JP2019089099A - Composite welding method of zinc-based plated steel sheet - Google Patents

Composite welding method of zinc-based plated steel sheet Download PDF

Info

Publication number
JP2019089099A
JP2019089099A JP2017219390A JP2017219390A JP2019089099A JP 2019089099 A JP2019089099 A JP 2019089099A JP 2017219390 A JP2017219390 A JP 2017219390A JP 2017219390 A JP2017219390 A JP 2017219390A JP 2019089099 A JP2019089099 A JP 2019089099A
Authority
JP
Japan
Prior art keywords
welding
arc
zinc
composite
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017219390A
Other languages
Japanese (ja)
Inventor
延時 智和
Tomokazu Nobutoki
智和 延時
冨村 宏紀
Hiroki Tomimura
宏紀 冨村
徹 家成
Toru Ienari
徹 家成
朝田 博
Hiroshi Asada
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2017219390A priority Critical patent/JP2019089099A/en
Publication of JP2019089099A publication Critical patent/JP2019089099A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)

Abstract

To provide a composite welding method for forming an excellent weld bead, in which generation of a weld defect is suppressed.SOLUTION: In a composite welding method by laser welding for performing butt welding of a zinc-based plated steel sheet and by arc welding, the laser welding is performed in advance of the arc welding, and either means between pulse arc-welding means for applying a welding-current in a pulsed manner and wire feed control means for repeating regular sending and reverse sending of a welding wire is used, as the arc welding.SELECTED DRAWING: Figure 1

Description

本発明は、亜鉛系めっき鋼板の複合溶接方法に関する。   The present invention relates to a composite welding method of a zinc-based plated steel sheet.

亜鉛系めっき鋼板は、鋼板表面に亜鉛または亜鉛合金をめっき処理したものである。優れた耐食性を有するため、建築部材、自動車用部材、機械部材など広く使用されている。   The zinc-based plated steel sheet is obtained by plating zinc or a zinc alloy on the surface of the steel sheet. Because of their excellent corrosion resistance, they are widely used in construction members, automotive members, mechanical members and the like.

めっき鋼板を溶接すると、溶接熱によりめっき層から亜鉛蒸気が発生し、これが溶接金属内に閉じ込められて、ビードにポロシティや表面クレータ等の気孔(ブローホール)を多発させる。この気孔が表面まで進行し、開口(ピット)を形成すると、ビード表面の性状を悪化させる。当該気孔及び開口をまとめて、以下、「ブローホール」と称する。   When the plated steel plate is welded, zinc heat is generated from the plating layer by the welding heat, which is trapped in the weld metal and causes the beads to frequently generate pores (blow holes) such as porosity and surface craters. When the pores advance to the surface and form an opening (pit), the property of the bead surface is deteriorated. The pores and openings are collectively referred to as "blow holes" hereinafter.

さらに、アーク溶接法を適用するときは、発生した亜鉛蒸気がアークを不安定にするため、スパッタが多発する。また、アーク溶接法は、溶込みが浅く、溶接速度が遅いという課題もある。   Furthermore, when applying the arc welding method, spattering occurs frequently because the generated zinc vapor destabilizes the arc. In addition, the arc welding method has a problem that the penetration is shallow and the welding speed is slow.

レーザ溶接は、溶加材を必要としない一方で、高い突合せ精度を必要とする。さらに、溶接ビード表面においてアンダーカットが生じ易いという課題がある。また、レーザ溶接法は、レーザビームによるキーホール溶接である。レーザビームを照射すると、亜鉛めっき層から亜鉛が激しく蒸発するため、この亜鉛蒸気により溶融池の溶鋼が吹き飛ばされたり、溶鋼中に亜鉛蒸気が侵入したりして、溶接ビードに多数のブローホールが発生する。   While laser welding does not require a filler metal, it requires high butt accuracy. Furthermore, there is a problem that an undercut easily occurs on the surface of the weld bead. The laser welding method is keyhole welding using a laser beam. When the laser beam is irradiated, the zinc vaporizes the zinc from the galvanized layer, and the zinc vapor blows away the molten steel in the molten pool and the zinc vapor intrudes into the molten steel, resulting in a large number of blow holes in the weld bead. Occur.

