JPWO2015198627A1 - Arc welding method for molten Zn-Al-Mg-based plated steel sheet, method for producing welded member, and arc welded member - Google Patents
Arc welding method for molten Zn-Al-Mg-based plated steel sheet, method for producing welded member, and arc welded member Download PDFInfo
- Publication number
- JPWO2015198627A1 JPWO2015198627A1 JP2015513923A JP2015513923A JPWO2015198627A1 JP WO2015198627 A1 JPWO2015198627 A1 JP WO2015198627A1 JP 2015513923 A JP2015513923 A JP 2015513923A JP 2015513923 A JP2015513923 A JP 2015513923A JP WO2015198627 A1 JPWO2015198627 A1 JP WO2015198627A1
- Authority
- JP
- Japan
- Prior art keywords
- plated steel
- arc welding
- steel sheet
- hot
- dip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 57
- 239000010959 steel Substances 0.000 title claims abstract description 57
- 229910018134 Al-Mg Inorganic materials 0.000 title claims abstract description 47
- 229910018467 Al—Mg Inorganic materials 0.000 title claims abstract description 47
- 238000003466 welding Methods 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title description 2
- 238000007747 plating Methods 0.000 claims description 67
- 239000000203 mixture Substances 0.000 claims description 13
- 239000011324 bead Substances 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 22
- 230000007797 corrosion Effects 0.000 description 19
- 238000005260 corrosion Methods 0.000 description 19
- 238000007598 dipping method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/23—Arc welding or cutting taking account of the properties of the materials to be welded
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Arc Welding In General (AREA)
- Coating With Molten Metal (AREA)
Abstract
溶融Zn−Al−Mg系めっき鋼板のめっき層のTiとAlの濃度比Ti/Alを0.0001〜0.05とし、且つ、Ti/Alと板間ギャップGの関係が下記(1)式を満足する。Ti/Al≦0.02G+0.01 …(1)The Ti / Al concentration ratio Ti / Al of the plated layer of the hot-dip Zn—Al—Mg-based plated steel sheet is 0.0001 to 0.05, and the relationship between Ti / Al and the inter-plate gap G is expressed by the following formula (1) Satisfied. Ti / Al ≦ 0.02G + 0.01 (1)
Description
本発明は、スパッタとブローホールの発生量が少なく溶接部外観と溶接強度に優れた溶融Zn−Al−Mg系めっき鋼板のアーク溶接方法と溶接部材に関する。 The present invention relates to an arc welding method and a welded member for a hot-dip Zn—Al—Mg-based plated steel sheet that has less spatter and blowhole generation and is excellent in appearance and weld strength.
溶融Zn系めっき鋼板は耐食性が良好であるため建築部材や自動車部材をはじめとする広範な用途に使用されている。なかでも溶融Zn−Al−Mg系めっき鋼板は長期間にわたり優れた耐食性を維持することから、従来の溶融Znめっき鋼板に代わる材料として需要が増加している。 Since the hot-dip Zn-based plated steel sheet has good corrosion resistance, it is used in a wide range of applications including building members and automobile members. Among them, the hot-dip Zn—Al—Mg-based steel sheet maintains excellent corrosion resistance for a long period of time, and therefore, the demand is increasing as a material to replace the conventional hot-dip Zn-plated steel sheet.
溶融Zn−Al−Mg系めっき鋼板のめっき層は特許文献1、2に記載されているように、Zn/Al/Zn2Mg三元共晶のマトリクス中に初晶Al相または初晶Al相とZn単相が分散した金属組織を有しており、AlおよびMgにより耐食性が向上している。そのめっき層の表面には、特にMgを含む緻密で安定な腐食生成物が均一に生成するため、溶融Znめっき鋼板に比べてめっき層の耐食性が格段に向上している。As described in
Zn−Al−Mgの三元合金を基本とした溶融Zn−Al−Mg系めっき鋼板の製造にあたっては、融点が最も低くなるAlが約4質量%、Mgが約3質量%近傍の三元共晶点(約343℃)の組成とすることがエネルギーコストの点で有利である。しかし、特許文献1、2に記載されているように、この三元共晶点近傍のめっき浴組成を採用した場合、めっき層の金属組織中にZn11Mg2系の相、実際にはAl/Zn/Zn11Mg2の三元共晶の素地あるいは該素地中にAl初晶またはAl初晶とZn単相が混在してなるZn11Mg2の相が局所的に晶出する現象が起きる。この局所的に晶出したZn11Mg2系の相は他の相よりも変色しやすく、放置しておくとこの部分が非常に目立った色調となり、めっき層全体の外観であるめっき外観を著しく阻害する。さらに、この局所的に晶出したZn11Mg2系の相は優先的に腐食されるために耐食性も低下する。In the production of a hot-dip Zn-Al-Mg-based steel sheet based on a Zn-Al-Mg ternary alloy, the ternary element having the lowest melting point of about 4% by mass of Al and about 3% by mass of Mg. A composition having a crystal point (about 343 ° C.) is advantageous in terms of energy cost. However, as described in
このZn11Mg2系の相の生成、成長を抑制する方法として特許文献1にはめっき浴中にTiを0.002〜0.1質量%、Bを0.001〜0.045質量%添加し、めっき浴温とめっき後の冷却速度を適正範囲内に制御する方法が開示されている。また、特許文献2にはめっき浴温とめっき後の冷却速度を適正範囲内に制御する方法が開示されている。特に、めっき浴にTiとBを添加する方法はめっき浴温と冷却速度の適正範囲が広くなるのでめっき外観と耐食性に優れた溶融Zn−Al−Mg系めっき鋼板の製造性改善に効果的である。As a method for suppressing the formation and growth of this Zn 11 Mg 2 phase,
溶融Zn系めっき鋼板は建築部材、自動車部材等に用いられているが、そのような用途ではガスシールドアーク溶接法で組み立てられることが多い。しかし、溶融Zn系めっき鋼板をアーク溶接するとスパッタおよびピット、ブローホール(以下、特に記述しない限りブローホールはピットを含める)の発生が著しく、アーク溶接性に劣る。これは、Feの融点約1538℃に比べてZnの沸点が約906℃と低いため、アーク溶接時にZn蒸気が発生し、このZn蒸気によりアークが不安定になり、スパッタが発生する。また、Zn蒸気が抜けきらない内に溶接金属が凝固するとブローホールが発生する。スパッタがめっき面に付着すると、溶接部近傍の外観である溶接部外観が低下するだけでなくその部分が腐食の起点となるので耐食性が低下する。一方、ブローホールの発生が著しいと溶接強度が低下して問題となる。 Hot-dip Zn-based plated steel sheets are used for building members, automobile members, etc., but in such applications, they are often assembled by gas shield arc welding. However, when arc welding is performed on a hot-dip Zn-based plated steel sheet, spatter, pits, and blow holes (hereinafter, blow holes include pits unless otherwise specified) are remarkably generated, resulting in poor arc weldability. This is because the boiling point of Zn is as low as about 906 ° C. compared with the melting point of Fe of about 1538 ° C., so that Zn vapor is generated during arc welding, the arc becomes unstable due to this Zn vapor, and spatter is generated. In addition, blowholes are generated when the weld metal solidifies before the Zn vapor can escape. When spatter adheres to the plated surface, the appearance of the welded portion, which is the appearance in the vicinity of the welded portion, is deteriorated, and the corrosion resistance is lowered because the portion becomes a starting point of corrosion. On the other hand, if the occurrence of blowholes is significant, the welding strength decreases, which causes a problem.
