JP4610272B2 - Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking - Google Patents

Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking Download PDF

Info

Publication number
JP4610272B2
JP4610272B2 JP2004274511A JP2004274511A JP4610272B2 JP 4610272 B2 JP4610272 B2 JP 4610272B2 JP 2004274511 A JP2004274511 A JP 2004274511A JP 2004274511 A JP2004274511 A JP 2004274511A JP 4610272 B2 JP4610272 B2 JP 4610272B2
Authority
JP
Japan
Prior art keywords
mass
steel
steel sheet
alloy
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004274511A
Other languages
Japanese (ja)
Other versions
JP2006089787A (en
Inventor
延和 藤本
孝 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2004274511A priority Critical patent/JP4610272B2/en
Publication of JP2006089787A publication Critical patent/JP2006089787A/en
Application granted granted Critical
Publication of JP4610272B2 publication Critical patent/JP4610272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、Zn-Al-Mg合金めっき層の優れた高耐食性を活用し、溶接,ろう付け時等に加熱されても溶融金属脆化割れを生じがたいZn-Al-Mg合金めっき鋼板を製造する方法に関する。   The present invention makes use of a Zn-Al-Mg alloy-plated steel sheet that utilizes the excellent high corrosion resistance of a Zn-Al-Mg alloy-plated layer, and does not easily cause molten metal embrittlement cracks even when heated during welding, brazing, etc. It relates to a method of manufacturing.

代表的な耐食材料にめっき鋼板があり、なかでもZn-Al-Mg合金めっき鋼板は過酷な腐食雰囲気においても優れた耐食性を呈する。Zn-Al-Mg合金めっき鋼板を用い各種構造体を組み立てる場合、所定形状に成形したZn-Al-Mg合金めっき鋼板を溶接する方法が多用されているが、溶接時の高温加熱で溶接熱影響部に粒界割れが発生しやすい。粒界に沿って割れが伝播すると、溶融金属脆化現象として現れる。   A typical corrosion resistant material is a plated steel sheet, and a Zn—Al—Mg alloy plated steel sheet exhibits excellent corrosion resistance even in a severe corrosive atmosphere. When assembling various structures using Zn-Al-Mg alloy-plated steel sheets, a method of welding Zn-Al-Mg alloy-plated steel sheets that have been formed into a predetermined shape is often used. Intergranular cracking is likely to occur in the part. When cracks propagate along grain boundaries, they appear as a molten metal embrittlement phenomenon.

溶融金属脆化割れは、たとえば鋼材を溶接して鉄塔,橋梁等の大型構造物を組み立てた後、防錆を狙って溶融亜鉛めっき(ドブ漬けめっき)する場合にも溶接熱影響部に発生しやすい。溶融金属脆化割れの防止には、旧オーステナイト粒界の不鮮明化,Bを初めとする鋼中不純物元素の低減等が有効とされている。しかし、旧オーステナイト粒界の不鮮明化や鋼中不純物元素の低減等は、たかだか450℃程度の溶融亜鉛めっき浴にドブ漬けする場合に発生する割れ防止の対策であり、溶接時に短時間で千数百度の高温に曝された直後に溶接熱影響部に発生する割れの防止には別途の対策が必要とされる。   Molten metal embrittlement cracks occur in the heat affected zone even when, for example, steel materials are welded and large structures such as steel towers and bridges are assembled and then hot dip galvanized (dipped soaking) is used to prevent rust. Cheap. In order to prevent molten metal embrittlement cracking, it is effective to make old austenite grain boundaries unclear and to reduce impurity elements in steel such as B. However, the blurring of prior austenite grain boundaries and the reduction of impurity elements in steel are measures to prevent cracks that occur when being immersed in a hot dip galvanizing bath at about 450 ° C. A separate measure is required to prevent cracks occurring in the heat affected zone immediately after being exposed to a high temperature of Baidu.

具体的には、ドブ漬け溶融亜鉛めっきした溶接部品に発生しがちな溶融亜鉛めっき割れを防止するため、TiNを析出させて溶接時に溶接熱影響部のオーステナイト粒の成長を抑制し、溶接後の冷却時、溶接熱影響部の粒界に微細なフェライト粒からなる金属組織とする方法が知られている(特許文献1)。しかし、溶接,冷却後の金属組織が細粒化されるに留まり、溶接直後のオーステナイト域で生じる割れの抑制には十分な対策とはいえない。
特開平10-96021号公報
Specifically, in order to prevent hot dip galvanized cracks that are likely to occur in hot-dip galvanized welded parts, TiN is deposited to suppress the growth of austenite grains in the heat affected zone during welding, and after welding A method of forming a metal structure composed of fine ferrite grains at the grain boundary of the weld heat affected zone during cooling is known (Patent Document 1). However, the metal structure after welding and cooling is only refined, and it cannot be said that it is a sufficient measure for suppressing cracks occurring in the austenite region immediately after welding.
Japanese Patent Laid-Open No. 10-96021

極低炭素鋼では、溶接やろう付け時に高温加熱されたときのオーステナイト粒の異常成長をNb炭化物で抑制し、成形性,疲労強度に優れ、耐溶融金属脆化割れ性も改善された薄鋼板が知られている(特許文献2)。Nb炭化物によるオーステナイト粒の粗大化防止は鋼板の成形性,疲労特性の改善を狙ったものであり、Cu含有量に対応して適量のNiを含有させることにより溶融金属脆化割れを抑制している。
特開平10-195597号公報
For ultra-low carbon steel, Nb carbide suppresses abnormal growth of austenite grains when heated at high temperature during welding or brazing, and has excellent formability and fatigue strength, and improved resistance to molten metal embrittlement cracking Is known (Patent Document 2). The prevention of coarsening of austenite grains due to Nb carbide is aimed at improving the formability and fatigue characteristics of the steel sheet, and by containing an appropriate amount of Ni corresponding to the Cu content, molten metal embrittlement cracking is suppressed. Yes.
JP-A-10-195597

