき、優れた衝撃吸収特性が得られる。
[0012] In these induction hardening strengthening members, as described in claim 5, observed at the quenched portion,
By setting the prior austenite particle size before quenching to 20 μm or less, the static-dynamic ratio (the deformation rate in the tensile test is 2.0 mm /
The maximum stress in the case of low-speed deformation of about sec is σA, and the maximum stress in the case of high-speed deformation of about 10 m / sec is σB.
, The static-dynamic ratio = σB / σA) can be improved, and excellent shock absorption characteristics can be obtained.

【0013】また、請求項6に記載した本発明の高周波
焼入強化部材の製造方法は、請求項1または2に記載し
た高周波焼入用鋼板を所定の形状に形成し、強度を向上
させる部位にAr3点以上、1000℃以下の焼入温度で
高周波焼入を施すものである。また、請求項7に記載し
た本発明の高周波焼入強化部材の製造方法は、請求項1
または2に記載した高周波焼入用鋼板を所定の形状に形
成し、強度を向上させる部位にAr3点以上、1000℃
以下の焼入温度で、かつ焼入の際の加熱開始から焼入温
度に到達し、その後350℃に冷却されるまでのヒート
サイクルタイムを60sec 以下とする高周波焼入を施す
ものである。これらの発明では、請求項1または2に記
載した高周波焼入用鋼板、あるいは当該高周波焼入用鋼
板を素板とする溶融亜鉛めっき鋼板(合金化溶融亜鉛め
っき鋼板を含む。)を用いているので、成形容易であ
り、また焼入温度が1000℃以下の比較的低温での焼
き入れが可能となり、焼入部において観察される、焼入
前の旧オーステナイト粒径を20μm 以下とすることが
でき、衝撃吸収特性に優れる。しかも、低温焼入によ
り、焼入後の変形も低減することができる。さらに、溶
融亜鉛めっき鋼板の場合には、焼入温度が1000℃以
下と低いため、焼入の際に亜鉛めっき層が蒸発により消
失することを防止することができ、引いては鉄系酸化皮
膜の生成による塗装性の劣化を防止することができる。
しかも、ヒートサイクルタイム(図11参照)を60se
c 以下とするため、溶融亜鉛めっき層が焼入の際に過度
な合金化、すなわちFe原子が溶融亜鉛めっき層に過度
に拡散することによる耐食性の劣化を防止することがで
きる。
According to a sixth aspect of the present invention, there is provided a method for manufacturing an induction hardening member according to the present invention, wherein the steel sheet for induction hardening according to the first or second aspect is formed into a predetermined shape to improve the strength. Is subjected to induction hardening at a quenching temperature of not less than 3 points and not more than 1000 ° C. Further, the method of manufacturing the induction hardening strengthening member according to the present invention described in claim 7 is based on claim 1.
Alternatively, a steel sheet for induction hardening described in 2 is formed into a predetermined shape, and a portion where the strength is to be improved is Ar at least 3 points at 1000 ° C.
Induction quenching is performed at the following quenching temperature, and the heat cycle time from the start of heating at the time of quenching to the quenching temperature until cooling to 350 ° C. is 60 seconds or less. In these inventions, the steel sheet for induction hardening described in claim 1 or 2 or a galvanized steel sheet (including a galvannealed steel sheet) using the steel sheet for induction hardening as a base plate is used. Therefore, molding is easy, and quenching at a relatively low temperature of quenching temperature of 1000 ° C. or less becomes possible, and the prior austenite particle size before quenching observed in the quenched part can be reduced to 20 μm or less. Excellent shock absorption characteristics. Moreover, deformation after quenching can be reduced by low-temperature quenching. Furthermore, in the case of a hot-dip galvanized steel sheet, the quenching temperature is as low as 1000 ° C. or less, so that it is possible to prevent the galvanized layer from disappearing due to evaporation during quenching. Can be prevented from deteriorating the paintability due to the generation of slag.
In addition, the heat cycle time (see FIG. 11) is 60 seconds.
Since it is c or less, it is possible to prevent excessive alloying during quenching of the hot-dip galvanized layer, that is, deterioration of corrosion resistance due to excessive diffusion of Fe atoms into the hot-dip galvanized layer.

【0014】[0014]

【発明の実施の形態】本発明者は、高周波焼入時の加熱
温度でもBNが分解することに着目した。しかし、高周
波加熱による焼入では加熱時間が通常の熱処理に比較し
て短いため、BNが十分に分解して、焼入性の向上に寄
与する十分なフリーBが確保できるかが問題となる。そ
こで様々な、Ti、N及びB量の鋼を溶製して製造され
た鋼板の焼入性と衝撃吸収エネルギーを調査した結果、
特定量のTi、N、Bの下では、高周波加熱のような短
時間の加熱でもBによる焼入効果を十分に発揮させるこ
とができ、衝突時などの高速変形時に割れが発生せず、
衝撃吸収エネルギーも高い値が得られることを知見し、
本発明を完成するに至った。
DETAILED DESCRIPTION OF THE INVENTION The present inventors have paid attention to the fact that BN is decomposed even at the heating temperature during induction hardening. However, in quenching by high-frequency heating, since the heating time is shorter than that of normal heat treatment, it is a problem whether BN is sufficiently decomposed and sufficient free B contributing to improvement in hardenability can be secured. Therefore, as a result of investigating the hardenability and impact absorption energy of steel sheets manufactured by melting various steels of Ti, N and B amounts,
Under a specific amount of Ti, N, and B, the quenching effect of B can be sufficiently exhibited even in a short-time heating such as high-frequency heating, and no crack occurs at the time of high-speed deformation such as a collision.
Knowing that high values of shock absorption energy can be obtained,
The present invention has been completed.

【0015】すなわち、本発明の高周波焼入用鋼板は、
mass%で、C:0.05〜0.20%、Mn:0.3〜
2.5%、P:0.02%以下、S:0.02%以下、
Al:0.06%以下、Ti:0.015%以下、N:
0.010%以下、B:0.0005〜0.0040%
を含み、残部Feおよび不可避的不純物よりなるもので
ある。
That is, the steel sheet for induction hardening of the present invention comprises:
mass%, C: 0.05 to 0.20%, Mn: 0.3 to
2.5%, P: 0.02% or less, S: 0.02% or less,
Al: 0.06% or less, Ti: 0.015% or less, N:
0.010% or less, B: 0.0005 to 0.0040%
And the balance consists of Fe and inevitable impurities.

【0016】ここで、本発明の鋼板の成分限定理由につ
いて説明する。 C:0.05〜2.0% Cは焼入硬さを決定する重要な元素であるが、0.05
%未満では必要な硬さ(ビッカース硬さ(荷重1kgf )
で300Hv以上)が得られない。このため、C量の下
限を0.05%、好ましくは0.10%とする。一方、
2.0%を超えると焼入部に遅れ破壊が生じ易くなるた
め、上限を2.0%、好ましくは0.18%とする。
Here, the reasons for limiting the components of the steel sheet of the present invention will be described. C: 0.05 to 2.0% C is an important element that determines quenching hardness.
%, The required hardness (Vickers hardness (load 1kgf)
Over 300 Hv). For this reason, the lower limit of the C content is set to 0.05%, preferably 0.10%. on the other hand,
If it exceeds 2.0%, delayed fracture is likely to occur in the quenched portion, so the upper limit is made 2.0%, preferably 0.18%.

【0017】Mn:0.3〜2.5% Mnは焼入性を向上させる元素であり、0.3%未満で
は焼入性向上作用が過小となり、必要な焼入硬さを得る
ことが困難になる。このため、Mn量の下限を0.3
%、好ましくは0.5%、より好ましくは1.0%とす
る。一方、Mnは鋳造時にミクロ偏析しやすく、この偏
析は焼入後も解消されず、靱性の低下及び遅れ破壊を促
進するため上限を2.5%、好ましくは2.0%とす
る。
Mn: 0.3 to 2.5% Mn is an element for improving hardenability, and if it is less than 0.3%, the effect of improving hardenability is too small to obtain a necessary hardenability. It becomes difficult. Therefore, the lower limit of the amount of Mn is 0.3
%, Preferably 0.5%, more preferably 1.0%. On the other hand, Mn tends to micro-segregate during casting, and this segregation is not eliminated even after quenching, and the upper limit is set to 2.5%, preferably 2.0%, in order to promote a decrease in toughness and delayed fracture.

