JP2004209513A - Arc welding method of galvannealed steel plate - Google Patents

Arc welding method of galvannealed steel plate Download PDF

Info

Publication number
JP2004209513A
JP2004209513A JP2002381637A JP2002381637A JP2004209513A JP 2004209513 A JP2004209513 A JP 2004209513A JP 2002381637 A JP2002381637 A JP 2002381637A JP 2002381637 A JP2002381637 A JP 2002381637A JP 2004209513 A JP2004209513 A JP 2004209513A
Authority
JP
Japan
Prior art keywords
welding
based alloy
bead
zinc
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002381637A
Other languages
Japanese (ja)
Inventor
Shinji Kodama
真二 児玉
Hideki Hamaya
秀樹 濱谷
Nobuo Mizuhashi
伸雄 水橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002381637A priority Critical patent/JP2004209513A/en
Publication of JP2004209513A publication Critical patent/JP2004209513A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an arc welding method of a galvannealed steel plate for arc welding in which liquid metal brittle fracture easily occurring at a heat-affected welded zone is suppressed when performing the arc welding of the galvannealed steel plate to be used for a welded structural member of a building, a car or the like. <P>SOLUTION: In the arc welding method of a galvannealed steel plate 1 with a galvannealed layer deposited on a surface of the steel plate, a tack welding bead 7 is formed by the bead-on-plate welding in advance, and a final welding bead 3 is formed by performing the final welding. In this condition, the tack welding bead 7 overlaps the final welding bead 3, the heat input P in the final welding satisfies the relation L ≥ 0.5 × P + 7.5, where L is the distance from the target position of the bead-on-plate welding to the target position of the final welding. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主に、建築、自動車などの溶接構造部材に使用される亜鉛系合金めっき鋼板に関し、特に、このような亜鉛系合金めっき鋼板をアーク溶接する際に溶接熱影響部における液体金属脆化割れ(以下、亜鉛めっき割れということもある)を抑制できる亜鉛系合金めっき鋼板のアーク溶接方法に関する。
【0002】
【従来の技術】
Znめっき鋼板は、建築や自動車の構造部材の耐食性向上の観点から幅広く用いられている。また最近では、更なる耐食性向上のために鋼板表面にZn−Al−Mg系合金めっき、Zn−Al−Mg−Si系合金めっきなどの亜鉛系合金めっきを施した亜鉛系合金めっき鋼板が特許文献1および特許文献2で知られている。そして、これら亜鉛系合金めっき鋼板は、アーク溶接方法によって溶接が施された溶接構造物として使用される場合が多い。
【0003】
しかし、これら亜鉛系合金めっきを施した鋼板をアーク溶接する際に、鋼板の溶接熱影響部(以下、溶接HAZ部という。)は、溶接入熱により溶融された亜鉛系合金めっきが鋼板表面に溶融状態のまま残留しやすく、かつ、鋼板組織は結晶粒が成長、粗大化した組織となりやすい。このような状態で鋼板に引張応力が働いた場合には、鋼板の溶接HAZ部組織によっては、溶融めっきが鋼板表面の結晶粒界に侵入して粒界が脆化した領域、つまり脆化域が形成され、割れが発生する。特に被溶接部材が著しく拘束された状態での溶接時に溶接HAZ部の脆化域で割れが発生することが多い。
【0004】
また、従来から、溶接を用いて作製した溶接継ぎ手を高温の溶融亜鉛合金めっき浴でめっきする際にも、溶接による溶接止端部近傍の残留引張応力やめっき時に発生する歪みなどが引張応力として作用し同様な割れが発生することが知られている。このように、高温状態の或る種の液体金属と或る種の固体金属が接触した状態で、固体金属にある大きさの引張応力が作用する場合に、固体金属に脆化域が形成され、割れが発生する現象を液体金属脆化割れ:LME(Liquid MetalEmbrittlement)と称され、例えば、非特許文献1で知られている。
【0005】
従来、溶接継ぎ手の溶融めっき時の液体金属脆化割れ(LME)を抑制するために鋼板の成分による組織制御が試みられており、JISでは(例えば、鋼管用はJIS G 3474−1995、また、鋼板用はJIS G 3219−1995)ではLME炭素当量式が規格化されている。
【0006】
また、特許文献3では、Zn−Al合金めっきが施される鋼板に対して鋼材の各成分を限定するとともに、特にBに対しては0.0002%以下の厳しい制約を設けている。
【0007】
しかし、上記LME炭素当量式は、溶接継ぎ手を高温で溶融めっき処理する際の液体金属脆化割れ(LME)を対象とし、その割れが発生する温度域は溶融亜鉛めっきの場合はそのめっき浴の温度:450℃(亜鉛の融点)程度と比較的低温であるのに対して、亜鉛系合金めっき鋼板のアーク溶接の場合は、ビーク温度が1500℃と高く、割れの発生は鋼板の溶融温度から室温までの広い温度域で発生する。したがって、従来のNTB試験およびその結果に基づくLME炭素当量式を亜鉛系合金めっき鋼板のアーク溶接時に適用しても、液体金属脆化割れ(LME)を充分に抑制することは困難であった。
【0008】
一方、プレス成形性の要求される極低炭素鋼のIF(Interstitial Free)鋼板のろう付けにおけるはんだ脆性として上記液体金属脆化割れの発生が知られており、その対策として、例えば、特許文献4では、IF鋼のCを0.0005〜0.03%と低くし、Tiを0.01〜0.2%添加してNを固定するとともに、Bを0.0002〜0.003%添加して結晶粒界にBを偏析させることにより溶融金属の粒界への進入を防ぎ、割れ発生を抑制している。
【0009】