溶融Zn系めっき鋼板と同様に溶融Zn−Al−Mg系めっき鋼板においてもアーク溶接時にブローホールが発生する。しかし、溶融Zn−Al−Mg系めっき鋼板は他の溶融Znめっき鋼板および合金化溶融Znめっき鋼板に比べてブローホールの発生が少なく、アーク溶接性が改善されている。この原因は非特許文献1に記載されているようにめっき層のAlによるものと考えられている。図1に示すように、AlはSiやMnに比べて微量でもFeの粘性を大幅に下げる。溶融Zn−Al−Mg系めっき鋼板ではアーク溶接時にめっき層中のAlが溶接金属中に混入することにより、溶接金属の粘性が下がり、Zn蒸気が排出されやすくなるため、ブローホールの発生が軽減されると推定されている。
Similarly to the hot-dip Zn-based plated steel sheet, blowholes are generated in arc-welded hot-dip Zn-Al-Mg-based steel sheets. However, the hot-dip Zn—Al—Mg-based steel sheet has less blowholes than other hot-dip Zn-plated steel sheets and alloyed hot-dip Zn-plated steel sheets, and arc weldability is improved. This cause is thought to be due to Al in the plating layer as described in
前述のように、めっき浴中へのTi添加はZn11Mg2系相の生成、成長を抑制してめっき外観の改善に有効であるが、その反面スパッタ、ブローホールの発生量が多くなり、アーク溶接性を低下させる。これは、図1に示すように、TiはAlと逆に微量添加でFeの粘性を大幅に上げることから、めっき層中のTiが溶接金属中に混入して溶接金属の粘性が上がるためと推察する。溶接金属の粘性が上がると、Zn蒸気が溶接金属から排出されにくくなって滞留し、滞留したZn蒸気が一気に噴出するとアークが不安定になってスパッタの発生が著しくなる。また、Zn蒸気が抜けきらない内に溶接金属が凝固するとブローホールが発生する。As described above, the addition of Ti to the plating bath is effective in improving the appearance of the plating by suppressing the formation and growth of the Zn 11 Mg 2 phase, but on the other hand, the amount of spatter and blow holes generated increases. Reduces arc weldability. This is because, as shown in FIG. 1, Ti greatly increases the viscosity of Fe by adding a small amount in contrast to Al, so that Ti in the plating layer is mixed in the weld metal and the viscosity of the weld metal increases. I guess. When the viscosity of the weld metal increases, Zn vapor becomes difficult to be discharged from the weld metal and stays. When the retained Zn vapor is ejected all at once, the arc becomes unstable and the occurrence of spatter becomes significant. In addition, blowholes are generated when the weld metal solidifies before the Zn vapor can escape.
以上のように、めっき外観を改善するためにめっき浴にTiを添加するとスパッタ、ブローホールが発生しやすくなって溶接部外観と溶接強度が低下する。本発明はこのような現状に鑑み、溶接部外観と溶接強度に優れた溶融Zn−Al−Mg系めっき鋼板のアーク溶接方法および溶接部材を提供することを目的とする。 As described above, when Ti is added to the plating bath in order to improve the plating appearance, spatter and blowholes are easily generated, and the appearance and weld strength of the welded portion are reduced. In view of such a current situation, an object of the present invention is to provide an arc welding method and a welded member for a hot-dip Zn—Al—Mg-based plated steel sheet, which are excellent in weld appearance and weld strength.
発明者らの詳細な研究の結果、溶融Zn−Al−Mg系めっき鋼板のめっき層のTiとAlの濃度比と板間ギャップとの関係を適正範囲内に制御することで、めっき外観を損なうことなくスパッタとブローホールを軽減できるという知見を得て本発明を完成したものである。 As a result of detailed studies by the inventors, the appearance of the plating is impaired by controlling the relationship between the Ti / Al concentration ratio of the plated layer of the hot-dip Zn—Al—Mg-based plated steel sheet and the gap between the sheets within an appropriate range. The present invention has been completed with the knowledge that sputtering and blowholes can be reduced without any problems.
すなわち上記課題は、溶融Zn−Al−Mg系めっき鋼板のめっき層の組成が、Znを主成分とし、質量%で、Al:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0.002〜0.10%を含有し、TiとAlの濃度比Ti/Alを0.0001〜0.05とし、且つ、Ti/Alと板間ギャップGの関係が下記(1)式を満足することにより達成される。
Ti/Al≦0.02G+0.01 …(1)That is, the above-mentioned problem is that the composition of the plated layer of the hot-dip Zn—Al—Mg-based steel sheet is mainly composed of Zn, and is expressed by mass: Al: 1.0-22.0%, Mg: 0.05-10. 0%, Ti: 0.002 to 0.10%, Ti / Al concentration ratio Ti / Al is 0.0001 to 0.05, and the relationship between Ti / Al and inter-plate gap G is as follows: This is achieved by satisfying the expression (1).