【0018】P:0.02%以下 PもMn同様、ミクロ偏析する元素であり、少ないほど
よく、0.02%を越えると著しい中心偏析(板厚中央
部での偏析)を生じ、遅れ破壊を助長するため、上限を
0.02%、好ましくは0.015%とする。
P: not more than 0.02% P is also an element that segregates microscopically, like Mn, and the smaller the better, the better. If it exceeds 0.02%, significant center segregation (segregation at the center of the sheet thickness) occurs and delayed fracture occurs. Is promoted, the upper limit is made 0.02%, preferably 0.015%.

【0019】S:0.02%以下 SはMnと結合してMnSを生成し、鋼板の加工性を劣
化させ、遅れ破壊の起点ともなるため少ないほどよく、
上限を0.02%、好ましくは0.015%とする。
S: not more than 0.02% S combines with Mn to form MnS, deteriorating the workability of the steel sheet, and also serves as a starting point of delayed fracture, so the smaller the better, the better.
The upper limit is made 0.02%, preferably 0.015%.

【0020】Al:0.06%以下 Alは脱酸材として添加されるが、0.06%を越える
とアルミナ系の介在物が増加し、ヘゲ、スリバ等の表面
欠陥が急増するため、上限を0.06%、好ましくは
0.05%とする。
Al: not more than 0.06% Al is added as a deoxidizing material. If it exceeds 0.06%, alumina-based inclusions increase, and surface defects such as scabs and slivers increase rapidly. The upper limit is made 0.06%, preferably 0.05%.

【0021】Ti:0.015%以下 TiはNと優先的に結合し、BがNと結合するのを抑制
する作用を有するが、0.015%超では粗大なTiN
が生じるようになり、このTiNは高周波加熱によって
も分解せず、組織中に存在するため、後述に実施例から
明らかなとおり、高速変形時に割れが発生するようにな
る。このため、0.015%以下、好ましくは0.01
2%以下、より好ましくは0.010%以下とする。
Ti: 0.015% or less Ti binds preferentially to N and has an effect of suppressing the binding of B to N, but if it exceeds 0.015%, coarse TiN
This TiN is not decomposed even by high-frequency heating, and is present in the structure. Therefore, as will be apparent from the examples described later, cracks occur during high-speed deformation. For this reason, 0.015% or less, preferably 0.01%
2% or less, more preferably 0.010% or less.

【0022】N:0.010%以下 NはBと結合して鋼中のフリーのB量を減少させるため
少ない方がよいが、過度の減少は製鋼上の困難を伴い、
製造コストを上昇させるので、好ましくは下限を0.0
010%とするのがよい。一方、0.010%を越える
とBによる焼入性の改善効果が発揮できないようになる
ため、上限を0.010%、好ましくは0.008%と
する。
N: 0.010% or less N should be small in order to combine with B to reduce the amount of free B in steel, but excessive reduction is accompanied by difficulty in steel making.
Preferably, the lower limit is 0.0
010% is preferable. On the other hand, if it exceeds 0.010%, the effect of improving the hardenability by B cannot be exhibited, so the upper limit is made 0.010%, preferably 0.008%.

【0023】B:0.0005〜0.0040% Bは焼入性を改善させ、低温でも十分な焼き入れ組織が
得られるようにする重要な元素である。また、焼入温度
すなわちオーステナイト化温度に加熱した際に、Bがオ
ーステナイト結晶粒界に析出し、低温焼き入れが可能な
ことと相まって、粒成長を抑制する作用があり、焼き入
れ組織の微細化を図ることができ、これによって、静動
比を向上させることがきる元素である。さらにまた、前
記粒界への析出は、粒界の強度を向上させるため、低温
変態組織の靱性を向上させることができる元素でもあ
る。B量が0.0005%未満では焼き入れの際に有効
なB量が確保できず、上記作用が過小となるため、下限
を0.0005%、好ましくは0.0010%、より好
ましくは0.0025%とする。一方、0.0040%
を越えるとFe2 B (窒化鉄)が生成するようにな
り、これが高速変形時の割れの起点となって、衝撃曲げ
変形時の吸収エネルギーをかえって低下させる。このた
め、上限を0.0040%、好ましくは0.0035%
とする。
B: 0.0005 to 0.0040% B is an important element that improves the hardenability and enables a sufficient hardened structure to be obtained even at a low temperature. Also, when heated to the quenching temperature, that is, the austenitizing temperature, B precipitates at the austenite crystal grain boundaries, and in combination with the fact that low-temperature quenching is possible, there is an effect of suppressing grain growth, and the quenching structure is refined. This is an element that can improve the static-dynamic ratio. Furthermore, the precipitation at the grain boundary is an element that can improve the toughness of the low-temperature transformation structure in order to improve the strength of the grain boundary. If the amount of B is less than 0.0005%, an effective amount of B cannot be secured during quenching, and the above-mentioned effect becomes too small. Therefore, the lower limit is 0.0005%, preferably 0.0010%, more preferably 0.1%. 0025%. On the other hand, 0.0040%
Is exceeded, Fe 2 B (iron nitride) is generated, which serves as a starting point for cracking during high-speed deformation, and rather reduces the absorbed energy during impact bending deformation. Therefore, the upper limit is 0.0040%, preferably 0.0035%.
And

【0024】本発明の鋼板は、以上の基本的成分、残部
Feおよび不可避的不純物よりなるものであるが、前記
基本的成分の作用効果を損なわない範囲で他の元素の含
有を妨げるものではなく、さらに鋼板の特性をより向上
させる元素を含有させることができる。このような元素
として、Si、Cr、Mo、V、W、Cu、Niのいず
れか1種以上をそれぞれ1.0%以下含有することがで
きる。
The steel sheet of the present invention comprises the above basic components, the balance of Fe and unavoidable impurities, but does not hinder the content of other elements as long as the effects of the basic components are not impaired. Further, an element for further improving the properties of the steel sheet can be contained. As such an element, any one or more of Si, Cr, Mo, V, W, Cu, and Ni can be contained in an amount of 1.0% or less.

【0025】これらの元素は焼入部のミクロ組織をベイ
ナイト化して延性を向上させ、割れ発生の防止に寄与す
るとともに必要な焼入強度を確保することができるもの
であり、Cu、Niはさらに耐遅れ破壊特性の改善にも
寄与する。この作用を有効に発揮させるには各々0.0
5%以上の含有が好ましい。一方、過多に添加するとS
i、Cr、Mo、V、Wは化成処理性が劣化し、またC
u、Niは熱間割れや、スケールに起因した表面疵が生
じるようになるため、上限を各々1.0%、好ましくは
0.60%とする。なお、ミクロ組織は必ずしもベイナ
イト単相である必要はなく、フェライトや炭化物等が含
まれていてもよい。また、これらの元素は焼入性改善の
ための基本元素とすることはできない。その理由は、こ
れらの元素で焼入性を改善すると、化成処理性が劣化し
たり、鋼板製造時に焼入が生じて、高周波焼入強化前の
素材鋼板の加工性の確保が困難になるためである。
These elements convert the microstructure of the quenched part into bainite to improve the ductility, contribute to the prevention of cracking, and can secure the necessary quench strength. It also contributes to the improvement of delayed fracture characteristics. In order to exhibit this effect effectively, 0.0
A content of 5% or more is preferred. On the other hand, if too much is added, S
For i, Cr, Mo, V, and W, the chemical conversion property deteriorates,
Since u and Ni cause hot cracking and surface flaws due to scale, the upper limits are each set to 1.0%, preferably 0.60%. The microstructure does not necessarily need to be a single phase of bainite, and may include ferrite, carbide, and the like. Further, these elements cannot be used as basic elements for improving hardenability. The reason is that if the hardenability is improved with these elements, the chemical conversion property deteriorates or quenching occurs during steel sheet manufacturing, making it difficult to ensure the workability of the material steel sheet before induction hardening strengthening. It is.