上記のブローホール、ピット、アンダーカット等の溶接欠陥が溶接ビードに生じると、溶接部における機械的強度の低下を招くことになる。そこで、亜鉛系めっき鋼板に対して、レーザ溶接とアーク溶接を併用した複合溶接法の適用が提案されている(例えば、特許文献1を参照)。   When weld defects such as the above-described blow holes, pits, undercuts, etc. occur in the weld bead, the mechanical strength at the weld will be reduced. Therefore, application of a composite welding method using laser welding and arc welding in combination to zinc-based plated steel sheets has been proposed (see, for example, Patent Document 1).

特許文献1は、板厚が0.2〜6.0mm未満で、亜鉛メッキ量を10〜120g/mとした亜鉛メッキ鋼板同士または同板厚及び同亜鉛メッキ量の亜鉛メッキ鋼板と他の金属との重ね溶接、重ね隅肉溶接において、溶接予定個所にレーザを照射する工程と、レーザ照射工程の後にガスメタルアーク溶接を行う工程を備える溶接方法が記載されている。レーザビームの照射によって形成される溶融部及び蒸発部近傍にアークを照射すると、アーク放電がレーザ照射部に安定に発生して集中し、高速溶接が可能となる。そのため、亜鉛メッキ鋼板の重ね隅肉溶接では、上板端部のみを溶接でき、重ね部の亜鉛メッキ層を殆ど溶融させずに溶接できると記載されている。 Patent Document 1 discloses galvanized steel plates having a thickness of less than 0.2 to 6.0 mm and having a galvanization amount of 10 to 120 g / m 2 or galvanized steel sheets having the same plate thickness and the same galvanization amount and the like A welding method including a step of irradiating a laser at a portion to be welded and a step of performing gas metal arc welding after the step of laser irradiation in lap welding with metal and lap fillet welding is described. When an arc is irradiated to the vicinity of the melting portion and the evaporation portion formed by the irradiation of the laser beam, the arc discharge is stably generated and concentrated on the laser irradiation portion, and high speed welding can be performed. Therefore, in lap fillet welding of galvanized steel sheets, it is described that only the upper plate end portion can be welded and welding can be performed with almost no melting of the galvanized layer of the lap portion.

特開2002−66774号公報JP 2002-66774 A

一般に、アーク溶接は、レーザ溶接に比して、溶接速度が遅く、溶込みが浅い、入熱が高く熱変形が大きい、スパッタが多発するなどの欠点を有するため、レーザ溶接とアーク溶接を併用した複合溶接法であっても、良好な溶接ビードを形成できるように、アーク溶接を制御することが求められる。特許文献1は、レーザビームの照射及びガスメタルアーク溶接の照射に関して、照射位置や照射角度の範囲を特定した溶接条件を示している一方で、それ以外の溶接条件を開示していない。   In general, arc welding has disadvantages such as slow welding speed, shallow penetration, high heat input and large thermal deformation, and frequent spattering, as compared with laser welding. Therefore, laser welding and arc welding are used in combination. Even in the case of the combined welding method, it is required to control the arc welding so that a good weld bead can be formed. Although patent document 1 has shown the welding condition which specified the range of the irradiation position and the irradiation angle regarding irradiation of a laser beam and irradiation of gas metal arc welding, it does not disclose the welding conditions other than that.

そこで、本発明は、レーザ溶接とアーク溶接を併用した複合溶接法における当該アーク溶接の制御に着目し、溶接欠陥の発生が抑制された、良好な溶接ビートを形成するための複合溶接法を提供することを目的とする。   Therefore, the present invention provides a composite welding method for forming a good weld beat in which the occurrence of welding defects is suppressed, focusing on the control of the arc welding in the composite welding method using both laser welding and arc welding. The purpose is to

本発明者らは、レーザ溶接とアーク溶接を併用した複合溶接法により亜鉛系めっき鋼板を溶接する場合、当該アーク溶接をパルスアーク溶接あるいはワイヤ送給に関する制御手段を用いることにより、ブローホール、スパッタなどの溶接欠陥の発生が抑制され、良好な溶接ビードを形成できることを見出し、本発明を完成するに至った。具体的には、本発明は、以下のものを提供する。   When welding a galvanized steel sheet by a composite welding method using both laser welding and arc welding, the present inventors use the control means for pulse arc welding or wire feeding of the arc welding to obtain blow holes and spatters. And the like, it has been found that the occurrence of weld defects such as can be suppressed and good weld beads can be formed, and the present invention has been completed. Specifically, the present invention provides the following.