Zn-Al-Mg合金めっき鋼板に発生しがちな溶融金属脆化割れは、低融点のMg含有相が原因と考えられており、同じ鋼材を下地鋼に用いた場合でも通常の亜鉛系,アルミニウム系めっきに比較して発生傾向が強い。そのため、従来の溶融金属脆化割れ防止法に代わる対策が要求される。
本発明は、溶融金属脆化割れの発生,進展防止に下地鋼の表面状態が影響を及ぼしている知見をベースに、鋼材表面に強固で薄い皮膜を形成することにより下地鋼表面の結晶粒界への溶融めっき金属の侵入を抑え、耐溶融金属脆化割れ性を改善したZn-Al-Mg合金めっき鋼板を製造することを目的とする。
Molten metal embrittlement cracking that tends to occur in Zn-Al-Mg alloy-plated steel sheet is considered to be caused by a low melting point Mg-containing phase. Even when the same steel material is used for the base steel, it is usually zinc-based, aluminum The tendency to occur is stronger compared to the system plating. Therefore, an alternative to the conventional molten metal embrittlement cracking prevention method is required.
The present invention is based on the knowledge that the surface condition of the base steel has an effect on preventing the occurrence and progress of molten metal embrittlement cracks, and by forming a strong and thin film on the surface of the steel, An object of the present invention is to produce a Zn-Al-Mg alloy-plated steel sheet with improved resistance to hot metal embrittlement cracking by suppressing the penetration of the hot-dip metal into the steel.

本発明は、Cr,Cu,Ni等をSiと複合添加することにより、強固で薄い皮膜が形成された鋼板を溶融Zn‐Al‐Mg合金めっきの下地鋼に使用することを特徴とする。
下地鋼は、C:0.001〜0.3質量%,Si:0.01〜1.5質量%,Mn:0.05〜2.0質量%,P:0.2質量%以下,S:0.03質量%以下を含み、更にCu:0.05〜0.5質量%,Ni:0.05〜0.5質量%,Cr:0.05〜0.5質量%の一種又は二種以上を含ませた下地鋼を使用する。
下地鋼を500〜850℃で還元焼鈍した後、溶融Zn‐Al‐Mg合金めっき浴に導入することにより、耐溶融金属脆化割れ性に優れたZn‐Al‐Mg合金めっき鋼板が製造される。
The present invention is characterized in that a steel plate on which a strong and thin film is formed by adding Cr, Cu, Ni or the like together with Si is used as a base steel for hot-dip Zn-Al-Mg alloy plating.
The base steel is C: 0.001 to 0.3 mass%, Si: 0.01 to 1.5 mass%, Mn: 0.05 to 2.0 mass%, P: 0.2 mass% or less, S : 0.03 mass% or less, Cu: 0.05-0.5 mass%, Ni: 0.05-0.5 mass%, Cr: 0.05-0.5 mass% Use base steel containing more than seeds.
After the base steel is subjected to reduction annealing at 500 to 850 ° C., it is introduced into a molten Zn—Al—Mg alloy plating bath to produce a Zn—Al—Mg alloy plated steel sheet having excellent resistance to molten metal embrittlement cracking. .

発明の効果及び実施の形態Effects and embodiments of the invention

Zn-Al-Mg合金めっき鋼板をアーク溶接等で溶接すると、溶接金属と母材との境界近傍(溶接止端部)に割れが発生しやすい。溶接点から溶接トーチが去った後で割れが発生することから、割れ発生のメカニズムが次のように推察される。
割れ発生個所にある溶融めっき層は、溶接トーチの接近に従って溶融状態になり、非常に高温の溶接熱のため最終的には蒸発・枯渇する。しかし、溶接トーチが去った直後、溶融めっき層の蒸発温度よりも低くなってくると、比較的低温で溶融状態の溶融めっき層が溶接点の周囲から溶接止端部に向かって流れ込んでくる。このとき、形状的に応力が集中しやすい個所である溶接止端部では、冷却過程で鋼材内部に生じる引張り応力により溶融めっき金属が鋼材表面の結晶粒界に侵入しやすい状態になり、結果として溶融金属脆化が発生する。
When a Zn—Al—Mg alloy plated steel sheet is welded by arc welding or the like, cracks are likely to occur near the boundary between the weld metal and the base metal (weld toe). Since cracking occurs after the welding torch has left the welding point, the mechanism of crack generation is assumed as follows.
The hot dip plating layer at the crack generation site becomes molten as the welding torch approaches, and eventually evaporates and depletes due to the very high temperature of the welding heat. However, immediately after the welding torch has left, when the temperature becomes lower than the evaporation temperature of the hot-dip plating layer, the hot-dip hot-dip plating layer flows at a relatively low temperature from the periphery of the welding point toward the weld toe. At this time, at the weld toe where the stress tends to concentrate in shape, the hot-dip plated metal tends to enter the crystal grain boundary on the surface of the steel due to the tensile stress generated inside the steel during the cooling process. Molten metal embrittlement occurs.