【0026】前記高周波焼入用鋼板は、所定の成分の鋼
を溶製し、常法にて熱間圧延、あるいはさらに冷間圧延
を施すことにより製造される。熱延あるいは冷延後、あ
るいは冷延後にさらに溶融亜鉛めっきを施した鋼板組織
はフェライトおよびパーライト組織となっており、高周
波焼入前の引張強さは500MPa程度以下であるた
め、プレス成形が容易で、所定の部材形状に容易に成形
することができる。成形後、強度を向上させたい部位
(部材の全領域を含む。)に高周波焼き入れを施すこと
により、本発明の高周波焼入強化部材が得られる。な
お、焼入後の冷却方法は、板厚に応じて、水冷、ミスト
冷却、気水冷却、空冷(強制空冷を含む。)、冷却金型
の接触等の適宜の方法を採ることができる。
The steel sheet for induction hardening is produced by smelting steel of a predetermined component and subjecting the steel to hot rolling or cold rolling in a conventional manner. The hot-rolled or cold-rolled steel sheet or the hot-dip galvanized steel sheet after cold-rolling has a ferrite and pearlite structure, and the tensile strength before induction hardening is about 500 MPa or less, so that press forming is easy. Thus, it can be easily formed into a predetermined member shape. After the molding, induction hardening is performed on a portion (including the entire region of the member) where the strength is to be improved, whereby the induction hardened member of the present invention can be obtained. In addition, as a cooling method after quenching, an appropriate method such as water cooling, mist cooling, air / water cooling, air cooling (including forced air cooling), contact with a cooling mold, or the like can be adopted according to the plate thickness.

【0027】本発明で規定するC含有量を有する炭素鋼
板では、通常、焼入によってマルテンサイトを得るため
には、焼入前のオーステナイト粒径を大きくし、これに
よって焼入性を向上させておく必要があるため、焼入温
度は1000℃超とされるのであるが、本発明ではBの
焼入性向上作用により、焼入温度を比較的低温に設定す
ることができ、1000℃以下、好ましくは950℃以
下、より好ましくは900℃以下の比較的低温で行うこ
とができる。焼入温度をこのような温度に設定すること
で、Bの粒界析出によるオーステナイト粒の成長抑制作
用と相まって、焼き入れ後に観察される旧オーステナイ
ト粒径を20μm 以下とすることができる。旧オーステ
ナイト粒径を20μm 以下、好ましくは15μm 以下と
することで、焼入部の静動比を向上させることができ、
引いては高周波焼入強化部材の衝撃吸収特性を向上させ
ることができる。
In a carbon steel sheet having a C content specified in the present invention, usually, in order to obtain martensite by quenching, the austenite grain size before quenching is increased, thereby improving the hardenability. Therefore, the quenching temperature is set to be higher than 1000 ° C., but in the present invention, the quenching temperature can be set to a relatively low temperature by the effect of improving the hardenability of B. It can be carried out at a relatively low temperature of preferably 950 ° C. or lower, more preferably 900 ° C. or lower. By setting the quenching temperature to such a temperature, the old austenite grain size observed after quenching can be reduced to 20 μm or less, together with the effect of suppressing the growth of austenite grains due to the precipitation of B at the grain boundary. By setting the prior austenite particle size to 20 μm or less, preferably 15 μm or less, the static-dynamic ratio of the quenched portion can be improved,
As a result, the shock absorption characteristics of the induction hardening member can be improved.

【0028】図1は、静動比と衝撃吸収エネルギーとの
関係を説明するための応力歪線図であり、図中のAは引
張速度が2mm/sec 程度の低速引張の場合の応力歪線で
あり、Bは引張速度が10m/sec 程度の衝突時を想定
した高速引張の応力歪線である。静動比は、Aの最大応
力σAに対するBの最大応力σBの比σB/σAで表さ
れる。一方、応力歪線によって囲まれた領域(応力歪線
Aについて斜線部で示した領域)は、変形時における衝
撃吸収エネルギーを示す。図から明らかなように、静動
比が大きいほど、高速変形時における衝撃吸収エネルギ
ーが大きくなる。ハイテンなどの高張力鋼板では、強度
が大きくなるほど静動比は1に近づく傾向があり、鋼板
強度を上げるだけでは、衝撃吸収特性が有利になるとは
必ずしも言えないが、本発明鋼板の場合、後述の実施例
から明らかなとおり、高周波焼入により強度が向上する
とともに、静動比も向上し、優れた衝撃吸収特性を備え
たものとなる。
FIG. 1 is a stress-strain diagram for explaining the relationship between the static-dynamic ratio and the shock absorption energy. In FIG. 1, A indicates the stress-strain curve in the case of low-speed tension at a tensile speed of about 2 mm / sec. And B is a stress-strain line of high-speed tension assuming a collision at a tensile speed of about 10 m / sec. The static-dynamic ratio is represented by the ratio σB / σA of the maximum stress σB of B to the maximum stress σA of A. On the other hand, the region surrounded by the stress-strain line (the region indicated by the hatched portion with respect to the stress-strain line A) indicates the shock absorption energy at the time of deformation. As is clear from the figure, the larger the static-dynamic ratio, the larger the impact absorption energy during high-speed deformation. In high-tensile steel sheets such as high-tensile steels, the static-dynamic ratio tends to approach 1 as the strength increases, and it cannot be said that merely increasing the steel sheet strength does not necessarily mean that the shock absorbing properties are advantageous. As is clear from the examples, while the strength is improved by the induction hardening, the static-dynamic ratio is also improved, and excellent shock absorbing characteristics are provided.

【0029】本発明の鋼板は、冷間圧延後、溶融亜鉛め
っき処理を施し、溶融亜鉛めっき鋼板とすることができ
る。勿論、溶融亜鉛めっき後に合金化熱処理を施して合
金化溶融亜鉛めっき鋼板としてもよい。
The steel sheet of the present invention may be subjected to a hot-dip galvanizing treatment after cold rolling to obtain a hot-dip galvanized steel sheet. Of course, an alloying heat treatment may be performed after galvanizing to form an alloyed galvanized steel sheet.

【0030】本発明の高周波焼入強化部材は、このよう
な溶融亜鉛めっき鋼板を用いて、所定の形状にプレス成
形し、強化すべき部位に高周波焼入を施すことによって
も得られる。この場合、焼入温度が高過ぎると、焼入の
際に亜鉛が蒸発し、亜鉛めっき層が消失し、さらに鋼板
の表面に酸化皮膜が形成されるおそれがある。亜鉛めっ
き層が消失し、酸化皮膜が形成されると、部材表面を塗
装する場合、塗装の下地であるりん酸塩皮膜が付着しに
くくなり、引いては塗膜密着性が劣化する。本発明で
は、Bの作用により、焼入温度を低くすることができ、
焼入温度を1000℃以下、好ましくは950℃以下、
より好ましくは900℃以下とすることで、亜鉛めっき
層の消失を防止することができ、良好な塗装密着性をも
確保することができる。さらに、焼入の際の加熱開始か
ら焼入温度に到達し、その後350℃に冷却されるまで
のヒートサイクルタイム(図11参照)を60sec 以
下、好ましくは30sec 以下、より好ましくは10sec
以下とすることにより、溶融亜鉛めっき層の過度の合金
化を抑制することができるため、溶融亜鉛めっき層の耐
食性の劣化を防止することができる。以下、実施例によ
って本発明をさらに具体的に説明するが、本発明はかか
る実施例によって限定的に解釈されるものではない。
The induction hardening strengthening member of the present invention can also be obtained by press-molding such a hot-dip galvanized steel sheet into a predetermined shape and performing induction hardening on a portion to be strengthened. In this case, if the quenching temperature is too high, zinc evaporates during quenching, the galvanized layer disappears, and an oxide film may be formed on the surface of the steel sheet. When the galvanized layer disappears and an oxide film is formed, when coating the surface of the member, the phosphate film, which is the base material of the coating, becomes difficult to adhere to, and the adhesion of the film deteriorates. In the present invention, the quenching temperature can be lowered by the action of B,
A quenching temperature of 1000 ° C. or less, preferably 950 ° C. or less,
More preferably, by setting the temperature to 900 ° C. or lower, the disappearance of the galvanized layer can be prevented, and good coating adhesion can be secured. Further, the heat cycle time (see FIG. 11) from the start of heating at the time of quenching to the quenching temperature to cooling to 350 ° C. is 60 seconds or less, preferably 30 seconds or less, more preferably 10 seconds.
By setting it as follows, excessive alloying of the hot-dip galvanized layer can be suppressed, so that deterioration of the corrosion resistance of the hot-dip galvanized layer can be prevented. Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not construed as being limited to such Examples.