(1)本発明は、亜鉛系めっき鋼板を突合せ溶接するレーザ溶接及びアーク溶接による複合溶接方法であって、前記レーザ溶接を前記アーク溶接に先行させて溶接するとともに、前記アーク溶接として、溶接電流をパルス状に印加するパルスアーク溶接手段、または、溶接ワイヤの正送及び逆送を繰り返すワイヤ送給制御手段のいずれかの手段を用いる、亜鉛系めっき鋼板の複合溶接方法である。 (1) The present invention is a composite welding method by laser welding and arc welding for butt welding of a zinc-based plated steel sheet, wherein the laser welding is performed prior to the arc welding and welding current is used as the arc welding. The method is a composite welding method of a zinc-based plated steel sheet using pulse arc welding means for applying pulsatively in a pulse form or wire feeding control means for repeating forward feeding and reverse feeding of a welding wire.

(2)本発明は、前記パルスアーク溶接手段は、ピーク電流(IP)及びベース電流(IB)の電流波形が周期(PF)によって繰り返して印加する溶接方法であって、下記の式(1)で示される平均溶接電流(I)が100〜300Aの範囲である、(1)に記載の亜鉛系めっき鋼板の複合溶接方法である。I=(IP+IB)/PF・・・式(1) (2) The present invention is a welding method in which the pulse arc welding means repeatedly applies a current waveform of a peak current (IP) and a base current (IB) with a period (PF), and the following equation (1) The composite welding method of the zinc-based plated steel plate as described in (1) whose average welding current (I) shown by these is the range of 100-300A. I = (IP + IB) / PF (1)

(3)本発明は、前記ワイヤ送給制御手段は、溶接ワイヤ速度が200〜500mm/sである、(1)に記載の亜鉛系めっき鋼板の複合溶接方法である。 (3) The present invention is the composite welding method of a galvanized steel sheet according to (1), wherein the wire feeding control means has a welding wire speed of 200 to 500 mm / s.

(4)本発明は、前記アーク溶接は、シールドガスとして、アルゴンガスに2〜30体積%の炭酸ガスを混合したガスを用いる、(1)〜(3)のいずれかに記載の亜鉛系めっき鋼板の複合溶接方法である。 (4) In the present invention, the zinc-based plating according to any one of (1) to (3), wherein the arc welding uses a gas obtained by mixing 2 to 30% by volume of carbon dioxide gas with argon gas as a shielding gas. It is a composite welding method of a steel plate.

(5)本発明は、前記突合せ溶接は、隙間を設けない継手に対して溶接する、(1)〜(4)のいずれかに記載の亜鉛系めっき鋼板の複合溶接方法である。 (5) The present invention is the composite welding method of a galvanized steel sheet according to any one of (1) to (4), wherein the butt welding is performed on a joint having no gap.

(6)本発明は、溶接後の溶接部におけるブローホール占有率が10%以下であり、溶接部周辺のスパッタ付着量が100mm×50mm当たり20個以下である、(1)〜(5)のいずれかに記載の亜鉛系めっき鋼板の複合溶接方法である。 (6) In the present invention, the blow hole occupancy rate in the welded portion after welding is 10% or less, and the spatter adhesion amount around the weld portion is 20 or less per 100 mm × 50 mm in (1) to (5) It is a composite welding method of a zinc system plating steel sheet given in either.

(7)本発明は、溶接部の引張強さが本体部の引張強さの1.3倍以上である、(1)〜(6)のいずれかに記載の亜鉛系めっき鋼板の複合溶接方法である。 (7) The method according to any one of (1) to (6), wherein the tensile strength of the welded portion is at least 1.3 times the tensile strength of the main portion. It is.