溶融金属脆化割れの発生メカニズムを前提にすると、溶接止端部に流入した溶融めっき金属が鋼材表面の結晶粒界に侵入することを抑制することが溶融金属脆化割れの防止に有効といえる。そこで、本発明においては、Cr,Cu,Ni等がSiと共に濃化した強固で薄い皮膜が形成された下地鋼を使用することにより、鋼材表面の結晶粒界に溶融めっき金属が侵入することを抑制している。   Given the occurrence mechanism of molten metal embrittlement cracking, it can be said that it is effective to prevent molten metal embrittlement cracking by preventing the molten plated metal that has flowed into the weld toe from entering the crystal grain boundaries on the steel surface. . Therefore, in the present invention, by using a base steel on which a strong and thin film in which Cr, Cu, Ni, etc. are concentrated together with Si is formed, it is possible that hot-dipped metal penetrates into crystal grain boundaries on the surface of the steel material. Suppressed.

Cr,Cu,Ni等がSiと共に濃化した皮膜は、環境遮断能が高く、溶接,ろう付け時等にZn-Al-Mg合金めっき鋼板が高温加熱されて生じる溶融めっき金属に対するバリアとして作用する。そのため、溶融めっき金属が鋼板表面の結晶粒界に侵入することに起因する溶融金属脆化が抑えられ、Zn-Al-Mg合金めっき鋼板の耐溶融金属脆化割れ性が向上する。しかも、Cr,Cu,Ni等を含む薄膜であるため、めっき性の低下も少なく、健全な溶融Zn-Al-Mg合金めっき層が鋼板表面に形成される。   A film in which Cr, Cu, Ni, etc. are concentrated together with Si has a high environmental barrier, and acts as a barrier against hot-dip plated metal that is generated when a Zn-Al-Mg alloy-plated steel sheet is heated at high temperatures during welding and brazing. . Therefore, molten metal embrittlement due to the penetration of the hot-dip metal into the grain boundary on the surface of the steel sheet is suppressed, and the resistance to hot metal embrittlement cracking of the Zn—Al—Mg alloy-plated steel sheet is improved. And since it is a thin film containing Cr, Cu, Ni, etc., there is little fall of plating property and a healthy molten Zn-Al-Mg alloy plating layer is formed in the steel plate surface.

以下、下地鋼に含まれる合金成分,含有量等を説明する。
・C:0.001〜0.3質量%
材料強度の確保に有効な成分であり、必要強度を得るため0.001質量%以上にC含有量を定める。しかし、フェライト相への固溶,炭化物の形成により鋼板の延性を低下させるので、上限を0.3質量%に規制する。
Hereinafter, alloy components, contents, and the like included in the base steel will be described.
C: 0.001 to 0.3% by mass
It is an effective component for securing the material strength, and the C content is set to 0.001% by mass or more in order to obtain the required strength. However, since the ductility of the steel sheet is lowered by the solid solution in the ferrite phase and the formation of carbides, the upper limit is regulated to 0.3% by mass.

・Si:0.01〜1.5質量%
材料強度を上昇させる固溶強化成分であり、溶接時の高熱によって鋼板表面に皮膜を形成し、溶融金属脆化を防止する作用を呈する。このような作用は、0.01質量%以上のSi添加でみられる。Si含有皮膜は、鋼板表面に濃化しやすいCr,Cu,Ni等を取り込み、溶融金属脆化の抑制に有効な一層強固で緻密な皮膜に改質される。しかし、1.5質量%を超える過剰量のSiが含まれると、鋼板の延性が低下し、めっき密着性にとって有害なSi濃化層が鋼板表面に生成しやすくなる。好ましくは、0.01〜0.5質量%の範囲でSi含有量を選定する。
-Si: 0.01-1.5 mass%
It is a solid solution strengthening component that raises the material strength, and forms a film on the surface of the steel sheet due to high heat during welding, and exhibits the action of preventing molten metal embrittlement. Such an effect is observed when Si is added in an amount of 0.01% by mass or more. The Si-containing film incorporates Cr, Cu, Ni, etc. that are easily concentrated on the steel sheet surface, and is reformed into a stronger and denser film that is effective for suppressing molten metal embrittlement. However, when an excessive amount of Si exceeding 1.5% by mass is contained, the ductility of the steel sheet is lowered, and a Si concentrated layer that is harmful to plating adhesion tends to be formed on the steel sheet surface. Preferably, the Si content is selected in the range of 0.01 to 0.5% by mass.

・Mn:0.05〜2.0質量%
S起因の脆化を防止すると共に強度向上にも有効な元素であり、0.05質量%以上でMnの添加効果がみられる。しかし、2.0質量%を超える過剰量のMnは、加工性,溶接性を劣化させ、めっき密着性にとって有害なMn濃化層を鋼板表面に生成させる。好ましくは、0.1〜1.5質量%の範囲でMn含有量を選定する。
Mn: 0.05 to 2.0 mass%
It is an element that prevents embrittlement due to S and is effective in improving the strength, and an effect of adding Mn is seen at 0.05% by mass or more. However, an excessive amount of Mn exceeding 2.0% by mass deteriorates workability and weldability, and forms a Mn-concentrated layer on the steel sheet surface that is harmful to plating adhesion. Preferably, the Mn content is selected in the range of 0.1 to 1.5 mass%.