【0031】[0031]

【実施例】〔実施例A〕下記A鋼、B鋼をベースとし
て、ベース鋼に対して種々の割合のTiを添加した鋼を
溶製し、そのスラブを常法により熱間圧延(仕上温度8
70℃、巻取温度650℃)、冷間圧延(冷延率55
%、再結晶焼鈍温度720℃)して板厚1.6mmの冷延
鋼板を製作し、図2に示す衝撃3点曲げ試験部材を製作
し、衝撃3点曲げ試験により衝撃吸収エネルギーを測定
した。 ・A鋼(mass%、残部実質的にFe) C:0.12%、Mn:1.49%、P:0.013
%、S:0.005%、Al:0.043%、N:0.
041%、B:0.0029% ・B鋼(mass%、残部実質的にFe) C、Mn、P、S、AlはA鋼と同じ。 N:0.033%、B:0.0055%
[Example A] Based on the following steels A and B, steels with various proportions of Ti added to the base steel are melted, and the slab is hot-rolled by a conventional method (finish temperature). 8
70 ° C, winding temperature 650 ° C), cold rolling (cold rolling rate 55
%, A recrystallization annealing temperature of 720 ° C.) to produce a cold-rolled steel sheet having a thickness of 1.6 mm, produce an impact three-point bending test member shown in FIG. 2, and measured the impact absorption energy by an impact three-point bending test. . -Steel A (mass%, balance substantially Fe) C: 0.12%, Mn: 1.49%, P: 0.013
%, S: 0.005%, Al: 0.043%, N: 0.
041%, B: 0.0029% B steel (mass%, substantially Fe) C, Mn, P, S, Al are the same as A steel. N: 0.033%, B: 0.0055%

【0032】前記試験部材1は、図2に示すように、断
面がハット形の成形部材2の開口部に平板3を付設し
て、成形部材2のフランジ部を図のように40mmピッチ
でスポット溶接したものである。図中の寸法単位はmmで
あり、ハット形成形部材2の上部の角部(2箇所)に施
した斜線部は試験部材を組み立て後に形成した高周波焼
入による焼入部を示す。焼入条件は、ヒートサイクルタ
イムを約5秒とし、900℃に高周波加熱後、水冷した
ものであり、焼入部の組織は、マルテンサイト組織であ
った。
As shown in FIG. 2, the test member 1 has a flat plate 3 attached to an opening of a molded member 2 having a hat-shaped cross section, and the flange portion of the molded member 2 is spotted at a pitch of 40 mm as shown in the figure. Welded. In the figure, the dimensional unit is mm, and hatched portions provided at upper corners (two places) of the hat-shaped member 2 indicate hardened portions formed by induction hardening after assembling the test members. The quenching conditions were a heat cycle time of about 5 seconds, high-frequency heating to 900 ° C., and water cooling, and the quenched portion had a martensite structure.

【0033】前記衝撃3点曲げ試験は、図3に示すよう
に、前記試験部材1をハット形成形部材2が下方になる
ようにして、試験部材1の両端部(荷重間隔500mm)
の対称位置に各々100kgの荷重Pを付加して水平に
保持した状態で、試験部材1の長さ方向の中心部を曲げ
治具に10.6m/sec で衝突させ、この時に生じた衝
撃吸収エネルギーを測定するものである。前記衝撃吸収
エネルギーは、曲げ治具10(上部の半径=150mm)
より200mm離れた位置に設けられたレーザ変位計11
によって、試験部材1と曲げ治具10とが接触した瞬間
の変位(図中2点鎖線で表示した状態)を0とし、試験
部材1が折れ曲がって変形し、レーザ変位計11によっ
て測定される変位が70mmになるまで曲げ治具10に作
用した荷重を測定することにより求めた。図4は、前記
変位と荷重との関係を模式的に示した図であり、図中斜
線で示した部分の面積が吸収エネルギー値を示す。な
お、治具10に作用した荷重は、曲げ治具10が取り付
けられたロードセル12によって測定した。
In the impact three-point bending test, as shown in FIG. 3, the test member 1 is placed with the hat-formed member 2 down, and both ends of the test member 1 (load interval 500 mm).
With a load P of 100 kg applied to each symmetrical position and horizontally held, the center of the test member 1 in the longitudinal direction was caused to collide with a bending jig at 10.6 m / sec. It measures energy. The impact absorbing energy is calculated by bending jig 10 (upper radius = 150 mm)
Laser displacement meter 11 provided 200 mm away
As a result, the displacement at the moment when the test member 1 comes into contact with the bending jig 10 (the state indicated by the two-dot chain line in the figure) is set to 0, the test member 1 is bent and deformed, and the displacement measured by the laser displacement meter 11 is changed. Was determined by measuring the load applied to the bending jig 10 until the value became 70 mm. FIG. 4 is a diagram schematically showing the relationship between the displacement and the load, and the area of the hatched portion in the figure indicates the absorbed energy value. The load applied to the jig 10 was measured by a load cell 12 to which the bending jig 10 was attached.

【0034】上記衝撃3点曲げ試験の結果を図5に示
す。同図より、Ti含有量が0.015%超の高含有域
ではA鋼、B鋼を用いた鋼板とも粗大なTiNが生成
し、衝撃3点曲げにおける吸収エネルギー値が低く、特
にB量が本発明範囲超のB鋼を用いたものでは、焼入部
において割れが認められた。一方、Ti含有量が特に
0.010%以下の低含有域では本発明成分範囲のA鋼
を用いた鋼板では発明範囲外のB鋼を用いた鋼板に比し
て非常に大きな吸収エネルギー値が得られており、優れ
た耐衝撃性が得られていることがわかる。
FIG. 5 shows the results of the impact three-point bending test. From the figure, in the high content region where the Ti content is more than 0.015%, coarse TiN is generated in both the steel sheets using steel A and steel B, and the absorbed energy value in impact three-point bending is low. In the case of using steel B exceeding the range of the present invention, cracks were observed in the quenched portion. On the other hand, particularly in the low content region where the Ti content is 0.010% or less, the steel sheet using the steel A in the component range of the present invention has a much larger absorbed energy value than the steel sheet using the steel B outside the invention range. It can be seen that excellent impact resistance was obtained.

【0035】〔実施例B〕下記表1に示した鋼を溶製
し、そのスラブを同表に示す製造条件により冷延鋼板
(板厚1.6mm)、合金化溶融亜鉛めっき鋼板(板厚
1.6mm)、熱延鋼板(板厚2.0mm)を製造し、機械
的性質を測定した。その結果を表1に併せて示す。
[Example B] The steels shown in Table 1 below were melted, and the slabs were prepared according to the production conditions shown in the same table by cold-rolled steel sheets (sheet thickness 1.6 mm) and alloyed hot-dip galvanized steel sheets (sheet thickness). 1.6 mm) and a hot-rolled steel sheet (sheet thickness 2.0 mm) were manufactured, and the mechanical properties were measured. The results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】また、試料鋼板から試験片を採取し、所定
の領域を900℃で高周波加熱し、同温度到達後直ちに
加熱を停止し、表2に示す冷却条件により冷却すること
によって焼き入れ、焼入部周辺の硬さ分布を調べて焼入
部の平均硬さを求めるとともにミクロ組織を調べた。ま
た、実施例Aと同様、衝撃3点曲げ試験部材を製作し、
同部位に表2の焼入条件にて焼入を行った後、前記衝撃
3点曲げ試験を行い、衝撃吸収エネルギーを測定し、ま
た試験後の曲げ部の割れ発生状況を観察した。これらの
結果を表2に示す。表中のミクロ組織は面積率で50%
以上を占める組織を示しており、残部はフェライト及び
/又は残留オーステナイトである。また、試料No. 1〜
13、16につき、NとBとが焼入性に及ぼす影響を整
理したグラフを図6に示す。図中の数字は「試料No. /
焼入部の平均硬さ(Hv)」を示す。また、焼入部周辺
の硬さ分布測定結果の一例を図7(試料No. 13)、図
8(試料No. 7)に示す。なお、図7,図8における焼
入部は、図2の焼入領域(斜線領域)の中央部の点線位
置に対応する。
Further, a test piece was sampled from a sample steel plate, a predetermined region was heated at a high frequency at 900 ° C., immediately after the temperature reached, the heating was stopped, and quenching was performed by cooling under the cooling conditions shown in Table 2. The hardness distribution around the quenched part was examined to determine the average hardness of the quenched part and the microstructure was examined. Further, similarly to Example A, an impact three-point bending test member was manufactured.
After quenching the same portion under the quenching conditions shown in Table 2, the impact three-point bending test was performed to measure the impact absorption energy, and the occurrence of cracks in the bent portion after the test was observed. Table 2 shows the results. The microstructure in the table is 50% in area ratio
The structure occupying the above is shown, with the balance being ferrite and / or retained austenite. In addition, sample Nos.
FIG. 6 is a graph in which the effects of N and B on hardenability are arranged for 13 and 16. The number in the figure is “Sample No./
Average hardness (Hv) of the quenched part ". 7 (Sample No. 13) and FIG. 8 (Sample No. 7) show examples of the hardness distribution measurement results around the quenched portion. Note that the quenched portion in FIGS. 7 and 8 corresponds to the dotted line position at the center of the quenched region (hatched region) in FIG.