本発明によれば、ブローホール、スパッタなどの溶接欠陥の発生が抑制され、良好な溶接ビードを形成できる。そのため、溶接部の外観が良好であり、継手強度に優れるという有用な効果を奏する。   According to the present invention, the occurrence of weld defects such as blow holes and spatters can be suppressed, and a good weld bead can be formed. Therefore, the external appearance of a welding part is favorable and there exists a useful effect that it is excellent in joint intensity.

本発明に係る実施形態を説明するための模式図であり、(a)は、溶接方向に沿って継手部を示した平面図であり、(b)は、溶接方向に対して垂直方向から継手部を示した図である。It is a schematic diagram for describing the embodiment according to the present invention, (a) is a plan view showing a joint part along a welding direction, (b) is a joint from a direction perpendicular to the welding direction It is the figure which showed the part. ブローホール占有率の算出を説明するための図である。It is a figure for demonstrating calculation of a blowhole occupancy rate. 溶接部の引張強度を測定する評価試験を説明するための図である。It is a figure for demonstrating the evaluation test which measures the tensile strength of a welding part.

以下、本発明の実施形態について説明する。本発明は、これらの記載により限定されるものではない。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited by these descriptions.

本発明は、亜鉛系めっき鋼板を突合せ溶接するレーザ溶接及びアーク溶接による複合溶接方法であって、前記レーザ溶接を前記アーク溶接に先行させて溶接するとともに、前記アーク溶接として、溶接電流をパルス状に印加するパルスアーク溶接手段、または、溶接ワイヤの正送及び逆送を繰り返すワイヤ送給制御手段のいずれかの手段を用いることが好ましい。   The present invention is a composite welding method by laser welding and arc welding for butt welding of a zinc-based plated steel plate, wherein the laser welding is performed prior to the arc welding and welding is performed, and the welding current is pulsed as the arc welding. It is preferable to use any means of pulse arc welding means applied to the wire or wire feed control means for repeating forward feeding and reverse feeding of the welding wire.

図1は、本発明に係る実施形態を示したものである。図1の(a)は、溶接方向14に沿って継手部を示した平面図であり、図1の(b)は、溶接方向14に対して垂直方向から継手部を示した模式図である。2枚の亜鉛めっき鋼板1がT字状となるように組み合わされて、レーザ溶接とアーク溶接により溶接される。   FIG. 1 shows an embodiment according to the present invention. FIG. 1 (a) is a plan view showing the joint portion along the welding direction 14, and FIG. 1 (b) is a schematic view showing the joint portion from the direction perpendicular to the welding direction 14. . Two galvanized steel plates 1 are combined in a T-shape and welded by laser welding and arc welding.

レーザ溶接は、レーザ照射手段(図示なし)の先端からレーザビーム11を照射する。アーク溶接は、アルゴンガスを含むシールドガスを用いた消耗電極式アーク溶接である。アークトーチ12の先端に設けたアーク電極においてアークが発生し、アーク電極の先端部が溶融し、溶融池に移行する。アーク電極は、溶接ワイヤにより供給される。アークトーチには、電極供給装置及びアーク制御装置(図示なし)が設けられている。   In laser welding, the laser beam 11 is irradiated from the tip of a laser irradiation means (not shown). Arc welding is consumable electrode type arc welding using a shielding gas containing argon gas. An arc is generated at the arc electrode provided at the tip of the arc torch 12, and the tip of the arc electrode is melted and transferred to the molten pool. The arc electrode is supplied by a welding wire. The arc torch is provided with an electrode supply device and an arc control device (not shown).