Ti / Al ≦ 0.02G + 0.01 (1)
本発明によれば、溶融Zn−Al−Mg系めっき鋼板のアーク溶接におけるスパッタとブローホールを軽減でき、溶接部外観と溶接強度および耐食性に優れる溶接部材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sputter | spatter and blowhole in arc welding of a hot-dip Zn-Al-Mg type plated steel plate can be reduced, and the welding member excellent in a welded part external appearance, weld strength, and corrosion resistance can be provided.
図2に、重ね隅肉溶接継手の溶接部断面構造を模式的に例示する。自動車シャシなどにはアーク溶接によるこの種の溶接継手が多用されている。表面に溶融Zn−Al−Mg系めっき層2を有する溶融Zn−Al−Mg系めっき鋼板1、1’が重ねられて配置されており、溶融Zn−Al−Mg系めっき鋼板1’の表面と溶融Zn−Al−Mg系めっき鋼板1の端面に溶接ビード3が形成され、両部材が接合されている。
FIG. 2 schematically illustrates a weld cross-sectional structure of a lap fillet weld joint. This type of welded joint by arc welding is frequently used for automobile chassis. A molten Zn—Al—Mg-based
図2の(a)はZn蒸気が溶接金属から抜けきらずにピット4が発生した溶接部の断面図である。図2の(b)はZn蒸気が溶接金属内に閉じ込められてブローホール5が発生した溶接部の断面図である。図2の(a)、(b)ともに板間ギャップを設けない場合の溶接部断面である。板間ギャップを設けないとZn蒸気は溶接金属3の表側しか抜ける経路がないため、ピット、ブローホールが発生しやすくなる。また、溶接金属内に滞留したZn蒸気が一気に噴出するとアークが不安定になり、スパッタが発生する。図2の(c)は板間ギャップ6を設けた場合の溶接部の断面図である。板間ギャップ6を設けると、Zn蒸気が板間ギャップ6側にも排出されるのでスパッタ、ブローホールともにそれらの発生を抑制する効果が大きい。
FIG. 2A is a cross-sectional view of a welded portion in which pits 4 are generated without allowing Zn vapor to escape from the weld metal. FIG. 2B is a cross-sectional view of the welded portion where the blown holes 5 are generated by confining Zn vapor in the weld metal. FIGS. 2A and 2B are cross sections of a welded portion when no gap between plates is provided. If there is no gap between the plates, there is no route for the Zn vapor to escape only from the front side of the
しかし、アーク溶接構造部材の形状によっては板間ギャップが設けられない場合や大きくできない場合がある。そこで、本発明では板間ギャップに応じて溶融Zn−Al−Mg系めっき鋼板のめっき層のTiとAlの濃度比Ti/Alを適正に管理することにより溶接金属の粘性を下げてZn蒸気の排出を促進してスパッタ、ブローホールを抑制する。 However, depending on the shape of the arc welded structural member, the gap between the plates may not be provided or may not be increased. Therefore, in the present invention, the viscosity of the weld metal is lowered by appropriately managing the Ti / Al concentration ratio Ti / Al of the plated layer of the molten Zn—Al—Mg-based plated steel sheet according to the gap between the plates, and the Zn vapor. Discharge is promoted to suppress spatter and blowholes.
めっき層のMg濃度を3質量%と一定にし、Al濃度を1〜22質量%、Ti濃度を0〜0.10質量と変化させた片面当りのめっき付着量90g/m2の溶融Zn−Al−Mg系めっき鋼板サンプルを実験室的に作製した。なお、サンプルサイズは板厚3.2mm、幅100mm、長さ200mmとした。このサンプルを重ね代30mm、溶接ビード長さL=180mm、板間ギャップ0〜2.0mmで重ね隅肉溶接した。アーク溶接部のX線透過写真を撮影し、図3に模式図的に示すブローホールの長さの積算値Σdi(mm)を測定して下記(3)式からブローホール占有率Brを算出した。また、図3の点線で示す溶接ビード3を中心とした幅100mm、長さ100mmの領域のスパッタ付着個数を目視で計測した。
Br=(Σdi/L)×100 … (3)Molten Zn-Al having a plating adhesion amount of 90 g / m 2 per side with the Mg concentration of the plating layer kept constant at 3% by mass, the Al concentration varied from 1 to 22% by mass, and the Ti concentration was varied from 0 to 0.10%. -A Mg-based plated steel sheet sample was produced in the laboratory. The sample size was 3.2 mm thick, 100 mm wide, and 200 mm long. This sample was lap fillet welded with an overlap margin of 30 mm, a weld bead length L = 180 mm, and a gap between plates of 0 to 2.0 mm. An X-ray transmission photograph of the arc welded portion was taken, the blow hole length integrated value Σdi (mm) schematically shown in FIG. 3 was measured, and the blow hole occupation ratio Br was calculated from the following equation (3). . Further, the number of sputters deposited in a region having a width of 100 mm and a length of 100 mm centered on the
Br = (Σdi / L) × 100 (3)
図4にブローホール占有率Br、スパッタ付着個数におよぼすTi/Alと板間ギャップの影響を調査した結果を示す。建築用薄板溶接接合部設計・施工マニュアル(建築用薄板溶接接合部設計・施工マニュアル編集委員会)によれば、ブローホール占有率Brが30%以下であれば溶接強度に問題ないとされている。また、スパッタ付着個数が20個以下であればスパッタが目立たず、耐食性への影響も小さい。そこで、図4ではブローホール占有率30%以下かつスパッタ付着個数20個以下を○で、ブローホール占有率が30%を超えるか、またはスパッタ付着量が20個を越える場合を●でプロットした。Ti/Alが図4の直線以下の領域ではブローホール占有率Brが30%以下かつスパッタ付着個数が20個以下であり、板間ギャップGとTi/Alを適切に管理することによりスパッタとブローホールを低減することができることがわかる。 FIG. 4 shows the results of investigating the effects of the Ti / Al and inter-plate gaps on the blow hole occupancy Br and the number of sputter deposits. According to the Architectural Thin Plate Welded Joint Design and Construction Manual (Architecture Thin Plate Welded Joint Design and Construction Manual Editorial Committee), it is said that there is no problem in welding strength if the blowhole occupancy Br is 30% or less. . Further, if the number of sputters deposited is 20 or less, the spatter is not noticeable and the influence on the corrosion resistance is small. Therefore, in FIG. 4, the case where the blowhole occupancy is 30% or less and the number of sputter deposits of 20 or less is indicated by ◯, and the case where the blowhole occupancy exceeds 30% or the amount of sputter adherence exceeds 20 is plotted by ●. In the region where Ti / Al is less than the straight line in FIG. 4, the blow hole occupancy Br is 30% or less and the number of sputters is 20 or less. Sputter and blow can be achieved by appropriately managing the inter-plate gap G and Ti / Al. It can be seen that holes can be reduced.