【0038】[0038]

【表2】 [Table 2]

【0039】表2および図6から明らかなとおり、Nが
0.010%超の試料No. 11及び12では、焼入部の
硬さが300Hvを下回っており、十分な焼入硬さが得
られず、強化が不十分であることがわかる。また、これ
らの試料は吸収エネルギーも低い。これは、N量が過多
のため、高周波加熱の際のBNの分解が不十分となるた
めと推測される。
As is clear from Table 2 and FIG. 6, in Sample Nos. 11 and 12 in which N is more than 0.010%, the hardness of the quenched portion is lower than 300 Hv, and sufficient quenching hardness is obtained. It can be seen that the reinforcement was insufficient. These samples also have low absorption energy. This is presumed to be due to insufficient BN decomposition during high-frequency heating due to an excessive amount of N.

【0040】また、表2および図6より、Bが0.00
4%超の試料No. 16、Bが0.0005%未満の試料
No. 13では、焼入部の硬さは良好であるが、吸収エネ
ルギーが低く、曲げ部に割れが発生した。これは、試料
No. 16では、B量が過多であるため粒界にFe2
が析出したためであり、一方試料No. 13ではB量が少
な過ぎて十分な焼入性が得られなかったためである。因
みに、試料No. 13の硬さ分布を見ると、図7から明ら
かなとおり、平均硬さは344Hvと良好であるが、焼
入部の硬さにむらがあり、引いては強度にむらが生じ
て、強度の低い部分に変形が集中するために割れが生じ
たものと推測される。なお、図8に発明例の試料No. 7
の硬さ分布を示すが、この例では焼入部の平均硬さは3
69Hvで、しかも焼入部における硬さも均一である。
Further, from Table 2 and FIG. 6, B is 0.00
Sample No. 16 with more than 4%, sample with B less than 0.0005%
In No. 13, the hardness of the quenched portion was good, but the absorbed energy was low, and cracks occurred in the bent portion. This is the sample
In No. 16, since the amount of B was excessive, Fe 2 B
On the other hand, in Sample No. 13, the B content was too small to obtain sufficient hardenability. Incidentally, looking at the hardness distribution of Sample No. 13, as is clear from FIG. 7, the average hardness is 344 Hv, which is good, but the hardness of the quenched portion is uneven, and the strength is uneven when pulled. Therefore, it is presumed that cracks occurred due to the concentration of deformation in the low-strength portion. FIG. 8 shows Sample No. 7 of the invention example.
In this example, the average hardness of the quenched portion is 3
69Hv, and the hardness in the quenched part is also uniform.

【0041】また、表2より、基本成分のほかに特性向
上元素を添加した試料No. 17〜20(発明例)では、
ミクロ組織がベイナイト主体となっているため、吸収エ
ネルギーの一層の向上が認められる。
From Table 2, it can be seen that Sample Nos. 17 to 20 (inventive examples) in which a characteristic improving element was added in addition to the basic components,
Since the microstructure is mainly composed of bainite, a further improvement in the absorbed energy is recognized.

【0042】〔実施例C〕下記表3に示した鋼を溶製
し、そのスラブを熱間圧延(仕上温度860℃、巻取温
度550℃)、冷間圧延(冷延率60%、再結晶焼鈍温
度700℃)にて冷延鋼板(板厚1.6mm)を製造し
た。この冷延鋼板から採取した供試鋼板を用いて、図9
に示すように、鋼板ガイド21から供試鋼板Wを対向配
置された高周波コイル22、冷却ノズル23,23の間
に送り込み、表4に示す焼入条件にて供試鋼板の全面に
高周波焼入を施した。ヒートサイクルタイムは約3秒で
あり、焼入温度到達後、速やかに冷却した。
Example C The steels shown in Table 3 below were melted, and the slabs were hot-rolled (finishing temperature 860 ° C., winding temperature 550 ° C.) and cold-rolled (cold rolling rate 60%, A cold-rolled steel sheet (sheet thickness 1.6 mm) was manufactured at a crystal annealing temperature of 700 ° C. Using the test steel sheet collected from this cold-rolled steel sheet, FIG.
As shown in Table 4, a test steel plate W is fed from a steel plate guide 21 between a high-frequency coil 22 and cooling nozzles 23, 23 arranged opposite to each other, and induction hardening is performed on the entire surface of the test steel plate under the hardening conditions shown in Table 4. Was given. The heat cycle time was about 3 seconds, and the sample was cooled immediately after reaching the quenching temperature.

【0043】[0043]

【表3】 [Table 3]

【0044】得られた高周波焼入強化鋼板から引張試験
片を採取し、低速引張(引張速度2mm/sec )の下で最
大応力(静的TS)を求めるとともに、高速引張(引張
速度10m/sec )の下で最大応力(動的TS)を求
め、静動比を求めた。なお、応力は試験片の両面に歪ゲ
ージを付設し、これによって測定された平均荷重から算
出した。また、高周波焼入強化鋼板から組織観察片を採
取し、焼入前の旧オーステナイト結晶粒界の痕跡を顕微
鏡観察し、その平均結晶粒径を測定した。これらの調査
結果を表4に併せて示す。また、静動比と旧オーステナ
イト粒径との関係を整理したグラフを図10に示す。な
お、表4には、焼入前の引張強度も併せて示した。
A tensile test piece was sampled from the obtained induction hardened steel sheet, the maximum stress (static TS) was determined under low-speed tension (tensile speed 2 mm / sec), and the high-speed tensile (tensile speed 10 m / sec) was obtained. ), The maximum stress (dynamic TS) was determined, and the static-dynamic ratio was determined. The stress was calculated from the average load measured by attaching strain gauges on both sides of the test piece. In addition, a microstructure observation piece was collected from the induction hardened steel sheet, and traces of the prior austenite crystal grain boundaries before quenching were observed with a microscope, and the average crystal grain size was measured. The results of these investigations are shown in Table 4. FIG. 10 shows a graph in which the relationship between the static-dynamic ratio and the prior austenite grain size is arranged. Table 4 also shows the tensile strength before quenching.

【0045】[0045]

【表4】 [Table 4]

【0046】表4および図10より、発明鋼を用いた試
料No. 31〜37は、旧オーステナイト粒径が20μm
以下であり、静動比が比較例に比して高い値であり、衝
撃吸収特性に優れていることが推察された。
As shown in Table 4 and FIG. 10, Sample Nos. 31 to 37 using the invention steel had a prior austenite grain size of 20 μm.
It was as follows, and the static-dynamic ratio was a higher value than the comparative example, and it was inferred that the shock-absorbing property was excellent.

【0047】さらに、表3の鋼種A〜C(発明鋼)を用
いて、板厚1.6mmに冷間圧延後、さらに連続溶融亜鉛
めっきラインにて両面で45g/m2 の溶融亜鉛めっき
を施し、実施例Aと同様にして衝撃3点曲げ試験部材1
を製作し、同部位に下記表5の条件にて高周波焼入を行
った。ヒートサイクルタイムは約3秒であり、焼入温度
到達後、速やかに冷却した。
Further, using steel types A to C (inventive steels) shown in Table 3, after cold rolling to a sheet thickness of 1.6 mm, hot-dip galvanizing of 45 g / m 2 was performed on both sides in a continuous hot-dip galvanizing line. And a three-point impact test member 1 in the same manner as in Example A.
Was manufactured, and induction hardening was performed on the same portion under the conditions shown in Table 5 below. The heat cycle time was about 3 seconds, and the sample was cooled immediately after reaching the quenching temperature.