しかし、この方法は、極低炭素鋼のIF鋼板を、ビーク温度が鋼板の融点より低い温度域でろう付けする場合の900〜1000℃程度で発生する割れを対象とするものであり、IF鋼よりもC含有量が高く、焼き入れ性が高い鋼の亜鉛系合金めっき鋼板を対象とし、ビーク温度が鋼板の融点より高い温度域でアーク溶接を行う場合の1500℃〜室温までの広い温度域で発生する割れを充分抑制することは困難である。
【0010】
従来、自動車用として多く用いられてきた亜鉛系合金めっき鋼板は、成形性を考慮しCや合金元素などの少ない引っ張り強度が低い鋼に限られてきたが、近年、自動車の軽量化及び燃費向上、ひいては地球環境への考慮から高強度の亜鉛系合金めっき鋼板の産業上の意義が大きくなってきた。亜鉛系合金めっき鋼板の高強度化により、その溶接時に亜鉛液体金属脆化割れめっき割れという問題が顕在化するようになってきている。一方、建築分野においては、従来亜鉛浴での後付けめっきが主流であったのに対し、工程省略の観点からプレめっき鋼板の溶接が行われるようになり、めっき割れが問題となるようになってきた。
【0011】
しかしながら、従来技術として中、高強度の亜鉛系合金めっき鋼板をアーク溶接する際に発生しやすい液体金属脆化割れを充分抑制するための有効な方法はなかった。特に、溶接条件などの観点から亜鉛系合金めっき鋼板のアーク溶接における液体金属脆化割れを抑制する方法は皆無である。
【0012】
【特許文献1】
特開平10−226865号公報
【特許文献2】
特開2000−64061号公報
【特許文献3】
特開平05−156406号公報
【特許文献4】
特開昭60−92453号公報
【非特許文献1】
Journal of Institute of Metals(1914)p.108.(A.K.Huntington)
【0013】
【発明が解決しようとする課題】
本発明は、上述したような従来の問題点を踏まえ、例えば、めっき鋼板、特に、Zn−Al系合金めっき、Zn−Al−Mg系合金めっき、Zn−Al−Mg−Si系合金めっきなどを施した亜鉛合金系めっき鋼板のアーク溶接における液体金属脆化割れを抑制することができる亜鉛合金系めっき鋼板のアーク溶接方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨は次の通りである。
(1)亜鉛系合金めっき層を鋼板表面に設けた亜鉛系合金めっき鋼板のアーク溶接方法において、予めビードオンプレート溶接により仮溶接ビードを形成した後、本溶接を行なって本溶接ビードを形成する際に、前記仮溶接ビードと前記本溶接ビードが重なり、かつ前記ビードオンプレート溶接の狙い位置から前記本溶接の狙い位置までの距離Lと、本溶接時の入熱量Pが下記(1)式を満足するように溶接することを特徴とする亜鉛系合金めっき鋼板のアーク溶接方法。
【0015】
L≧0.5×P+7.5 ・・・(1)
但し、Lは、ビードオンプレート溶接の狙い位置から本溶接の狙い位置までの距離(mm)、Pは、本溶接時の入熱量(kJ/cm)を示す。
(2)前記亜鉛系合金めっきが、Zn−Al系合金めっき、Zn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきの何れか1種であることを特徴とする上記(1)記載の亜鉛系合金めっき鋼板のアーク溶接方法。
(3)前記Zn−Al系合金めっきは、質量%で、Al:0.18〜5%を含有し、残部がZnおよび不可避的不純物であることを特徴とする上記(2)記載の亜鉛系合金めっき鋼板のアーク溶接方法。
(4)前記Zn−Al−Mg系合金めっきは、質量%で、Al:2〜10%、Mg:1〜4%を含有し、残部がZnおよび不可避的不純物であることを特徴とする上記(2)記載の亜鉛系合金めっき鋼板のアーク溶接方法。
(5)前記Zn−Al−Mg−Si系合金めっきは、質量%で、Al:2〜19%、Mg:1〜10%、Si:0.01〜2%を含有し、残部がZnおよび不可避的不純物であることを特徴とする上記(2)記載の亜鉛系合金めっき鋼板のアーク溶接方法。
(6)前記亜鉛系合金めっき鋼板の引っ張り強度が350MPa以上であることを特徴とする上記(1)〜(5)の何れか1項に記載の亜鉛系合金めっき鋼板のアーク溶接方法。
【0016】
【発明の実施の形態】
一般に、鋼材同士をアーク溶接により接合して溶接継手を作成する場合には、その接合部は、溶接後に溶融状態の溶接金属が凝固した後、さらに冷却される過程で熱収縮されるため、外力が加わっていない状態でも溶接部の周囲に拘束されて溶接部には引張応力が発生し、室温になると溶接金属および母材熱影響部(以下、溶接金属および母材熱影響部を溶接部と称する)には引っ張り応力が残留(以下、これを残留引っ張り応力と称する)する。このような溶接部における熱収縮に起因した引っ張り応力が、溶融状態の亜鉛系合金めっきが鋼板表面から結晶粒界に侵入し、亜鉛めっき割れを発生させる引き金となっているものと考えられる。
【0017】
溶接過程で溶接部に発生する熱収縮に起因した引っ張り応力の大きさは温度に応じて変化し、例えば、溶接部の温度が900℃程度の高温状態で生じる引張応力は比較的小さいのに対し、亜鉛系合金めっきの融点近傍の温度に相当する400℃程度では溶接部周囲の高温強度の回復および熱収縮の増加により引っ張り応力は大きくなると考えられる。また、その引っ張り応力は、被溶接材の高温強度(通常は冷間強度に依存する)が高いほど、溶接部の周囲の拘束度(継ぎ手形状や拘束器具などに依存する)が大きいほど、増加する。
【0018】
従来の極低炭素のIF鋼板のろう付けの場合の割れ発生は、約800℃以上の高温域でのみ発生じていたのに対して、引っ張り強度が約350MPa以上の中、高強度(IF鋼より鋼中C量が高く焼き入れ性が高い)の亜鉛系合金めっき鋼板をアーク溶接する場合に高温域だけでなく、400℃程度の低温域でもめっき割れが多く発生する理由は、鋼板強度がIF鋼板に比べて高いために低温域での熱収縮に起因した引っ張り強度が大きくなったためと考えれる。
【0019】
また、溶接部に発生する熱収縮に起因した引っ張り応力の大きさは、溶接止端部(溶接金属と母材熱影響部との境界部付近)で大きくなり、特に溶接止端部における溶接ビード(溶接金属)と被溶接材とがなす表面形状が鋭角になるほど、応力が集中するため引っ張り応力の作用は大きくなる。
【0020】
本発明は、亜鉛系合金めっき鋼板のアーク溶接において、高温域だけでなく、400℃程度の低温域で多く発生するめっき割れを抑制するために、本溶接の前に予め補助溶接により溶接ビードを形成することにより溶接止端部の位置および形状を制御し、よって溶接止端部における引っ張り応力を低減することを技術思想とするものである。
【0021】
以下に本発明を詳細に説明する。
【0022】
図1に従来の亜鉛系合金めっき鋼板のアーク溶接における典型的な液体金属脆化割れ(亜鉛めっき割れ)の例を示す。鋼板表面に亜鉛系合金めっき層6が施された亜鉛系合金めっき鋼板1にめっきの無い鋼板2を重ね隅肉溶接した場合には、溶接ビード(溶接金属)3と亜鉛系合金めっき鋼板1との境界部に位置する溶接止端部5は、熱収縮に起因した引っ張り応力が発生しかつ鋭角な形状に起因して応力集中部となるため、溶融状態での亜鉛めっきが鋼板表面の粒界に侵入して板厚方向に割れ4が発生する。このような割れ4は、被溶接部材が厳しく拘束された状態で溶接する場合に多く発生する。そこで発明者らは、亜鉛めっき割れを防止するために、溶接止端部5における引っ張り応力を低減する方法について鋭意検討した。
【0023】
溶接止部端部における引っ張り応力の低減方法として、溶接継ぎ手の拘束力を低減させる方法や、溶接止端部の立ち上がり角度(溶接ビード表面と被溶接材表面とでなす角度をいう。以下同様)を小さくし応力集中度合いを下げる方法が考えられる。しかしながら、溶接継ぎ手の拘束力低減方法は溶接の構造に係わるため適用範囲が制限され汎用性が乏しい。一方、溶接止端部の立ち上がり角度の低減方法は、例えば、溶接方法としてMAG溶接を用いる、アーク電圧を通常よりも高く設定して溶接する、パルス電源を用いて溶接する等によって可能となるが、溶接条件の変更・変動によって溶接止端部の立ち上がり角度は変化しやすく安定的に溶接部の亜鉛めっき割れを抑制することは困難である。