亜鉛系めっき鋼板1を用いて溶接する場合、図1の(a)に示すように、溶接方向14に沿って、レーザビーム11によるレーザ溶接が先行し、アークトーチ12によるアーク溶接が後行するように各溶接手段を移動させる。レーザ溶接の狙い位置とアーク溶接の狙い位置とを距離13で隔てて、レーザ溶接を先行させ、アーク溶接を後行させることにより、アーク溶接のアークがレーザに引き寄せられるため、亜鉛系めっきの蒸発範囲が狭くなり、亜鉛蒸気の影響を受けにくくなり、アークが安定する。そして、溶込みが深くなって板厚を貫通し、亜鉛蒸気が裏面側に抜けるため、溶接ビードにおけるブローホールおよびピットの発生量が低減する。さらに、アーク溶接により、溶加材(溶接ワイヤ)が連続的に溶接ビードに供給されるため、アンダーカットを防止できる。このように、本発明によれば、ブローホール、ピット、アンダーカット等の溶接欠陥の発生を防止できるので、溶接部の強度の低下が抑制される。また、アーク溶接は、レーザ溶接に比べて溶接可能な隙間量が大きく、突合せ時にそれほど高い位置精度を必要とされない点で溶接作業が簡単になる。なお、図1の(b)に示すように、溶接時には、亜鉛系めっき層からの亜鉛蒸気を逃すため、継手部に隙間4を設けてもよい。   When welding using a zinc-based plated steel sheet 1, as shown in FIG. 1A, laser welding with the laser beam 11 precedes along the welding direction 14, and arc welding with the arc torch 12 follows. As you move each welding means. The laser welding is preceded and the arc welding is followed by separating the target position of laser welding from the target position of arc welding by the distance 13 and the arc of the arc welding is attracted to the laser, so evaporation of zinc-based plating occurs. The range is narrowed, less susceptible to zinc vapor, and the arc is stabilized. Then, the penetration becomes deep and penetrates the plate thickness, and the zinc vapor escapes to the back surface side, so that the generation amount of blow holes and pits in the weld bead is reduced. Furthermore, since the filler metal (welding wire) is continuously supplied to the welding bead by arc welding, undercutting can be prevented. As described above, according to the present invention, the occurrence of welding defects such as blow holes, pits, undercuts and the like can be prevented, so that the reduction in the strength of the welded portion is suppressed. In addition, arc welding has a large amount of gap that can be welded compared to laser welding, and the welding operation is simplified in that high positional accuracy is not required at the time of butting. In addition, as shown to (b) of FIG. 1, in order to escape the zinc vapor from a zinc-based plating layer at the time of welding, you may provide the clearance gap 4 in a coupling part.

(パルスアーク溶接) (Pulse arc welding)

アーク溶接として、パルスアーク溶接を用いることが好ましい。安定したアークが得られ、小さい溶滴が一定の周期で溶融池に移行するので、スパッタが低減される。また、パルス的に溶融池を振動するので、亜鉛蒸気の排出が促進され、ブローホールおよびピットの低減に効果的である。また、通常のアーク溶接は、アークが安定しないため、スパッタが多発するのに対し、パルスアーク溶接は、パルスの高電流によりアークが安定するため、スパッタの発生が低減される。 As arc welding, it is preferable to use pulse arc welding. A stable arc is obtained, and small droplets transfer to the molten pool in a constant cycle, reducing spatter. In addition, since the molten pool is vibrated in pulses, the discharge of zinc vapor is promoted, which is effective in reducing blow holes and pits. Also, while ordinary arc welding does not stabilize the arc, spattering occurs frequently, while pulse arc welding stabilizes the arc due to the high current of the pulse, so spattering is reduced.

本発明は、前記パルスアーク溶接手段は、ピーク電流(IP)及びベース電流(IB)の電流波形が周期(PF)によって繰り返して印加する溶接方法であって、平均溶接電流(I)は、下記の式(1)で示される。
I=(IP+IB)/PF・・・式(1)
The present invention is a welding method in which the pulse arc welding means applies a current waveform of a peak current (IP) and a base current (IB) repeatedly with a period (PF), and the average welding current (I) is Formula (1) of
I = (IP + IB) / PF (1)

アーク溶接は、アーク電極に印加される電流値、電圧値、それらの波形が調整される。パルスアーク溶接は、ピーク電流(IP)及びベース電流(IB)の電流波形が周期(PF)によって繰り返して印加される。当該パルスアーク溶接における平均の溶接電流は、式(1)のとおり、電流波形におけるピーク電流(IP)及びベース電流(IB)を周期(PF)で除した数値によって得られる。   In arc welding, the current value, voltage value, and their waveforms applied to the arc electrode are adjusted. In pulse arc welding, current waveforms of peak current (IP) and base current (IB) are repeatedly applied with a period (PF). The average welding current in the pulse arc welding is obtained by a value obtained by dividing the peak current (IP) and the base current (IB) in the current waveform by the period (PF), as in equation (1).