【0048】高周波焼入後、試験部材の焼入部における
亜鉛めっき層の有無を観察した。さらに、下記の要領で
塗膜剥離試験を行い、焼入部に形成した塗膜の剥離の有
無を調べた。試験部材を脱脂し、水洗乾燥後、40℃で
2分間リン酸塩処理液に浸漬し、焼入部にリン酸塩皮膜
を形成し、水洗乾燥後、膜厚約20μm の塗膜を電着塗
装により形成した。乾燥後、10×10mm2 の試験領域
に1mmピッチのマス目をカッターナイフで入れ、40℃
で240hrs純水中に浸漬し、乾燥後、試験領域に接
着テープを張り付け、引き剥がして、1mm角のマス目中
において塗膜が50%以上剥離したものが1箇所でもあ
れば剥離あり(×)と判定した。
After induction hardening, the presence or absence of a galvanized layer in the hardened portion of the test member was observed. Further, a coating film peeling test was performed in the following manner, and the presence or absence of peeling of the coating film formed on the quenched portion was examined. The test member is degreased, rinsed and dried, immersed in a phosphating solution at 40 ° C for 2 minutes to form a phosphate film on the quenched part, rinsed and dried, and then electrocoated with a film having a thickness of about 20 μm. Formed. After drying, a square of 1 mm pitch was put into a 10 × 10 mm 2 test area with a cutter knife,
After immersion in pure water for 240 hrs and drying, an adhesive tape was stuck to the test area and peeled off, and the coating film was peeled off at 50% or more in a square of 1 mm square, and there was peeling even at one place (× ).

【0049】[0049]

【表5】 [Table 5]

【0050】表5より、発明鋼を用い、焼入温度を10
00℃以下として高周波焼入を行ったもの(試料No. 5
1〜55,57,58)では、溶融亜鉛めっき層が残存
し、塗膜の密着性にも優れることが確かめられた。
As shown in Table 5, when the invention steel was used and the quenching temperature was 10
Induction hardened at a temperature of 00 ° C or less (Sample No. 5
In Examples 1 to 55, 57, and 58), it was confirmed that the hot-dip galvanized layer remained and the adhesion of the coating film was excellent.

【0051】〔実施例D〕下記組成の鋼を溶製し、その
連鋳スラブを板厚4.0mmまで熱間圧延(仕上温度87
0℃、巻取温度660℃)し、板厚2.0mmまで冷間圧
延(冷延率50%)し、連続焼鈍溶融亜鉛めっきライン
にて720℃で再結晶焼鈍温度を行った後、460℃に
て溶融亜鉛めっき(めっき量:両面で45g/m2 )を
施し、引き続いて690℃×7sec にて合金化処理を施
した。得られた合金化溶融亜鉛めっき鋼板から供試鋼板
(mmで2.0t×40w×300L)を採取し、これに
図9の高周波焼入装置を用いて焼き入れした。 ・鋼板成分(mass%、残部実質的にFe) C:0.13%、Mn:1.98%、P:0.013
%、S:0.012%、Al:0.041%、Ti<
0.01%、N:0.004%、B:0.0037%
Example D A steel having the following composition was melted, and the continuously cast slab was hot-rolled to a thickness of 4.0 mm (finishing temperature 87).
0 ° C, coiling temperature 660 ° C), cold-rolled to a thickness of 2.0 mm (cold rolling rate 50%), and subjected to recrystallization annealing at 720 ° C in a continuous annealing hot-dip galvanizing line. Then, hot dip galvanizing (amount of plating: 45 g / m 2 on both sides) was performed at ℃, followed by alloying treatment at 690 ° C. × 7 sec. A test steel sheet (2.0 t × 40 w × 300 L in mm) was sampled from the obtained galvannealed steel sheet, and quenched using the induction hardening apparatus shown in FIG. -Steel plate component (mass%, balance substantially Fe) C: 0.13%, Mn: 1.98%, P: 0.013
%, S: 0.012%, Al: 0.041%, Ti <
0.01%, N: 0.004%, B: 0.0037%

【0052】ヒートサイクルタイムが3sec 程度になる
ように、鋼板の送り速度を調整し、種々の焼入温度にて
焼き入れ後、水冷した供試鋼板について、めっき層の有
無、およびめっき層中のFe含有量を調べた。焼入温度
とFe含有量との関係を整理したグラフを図12に示
す。図12より、焼入温度が1000℃以下ではめっき
層が残存することが確認された。また、めっき層中のF
e量も25%程度以下であることが確認された。
The feed rate of the steel sheet was adjusted so that the heat cycle time was about 3 seconds. After quenching at various quenching temperatures, the water-cooled test steel sheet was examined for the presence or absence of the plating layer and the presence of the plating layer. The Fe content was examined. FIG. 12 is a graph showing the relationship between the quenching temperature and the Fe content. From FIG. 12, it was confirmed that the plating layer remained when the quenching temperature was 1000 ° C. or lower. In addition, F in the plating layer
It was also confirmed that the amount of e was about 25% or less.

【0053】次に、焼入温度を700℃、800℃、9
00℃、1000℃とし、加熱後の冷却速度を調整して
種々のヒートサイクルタイムの下で高周波焼入を行っ
た。得られた鋼板のめっき層におけるFe含有量を調
べ、ヒートサイクルタイムとFe含有量との関係を整理
したグラフを図13に示す。図13より、ヒートサイク
ルタイムが60sec 以下では、めっき層中のFeが35
%程度以下に止まっていることが確認された。
Next, the quenching temperature was set to 700 ° C., 800 ° C., 9
Induction quenching was performed under various heat cycle times by adjusting the cooling rate after heating to 00 ° C and 1000 ° C. FIG. 13 is a graph in which the Fe content in the plating layer of the obtained steel sheet was examined, and the relationship between the heat cycle time and the Fe content was arranged. FIG. 13 shows that when the heat cycle time is 60 seconds or less, the Fe in the plating layer is 35%.
% Or less was confirmed.

【0054】さらに、種々のヒートサイクルタイムで高
周波焼入を行った前記供試鋼板から腐食試験片(mmで
2.0t×70w×150L)を採取し、腐食試験を行
った。腐食試験は、JASO自動車材料腐食方法に従
い、下記の工程を1サイクルとして、170サイクル後
の最大穴あき深さを測定することによって実施された。
その結果を図14に示す。 ・1サイクル工程 塩水(35℃、濃度5%)噴霧:8hr 乾燥(60℃、相対湿度30%):4hr 湿潤(50℃、相対湿度90%)暴露:2hr 図14より、めっき層中のFe量を35%以下であれ
ば、最大穴あき深さが500μm 程度以下であり、25
%以下であれば200μm 程度に止まっており、実用上
問題のない耐食性を備えたいることが確認された。
Further, corrosion test pieces (2.0 t × 70 w × 150 L in mm) were sampled from the test steel sheets subjected to induction hardening at various heat cycle times and subjected to a corrosion test. The corrosion test was carried out by measuring the maximum drilling depth after 170 cycles with the following process as one cycle according to the JASO automotive material corrosion method.
The result is shown in FIG. -One cycle process Salt water (35 ° C, 5% concentration) spray: 8 hr Drying (60 ° C, relative humidity 30%): 4 hr Wet (50 ° C, relative humidity 90%) Exposure: 2 hr From FIG. If the amount is 35% or less, the maximum drilling depth is about 500 μm or less,
% Or less, it stayed at about 200 μm, and it was confirmed that it had corrosion resistance that was not problematic in practical use.

【発明の効果】本発明によれば、Ti、N、Bを特定の
範囲に規制したので、高周波加熱の際にBNの分解によ
って生じたフリーBにより焼入性が向上し、また焼入の
際にオーステナイト粒の成長を防止するとともに粒界を
強化するので、焼入部の機械的性質が均一になり、強度
のみならず靱性に優れ、静動比が向上し、優れた耐衝撃
性が得られる。
According to the present invention, since Ti, N, and B are restricted to specific ranges, hardenability is improved by free B generated by decomposition of BN during high-frequency heating, and hardenability is improved. Prevents the growth of austenite grains and strengthens the grain boundaries at the same time, so the mechanical properties of the quenched part are uniform, not only the strength but also the toughness, the static-dynamic ratio is improved, and excellent impact resistance is obtained. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】低速変形時Aと高速変形時Bにおける応力歪線
図を示す。
FIG. 1 shows stress-strain diagrams at a time of low-speed deformation A and at a time of high-speed deformation B.

【図2】衝撃3点曲げ試験に使用した試験部材の斜視図
である。
FIG. 2 is a perspective view of a test member used for an impact three-point bending test.

【図3】衝撃3点曲げ試験要領説明図である。FIG. 3 is an explanatory diagram of a procedure of a three-point impact bending test.

【図4】衝撃3点曲げ試験結果を模式的に示す変位−荷
重線図である。
FIG. 4 is a displacement-load diagram schematically showing the results of an impact three-point bending test.