・P:0.2質量%以下
延性に悪影響を及ぼす成分であることから、高加工性が要求される用途ではP含有量が低いほど好ましい。他方、強度向上に有効な成分であるので、高強度化用途には加工性,めっき密着性に悪影響を及ぼさない範囲(具体的には0.2質量%以下,好ましくは、0.15質量%以下)でPを添加できる。
・S:0.03質量%以下
熱間脆化の原因となり、加工性,耐食性に有害な成分であるので、可能な限り低減することが好ましい。本成分系では、製造コストを考慮してS含有量の上限を0.03質量%(好ましくは、0.015質量%)に定めた。
-P: 0.2 mass% or less Since it is a component which has a bad influence on ductility, it is so preferable that P content is low in the use where high workability is requested | required. On the other hand, since it is an effective component for improving the strength, it does not adversely affect the workability and plating adhesion for high strength applications (specifically, 0.2% by mass or less, preferably 0.15% by mass). In the following, P can be added.
S: 0.03 mass% or less Since it is a component that causes hot embrittlement and is harmful to workability and corrosion resistance, it is preferably reduced as much as possible. In the present component system, the upper limit of the S content is set to 0.03 mass% (preferably 0.015 mass%) in consideration of manufacturing costs.

Cr,Ni,Cu:0.05〜0.5質量%
何れも鋼板表面に濃化しやすい成分であり、Si含有皮膜を強固で緻密な皮膜に改質する。鋼材表面に皮膜を形成する元素としてSi,Mn等が知られているが、SiやMnの単独添加又はSi,Mnの複合添加による皮膜形成効果だけでは、溶接時に発生しがちな溶融金属脆化割れを十分に防ぎきれない。他方、Siと共にCr,Cu,Niの一種又は二種以上を複合添加すると、Si単独添加に比較して格段に強固で緻密な皮膜が鋼材表面に形成される。該皮膜は、溶融めっき金属に対し十分なバリア機能を呈し、耐溶融金属脆化割れ性を向上させる。このような効果は、0.05質量%以上のCr,Cu及び/又はNiを添加することにより得られる。しかし、Cr,Cu,Ni等を過剰添加すると鋼材の加工性が低下するので、添加量の上限を0.5質量%に定めた。
Cr, Ni, Cu: 0.05-0.5 mass%
Both are components that are easily concentrated on the surface of the steel sheet, and modify the Si-containing film into a strong and dense film. Si, Mn, etc. are known as elements that form a film on the surface of steel. However, only the effect of forming a film by adding Si or Mn alone or by adding Si or Mn alone is a molten metal embrittlement that tends to occur during welding. The cracks cannot be prevented sufficiently. On the other hand, when one or two or more of Cr, Cu, and Ni are added together with Si, a much stronger and denser film is formed on the surface of the steel material than when adding Si alone. The coating exhibits a sufficient barrier function with respect to the molten plated metal and improves the resistance to molten metal embrittlement cracking. Such an effect can be obtained by adding 0.05% by mass or more of Cr, Cu and / or Ni. However, if Cr, Cu, Ni or the like is added excessively, the workability of the steel material is lowered, so the upper limit of the addition amount was set to 0.5 mass%.

・溶融めっき前の還元焼鈍
連続溶融めっきラインでは、還元焼鈍炉に鋼帯を送り込んで鋼板表面を活性化した後、溶融めっき浴に導入し、溶融めっき浴から引き上げられた鋼帯の表面に付着している余剰の溶融めっき金属をガスワイピング等で除去することにより、所定の付着量で溶融めっき層が形成された溶融めっき鋼板を製造している。溶融めっき浴への導入に先立つ還元焼鈍過程で加熱温度:500〜850℃で鋼帯を還元焼鈍すると、適量のCr,Cu,Ni等が鋼帯表層に濃化し、強固で緻密な皮膜が鋼帯表面に形成される。還元焼鈍温度が高すぎるとCr,Cu,Ni等の濃化が著しく進行し、不めっき等のめっき欠陥が発生しやすくなる。逆に低すぎる還元焼鈍温度では、鋼帯表層に適量のCr,Cu,Ni等を濃化させるのに長時間加熱を要する。
具体的には、還元焼鈍によってCr,Cu,Ni等が5原子%以上に濃化すると、溶接時の高熱によっても破壊されない強固な皮膜が生成する。Cr,Cu,Ni等の皮膜強化作用はSi,Mn量によって影響を受けるので、好ましくはSi:25原子%以下,Mn:15原子%以下に規制する。また、Mn,Siに加えCr,Cu,Ni等が多すぎると溶融めっき時に不めっきが発生しやすくなるので、前述したようにCr,Cu,Ni等の過剰添加を避ける。
・ Reduction annealing before hot dipping In a continuous hot dipping plating line, the steel strip is fed into a reduction annealing furnace to activate the steel plate surface, and then introduced into the hot dipping bath and adheres to the surface of the steel strip pulled up from the hot dipping bath. The hot dip plated steel sheet on which the hot dip plated layer is formed with a predetermined adhesion amount is manufactured by removing the excess hot dip plated metal by gas wiping or the like. When the steel strip is subjected to reduction annealing at a heating temperature of 500 to 850 ° C. in the reduction annealing process prior to introduction into the hot dipping bath, an appropriate amount of Cr, Cu, Ni, etc. is concentrated on the steel strip surface layer, resulting in a strong and dense film It is formed on the belt surface. If the reduction annealing temperature is too high, the concentration of Cr, Cu, Ni, etc. proceeds remarkably, and plating defects such as non-plating tend to occur. On the other hand, when the reduction annealing temperature is too low, heating is required for a long time to concentrate an appropriate amount of Cr, Cu, Ni, etc. on the steel strip surface layer.
Specifically, when Cr, Cu, Ni or the like is concentrated to 5 atomic% or more by reduction annealing, a strong film that is not destroyed by high heat during welding is generated. Since the film strengthening action of Cr, Cu, Ni, etc. is affected by the amount of Si and Mn, it is preferably restricted to Si: 25 atomic% or less and Mn: 15 atomic% or less. Further, if there is too much Cr, Cu, Ni, etc. in addition to Mn, Si, non-plating is likely to occur during hot dipping, so that excessive addition of Cr, Cu, Ni, etc. is avoided as described above.