ここで、図4は、めっき層のMg濃度を3質量%と一定にしたときの調査結果である。しかしながら、Mgの沸点はFeの融点よりも低く、Feが溶融するよりも先にMgが蒸発するため、Mg濃度は、溶接金属の粘度への影響が小さい。そのため、Mg濃度が変化したとしても、Ti/Alを図4の直線以下の領域とすることにより、ブローホール占有率Brを30%以下かつスパッタ付着個数を20個以下に抑えることができる。 Here, FIG. 4 shows a result of investigation when the Mg concentration of the plating layer is kept constant at 3% by mass. However, since the boiling point of Mg is lower than the melting point of Fe and Mg evaporates before Fe melts, the Mg concentration has little effect on the viscosity of the weld metal. Therefore, even if the Mg concentration changes, the blow hole occupancy Br can be suppressed to 30% or less and the number of sputter deposits can be suppressed to 20 or less by setting Ti / Al to a region below the straight line in FIG.
本発明の溶融Zn−Al−Mg系めっき鋼板、アーク溶接条件について詳述する。
〔溶融Zn−Al−Mg系めっき鋼板〕
本発明の溶融Zn−Al−Mg系めっき鋼板のめっき層の組成は、主成分をZnとし、質量%でAl:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0.002〜0.10%および不可避的不純物を含有する。めっき層組成は溶融めっき浴組成をほぼ反映したものとなる。溶融めっきの方法は特に限定されないが、一般的にはインライン焼鈍型の溶融めっき設備を使用することがコスト的に有利となる。以下、めっき層の成分元素について説明する。めっき層成分元素の「%」は特に断らない限り「質量%」を意味する。The hot-dip Zn—Al—Mg-based plated steel sheet and arc welding conditions of the present invention will be described in detail.
[Fused Zn-Al-Mg plated steel sheet]
The composition of the plated layer of the hot-dip Zn—Al—Mg-based plated steel sheet of the present invention is composed of Zn as a main component, and by mass%, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0.002 to 0.10% and inevitable impurities are contained. The plating layer composition substantially reflects the hot-dip plating bath composition. Although the method of hot dipping is not particularly limited, it is generally advantageous in terms of cost to use an in-line annealing type hot dipping equipment. Hereinafter, the component elements of the plating layer will be described. “%” Of the plating layer component element means “mass%” unless otherwise specified.
Alは、めっき鋼板の耐食性向上に有効であり、また、めっき浴においてMg酸化物系ドロスの発生を抑制する。これらの作用を十分に発揮させるためには1.0%以上のAl含有量を確保する必要があり、4.0%以上のAl含有量を確保することがより好ましい。一方、Al含有量が多くなるとめっき層の下地に脆いFe−Al合金層が成長しやすくなり、Fe−Al合金層の過剰な成長はめっき密着性の低下を招く要因となる。種々検討の結果、Al含有量は22.0%以下とすることがより好ましく、15.0%以下、あるいはさらに10.0%以下に管理しても構わない。 Al is effective in improving the corrosion resistance of the plated steel sheet, and suppresses the generation of Mg oxide dross in the plating bath. In order to fully exhibit these actions, it is necessary to secure an Al content of 1.0% or more, and it is more preferable to secure an Al content of 4.0% or more. On the other hand, when the Al content increases, a brittle Fe—Al alloy layer easily grows on the base of the plating layer, and excessive growth of the Fe—Al alloy layer causes a decrease in plating adhesion. As a result of various studies, the Al content is more preferably 22.0% or less, and may be controlled to 15.0% or less, or even 10.0% or less.
溶融めっき浴中にTiを含有させると、溶融めっき時におけるZn11Mg2系相の生成、成長を抑制する効果を発揮する。Ti添加量が0.002%未満では抑制効果が不十分で、0.1%を越えるとめっき時にTi−Al系の析出物の生成、成長に起因しためっき層表面の外観(めっき外観)不良を引き起こす要因となる。このため、本発明ではTi添加量を0.002〜0.1%に限定する。When Ti is contained in the hot dipping bath, the effect of suppressing the formation and growth of Zn 11 Mg 2 phase during hot dipping is exhibited. When the amount of Ti added is less than 0.002%, the suppression effect is insufficient. When it exceeds 0.1%, the appearance of the plating layer surface (plating appearance) is poor due to the formation and growth of Ti-Al-based precipitates during plating. It becomes a factor causing. For this reason, in this invention, Ti addition amount is limited to 0.002-0.1%.