【図5】実施例AにかかるTi量と衝撃3点曲げ吸収エ
ネルギーとの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the amount of Ti and impact three-point bending absorption energy according to Example A.

【図6】実施例BにかかるN量およびB量が焼入部の硬
さへ及ぼす影響を示すグラフである。
FIG. 6 is a graph showing the influence of the amounts of N and B on the hardness of a quenched portion according to Example B.

【図7】実施例Bの試料No. 13の焼入部付近の硬さ分
布を示すグラフである。
FIG. 7 is a graph showing a hardness distribution near a quenched portion of Sample No. 13 of Example B.

【図8】実施例Bの試料No. 7の焼入部付近の硬さ分布
を示すグラフである。
FIG. 8 is a graph showing a hardness distribution near a quenched portion of Sample No. 7 of Example B.

【図9】実施例Cにおける鋼板の焼入要領を示す概念図
である。
FIG. 9 is a conceptual diagram showing a method of quenching a steel sheet in Example C.

【図10】実施例Cにおける静動比と旧オーステナイト
粒径との関係を示す図である。
FIG. 10 is a graph showing a relationship between a static-dynamic ratio and a prior-austenite grain size in Example C.

【図11】高周波焼入におけるヒートサイクルタイムの
説明図である。
FIG. 11 is an explanatory diagram of a heat cycle time in induction hardening.

【図12】実施例Dにおける焼入温度とめっき層中のF
e含有量との関係を示すグラフである。
FIG. 12 shows the quenching temperature and F in the plating layer in Example D.
It is a graph which shows the relationship with e content.

【図13】実施例Dにおけるヒートサイクルタイムとめ
っき層中のFe含有量との関係を示すグラフである。
FIG. 13 is a graph showing a relationship between a heat cycle time and an Fe content in a plating layer in Example D.

【図14】実施例Dにおけるめっき層中のFe含有量と
腐食試験における最大穴あき深さとの関係を示すグラフ
である。
FIG. 14 is a graph showing the relationship between the Fe content in a plating layer and the maximum hole depth in a corrosion test in Example D.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 mass%で、C:0.05〜0.20%、
Mn:0.3〜2.5%、P:0.02%以下、S:
0.02%以下、Al:0.06%以下、Ti:0.0
15%以下、N:0.010%以下、B:0.0005
〜0.0040%を含み、残部Feおよび不可避的不純
物よりなる焼入部の靱性に優れた高周波焼入用鋼板。
1. mass%, C: 0.05 to 0.20%,
Mn: 0.3-2.5%, P: 0.02% or less, S:
0.02% or less, Al: 0.06% or less, Ti: 0.0
15% or less, N: 0.010% or less, B: 0.0005
A steel sheet for induction hardening which contains about 0.0040% and is excellent in toughness in a hardened part consisting of the balance of Fe and unavoidable impurities.
【請求項2】 請求項1に記載した成分のほか、さらに
Si、Cr、Mo、V、W、Cu、Niのいずれか1種
以上をそれぞれ1.0%以下含有する請求項1に記載し
た焼入部の靱性に優れた高周波焼入用鋼板。
2. The method according to claim 1, further comprising 1.0% or less of at least one of Si, Cr, Mo, V, W, Cu, and Ni, in addition to the components described in claim 1. Induction hardened steel sheet with excellent toughness in the quenched part.
【請求項3】 請求項1または2に記載した高周波焼入
用鋼板により形成され、強度を向上させる部位に高周波
焼入が施された高周波焼入強化部材。
3. An induction hardening strengthening member formed of the steel sheet for induction hardening according to claim 1 or 2, wherein a part for improving strength is subjected to induction hardening.
【請求項4】 請求項1または2に記載された高周波焼
入用鋼板を素板とする溶融亜鉛めっき鋼板により形成さ
れ、強度を向上させる部位に高周波焼入が施され、焼入
部にめっき層が残存してなる高周波焼入強化部材。
4. A hot-dip galvanized steel sheet comprising the steel sheet for induction hardening according to claim 1 or 2 as a base plate, a part for improving strength is subjected to induction hardening, and a plated layer is formed on the hardened part. The induction hardening strengthening member which remains.
【請求項5】 焼入部において観察される、焼入前の旧
オーステナイト粒径が20μm 以下である請求項3また
は4に記載した高周波焼入強化部材。
5. The induction hardening member according to claim 3, wherein the prior austenite grain size before quenching observed in the quenched portion is 20 μm or less.
【請求項6】 請求項1または2に記載した高周波焼入
用鋼板を所定の形状に形成し、強度を向上させる部位に
Ar3点以上、1000℃以下の焼入温度で高周波焼入を
施す高周波焼入強化部材の製造方法。
6. The induction hardening steel sheet according to claim 1 or 2 is formed into a predetermined shape, and induction hardening is performed at a quenching temperature of not less than 3 points and not more than 1000 ° C. at a portion where strength is to be improved. A method for manufacturing an induction hardened reinforcing member.
【請求項7】 請求項1または2に記載された高周波焼
入用鋼板を素板とする溶融亜鉛めっき鋼板を所定の形状
に形成し、強度を向上させる部位にAr3点以上、100
0℃以下の焼入温度で、かつ焼入の際の加熱開始から焼
入温度に到達し、その後350℃に冷却されるまでのヒ
ートサイクルタイムを60sec 以下とする高周波焼入を
施す高周波焼入強化部材の製造方法。
7. A hot-dip galvanized steel sheet using the steel sheet for induction hardening according to claim 1 or 2 as a base plate is formed into a predetermined shape, and a portion where the strength is to be improved is at least three points, and
Induction quenching at a quenching temperature of 0 ° C or less, and a heat cycle time of 60 seconds or less from the start of heating during quenching to the quenching temperature until cooling to 350 ° C. A method for manufacturing a reinforcing member.
JP36100399A 1998-12-28 1999-12-20 Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof Pending JP2000248338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36100399A JP2000248338A (en) 1998-12-28 1999-12-20 Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP37240498 1998-12-28
JP10-372404 1998-12-28
JP36100399A JP2000248338A (en) 1998-12-28 1999-12-20 Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof

Publications (1)

Publication Number Publication Date
JP2000248338A true JP2000248338A (en) 2000-09-12

Family

ID=26581181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36100399A Pending JP2000248338A (en) 1998-12-28 1999-12-20 Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof

Country Status (1)

Country Link
JP (1) JP2000248338A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241895A (en) * 2000-12-15 2002-08-28 Kobe Steel Ltd Thin steel sheet having excellent ductility and strength stability after heat treatment
US6645320B2 (en) 2000-12-15 2003-11-11 Kobe Steel, Ltd. Steel sheet excellent in ductility and strength stability after heat treatment
JP2004211158A (en) * 2002-12-27 2004-07-29 Nippon Steel Corp Galvanized steel for welding, and electric resistance welded tube thereof
EP1359235A4 (en) * 2001-02-07 2005-01-12 Jfe Steel Corp Thin steel sheet and method for production thereof
JP2006022395A (en) * 2004-07-09 2006-01-26 Nippon Steel Corp High strength quenched molding having excellent corrosion resistance and its production method
JP2006200020A (en) * 2005-01-21 2006-08-03 Nippon Steel Corp Steel member for vehicle and manufacturing method therefor
JP2006213941A (en) * 2005-02-01 2006-08-17 Sumitomo Metal Ind Ltd Method for manufacturing composite component having superior effect of reducing quenching distortion
JP2007077466A (en) * 2005-09-15 2007-03-29 Sumitomo Metal Ind Ltd Steel sheet for rapid heating/quenching, and its manufacturing method
JP2008013835A (en) * 2006-07-08 2008-01-24 Delta Tooling Co Ltd High-strength metal member and manufacturing method therefor
WO2009096351A1 (en) 2008-01-28 2009-08-06 Sumitomo Metal Industries, Ltd. Galvannealed heat-treated steel material and process for producing the same
US7673485B2 (en) 2001-10-23 2010-03-09 Sumitomo Metal Industries, Ltd. Hot press forming method
WO2010084883A1 (en) 2009-01-21 2010-07-29 住友金属工業株式会社 Curved metallic material and process for producing same
JP2010202972A (en) * 2009-02-03 2010-09-16 Sumitomo Metal Ind Ltd Galvanized heat-treated steel member, and method for producing the same
JP2011046993A (en) * 2009-08-26 2011-03-10 Sumitomo Metal Ind Ltd Coated and heat-treated steel and method for manufacturing the same
KR101149728B1 (en) 2009-07-21 2012-07-09 부산대학교 산학협력단 Method for fabricating a member of vehicle
DE112010000702T5 (en) 2009-02-03 2012-09-20 Aisin Takaoka Co., Ltd. High-strength, quenched molded part and method for its production
US8747578B2 (en) 2003-12-12 2014-06-10 Jfe Steel Corporation Steel for structural part of automobile and method for producing the same
FR3019560A1 (en) * 2014-04-04 2015-10-09 Peugeot Citroen Automobiles Sa METHOD FOR THERMALLY PROCESSING A METALLIC PRODUCT, IN PARTICULAR A MOTOR VEHICLE PART