溶融Zn-Al-Mg合金めっき浴には、Mg:0.05〜10質量%,Al:4〜22質量%を含み、必要に応じて、Ti:0.001〜0.1質量%,B:0.0005〜0.045質量%,希土類元素,Y,Zr,Si等の易酸化性元素少なくとも一種:0.005〜2.0質量%を含む溶融めっき浴が使用される。溶融めっき浴の組成は、溶融Zn-Al-Mg合金めっき層の組成にほぼ等しく反映される。   The molten Zn—Al—Mg alloy plating bath contains Mg: 0.05 to 10% by mass, Al: 4 to 22% by mass, Ti: 0.001 to 0.1% by mass, B A hot dipping bath containing 0.0005 to 0.045% by mass and at least one easily oxidizable element such as rare earth elements, Y, Zr, and Si: 0.005 to 2.0% by mass is used. The composition of the hot dip plating bath is almost equally reflected in the composition of the hot dip Zn—Al—Mg alloy plating layer.

Mgはめっき層の最表層にMgを含むZn系腐食生成物を形成させ、該腐食生成物がインヒビターとなって高耐食性を付与する。溶接ビード部や切断端面にも腐食生成物の一部が流れ込み、ビード部や切断端面の腐食が抑制される。めっき層中にZn-Mg系の金属間化合物を形成させてめっき層を硬質化する上でもMgは有効な成分である。このような効果を発揮させるため、Mg含有量を0.05〜10質量%(好ましくは、1〜4質量%)の範囲に調整する。   Mg forms a Zn-based corrosion product containing Mg on the outermost layer of the plating layer, and the corrosion product acts as an inhibitor to impart high corrosion resistance. A part of the corrosion product also flows into the weld bead part and the cut end face, and corrosion of the bead part and the cut end face is suppressed. Mg is an effective component for forming a Zn—Mg-based intermetallic compound in the plating layer to harden the plating layer. In order to exert such effects, the Mg content is adjusted to a range of 0.05 to 10% by mass (preferably 1 to 4% by mass).

めっき層中のZn,MgがMg含有Zn系腐食生成物を形成するのに対し、Alは固着性の極めて強いZn-Al系腐食生成物を形成し、耐食性の向上に寄与する。また、Al含有によりZn/Al/Zn2Mg三元共晶がめっき層の凝固組織に出現する。Zn/Al/Zn2Mg三元共晶組織は、Zn/Zn2Mg二元共晶組織より組織が微細であり、耐食性向上,めっき層の硬質化に有効である。固着性の強いZn-Al系腐食生成物を形成し、Zn/Al/Zn2Mg三元共晶組織を形成させるため、4質量%以上のAl含有量が必要である。しかし、Al含有量の増加に応じてめっき金属の融点が上昇し、めっき浴を高温に保持することが必要になり素材の生産性も悪くなるので、Al含有量の上限を22質量%とすることが好ましい。 While Zn and Mg in the plating layer form a Mg-containing Zn-based corrosion product, Al forms a Zn—Al-based corrosion product with extremely strong adhesion, contributing to improvement in corrosion resistance. Moreover, Zn / Al / Zn 2 Mg ternary eutectic appears in the solidified structure of the plating layer due to the Al content. The Zn / Al / Zn 2 Mg ternary eutectic structure is finer than the Zn / Zn 2 Mg binary eutectic structure and is effective in improving corrosion resistance and hardening the plating layer. In order to form a Zn—Al-based corrosion product having strong adhesion and to form a Zn / Al / Zn 2 Mg ternary eutectic structure, an Al content of 4% by mass or more is required. However, as the Al content increases, the melting point of the plating metal rises, and it is necessary to keep the plating bath at a high temperature, and the productivity of the material also deteriorates, so the upper limit of the Al content is 22% by mass. It is preferable.

任意成分であるTi,Bを添加すると、表面外観を害するZn11Mg2相の生成が抑制され、めっき層中に晶出するZn-Mg系金属間化合物が実質的にZn2Mgのみになる。具体的には、Ti:0.001質量%以上(好ましくは、0.002質量%以上)でZn11Mg2相の生成を効果的に抑制される。しかし、0.1質量%を超える過剰量のTiが含まれると、めっき層中にTi-Al系析出物が成長し、めっき層に凹凸(ブツ)が生じ、外観が損なわれる。 When Ti and B, which are optional components, are added, the formation of a Zn 11 Mg 2 phase that impairs the surface appearance is suppressed, and the Zn—Mg-based intermetallic compound that crystallizes in the plating layer is substantially only Zn 2 Mg. . Specifically, Ti: 0.001% by mass or more (preferably 0.002% by mass or more) can effectively suppress the formation of the Zn 11 Mg 2 phase. However, when an excessive amount of Ti exceeding 0.1% by mass is contained, Ti—Al-based precipitates grow in the plating layer, and the plating layer is uneven, and the appearance is impaired.