上記のように、AlとTiはともにめっき品質の改善に有効であるが、アーク溶接においてAlは溶接金属の粘性を下げてスパッタ、ブローホール発生を抑制し、逆に、Tiは溶接金属の粘性を上げてスパッタ、ブローホール発生を促進すると考えられる。そこで、本発明ではめっき層のTiとAlの濃度比Ti/Alが0.0001〜0.05となるように調整し、めっき外観とスパッタ、ブローホール抑制を両立させる。これにより、めっき層の全体の外観(めっき外観)と溶接部付近の外観(溶接部外観)との両方の表面外観の不良を抑制できる。Ti/Alが0.0001未満ではTi濃度が低くなり、Zn11Mg2系相の生成、成長抑制効果が不十分である。一方、Ti/Alが0.05を越えるとTiにより溶接金属の粘性が高くなり、スパッタ、ブローホールの発生が促進される。As described above, both Al and Ti are effective in improving the plating quality. However, in arc welding, Al lowers the viscosity of the weld metal to suppress spatter and blowholes. Conversely, Ti is the viscosity of the weld metal. Is considered to promote the generation of spatter and blowholes. Therefore, in the present invention, the Ti / Al concentration ratio Ti / Al of the plating layer is adjusted to be 0.0001 to 0.05, so that both the plating appearance and the sputter and blowhole suppression are compatible. Thereby, the defect of the surface external appearance of both the external appearance (plating external appearance) of a plating layer and the external appearance (welding part external appearance) vicinity of a welding part can be suppressed. When Ti / Al is less than 0.0001, the Ti concentration is low, and the effect of suppressing the formation and growth of the Zn 11 Mg 2 phase is insufficient. On the other hand, when Ti / Al exceeds 0.05, the viscosity of the weld metal is increased by Ti, and the generation of spatter and blow holes is promoted.
Mgは、めっき層表面に均一な腐食生成物を生成させてめっき鋼板の耐食性を著しく高める作用を呈する。Mg含有量は0.05%以上とすることがより効果的であり、1.0%以上とすることがさらに好ましい。一方、めっき浴中のMg含有量が多くなるとMg酸化物系ドロスが発生し易くなり、めっき層の品質低下を招く要因となるのでMg含有量は10.0%以下の範囲とする。また、Mgは沸点が約1091℃とFeの融点よりも低く、
Znと同様にアーク溶接時に蒸発してスパッタ、ブローホールの原因になると考えられるのでMg含有量は10.0%以下が望ましい。Mg exhibits the effect | action which produces | generates a uniform corrosion product on the surface of a plating layer, and raises the corrosion resistance of a plated steel plate remarkably. The Mg content is more preferably 0.05% or more, and more preferably 1.0% or more. On the other hand, if the Mg content in the plating bath increases, Mg oxide-based dross is likely to occur, which causes a deterioration in the quality of the plating layer, so the Mg content is set to a range of 10.0% or less. Mg has a boiling point of about 1091 ° C., which is lower than the melting point of Fe,
Like Zn, it is considered that it evaporates during arc welding and causes spatter and blowholes, so the Mg content is preferably 10.0% or less.
BもTiと同様にZn11Mg2系相の生成、成長を抑制する効果を有するため、めっき層にBを添加してもよい。Bの場合、その添加量を0.001%以上とすることがより効果的である。ただし、Bも過剰に添加するとTi−B系あるいはAl−B系の析出物に起因しためっき層表面の外観(めっき外観)不良を引き起こすのでB:0.05%以下の範囲とすることが望ましい。B, like Ti, has the effect of suppressing the formation and growth of Zn 11 Mg 2 phase, so B may be added to the plating layer. In the case of B, it is more effective to make the addition amount 0.001% or more. However, excessive addition of B causes a defect in the appearance (plating appearance) of the plating layer surface due to Ti-B or Al-B-based precipitates, so it is desirable that B is in the range of 0.05% or less. .
溶融めっき浴中にSiを含有させると、めっき原板表面とめっき層の界面に生成するFe−Al合金層の過剰な成長が抑制され、溶融Zn−Al−Mg系めっき鋼板の加工性を向上させる上で有利となる。したがって、必要に応じてSiを含有させることができる。その場合、Si含有量を0.005%以上とすることがより効果的である。ただし、過剰のSi含有は溶融めっき浴中のドロス量を増大させる要因となるので、Si含有量は2.0%以下とすることが望ましい。 When Si is contained in the hot dipping bath, excessive growth of the Fe—Al alloy layer formed at the interface between the plating original plate surface and the plating layer is suppressed, and the workability of the hot-dip Zn—Al—Mg plated steel sheet is improved. This is advantageous. Therefore, Si can be contained as necessary. In that case, it is more effective to set the Si content to 0.005% or more. However, since excessive Si content causes an increase in the dross amount in the hot dipping bath, the Si content is preferably 2.0% or less.
溶融めっき浴中には、鋼板を浸漬・通過させる関係上、Feが混入しやすい。Zn−Al−Mg系めっき層中にFeが混入すると耐食性が低下するのでFe含有量は2.5%以下とすることが好ましい。 In the hot dipping bath, Fe is likely to be mixed because the steel sheet is immersed and passed. When Fe is mixed in the Zn—Al—Mg plating layer, the corrosion resistance is lowered, so the Fe content is preferably 2.5% or less.
溶融Zn−Al−Mg系めっき鋼板のめっき付着量が少ないと、めっき面の耐食性および犠牲防食作用を長期にわたって維持するうえで不利となる。種々検討の結果、片面当たりのめっき付着量は20g/m2以上とすることがより効果的である。一方、めっき付着量が多くなると溶接時の蒸発Zn量が多くなり、スパッタ、ブローホールが発生しやすくなる。このため片面当たりのめっき付着量は250g/m2以下とすることが望ましい。If the coating amount of the molten Zn—Al—Mg based steel sheet is small, it is disadvantageous for maintaining the corrosion resistance and sacrificial anticorrosive action of the plated surface for a long period of time. As a result of various studies, it is more effective to set the plating adhesion amount per side to 20 g / m 2 or more. On the other hand, when the amount of plating adhesion increases, the amount of evaporated Zn during welding increases, and sputtering and blowholes are likely to occur. For this reason, it is desirable that the amount of plating deposited on one side be 250 g / m 2 or less.
ここで、片面当たりのめっき付着量は、次のように、重量法で測定すればよい。まず、溶融Zn−Al−Mg系めっき鋼板から所定形状(例えば、直径50mmの円板形状や50×50mmの四角形状)の試験片を採取し、当該試験片の重量M0を測定する。次に、試験片の片面の全域にシール用のテープを貼り付け、10容量%程度に希釈した塩酸に浸漬し、シール用のテープを貼り付けていない側の面のめっき層を溶解する。その後、試験片を水洗、乾燥して、シール用のテープを剥がし、重量M1を測定する。そして、(M0−M1)を試験片の面積で除することにより、片面当たりのめっき付着量(g/m2)を算出する。Here, the plating adhesion amount per side may be measured by the weight method as follows. First, a test piece having a predetermined shape (for example, a disk shape with a diameter of 50 mm or a square shape with a size of 50 × 50 mm) is collected from a molten Zn—Al—Mg-based steel sheet, and the weight M0 of the test piece is measured. Next, a sealing tape is applied to the entire area of one surface of the test piece, and immersed in hydrochloric acid diluted to about 10% by volume, and the plating layer on the surface on which the sealing tape is not applied is dissolved. Thereafter, the test piece is washed with water and dried, the sealing tape is peeled off, and the weight M1 is measured. And (M0-M1) is remove | divided by the area of a test piece, and the plating adhesion amount (g / m < 2 >) per single side | surface is calculated.