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645320B2 (en) 2000-12-15 2003-11-11 Kobe Steel, Ltd. Steel sheet excellent in ductility and strength stability after heat treatment
JP2002241895A (en) * 2000-12-15 2002-08-28 Kobe Steel Ltd Thin steel sheet having excellent ductility and strength stability after heat treatment
EP1359235A4 (en) * 2001-02-07 2005-01-12 Jfe Steel Corp Thin steel sheet and method for production thereof
US7673485B2 (en) 2001-10-23 2010-03-09 Sumitomo Metal Industries, Ltd. Hot press forming method
JP2004211158A (en) * 2002-12-27 2004-07-29 Nippon Steel Corp Galvanized steel for welding, and electric resistance welded tube thereof
US8747578B2 (en) 2003-12-12 2014-06-10 Jfe Steel Corporation Steel for structural part of automobile and method for producing the same
JP4671634B2 (en) * 2004-07-09 2011-04-20 新日本製鐵株式会社 High-strength quenched molded body with excellent corrosion resistance and method for producing the same
JP2006022395A (en) * 2004-07-09 2006-01-26 Nippon Steel Corp High strength quenched molding having excellent corrosion resistance and its production method
US7892605B2 (en) 2004-07-09 2011-02-22 Aisin Takaoka Co., Ltd. High-strength quenched formed body with good corrosion resistance and process for producing the same
US8133544B2 (en) 2004-07-09 2012-03-13 Aisin Takaoka Co., Ltd. High-strength quenched formed body with good corrosion resistance and process for producing the same
US8697253B2 (en) 2004-07-09 2014-04-15 Aisin Takaoka Co., Ltd. High-strength quenched formed body with good corrosion resistance
JP2006200020A (en) * 2005-01-21 2006-08-03 Nippon Steel Corp Steel member for vehicle and manufacturing method therefor
JP4513587B2 (en) * 2005-02-01 2010-07-28 住友金属工業株式会社 Manufacturing method of composite parts with excellent quenching deformation reduction effect
JP2006213941A (en) * 2005-02-01 2006-08-17 Sumitomo Metal Ind Ltd Method for manufacturing composite component having superior effect of reducing quenching distortion
JP4513701B2 (en) * 2005-09-15 2010-07-28 住友金属工業株式会社 Steel plate for rapid heating and quenching and its manufacturing method
JP2007077466A (en) * 2005-09-15 2007-03-29 Sumitomo Metal Ind Ltd Steel sheet for rapid heating/quenching, and its manufacturing method
JP2008013835A (en) * 2006-07-08 2008-01-24 Delta Tooling Co Ltd High-strength metal member and manufacturing method therefor
WO2009096351A1 (en) 2008-01-28 2009-08-06 Sumitomo Metal Industries, Ltd. Galvannealed heat-treated steel material and process for producing the same
AU2009210072B2 (en) * 2008-01-28 2011-11-10 Nippon Steel Corporation Heat treated galvannealed steel material and a method for its manufacture
EP2248927A4 (en) * 2008-01-28 2012-01-04 Sumitomo Metal Ind Galvannealed heat-treated steel material and process for producing the same
EP2248927A1 (en) * 2008-01-28 2010-11-10 Sumitomo Metal Industries, Ltd. Galvannealed heat-treated steel material and process for producing the same
CN101978089B (en) * 2008-01-28 2012-06-27 住友金属工业株式会社 Heat treated galvannealed steel material and a method for its manufacture
KR101748540B1 (en) * 2008-01-28 2017-06-16 신닛테츠스미킨 카부시키카이샤 Galvannealed heat-treated steel material and process for producing the same
JP5757061B2 (en) * 2008-01-28 2015-07-29 新日鐵住金株式会社 Alloyed hot-dip galvanized heat-treated steel and method for producing the same
EA017216B1 (en) * 2008-01-28 2012-10-30 Сумитомо Метал Индастриз, Лтд. Galvannealed heat-treated steel material and process for producing the same
US9045817B2 (en) 2008-01-28 2015-06-02 Nippon Steel & Sumitomo Metal Corporation Heat treated galvannealed steel material and a method for its manufacture
WO2010084883A1 (en) 2009-01-21 2010-07-29 住友金属工業株式会社 Curved metallic material and process for producing same
US8490457B2 (en) 2009-01-21 2013-07-23 Nippon Steel & Sumitomo Metal Corporation Bent metal member and a method for its manufacture
DE112010000702B4 (en) * 2009-02-03 2014-02-13 Aisin Takaoka Co., Ltd. High-strength, quenched molded part and method for its production
JP2010202972A (en) * 2009-02-03 2010-09-16 Sumitomo Metal Ind Ltd Galvanized heat-treated steel member, and method for producing the same
JP2014088625A (en) * 2009-02-03 2014-05-15 Nippon Steel & Sumitomo Metal Galvanized heat-treated steel material and method of producing the same
US8858735B2 (en) 2009-02-03 2014-10-14 Toyota Jidosha Kabushiki Kaisha High-strength press hardened article, and manufacturing method therefor
DE112010000702T5 (en) 2009-02-03 2012-09-20 Aisin Takaoka Co., Ltd. High-strength, quenched molded part and method for its production
DE112010000702C5 (en) * 2009-02-03 2021-07-01 Aisin Takaoka Co., Ltd. High-strength, quenched molded part and process for its manufacture
US8555507B2 (en) 2009-07-21 2013-10-15 Sungwoo Hitech Co., Ltd. Method for fabricating a member of a vehicle
KR101149728B1 (en) 2009-07-21 2012-07-09 부산대학교 산학협력단 Method for fabricating a member of vehicle
JP2011046993A (en) * 2009-08-26 2011-03-10 Sumitomo Metal Ind Ltd Coated and heat-treated steel and method for manufacturing the same
FR3019560A1 (en) * 2014-04-04 2015-10-09 Peugeot Citroen Automobiles Sa METHOD FOR THERMALLY PROCESSING A METALLIC PRODUCT, IN PARTICULAR A MOTOR VEHICLE PART

Similar Documents

Publication Publication Date Title
US10190186B2 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and crashworthiness
EP2581465B1 (en) Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article
JP6729835B1 (en) High-strength steel sheet and method for manufacturing the same
JP5732907B2 (en) Hot three-dimensional bending steel, hot three-dimensional bending steel and manufacturing method thereof
JP5365216B2 (en) High-strength steel sheet and its manufacturing method
US7608155B2 (en) High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
JP3887235B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in stretch flangeability and impact resistance, and manufacturing method thereof
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP2014118613A (en) Hot stamp molded body excellent in strength and hydrogen embrittlement resistance and its manufacturing method
KR20060118602A (en) Zinc hot dip galvanized composite high strength steel plate excellent in formability and bore-expanding characteristics and method for production thereof
US11155902B2 (en) High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
JP2005139485A (en) Steel sheet to be hot-formed
JP2000248338A (en) Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof
JP5741456B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
CN109642263B (en) Method for producing a high-strength steel strip with improved properties during further processing, and such a steel strip
KR102500089B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2003213370A (en) High strength steel sheet, high strength galvanized steel sheet and high strength galvannealed steel sheet having excellent shape freezability and collision resistance, and production method therefor
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP7111252B2 (en) Coated steel member, coated steel plate and manufacturing method thereof
JP3932892B2 (en) High-strength steel plate and high-strength electroplated steel plate excellent in ductility, stretch flangeability and shock absorption characteristics and methods for producing them
JP2001011565A (en) High strength steel sheet excellent in impact energy absorbability and its production
KR20230012027A (en) Steel plate, members and their manufacturing method
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP2005206920A (en) High-tensile-strength hot-dip galvanized hot-rolled steel sheet with low yield ratio and composite structure superior in extension flange, and manufacturing method therefor
JP2002317245A (en) High strength galvanized steel sheet having excellent press workability and production method therefor