Zn11Mg2相の生成抑制は、0.0005質量%以上(好ましくは、0.001質量%以上)のB含有によっても達成される。しかし、0.045質量%を超える過剰量のB含有では、めっき層中にTi-B系析出物、Al-B系析出物が成長し、めっき層に凹凸(ブツ)が生じ、外観を損ねるようになる。更に、易酸化性元素である希土類元素,Y,Zr,Siの少なくとも一種を0.005質量%以上添加することにより、表面光沢劣化現象を抑制できる。しかし、過剰添加しても増量に見合った改善効果が得られないので、希土類元素,Y,Zr,Si等の添加量上限は2.0質量%とする。 Suppression of the formation of the Zn 11 Mg 2 phase can also be achieved by containing 0.0005% by mass or more (preferably 0.001% by mass or more) of B. However, when an excessive amount of B exceeds 0.045% by mass, Ti—B-based precipitates and Al—B-based precipitates grow in the plating layer, and the plating layer is uneven, resulting in a loss of appearance. It becomes like this. Furthermore, the surface gloss deterioration phenomenon can be suppressed by adding 0.005% by mass or more of at least one of rare earth elements, Y, Zr, and Si, which are easily oxidizable elements. However, since an improvement effect commensurate with the increase cannot be obtained even if excessive addition is made, the upper limit of the addition amount of rare earth elements, Y, Zr, Si, etc. is made 2.0 mass%.

表1の鋼材を真空溶解炉で溶製し、インゴットに鋳造した後、鍛造,熱間圧延を経て板厚:5mmの熱延鋼帯を製造した。   The steel materials shown in Table 1 were melted in a vacuum melting furnace and cast into an ingot, and then a hot-rolled steel strip having a thickness of 5 mm was manufactured through forging and hot rolling.

Figure 0004610272
Figure 0004610272

各熱延鋼帯を表面研削してスケールを除去した後、還元焼鈍炉に送り込んだ。還元焼鈍炉では、H2:50体積%,N2:50体積%の不活性雰囲気下で加熱することにより、鋼帯表面を活性化すると共に、Si,Cr,Cu,Ni等を鋼帯表層に濃化させた。還元焼鈍された鋼帯をサンプリングし、還元焼鈍条件がSi,Cr,Cu,Ni等の濃化,鋼帯表面に生成した皮膜の物性に及ぼす影響を調査した。なお、鋼帯表層としては、鋼帯表面から1μm深さまでの領域を選定した。 Each hot-rolled steel strip was surface-ground to remove scales, and then sent to a reduction annealing furnace. In a reduction annealing furnace, the steel strip surface is activated by heating in an inert atmosphere of H 2 : 50% by volume and N 2 : 50% by volume, and Si, Cr, Cu, Ni, etc. are applied to the steel strip surface layer. Concentrated. The steel strip subjected to reduction annealing was sampled, and the influence of the reduction annealing conditions on the concentration of Si, Cr, Cu, Ni, etc. and the physical properties of the coating formed on the steel strip surface was investigated. In addition, as a steel strip surface layer, the area | region from the steel strip surface to 1 micrometer depth was selected.

表2の調査結果にみられるように、Cr,Cu,Ni等を添加した鋼帯では、鋼帯表層へのSi,Cr,Cu,Ni等の濃化が生じていた。他方、Cr,Cu,Ni無添加の鋼帯では、鋼帯表面に生成した皮膜が比較的ポーラスで、めっき性に悪影響を及ぼすMn量も多くなっていた。   As can be seen from the investigation results in Table 2, in the steel strip to which Cr, Cu, Ni or the like was added, concentration of Si, Cr, Cu, Ni or the like on the steel strip surface layer occurred. On the other hand, in the steel strip containing no Cr, Cu, or Ni, the coating formed on the surface of the steel strip is relatively porous, and the amount of Mn that adversely affects the plating properties has been increased.

Figure 0004610272
Figure 0004610272

還元焼鈍後の鋼帯を浴温:400℃の溶融Zn-Al-Mg合金めっき浴(Al:6質量%,Mg:3質量%,Zn:残部)に浸漬した。溶融めっき浴から鋼帯を引き上げた後、ガスワイピングでめっき付着量を90g/m2に調整した。
得られためっき鋼板から試験片を切り出し、高温引張試験に供した。
The steel strip after the reduction annealing was immersed in a molten Zn—Al—Mg alloy plating bath (Al: 6% by mass, Mg: 3% by mass, Zn: balance) at a bath temperature of 400 ° C. After the steel strip was pulled up from the hot dipping bath, the amount of plating adhered was adjusted to 90 g / m 2 by gas wiping.
A test piece was cut out from the obtained plated steel sheet and subjected to a high temperature tensile test.

高温引張試験では、室温から昇温速度:100℃/秒で1000℃まで加熱することにより試験片をオーステナイト化した後、冷却速度:50℃/秒で800℃,550℃の設定温度まで冷却し、設定温度に保持した試験片を破断するまで引っ張った。破断した試験片の破面を観察すると共に、無めっき材の破断伸びに対するめっき材の破断伸びの比率として破断伸び比を算出した。   In the high-temperature tensile test, the specimen was austenitized by heating from room temperature to 1000 ° C. at a rate of temperature increase of 100 ° C./second, and then cooled to a set temperature of 800 ° C. and 550 ° C. at a cooling rate of 50 ° C./second. The test piece kept at the set temperature was pulled until it broke. While observing the fracture surface of the fractured test piece, the fracture elongation ratio was calculated as the ratio of the fracture elongation of the plated material to the fracture elongation of the non-plated material.