【0024】
ところで、鋼板上に単純に溶接ビードをおくビードオンプレート溶接は、基本的に溶接構造に起因する拘束力は小さく、溶接入熱を極端に増加させない限り、溶接止端部における熱収縮に起因した引っ張り応力の発生は比較的小さく、かつ溶接止端部の立ち上がり角度も小さく応力集中が低減するため、溶接止端部における割れは発生しない。
【0025】
そこで、発明者らはこのビードオンプレート溶接に着目し、図2に示すように、本溶接を行う前に、鋼板2端部(本溶接の狙い位置に相当)から所定距離Lだけ離れた位置(ビードオンプレート溶接の狙い位置に相当)に予めビードオンプレート溶接により仮溶接ビード6を形成した後、その仮溶接ビード6の一部にかぶさるように本溶接により本溶接ビード3を形成することによって亜鉛めっき割れを抑制する方法を検討した。なお、上記所定距離Lは、ビード幅方向の距離を示す。
【0026】
図3(b)に示すように、ビードオンプレート溶接の狙い位置と本溶接の狙い位置(鋼板2端部)との距離Lが遠すぎて、仮溶接ビード7に本溶接ビード3が全く重ならなくなった場合は、本溶接ビードの溶接止端部5において引っ張り応力が発生し、この領域に残存する溶融状態の亜鉛めっきが鋼板表面の粒界に侵入して亜鉛めっき割れが発生する。また、図3(a)に示すように、ビードオンプレート溶接の狙い位置と本溶接の狙い位置(鋼板2端部)との距離Lが近すぎても、本溶接の際の溶接入熱により本溶接の前に形成した仮溶接ビード7の溶接止端部8の温度が上昇後、熱収縮に起因する引っ張り応力が発生し、かつ周囲の亜鉛めっきが再溶融して鋼板粒界に侵入するため亜鉛めっき割れが発生する。また、亜鉛めっき割れが発生しないための上記距離Lの下限は、本溶接時の入熱量に依存し、入熱量が比較的小さい場合は上記距離Lの下限は小さく(近く)なり、入熱量が増加するにつれて上記距離Lの下限は大きく(遠く)なる。
【0027】
図4に本溶接時の溶接入熱量Pと本溶接前に行うビードオンプレート溶接時の狙い位置(図2の鋼板2端部からの距離)Lとの関係と示す。なお、図4においては、ビードオンプレート溶接により形成する仮溶接ビードと本溶接により形成される本溶接ビードは全て一部が重なった条件で溶接した。また、ビードオンプレート溶接および本溶接は、MAG溶接を用い、ビードオンプレート溶接は、M溶接電流150A、溶接電圧20V、溶接速度30cm/minの一定の条件で行ない、本溶接は、溶接電流200A、溶接電圧23Vを一定とし、溶接速度を調整することにより溶接入熱量を5〜20kJ/cmの範囲に調整した。
【0028】
ビードオンプレート溶接による仮溶接ビード形成後、本溶接により仮溶接ビードの一部に重ねて本溶接ビードを形成する場合は、仮溶接ビードの溶接止端部における割れ発生は、本溶接時の入熱量Pとビードオンプレート溶接の狙い位置(本溶接の狙い位置(鋼板端部)からの距離)Lが支配要因となり、亜鉛めっき割れが発生しないためには、L≧0.5P+7.5の条件を満足することが必要である。
【0029】
以上の理由から、本発明では、亜鉛系合金めっき鋼板のアーク溶接方法において、予めビードオンプレート溶接により仮溶接ビードを形成した後、本溶接を行なって本溶接ビードを形成する際に、前記仮溶接ビードと前記本溶接ビードが重なり、かつ前記ビードオンプレート溶接の狙い位置から前記本溶接の狙い位置までの距離Lと、本溶接時の入熱量Pが下記(1)式を満足するように規定する。
【0030】
L≧0.5×P+7.5 ・・・(1)
但し、Lは、ビードオンプレート溶接の狙い位置から本溶接の狙い位置までの距離(mm)、Pは、本溶接時の入熱量(kJ/cm)を示す。
【0031】
このように、仮溶接ビードと前記本溶接ビードが重なるように溶接することにより、本溶接ビードの溶接止端部において引っ張り応力が発生し、この領域に残存する溶融状態の亜鉛めっきが鋼板表面の粒界に侵入して亜鉛めっき割れが発生することを防止することができる。また、ビードオンプレート溶接の狙い位置から本溶接の狙い位置までの距離Lと、本溶接時の入熱量Pが下記(1)式を満足するように規定することにより、本溶接時の溶接入熱により仮溶接ビードの溶接止端部の温度が上昇後、熱収縮に起因する引っ張り応力が発生し、かつ周囲の亜鉛めっきが再溶融して鋼板粒界に侵入するため亜鉛めっき割れが発生することを抑制できる。
【0032】
また、上記亜鉛系合金めっきとは、特許文献1に記載されているようなZn−Al−Mg系、特許文献2に記載されているようなZn−Al−Mg−Si系、或いはZn−Al系の亜鉛系合金めっきをいう。因みに、Zn−Al系合金めっきでは、Al:0.18〜0.5%、残部Znからなるめっきを施し、Zn−Al−Mg系合金めっきでは、Al:2〜10%、Mg:1〜4%、残部Znからなるめっきを施し、Zn−Al−Mg−Si系合金めっきでは、Al:2〜19%、Mg:1〜10%、Si:0.01〜2%、残部Znからなるめっきを施すものである。本発明においては、これらのうちの何れか1種の亜鉛系合金めっきを鋼板表面に施した亜鉛系合金めっき鋼板をアーク溶接する方法を対象とする。
【0033】
また、引っ張り強度が350MPa以上の亜鉛系合金めっき鋼板において、溶接部の熱収縮に起因した引っ張り応力発生に伴う亜鉛めっき割れが顕著になるため、本発明方法は、このような亜鉛系合金めっき鋼板の溶接に適用することによりより顕著な効果が得られる。
【0034】
なお、本発明において本溶接の前に実施するビードオンプレート溶接の条件は特に規定するものではないが、仮溶接ビードの止端部での微細な割れも抑制するためには、溶接電流、溶接電圧および溶接速度の何れかにより、溶接入熱量を10kJ/cm以下と比較的小さめに管理することが好ましい。
【0035】
また、ビードオンプレート溶接に用いられる溶接手法は、上記説明では、溶接施工の煩雑さを低減するために本溶接と同じ消耗電極式のアーク溶接を前提としたが、溶接材料を用いないTIG溶接やプラズマアーク溶接、およびレーザ溶接等においても同様の効果が得られる。
【0036】
【実施例】
質量%で、0.15%C−0.25%Si−0.5%Mn−残部Feおよび不可避的不純物からなる低炭素鋼からなる母材鋼板に、目付量片面90g/m で11%Al−3%Mg−0.3%Si−残部Znからなる亜鉛系合金めっきを施した強度:400MPa級の亜鉛系合金めっき鋼板を用いてアーク溶接を実施した。溶接対象は、図5に示すように亜鉛系合金めっき鋼板1に廻し溶接9を施すに際し、廻し溶接部の頂点に予め溶接ビード長さ30mmのビードオンプレート溶接10を付与し、その後、廻し溶接9を行ない、溶接部の割れを評価した。なお、拘束を厳しくするために6mm厚の亜鉛系合金めっき鋼板1同士を溶接してボックス形状とした。また、ビードオンプレート溶接10および廻し溶接9は何れもパルスMAG溶接を用い、ビードオンプレート溶接10は、溶接電流150A、溶接電圧20V、溶接速度30cm/minの一定条件で行ない、廻し溶接10は、溶接電流200A、溶接電圧23Vを一定とし、溶接速度を調整することにより溶接入熱量を5〜15kJ/cmの範囲に調整した。
【0037】
溶接部の割れ評価は、溶接部断面観察によって割れ深さを測定し、板厚に対する比率(%)を割れの度合いとして求めて評価した。表1にその結果を示す。記号1〜4は、本発明の範囲内の条件であるためいずれも溶接部の割れは発生しなかった。一方、比較例である記号5〜7に関して、記号5はビードオンプレート溶接を実施せず、記号6はビードオンプレート溶接の狙い位置から本溶接の狙い位置までの距離Lが近すぎ、記号7は逆に距離Lが遠すぎて、仮溶接ビードと本溶接ビードが重ならなかったためにいずれも溶接部で割れが発生した。
【0038】
【表1】

Figure 2004209513
【0039】
【表2】
Figure 2004209513
【0040】
【発明の効果】
以上述べたように、本発明は、建築、自動車などの溶接構造部材に使用される亜鉛系合金めっき鋼板をアーク溶接する際に溶接熱影響部における液体金属脆化割れを抑制できる亜鉛系合金めっき鋼板のアーク溶接方法を提供することが可能となる。