〔アーク溶接条件〕
前述のように、板間ギャップGは溶接金属からのZn蒸気の排出を促進するのでスパッタ、ブローホールの抑制に効果的である。しかし、溶接構造部材の設計上板間ギャップGが設けられない場合や板間ギャップGを大きくできない場合は、板間ギャップGに応じてめっき層のTiとAlの濃度Ti/Alを下記(1)の範囲に調整する。これにより、ブローホール占有率Brが30%以下に抑えられて溶接部の強度が母材と同等以上となる。また、スパッタ付着個数が20個以下となる。
Ti/Al≦0.02G+0.01 …(1)[Arc welding conditions]
As described above, the inter-plate gap G facilitates the discharge of Zn vapor from the weld metal, and thus is effective in suppressing spatter and blow holes. However, when the inter-plate gap G is not provided due to the design of the welded structure member or when the inter-plate gap G cannot be increased, the Ti and Al concentrations Ti / Al of the plating layer are set according to the inter-plate gap G (1 ). Thereby, the blow hole occupation ratio Br is suppressed to 30% or less, and the strength of the welded portion is equal to or higher than that of the base material. In addition, the number of sputters deposited is 20 or less.
Ti / Al ≦ 0.02G + 0.01 (1)
また、板間ギャップGが2.0mmを越えると、のど厚が薄くなって溶接強度が低下する、あるいは穴あきが発生するので、板間ギャップGの上限を2mmとすることが好ましい。 Further, when the gap G between the plates exceeds 2.0 mm, the throat thickness is reduced and the welding strength is reduced or perforation occurs. Therefore, the upper limit of the gap G between the plates is preferably 2 mm.
また、本発明では、下記(2)式で示される溶接入熱Qを2000〜12000J/cmの範囲とすることが好ましい。溶接入熱Qが2000J/cm未満では溶接金属の冷却速度が速くなり、Zn蒸気が溶接金属から排出される前に溶接金属が凝固してブローホールが発生しやすくなる。一方、溶接入熱が12000J/cmを越えるとZnの蒸発量が多くなり、スパッタ、ブローホールが発生しやすくなる。
Q=(I×V)/v …(2)
ただし、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)である。Moreover, in this invention, it is preferable to make the welding heat input Q shown by following (2) Formula into the range of 2000-12000 J / cm. When the welding heat input Q is less than 2000 J / cm, the cooling rate of the weld metal is increased, and the weld metal is solidified before Zn vapor is discharged from the weld metal, and blow holes are likely to occur. On the other hand, if the welding heat input exceeds 12000 J / cm, the amount of Zn evaporation increases and sputtering and blowholes are likely to occur.
Q = (I × V) / v (2)
Here, I is the welding current (A), V is the arc voltage (V), and v is the welding speed (cm / sec).
本発明では、シールドガスの種類は特に限定されないが、安価な炭酸ガスや、スパッタ抑制効果が大きいAr−20体積%CO2ガス、あるいはさらにCO2濃度を下げたAr−5体積%CO2ガス等が好適である。In the present invention, the type of shielding gas is not particularly limited, but it is inexpensive carbon dioxide gas, Ar-20 volume% CO 2 gas having a large sputter suppression effect, or Ar-5 volume% CO 2 gas with a further reduced CO 2 concentration. Etc. are suitable.
上記アーク溶接条件でアーク溶接した溶融Zn−Al−Mg系めっき鋼板アーク溶接部材はブローホール占有率Brが30%以下かつスパッタ付着個数が20個以下で溶接部外観と耐食性および溶接強度に優れる。 A hot-melt Zn—Al—Mg plated steel sheet arc welded member arc welded under the above arc welding conditions has a blowhole occupancy Br of 30% or less and a sputter deposition number of 20 or less, and is excellent in welded portion appearance, corrosion resistance, and welding strength.
以上のように、本実施の形態に係る溶融Zn−Al−Mg系めっき鋼板のアーク溶接方法は、めっき層の組成が、Znを主成分とし、質量%で、Al:1.0〜22.0%、Mg:0.05〜10.0%、Ti:0.002〜0.10%を含有し、TiとAlの濃度比Ti/Alを0.0001〜0.05とし、且つ、Ti/Alと板間ギャップGの関係が下記(1)式を満足する。
Ti/Al≦0.02G+0.01 …(1)As described above, in the arc welding method of the hot-dip Zn—Al—Mg-based plated steel sheet according to the present embodiment, the composition of the plating layer is mainly composed of Zn, and is in mass%, Al: 1.0 to 22. 0%, Mg: 0.05 to 10.0%, Ti: 0.002 to 0.10%, Ti / Al concentration ratio Ti / Al is 0.0001 to 0.05, and Ti / Al and the inter-plate gap G satisfy the following formula (1).
Ti / Al ≦ 0.02G + 0.01 (1)
また、前記板間ギャップGは、2mm以下であることが好ましい。 The inter-plate gap G is preferably 2 mm or less.
また、上記溶融Zn−Al−Mg系めっき鋼板は片面当たりのめっき付着量が20〜250g/m2とすることが好ましい。The molten Zn—Al—Mg based plated steel sheet preferably has a plating adhesion amount of 20 to 250 g / m 2 per side.
また、アーク溶接方法は下記(2)式で示される溶接入熱Qが2000〜12000J/cmの範囲とすることが好ましい。
Q=(I×V)/v …(2)
ただし、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)である。Moreover, it is preferable that the arc welding method sets the welding heat input Q shown by the following formula (2) in the range of 2000 to 12000 J / cm.