表3の調査結果にみられるように、Siと共にCr,Cu,Ni等を鋼帯表層部に濃化させたAグループの鋼帯を下地鋼に用いたZn-Al-Mg合金めっき鋼板は、破断伸び比が大きく、無めっき材と比較して破断特性に大きな変動がなかった。すなわち、Si,Cr,Cu,Ni等を鋼帯表層部に濃化させ、緻密で強固な皮膜を鋼帯表面に形成することにより耐溶融金属脆化割れ性が改善されたことが確認できる。   As seen in the investigation results in Table 3, a Zn-Al-Mg alloy-plated steel sheet using a group A steel band in which Cr, Cu, Ni and the like are concentrated in the steel band surface layer together with Si is used as the base steel. The breaking elongation ratio was large, and there was no significant variation in breaking properties compared to the unplated material. That is, it can be confirmed that the molten metal embrittlement cracking resistance is improved by concentrating Si, Cr, Cu, Ni, etc. on the steel strip surface layer and forming a dense and strong film on the steel strip surface.

他方、Cr,Cu,Ni無添加の鋼帯B1に溶融Zn-Al-Mg合金めっき層を形成しためっき鋼板は、高温雰囲気に曝したとき溶融めっき金属に起因する溶融金属脆化が著しく、破断面が脆性破断していた。Cr,Cu,Ni等を添加しても860℃の高温で還元焼鈍した鋼帯B2では、鋼帯表面にCr,Cu,Ni等が過度に濃化したことから不めっき等の欠陥がある溶融めっき層が形成され、正常な溶融めっき鋼板の安定的な製造が困難であった。   On the other hand, a plated steel sheet in which a molten Zn-Al-Mg alloy plating layer is formed on the steel strip B1 without addition of Cr, Cu, Ni, is remarkably broken by molten metal due to the molten plated metal when exposed to a high temperature atmosphere. The cross section was brittle fractured. Even if Cr, Cu, Ni, etc. are added, the steel strip B2 that has been subjected to reduction annealing at a high temperature of 860 ° C. is melted with defects such as non-plating due to excessive concentration of Cr, Cu, Ni, etc. on the steel strip surface. A plating layer was formed, and it was difficult to stably produce a normal hot dip plated steel sheet.

Figure 0004610272
Figure 0004610272

以上に説明したように、Cr,Cu,Ni等を添加した鋼帯,鋼板を加熱温度:500〜850℃で還元焼鈍することによって、Siと共にCr,Cu,Ni等が含まれることにより強固で緻密な皮膜が鋼板表面に形成される。この皮膜は、環境遮断能が高く、高温加熱で溶融しためっき金属が鋼板表層の結晶粒界に侵入することを防止する。そのため、Zn-Al-Mg合金めっき鋼板を溶接しても、溶接止端部に生じがちな溶融金属脆化がなく、溶融Zn-Al-Mg合金めっき浴の高耐食性を活用した各種構造材として好適な溶融めっき鋼板となる。   As explained above, by carrying out reduction annealing of steel strips and steel plates to which Cr, Cu, Ni, etc. are added at a heating temperature of 500 to 850 ° C., the inclusion of Cr, Cu, Ni, etc. together with Si is more robust. A dense film is formed on the surface of the steel sheet. This coating has a high environmental barrier ability and prevents the plated metal melted by high-temperature heating from entering the crystal grain boundary of the steel sheet surface layer. Therefore, even if the Zn-Al-Mg alloy-plated steel sheet is welded, there is no molten metal embrittlement that tends to occur at the weld toe, and various structural materials utilizing the high corrosion resistance of the molten Zn-Al-Mg alloy plating bath A suitable hot dip plated steel sheet is obtained.

Claims (1)

C:0.001〜0.3質量%,Si:0.01〜1.5質量%,Mn:0.05〜2.0質量%,P:0.2質量%以下,S:0.03質量%以下を含み、更にCu:0.05〜0.5質量%,Ni:0.05〜0.5質量%,Cr:0.05〜0.5質量%の一種又は二種以上を含み,残部がFe及び不可避的不純物からなる組成をもつ下地鋼を500〜850℃で還元焼鈍した後、溶融Zn-Al-Mg合金めっき浴に導入することを特徴とする耐溶融金属脆化割れ性に優れたZn-Al-Mg合金めっき鋼板の製造方法。 C: 0.001 to 0.3 mass%, Si: 0.01 to 1.5 mass%, Mn: 0.05 to 2.0 mass%, P: 0.2 mass% or less, S: 0.03 Including one or more of Cu: 0.05-0.5% by mass, Ni: 0.05-0.5% by mass, Cr: 0.05-0.5% by mass The base steel having a composition consisting of Fe and unavoidable impurities in the balance is subjected to reduction annealing at 500 to 850 ° C. and then introduced into a molten Zn—Al—Mg alloy plating bath. Method for producing a Zn-Al-Mg alloy-plated steel sheet having excellent resistance.
JP2004274511A 2004-09-22 2004-09-22 Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking Active JP4610272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274511A JP4610272B2 (en) 2004-09-22 2004-09-22 Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274511A JP4610272B2 (en) 2004-09-22 2004-09-22 Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking

Publications (2)

Publication Number Publication Date
JP2006089787A JP2006089787A (en) 2006-04-06
JP4610272B2 true JP4610272B2 (en) 2011-01-12

Family

ID=36231043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274511A Active JP4610272B2 (en) 2004-09-22 2004-09-22 Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking

Country Status (1)