【図面の簡単な説明】
【図1】従来法における典型的な液体金属脆化割れ発生状況を示す図。
【図2】本発明方法の一つの実施形態を説明するための図。
【図3】(a),(b)は仮溶接ビード及び本溶接ビードの位置と割れの関係を示す図。
【図4】本溶接時の溶接入熱量P、ビードオンプレート溶接の狙いから位置本溶接の狙い位置までの距離Lと割れの関係を示す図。
【図5】本発明の実施例の廻し溶接を説明するための図。
【符号の説明】
1…亜鉛系合金めっき鋼板
2…めっきの無い鋼板
3…本溶接ビード
4…割れ
5…本溶接ビードの溶接止端部
6…亜鉛系合金めっき層
7…仮溶接ビード
8…仮溶接ビードの溶接止端部
9…廻し溶接
10…ビードオンプレート溶接
L…ビードオンプレート溶接の狙いから位置本溶接の狙い位置までの距離[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a zinc-based alloy-plated steel sheet mainly used for welded structural members of buildings, automobiles, and the like, and particularly to a liquid metal brittleness in a weld heat-affected zone when such a zinc-based alloy-plated steel sheet is arc-welded. The present invention relates to an arc welding method for a zinc-based alloy-plated steel sheet which can suppress chemical cracking (hereinafter, sometimes referred to as galvanizing cracking).
[0002]
[Prior art]
Zn-plated steel sheets are widely used from the viewpoint of improving the corrosion resistance of structural members of buildings and automobiles. Recently, a zinc-based alloy-plated steel sheet in which a zinc-based alloy plating such as a Zn-Al-Mg-based alloy plating or a Zn-Al-Mg-Si-based alloy plating is applied to the surface of the steel sheet to further improve corrosion resistance is disclosed in Patent Document 1. 1 and Patent Document 2. These zinc-based alloy-plated steel sheets are often used as welded structures welded by an arc welding method.
[0003]
However, when arc welding is performed on a steel sheet coated with such a zinc-based alloy, the welding heat-affected zone (hereinafter, referred to as a welding HAZ) of the steel sheet causes the zinc-based alloy plating melted by welding heat input to the steel sheet surface. It is likely to remain in a molten state, and the steel sheet structure tends to be a structure in which crystal grains grow and become coarse. When tensile stress acts on the steel sheet in such a state, depending on the weld HAZ structure of the steel sheet, a region in which hot-dip coating enters crystal grain boundaries on the surface of the steel plate and the grain boundaries are embrittled, that is, an embrittlement region Are formed and cracks occur. In particular, cracks often occur in the embrittlement zone of the weld HAZ during welding in a state where the member to be welded is significantly restrained.
[0004]
In addition, conventionally, when a welded joint made by welding is plated in a high-temperature hot-dip zinc alloy plating bath, residual tensile stress in the vicinity of the weld toe due to welding and strain generated during plating are considered as tensile stress. It is known that they act and cause similar cracks. Thus, when a certain amount of tensile stress acts on a solid metal in a state where a certain kind of liquid metal is in contact with a certain kind of solid metal at a high temperature, an embrittlement zone is formed in the solid metal. The phenomenon in which cracking occurs is called liquid metal embrittlement cracking: LME (Liquid Metal Embrimentment), and is known, for example, from Non-Patent Document 1.
[0005]
Conventionally, in order to suppress liquid metal embrittlement cracking (LME) at the time of hot-dip plating of a welded joint, microstructure control by a component of a steel sheet has been attempted, and JIS (for example, JIS G 3474-1995 for steel pipe, For steel plates, JIS G 3219-1995) standardizes the LME carbon equivalent formula.