Q = (I × V) / v (2)
Here, I is the welding current (A), V is the arc voltage (V), and v is the welding speed (cm / sec).
さらに、前記溶融Zn−Al−Mg系めっき鋼板、またはそれを素材とした成形材を上記条件でアーク溶接した溶接部材は下記(3)式で示されるブローホール占有率Brが30%以下であることが好ましく、これにより溶接継手強度に優れる。
Br=(Σdi/L)×100 … (3)
ただし、Σdiはブローホール長さの積算値(mm)、Lは溶接ビード長さ(mm)である。Furthermore, the welded member obtained by arc welding of the molten Zn—Al—Mg-based plated steel sheet or a molding material made from the same under the above conditions has a blowhole occupancy ratio Br represented by the following expression (3) of 30% or less. It is preferable that the weld joint strength is excellent.
Br = (Σdi / L) × 100 (3)
However, Σdi is the integrated value (mm) of the blowhole length, and L is the weld bead length (mm).
また、前記溶融Zn−Al−Mg系めっき鋼板、またはそれを素材とした成形材を上記条件でアーク溶接した溶接部材は溶接ビードを中心とした縦100mm、横100mmの領域のスパッタ付着個数が20個以下であることが好ましく、これにより、溶接部外観と耐食性に優れる。 Further, the welded member obtained by arc welding of the molten Zn—Al—Mg-based plated steel sheet or a molding material made of the same under the above conditions has a sputter deposition number of 20 in the region of 100 mm in length and 100 mm in width centering on the weld bead. It is preferable that the number is less than or equal to the number, and thereby the welded portion appearance and corrosion resistance are excellent.
さらに、前記めっき層は、B:0.001〜0.05%、Si:0〜2.0%、Fe:0〜2.5%からなる群から選ばれる1あるいは2以上を含有してもよい。 Further, the plating layer may contain one or more selected from the group consisting of B: 0.001 to 0.05%, Si: 0 to 2.0%, and Fe: 0 to 2.5%. Good.
表1に示す組成を有する板厚3.2mm、板幅1000mmの冷延鋼帯をめっき原板とし、これを溶融めっきラインに通板して種々のめっき層組成を有する溶融Zn−Al−Mg系めっき鋼板を製造した。めっき層組成、めっき付着量は後述する表2に示す。各溶融Zn−Al−Mg系めっき鋼板を目視観察してZn11Mg2系相の生成有無を調査した。A cold-rolled steel strip having a thickness of 3.2 mm and a width of 1000 mm having the composition shown in Table 1 is used as a plating base plate, and this is passed through a hot dipping line to obtain a molten Zn-Al-Mg system having various plating layer compositions. A plated steel sheet was produced. The plating layer composition and the plating adhesion amount are shown in Table 2 described later. Each molten Zn—Al—Mg-based plated steel sheet was visually observed to investigate whether a Zn 11 Mg 2 -based phase was generated.
それに対して、めっき層にTiおよびBを添加しなかった表3のNo.20、21の比較例ではZn11Mg2系相が観察された。Ti/Alが本発明の範囲外のNo.22〜26の比較例では、ブローホール占有率が38〜58%とブローホールの発生が著しくなり、スパッタ付着個数が23〜33個とスパッタの発生も著しい。また、片面当りのめっき付着量が250g/m2を超えるNo.27、28の参考例、および入熱が2000J/cm未満または12000J/cmを超えるNo.29〜31の参考例でも、ブローホール占有率およびスパッタ付着個数が大きくなる傾向が見られた。On the other hand, No. in Table 3 where Ti and B were not added to the plating layer. In Comparative Examples 20 and 21, a Zn 11 Mg 2 phase was observed. No. Ti / Al is outside the scope of the invention. In the comparative examples of 22 to 26, blowhole occupancy is 38 to 58%, and blowholes are remarkably generated, and the number of sputter deposits is 23 to 33, and spatter is also remarkably generated. Moreover, the plating adhesion amount per one side exceeds 250 g / m 2 . No. 27 and No. 28, and No. of heat input less than 2000 J / cm or more than 12000 J / cm. In the reference examples 29 to 31 as well, there was a tendency that the blowhole occupancy and the number of sputtered deposits increased.
1、1’ 溶融Zn−Al−Mg系めっき鋼板
2 めっき層
3 溶接ビード
4 ピット
5 ブローホール
6 板間ギャップ
1, 1 ′ Molten Zn—Al—Mg plated
Claims (9)
前記めっき層のTiとAlの濃度比Ti/Alが0.0001〜0.05であり、
Ti/Alと板間ギャップGの関係が下記(1)式を満足する溶融Zn−Al−Mg系めっき鋼板のアーク溶接方法。
Ti/Al≦0.02G+0.01 …(1)The composition of the plating layer is mainly composed of Zn, and contains, by mass, Al: 1.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0.002 to 0.10%. An arc welding method for a molten Zn-Al-Mg-based plated steel sheet that joins the molten Zn-Al-Mg-based plated steel sheets,
The plating layer has a Ti / Al concentration ratio Ti / Al of 0.0001 to 0.05,
An arc welding method for a hot-dip Zn—Al—Mg-based plated steel sheet in which the relationship between Ti / Al and the inter-plate gap G satisfies the following formula (1).
Ti / Al ≦ 0.02G + 0.01 (1)
Q=(I×V)/v …(2)
ただし、Iは溶接電流(A)、Vはアーク電圧(V)、vは溶接速度(cm/sec)である。The arc welding method for a hot-dip Zn-Al-Mg-based plated steel sheet according to claim 1 and 2, wherein arc welding is performed in a range where the welding heat input Q represented by the following formula (2) is 2000 to 12000 J / cm.
Q = (I × V) / v (2)
Where I is the welding current (A), V is the arc voltage (V), and v is the welding speed (cm / sec).
Br=(Σdi/L)×100 …(3)The arc welding method for hot-dip Zn-Al-Mg-based plated steel sheets according to claim 1, wherein arc welding is performed so that a blow hole occupation ratio Br represented by the following formula (3) is 30% or less.