Country Link
JP (1) JP4610272B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264235B2 (en) * 2008-03-24 2013-08-14 日新製鋼株式会社 High yield ratio type Zn-Al-Mg plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP5264234B2 (en) * 2008-03-24 2013-08-14 日新製鋼株式会社 Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP5495921B2 (en) * 2010-04-23 2014-05-21 日新製鋼株式会社 Manufacturing method of hot dip galvanized high strength steel sheet
US11884989B2 (en) 2019-05-31 2024-01-30 Nippon Steel Corporation Hot-stamping formed body
CN113528789A (en) * 2021-08-04 2021-10-22 中建安装集团有限公司 Overall annealing process for construction and installation site of orthotropic steel bridge deck

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306479A (en) * 1993-04-21 1994-11-01 Nippon Steel Corp Production of high strength galvannealed cold rolled steel sheet excellent in deep drawability
JPH0770647A (en) * 1993-07-07 1995-03-14 Nisshin Steel Co Ltd Production of hot dip galvanized steel sheet for corrosion resisting refractory structure
JPH08291379A (en) * 1995-04-21 1996-11-05 Sumitomo Metal Ind Ltd Method for galvannealing p-added high tensile strength steel
WO2000050658A1 (en) * 1999-02-22 2000-08-31 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
JP2002161315A (en) * 2000-09-12 2002-06-04 Kawasaki Steel Corp Hot dip coated, high tensile strength steel sheet and strip and production method of the same
JP2002241916A (en) * 2001-02-09 2002-08-28 Nippon Steel Corp Plated steel sheet having excellent corrosion resistance, workability and weldability and production method therefor
JP2003003238A (en) * 2001-06-22 2003-01-08 Nisshin Steel Co Ltd Zn-Al-Mg BASED HOT DIP PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JP2004124187A (en) * 2002-10-03 2004-04-22 Sumitomo Metal Ind Ltd High-strength hot dip galvanized steel sheet having excellent adhesion property and weldability
JP2004339593A (en) * 2003-05-19 2004-12-02 Jfe Steel Kk Hot-dip galvanized steel sheet and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306479A (en) * 1993-04-21 1994-11-01 Nippon Steel Corp Production of high strength galvannealed cold rolled steel sheet excellent in deep drawability
JPH0770647A (en) * 1993-07-07 1995-03-14 Nisshin Steel Co Ltd Production of hot dip galvanized steel sheet for corrosion resisting refractory structure
JPH08291379A (en) * 1995-04-21 1996-11-05 Sumitomo Metal Ind Ltd Method for galvannealing p-added high tensile strength steel
WO2000050658A1 (en) * 1999-02-22 2000-08-31 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
JP2002161315A (en) * 2000-09-12 2002-06-04 Kawasaki Steel Corp Hot dip coated, high tensile strength steel sheet and strip and production method of the same
JP2002241916A (en) * 2001-02-09 2002-08-28 Nippon Steel Corp Plated steel sheet having excellent corrosion resistance, workability and weldability and production method therefor
JP2003003238A (en) * 2001-06-22 2003-01-08 Nisshin Steel Co Ltd Zn-Al-Mg BASED HOT DIP PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JP2004124187A (en) * 2002-10-03 2004-04-22 Sumitomo Metal Ind Ltd High-strength hot dip galvanized steel sheet having excellent adhesion property and weldability
JP2004339593A (en) * 2003-05-19 2004-12-02 Jfe Steel Kk Hot-dip galvanized steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2006089787A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
RU2524027C1 (en) Cold-worked high-strength steel and flat article made thereof
JP5098217B2 (en) Welded joints of galvanized steel sheets excellent in corrosion resistance and zinc embrittlement cracking resistance of welds and methods for producing the same
JP5760150B2 (en) High manganese steel with excellent plating adhesion and method for producing hot dip galvanized steel sheet therefrom
JP5230318B2 (en) Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof
JP4949497B2 (en) Zinc-based alloy plated steel with excellent resistance to molten metal embrittlement cracking
JP2012193452A (en) STEEL SHEET HOT-DIP-COATED WITH Zn-Al-Mg-BASED SYSTEM, AND PROCESS OF MANUFACTURING THE SAME
WO2017203994A1 (en) Coated steel sheet and manufacturing method therefor
JP6692432B2 (en) High manganese hot-dip aluminum coated steel sheet with excellent plating adhesion
KR20190126441A (en) Process for producing galvanized steel sheet resistant to liquid metal embrittlement
JP6694961B2 (en) Austenitic hot-dip aluminized steel sheet having excellent plating property and weldability, and method for producing the same
JP4601502B2 (en) Manufacturing method of high strength ERW steel pipe
JP3715220B2 (en) Zn-Al-Mg hot-dip galvanized steel with excellent corrosion resistance
JP6168144B2 (en) Galvanized steel sheet and manufacturing method thereof
JP5264234B2 (en) Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP5978826B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent surface stability
JP6209175B2 (en) Manufacturing method of hot-dip Zn-Al-Mg-based plated steel sheet with excellent plating surface appearance and burring properties
JP5283402B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP4940813B2 (en) Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more
JP4721221B2 (en) Zn-Al-Mg alloy-plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP4610272B2 (en) Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking
JP2004315848A (en) HOT-DIP Zn-Al-Mg COATED STEEL SHEET FREE FROM WELDING CRACK DUE TO LIQUID METAL EMBRITTLEMENT
JP5053652B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP4388501B2 (en) Steel material with excellent corrosion resistance against molten Zn alloy
JP2013053330A (en) High-strength hot-rolled steel sheet excellent in corrosion resistance of weld, and method for production thereof
JP2004315847A (en) Zn-Al-Mg HOT-DIPPED STEEL PLATE WITH NO WELDING CRACK CAUSED BY EMBRITTLEMENT OF MOLTEN METAL

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350