[0006]
Further, in Patent Document 3, each component of the steel material is limited to a steel plate to which a Zn-Al alloy plating is applied, and a strict restriction of 0.0002% or less is set particularly for B.
[0007]
However, the above-mentioned LME carbon equivalent equation is intended for liquid metal embrittlement cracking (LME) when hot-dip coating is performed at a high temperature on a welding joint. Temperature: The temperature is relatively low at about 450 ° C. (melting point of zinc), whereas in the case of arc welding of a zinc-based alloy-coated steel sheet, the beak temperature is as high as 1500 ° C., and the occurrence of cracks depends on the melting temperature of the steel sheet. Occurs in a wide temperature range up to room temperature. Therefore, it has been difficult to sufficiently suppress liquid metal embrittlement cracking (LME) even when the conventional NTB test and the LME carbon equivalent formula based on the results are applied during arc welding of a zinc-based alloy-plated steel sheet.
[0008]
On the other hand, the occurrence of the above-mentioned liquid metal embrittlement cracking is known as solder embrittlement during brazing of an IF (Interstitial Free) steel sheet of an ultra-low carbon steel required for press formability. Then, C of the IF steel is reduced to 0.0005 to 0.03%, Ti is added by 0.01 to 0.2% to fix N, and B is added by 0.0002 to 0.003%. By segregating B at the crystal grain boundaries, the penetration of the molten metal into the grain boundaries is prevented, and the occurrence of cracks is suppressed.
[0009]
However, this method is intended for cracking occurring at about 900 to 1000 ° C. when brazing an ultra-low carbon IF steel sheet in a temperature range in which a beak temperature is lower than the melting point of the steel sheet. Wide temperature range from 1500 ° C to room temperature when arc welding is performed in a zone where the beak temperature is higher than the melting point of the steel sheet for zinc-based alloy-plated steel sheets with higher C content and higher hardenability It is difficult to sufficiently suppress the cracks generated in the above.
[0010]
Conventionally, zinc-based alloy-plated steel sheets, which have been widely used for automobiles, have been limited to steels with low tensile strengths, such as C and alloying elements, in consideration of formability. The industrial significance of high-strength zinc-based alloy-plated steel sheets has been increasing in consideration of the global environment. With the increase in strength of zinc-based alloy plated steel sheets, the problem of zinc liquid metal embrittlement cracking plating cracking during welding has become apparent. On the other hand, in the field of construction, post-plating in zinc baths has been the mainstream in the past, whereas pre-plated steel sheets have been welded from the viewpoint of omitting the process, and plating cracking has become a problem. Was.
[0011]
However, there is no effective method of the prior art for sufficiently suppressing liquid metal embrittlement cracking, which tends to occur when arc welding a medium-strength zinc-based alloy-plated steel sheet. In particular, there is no method of suppressing liquid metal embrittlement cracking in arc welding of a zinc-based alloy-plated steel sheet from the viewpoint of welding conditions and the like.
[0012]
[Patent Document 1]
JP-A-10-226865 [Patent Document 2]
JP 2000-64061 A [Patent Document 3]
JP 05-156406 A [Patent Document 4]
JP-A-60-92453 [Non-Patent Document 1]
Journal of Institute of Metals (1914) p. 108. (AK Huntington)
[0013]
[Problems to be solved by the invention]
The present invention is based on the conventional problems described above, for example, a plated steel sheet, in particular, Zn-Al-based alloy plating, Zn-Al-Mg-based alloy plating, Zn-Al-Mg-Si-based alloy plating and the like An object of the present invention is to provide an arc welding method for a zinc alloy-based plated steel sheet which can suppress liquid metal embrittlement cracking in arc welding of the applied zinc alloy-based plated steel sheet.
[0014]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) In a method for arc welding of a zinc-based alloy-plated steel sheet having a zinc-based alloy-plated layer provided on a steel sheet surface, a temporary weld bead is formed in advance by bead-on-plate welding, and then a main weld is performed to form a main weld bead. At this time, the distance L from the target position of the bead-on-plate welding to the target position of the main welding and the heat input P at the time of the main welding are defined by the following formula (1). Arc welding method for a zinc-based alloy-plated steel sheet, characterized by welding to satisfy the following.
[0015]
L ≧ 0.5 × P + 7.5 (1)
Here, L indicates the distance (mm) from the target position of the bead-on-plate welding to the target position of the main welding, and P indicates the heat input (kJ / cm) during the main welding.
(2) The zinc-based alloy plating is one of Zn-Al-based alloy plating, Zn-Al-Mg-based alloy plating, and Zn-Al-Mg-Si-based alloy plating. An arc welding method for a zinc-based alloy-plated steel sheet according to the above (1).
(3) The zinc-based alloy according to (2), wherein the Zn-Al-based alloy plating contains 0.18 to 5% by mass of Al, and the balance is Zn and inevitable impurities. Arc welding method for alloy plated steel sheet.
(4) The Zn-Al-Mg based alloy plating contains 2 to 10% of Al and 1 to 4% of Mg by mass%, and the balance is Zn and inevitable impurities. (2) An arc welding method for a zinc-based alloy-plated steel sheet according to (2).
(5) The Zn—Al—Mg—Si alloy plating contains, by mass%, Al: 2 to 19%, Mg: 1 to 10%, and Si: 0.01 to 2%, with the balance being Zn and The arc welding method for a zinc-based alloy-plated steel sheet according to the above (2), which is an unavoidable impurity.
(6) The arc welding method for a zinc-based alloy-coated steel sheet according to any one of the above (1) to (5), wherein the zinc-based alloy-coated steel sheet has a tensile strength of 350 MPa or more.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Generally, when a welded joint is made by joining steel materials by arc welding, the joint is thermally contracted in the process of cooling after the weld metal in a molten state solidifies after welding. Even when no heat is applied, the weld is constrained around the weld and tensile stress is generated in the weld, and when the temperature reaches room temperature, the weld metal and the base metal heat affected zone (hereinafter, the weld metal and the base metal heat affected zone are referred to as the weld zone). (Hereinafter referred to as "residual tensile stress"). It is considered that the tensile stress caused by the heat shrinkage in such a welded portion causes the zinc-based alloy plating in the molten state to enter the crystal grain boundary from the steel sheet surface and trigger the galvanization crack.
[0017]
The magnitude of the tensile stress caused by the thermal shrinkage generated in the weld during the welding process changes according to the temperature. For example, the tensile stress generated when the temperature of the weld is as high as 900 ° C. is relatively small. At about 400 ° C., which corresponds to a temperature near the melting point of the zinc-based alloy plating, it is considered that the tensile stress increases due to the recovery of the high-temperature strength around the welded portion and the increase in thermal shrinkage. In addition, the tensile stress increases as the high-temperature strength (usually depending on the cold strength) of the material to be welded and the degree of constraint around the welded portion (depending on the shape of the joint and the restraining device) increase. I do.