Br = (Σdi / L) × 100 (3)
請求項1から5の何れか1項に記載のアーク溶接方法によりアーク溶接した溶接部材。
Br=(Σdi/L)×100 …(3)
ただし、Σdiはブローホール長さの積算値(mm)、Lは溶接ビード長さ(mm)である。The blowhole occupation rate Br shown by the following formula (3) is 30% or less,
A welded member arc-welded by the arc welding method according to any one of claims 1 to 5.
Br = (Σdi / L) × 100 (3)
However, Σdi is the integrated value (mm) of the blowhole length, and L is the weld bead length (mm).
請求項1から5の何れか1項に記載のアーク溶接方法によりアーク溶接した溶接部材。
The number of sputter adhesion in the region of 100 mm in length and 100 mm in width with the weld bead as the center is 20 or less.
A welded member arc-welded by the arc welding method according to any one of claims 1 to 5.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014132300 | 2014-06-27 | ||
JP2014132300 | 2014-06-27 | ||
PCT/JP2015/054454 WO2015198627A1 (en) | 2014-06-27 | 2015-02-18 | METHOD FOR ARC WELDING OF HOT-DIP Zn-Al-Mg COATED STEEL SHEET, AND WELDED MEMBER |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2015198627A1 true JPWO2015198627A1 (en) | 2017-04-20 |
Family
ID=54937731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015513923A Pending JPWO2015198627A1 (en) | 2014-06-27 | 2015-02-18 | Arc welding method for molten Zn-Al-Mg-based plated steel sheet, method for producing welded member, and arc welded member |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2015198627A1 (en) |
TW (1) | TW201600650A (en) |
WO (1) | WO2015198627A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6487877B2 (en) * | 2016-06-20 | 2019-03-20 | 日新製鋼株式会社 | Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member |
JP2021042419A (en) * | 2019-09-10 | 2021-03-18 | 日本電産株式会社 | Zinc alloy and method for producing the same |
CN112575275A (en) * | 2020-12-03 | 2021-03-30 | 攀钢集团研究院有限公司 | High-formability hot-dip zinc-aluminum-magnesium alloy coated steel plate and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004090017A (en) * | 2002-08-30 | 2004-03-25 | Nisshin Steel Co Ltd | Arc welding method of galvanized steel plate |
JP2011206842A (en) * | 2010-03-30 | 2011-10-20 | Nisshin Steel Co Ltd | Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same |
JP2011208264A (en) * | 2010-03-30 | 2011-10-20 | Nisshin Steel Co Ltd | Vehicle chassis member excellent in corrosion resistance and method of manufacturing the same |
JP2013035060A (en) * | 2011-07-13 | 2013-02-21 | Nisshin Steel Co Ltd | METHOD FOR PRODUCING Zn-Al-Mg BASED PLATED STEEL SHEET ARC WELDING STRUCTURAL MEMBER |
-
2015
- 2015-02-18 WO PCT/JP2015/054454 patent/WO2015198627A1/en active Application Filing
- 2015-02-18 JP JP2015513923A patent/JPWO2015198627A1/en active Pending
- 2015-03-31 TW TW104110432A patent/TW201600650A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004090017A (en) * | 2002-08-30 | 2004-03-25 | Nisshin Steel Co Ltd | Arc welding method of galvanized steel plate |
JP2011206842A (en) * | 2010-03-30 | 2011-10-20 | Nisshin Steel Co Ltd | Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same |
JP2011208264A (en) * | 2010-03-30 | 2011-10-20 | Nisshin Steel Co Ltd | Vehicle chassis member excellent in corrosion resistance and method of manufacturing the same |
JP2013035060A (en) * | 2011-07-13 | 2013-02-21 | Nisshin Steel Co Ltd | METHOD FOR PRODUCING Zn-Al-Mg BASED PLATED STEEL SHEET ARC WELDING STRUCTURAL MEMBER |
Also Published As
Publication number | Publication date |
---|---|
WO2015198627A1 (en) | 2015-12-30 |
TW201600650A (en) | 2016-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6715399B1 (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same | |
KR101764519B1 (en) | Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint | |
KR101012199B1 (en) | Weld joint formed with stainless steel-based weld metal for welding a zinc-based alloy coated steel sheet | |
TWI399445B (en) | Stainless steel wire with flux core for welding zing coated steel sheets | |
JP5372217B2 (en) | Manufacturing method of arc-welded structural members | |
JP2001295015A (en) | HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET | |
CN113508186B (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
JP6080391B2 (en) | Method for producing Zn-Al-Mg plated steel sheet arc welded structural member | |
JP5980128B2 (en) | Manufacturing method of arc-welded structural members | |
JP2014133259A (en) | Manufacturing method of arc welding structural member | |
JP5472244B2 (en) | Narrow groove butt welding method for thick steel plates | |
JP7549965B2 (en) | Hot-dip Al-Zn-Mg-Si plated steel sheet and its manufacturing method, and coated steel sheet and its manufacturing method | |
JP2016101593A (en) | Arc welding method for galvanized steel sheet and arc-welded joint | |
CN113631748A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
WO2015198627A1 (en) | METHOD FOR ARC WELDING OF HOT-DIP Zn-Al-Mg COATED STEEL SHEET, AND WELDED MEMBER | |
JP2007118068A (en) | Narrow groove butt welding method for thick steel plate | |
JP2009274132A (en) | Coated arc welding electrode for galvanized steel sheet | |
JP6114785B2 (en) | Arc welding method for hot-dip Zn-based plated steel sheet with excellent weld appearance and weld strength, and method for producing welded member | |
JP3941528B2 (en) | Carbon dioxide shielded arc welding wire | |
JP2016168612A (en) | ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH | |
JP6315153B1 (en) | Fused Al-Zn plated steel sheet | |
WO2016194400A1 (en) | Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member | |
JP3983155B2 (en) | Steel wire for gas shielded arc welding | |
JP2006089787A (en) | METHOD FOR PRODUCING Zn-Al-Mg ALLOY PLATED STEEL SHEET HAVING EXCELLENT HOT DIP METAL EMBRITTLEMENT CRACK RESISTANCE | |
JPH0866792A (en) | Metal flux cored wire for galvanized steel sheet and gas shield arc welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151020 |