[0018]
While cracking in the conventional brazing of ultra-low carbon IF steel sheets occurred only in a high temperature region of about 800 ° C. or higher, a high strength steel (IF steel sheet) having a tensile strength of about 350 MPa or more was used. The reason why a lot of plating cracks occur not only in a high temperature range but also in a low temperature range of about 400 ° C. when arc-welding a zinc-based alloy-plated steel sheet having a higher C content and a higher quenching property in steel is that the steel sheet strength is lower. It is considered that the tensile strength due to the heat shrinkage in the low temperature range was increased because the tensile strength was higher than that of the IF steel sheet.
[0019]
In addition, the magnitude of the tensile stress due to the heat shrinkage generated in the welded portion increases at the weld toe (near the boundary between the weld metal and the base metal heat affected zone), and particularly the weld bead at the weld toe. As the surface shape formed by the (weld metal) and the material to be welded becomes sharper, the stress concentrates, and the action of the tensile stress increases.
[0020]
The present invention relates to arc welding of a zinc-based alloy-plated steel sheet, not only in a high-temperature region, but also in order to suppress plating cracks that often occur in a low-temperature region of about 400 ° C. The technical idea is to control the position and shape of the weld toe by forming the same, thereby reducing the tensile stress at the weld toe.
[0021]
Hereinafter, the present invention will be described in detail.
[0022]
FIG. 1 shows an example of typical liquid metal embrittlement cracking (galvanizing cracking) in arc welding of a conventional zinc-based alloy-plated steel sheet. When a steel plate 2 having no plating is overlapped and fillet-welded on a zinc-based alloy-coated steel plate 1 having a zinc-based alloy-plated layer 6 applied to the surface of the steel plate, the weld bead (weld metal) 3 and the zinc-based alloy-coated steel plate 1 The weld toe 5 located at the boundary of the steel plate generates tensile stress due to thermal shrinkage and becomes a stress concentrated portion due to the acute angle, so that galvanization in the molten state causes grain boundaries on the surface of the steel sheet. And cracks 4 are generated in the thickness direction. Such cracks 4 often occur when welding is performed in a state where the members to be welded are severely restrained. Therefore, the inventors have diligently studied a method for reducing the tensile stress at the weld toe 5 in order to prevent galvanizing cracks.
[0023]
As a method of reducing the tensile stress at the end of the weld toe, a method of reducing the binding force of the weld joint, or the rising angle of the weld toe (the angle formed between the surface of the weld bead and the surface of the material to be welded; the same applies hereinafter). And reducing the degree of stress concentration. However, since the method of reducing the binding force of the welding joint is related to the structure of welding, its application range is limited and its versatility is poor. On the other hand, a method of reducing the rising angle of the weld toe can be achieved by, for example, using MAG welding as a welding method, welding with an arc voltage set higher than usual, welding with a pulse power supply, and the like. In addition, the rising angle of the weld toe is easily changed due to the change or fluctuation of the welding condition, and it is difficult to stably suppress the galvanization crack of the weld.
[0024]
By the way, bead-on-plate welding, in which a weld bead is simply placed on a steel plate, basically has a small restraining force due to the welded structure, and is caused by heat shrinkage at the weld toe unless the heat input is extremely increased. Since the generation of tensile stress is relatively small, the rising angle of the weld toe is small, and the stress concentration is reduced, no crack occurs at the weld toe.
[0025]
Therefore, the inventors focused on this bead-on-plate welding, and as shown in FIG. 2, before performing the main welding, a position separated by a predetermined distance L from the end of the steel plate 2 (corresponding to the target position of the main welding). After forming the temporary weld bead 6 by bead-on-plate welding in advance (corresponding to the target position of the bead-on-plate welding), the final weld bead 3 is formed by main welding so as to cover a part of the temporary weld bead 6. A method for suppressing galvanizing cracks was studied. The predetermined distance L indicates a distance in the bead width direction.
[0026]
As shown in FIG. 3B, the distance L between the target position of the bead-on-plate welding and the target position of the main welding (the end of the steel plate 2) is too long, and the final welding bead 3 is completely heavy on the temporary welding bead 7. Otherwise, tensile stress is generated at the weld toe 5 of the present weld bead, and the molten zinc plating remaining in this region penetrates into grain boundaries on the steel sheet surface to cause galvanizing cracks. Further, as shown in FIG. 3A, even if the distance L between the target position of the bead-on-plate welding and the target position of the main welding (the end of the steel plate 2) is too short, the welding heat input during the main welding causes After the temperature of the weld toe 8 of the temporary welding bead 7 formed before the main welding increases, a tensile stress due to thermal shrinkage is generated, and the surrounding zinc plating remelts and penetrates into the grain boundaries of the steel sheet. Therefore, galvanization cracks occur. The lower limit of the distance L for preventing galvanizing cracks depends on the heat input during main welding. When the heat input is relatively small, the lower limit of the distance L is small (close), and the heat input is low. As the distance increases, the lower limit of the distance L increases (farther).
[0027]
FIG. 4 shows the relationship between the welding heat input amount P during the main welding and the target position (distance from the end of the steel plate 2 in FIG. 2) L during the bead-on-plate welding performed before the main welding. In FIG. 4, the temporary welding bead formed by the bead-on-plate welding and the main welding bead formed by the main welding are all welded under the condition that they are partially overlapped. The bead-on-plate welding and the main welding use MAG welding. The bead-on-plate welding is performed under a constant condition of an M welding current of 150 A, a welding voltage of 20 V, and a welding speed of 30 cm / min. The welding heat input was adjusted to the range of 5 to 20 kJ / cm by adjusting the welding speed while adjusting the welding voltage to 23 V.
[0028]
If a final weld bead is formed by bead-on-plate welding and then overlaid on a part of the temporary weld bead by final welding, cracking at the weld toe of the temporary weld bead will not occur during the actual welding. The heat quantity P and the target position of the bead-on-plate welding (distance from the target position of the main welding (the end of the steel plate)) L are the controlling factors, and in order to prevent zinc plating cracking, the condition of L ≧ 0.5P + 7.5 is required. It is necessary to satisfy
[0029]
For the above reasons, in the present invention, in the arc welding method for a zinc-based alloy-plated steel sheet, after forming a temporary welding bead by bead-on-plate welding in advance and then performing the final welding to form the final welding bead, The distance L from the target position of the bead-on-plate welding to the target position of the main welding and the heat input amount P during the main welding satisfy the following equation (1). Stipulate.
[0030]
L ≧ 0.5 × P + 7.5 (1)
Here, L indicates the distance (mm) from the target position of the bead-on-plate welding to the target position of the main welding, and P indicates the heat input (kJ / cm) during the main welding.
[0031]
In this manner, by welding the temporary welding bead and the main welding bead so as to overlap with each other, a tensile stress is generated at the welding toe of the main welding bead, and the galvanized molten state remaining in this region is formed on the surface of the steel sheet. It is possible to prevent the occurrence of zinc plating cracks by invading the grain boundaries. Further, by defining the distance L from the target position of the bead-on-plate welding to the target position of the main welding and the heat input P at the time of the main welding so as to satisfy the following equation (1), the welding input at the time of the main welding is performed. After the temperature of the weld toe of the temporary weld bead rises due to heat, tensile stress occurs due to thermal shrinkage, and the surrounding zinc plating remelts and penetrates into the steel sheet grain boundaries, causing galvanizing cracks. Can be suppressed.
[0032]
Further, the zinc-based alloy plating refers to a Zn-Al-Mg based as described in Patent Document 1, a Zn-Al-Mg-Si based as described in Patent Document 2, or a Zn-Al Zinc-based alloy plating. Incidentally, in the case of Zn-Al-based alloy plating, plating of Al: 0.18 to 0.5%, with the balance being Zn, is applied. In the case of Zn-Al-Mg-based alloy plating, Al: 2 to 10%, Mg: 1 to 1 4% by plating with the balance of Zn; in the case of Zn-Al-Mg-Si alloy plating, Al: 2 to 19%, Mg: 1 to 10%, Si: 0.01 to 2%, and the balance of Zn It is to be plated. The present invention is directed to a method for arc welding a zinc-based alloy-plated steel sheet in which one of these zinc-based alloy platings is applied to the surface of the steel sheet.
[0033]
Further, in a zinc-based alloy-coated steel sheet having a tensile strength of 350 MPa or more, a zinc-plated crack accompanying a tensile stress generated due to thermal shrinkage of a weld becomes remarkable. A more remarkable effect can be obtained by applying this method to welding.
[0034]
In the present invention, the conditions of the bead-on-plate welding performed before the main welding are not particularly specified. However, in order to suppress minute cracks at the toe of the temporary welding bead, the welding current and the welding It is preferable to control the welding heat input to a relatively small value of 10 kJ / cm or less by either the voltage or the welding speed.
[0035]
In the above description, the welding method used for bead-on-plate welding is based on the same consumable electrode type arc welding as the main welding in order to reduce the complexity of welding work, but TIG welding without using welding material is performed. A similar effect can be obtained in plasma arc welding, laser welding, and the like.
[0036]
【Example】
By mass%, the base material steel plate of low carbon steel consisting of 0.15% C-0.25% Si- 0.5% Mn- balance of Fe and unavoidable impurities, at a basis weight sided 90 g / m 2 11% Arc welding was performed using a zinc-based alloy-plated steel plate having a strength of 400 MPa and having a zinc-based alloy plating composed of Al-3% Mg-0.3% Si-balance Zn. As shown in FIG. 5, as shown in FIG. 5, when turning welding 9 is performed on the zinc-based alloy-plated steel sheet 1, a bead-on-plate welding 10 having a welding bead length of 30 mm is applied in advance to the top of the turning welding portion, and then turning welding is performed. 9 was performed, and the crack of the welded part was evaluated. In addition, in order to tighten the restraint, the zinc-based alloy plated steel sheets 1 having a thickness of 6 mm were welded to each other to form a box shape. In addition, the bead-on-plate welding 10 and the turning welding 9 both use pulse MAG welding, and the bead-on-plate welding 10 is performed under constant conditions of a welding current of 150 A, a welding voltage of 20 V, and a welding speed of 30 cm / min. The welding heat input was adjusted to a range of 5 to 15 kJ / cm by adjusting the welding speed while keeping the welding current 200 A and the welding voltage 23 V constant.
[0037]
For the evaluation of cracks in the welded portion, the crack depth was measured by observing the cross section of the welded portion, and the ratio (%) to the plate thickness was determined and evaluated as the degree of cracking. Table 1 shows the results. Symbols 1 to 4 did not cause any cracks in the welds because they were within the scope of the present invention. On the other hand, regarding symbols 5 to 7 which are comparative examples, symbol 5 does not perform bead-on-plate welding, symbol 6 indicates that distance L from the target position of bead-on-plate welding to the target position of main welding is too short, and symbol 7 does not. Conversely, the distance L was too long, and the temporary weld bead and the main weld bead did not overlap, and cracks occurred in the welds in each case.
[0038]
[Table 1]
Figure 2004209513
[0039]
[Table 2]
Figure 2004209513
[0040]
【The invention's effect】
INDUSTRIAL APPLICABILITY As described above, the present invention provides a zinc-based alloy plating capable of suppressing liquid metal embrittlement cracking in a heat-affected zone when arc-welding a zinc-based alloy-coated steel sheet used for welding structural members such as buildings and automobiles. It is possible to provide an arc welding method for a steel sheet.
[Brief description of the drawings]
FIG. 1 is a diagram showing a typical state of occurrence of liquid metal embrittlement cracking in a conventional method.
FIG. 2 is a diagram for explaining one embodiment of the method of the present invention.
FIGS. 3A and 3B are diagrams showing the relationship between the positions of a temporary welding bead and a main welding bead and cracks.
FIG. 4 is a diagram showing a relationship between a welding heat input amount P during main welding, a distance L from a target of bead-on-plate welding to a target position of main welding, and a crack.
FIG. 5 is a view for explaining turning welding according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Zinc-alloy plated steel plate 2 ... Steel plate without plating 3 ... Main welding bead 4 ... Cracking 5 ... Weld toe part 6 of main welding bead 6 ... Zinc-based alloy plating layer 7 ... Temporary welding bead 8 ... Welding of temporary welding bead Toe end 9: turning welding 10: bead-on-plate welding L: distance from target of bead-on-plate welding to target position of main welding

Claims (6)

亜鉛系合金めっき層を鋼板表面に設けた亜鉛系合金めっき鋼板のアーク溶接方法において、予めビードオンプレート溶接により仮溶接ビードを形成した後、本溶接を行なって本溶接ビードを形成する際に、前記仮溶接ビードと前記本溶接ビードが重なり、かつ前記ビードオンプレート溶接の狙い位置から前記本溶接の狙い位置までの距離Lと、本溶接時の入熱量Pが下記(1)式を満足するように溶接することを特徴とする亜鉛系合金めっき鋼板のアーク溶接方法。
L≧0.5×P+7.5 ・・・(1)
但し、Lは、ビードオンプレート溶接の狙い位置から本溶接の狙い位置までの距離(mm)、Pは、本溶接時の入熱量(kJ/cm)を示す。
In the arc welding method for a zinc-based alloy plated steel sheet provided with a zinc-based alloy plating layer on the steel sheet surface, after forming a temporary welding bead by bead-on-plate welding in advance, when performing a main welding to form a main welding bead, The distance L from the target position of the bead-on-plate welding to the target position of the main welding and the heat input P during the main welding satisfy the following formula (1). Arc welding method for a zinc-based alloy plated steel sheet, characterized in that the welding is performed as follows.
L ≧ 0.5 × P + 7.5 (1)
Here, L indicates the distance (mm) from the target position of the bead-on-plate welding to the target position of the main welding, and P indicates the heat input (kJ / cm) during the main welding.
前記亜鉛系合金めっきが、Zn−Al系合金めっき、Zn−Al−Mg系合金めっき、および、Zn−Al−Mg−Si系合金めっきの何れか1種であることを特徴とする請求項1記載の亜鉛系合金めっき鋼板のアーク溶接方法。The zinc-based alloy plating is any one of Zn-Al-based alloy plating, Zn-Al-Mg-based alloy plating, and Zn-Al-Mg-Si-based alloy plating. An arc welding method for the zinc-based alloy-coated steel sheet according to the above. 前記Zn−Al系合金めっきは、質量%で、Al:0.18〜5%を含有し、残部がZnおよび不可避的不純物であることを特徴とする請求項2記載の亜鉛系合金めっき鋼板のアーク溶接方法。The Zn-Al-based alloy-plated steel sheet according to claim 2, wherein the Zn-Al-based alloy plating contains Al: 0.18 to 5% by mass%, with the balance being Zn and unavoidable impurities. Arc welding method. 前記Zn−Al−Mg系合金めっきは、質量%で、Al:2〜10%、Mg:1〜4%を含有し、残部がZnおよび不可避的不純物であることを特徴とする請求項2記載の亜鉛系合金めっき鋼板のアーク溶接方法。The said Zn-Al-Mg type alloy plating contains Al: 2-10% and Mg: 1-4% by mass%, The balance is Zn and an unavoidable impurity. Welding method for zinc-based alloy coated steel sheet. 前記Zn−Al−Mg−Si系合金めっきは、質量%で、Al:2〜19%、Mg:1〜10%、Si:0.01〜2%を含有し、残部がZnおよび不可避的不純物であることを特徴とする請求項2記載の亜鉛系合金めっき鋼板のアーク溶接方法。The Zn-Al-Mg-Si based alloy plating contains 2 to 19% of Al, 1 to 10% of Mg, and 0.01 to 2% of Si in mass%, with the balance being Zn and inevitable impurities. The arc welding method for a zinc-based alloy-plated steel sheet according to claim 2, characterized in that: 前記亜鉛系合金めっき鋼板の引っ張り強度が350MPa以上であることを特徴とする請求項1〜5の何れか1項に記載の亜鉛系合金めっき鋼板のアーク溶接方法。The arc welding method for a zinc-based alloy plated steel sheet according to any one of claims 1 to 5, wherein the zinc-based alloy-coated steel sheet has a tensile strength of 350 MPa or more.
JP2002381637A 2002-12-27 2002-12-27 Arc welding method of galvannealed steel plate Withdrawn JP2004209513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381637A JP2004209513A (en) 2002-12-27 2002-12-27 Arc welding method of galvannealed steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381637A JP2004209513A (en) 2002-12-27 2002-12-27 Arc welding method of galvannealed steel plate

Publications (1)

Publication Number Publication Date
JP2004209513A true JP2004209513A (en) 2004-07-29

Family

ID=32817500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381637A Withdrawn JP2004209513A (en) 2002-12-27 2002-12-27 Arc welding method of galvannealed steel plate

Country Status (1)

Country Link
JP (1) JP2004209513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218518A (en) * 2005-02-10 2006-08-24 Nisshin Steel Co Ltd Method for producing tailored blank material
WO2019124871A1 (en) * 2017-12-20 2019-06-27 주식회사 포스코 Welding joint having excellent fatigue characteristics in ultra-high strength hot-rolled steel and manufacturing method for same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218518A (en) * 2005-02-10 2006-08-24 Nisshin Steel Co Ltd Method for producing tailored blank material
WO2019124871A1 (en) * 2017-12-20 2019-06-27 주식회사 포스코 Welding joint having excellent fatigue characteristics in ultra-high strength hot-rolled steel and manufacturing method for same

Similar Documents

Publication Publication Date Title
JP5098217B2 (en) Welded joints of galvanized steel sheets excellent in corrosion resistance and zinc embrittlement cracking resistance of welds and methods for producing the same
JP4776951B2 (en) Zinc-based alloy-plated steel for welding with excellent weldability
JP5372217B2 (en) Manufacturing method of arc-welded structural members
JP2006265671A (en) High tensile galvannealed steel sheet having excellent workability and molten metal embrittlement crack reistance
CA3059297C (en) A method for the manufacturing of liquid metal embrittlement resistant galvannealed steel sheet
WO2014156671A1 (en) High-strength plated steel sheet for welded structural member and method for manufacturing said sheet
JP5700394B2 (en) Automotive chassis member having excellent corrosion resistance and manufacturing method thereof
JP6080391B2 (en) Method for producing Zn-Al-Mg plated steel sheet arc welded structural member
KR102514674B1 (en) spot welding parts
KR20160136468A (en) Zinc based alloy coated steel having superior resistance to liquid metal embrittlement and cracking
JP2014133259A (en) Manufacturing method of arc welding structural member
JP2019504205A (en) Austenitic hot-dip aluminized steel sheet with excellent plating properties and weldability and method for producing the same
JP2010090418A (en) High-strength and high-ductility hot-dip galvanized steel sheet excellent in workability and plating adhesion in friction-stir welding process
JP5264234B2 (en) Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP7329692B2 (en) Welded structure manufacturing method and welded structure manufactured by this method
JP5283402B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP4173990B2 (en) Zinc-based alloy-plated steel for welding and its ERW steel pipe
JP2011206842A (en) Automobile chassis member having excellent corrosion resistance, and method for manufacturing the same
JP4640995B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP5059455B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP4452204B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP4721221B2 (en) Zn-Al-Mg alloy-plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP2004315848A (en) HOT-DIP Zn-Al-Mg COATED STEEL SHEET FREE FROM WELDING CRACK DUE TO LIQUID METAL EMBRITTLEMENT
JP2004209513A (en) Arc welding method of galvannealed steel plate
JP5053652B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307