平均溶接電流は、100〜300Aの範囲であると好ましい。平均溶接電流が100A未満では、溶接ワイヤ先端から溶融池への溶滴移行が不安定になり、スパッタが多発する。300Aを超えると、ワイヤ先端で溶滴が大きくなり、その溶滴が溶融池に移行した際に、スパッタが多発する。100〜300Aの範囲の平均溶接電流を得るため、ピーク電流(IP)が350〜500A、ベース電流(IB)が25〜100A、周期(PF)が2〜4msの範囲に設定することができる。   The average welding current is preferably in the range of 100 to 300A. When the average welding current is less than 100 A, droplet transfer from the welding wire tip to the molten pool becomes unstable, and spatter occurs frequently. When it exceeds 300 A, the droplet becomes large at the wire tip, and when the droplet is transferred to the molten pool, spatter occurs frequently. In order to obtain an average welding current in the range of 100 to 300 A, the peak current (IP) can be set in the range of 350 to 500 A, the base current (IB) 25 to 100 A, and the cycle (PF) in 2 to 4 ms.

(ワイヤ送給)
本発明は、溶接ワイヤの正送及び逆送を繰り返すワイヤ送給制御手段を用いることが好ましい。溶接ワイヤの正送・逆送を繰り返すときのワイヤ速度は、200〜500mm/sの範囲にあるように制御することが好ましい。当該溶接ワイヤ速度が200mm/s未満であると、溶接ワイヤ先端の溶滴と溶融池とが離れ過ぎて、溶滴が高い位置から溶融池へ移行するため、スパッタが多発する傾向にある。他方、当該溶接ワイヤ速度が500mm/sを超えると、溶滴が溶接ワイヤ先端から離脱する前に溶融池と接触するため、スパッタが多発しやすい。また、溶接ワイヤの正送および逆送時の速度は、同じであってもよく、異なってもよいが、ほぼ同じ速度で移動させることが好ましい。溶接ワイヤの移動距離は、1.5〜5.0mmの範囲で選定でき、例えば約2.5mmが挙げられる。
(Wire feed)
In the present invention, it is preferable to use a wire feeding control means which repeats forward feeding and reverse feeding of the welding wire. It is preferable to control the wire speed when repeating forward and reverse feeding of the welding wire to be in the range of 200 to 500 mm / s. If the welding wire speed is less than 200 mm / s, the droplet at the welding wire tip and the molten pool are separated too much, and the droplet moves from a high position to the molten pool, so spatter tends to occur frequently. On the other hand, if the welding wire speed exceeds 500 mm / s, spatters are likely to occur frequently because the droplet contacts the molten pool before it leaves the welding wire tip. Also, the forward and reverse speeds of the welding wire may be the same or different, but it is preferable to move at substantially the same speed. The moving distance of the welding wire can be selected in the range of 1.5 to 5.0 mm, for example, about 2.5 mm.

(アーク溶接のシールドガス)
アーク溶接は、アークの安定性および溶接金属の酸化防止の観点からシールドガスを用いることが好ましい。シールドガスとしては、アルゴンガス等の不活性ガスを用いたり、アルゴンガスと炭酸ガス(COガス)等との混合ガスを用いることができる。例えば、アルゴンガスに2〜30体積%の炭酸ガスを混合したガスを用いることができる。一般に、シールドガスとして、アルゴンガスとCOガスとの混合ガスを用いるアーク溶接は、MAG溶接(マグ溶接)と呼ばれ、アルゴンガス等の不活性ガスを用いるアーク溶接は、MIG溶接(ミグ溶接)と呼ばれる。
(Shield gas for arc welding)
Arc welding preferably uses a shielding gas from the viewpoint of the stability of the arc and the oxidation of the weld metal. As the shield gas, an inert gas such as argon gas can be used, or a mixed gas of argon gas and carbon dioxide gas (CO 2 gas) can be used. For example, a gas in which 2 to 30% by volume of carbon dioxide gas is mixed with argon gas can be used. Generally, arc welding using a mixed gas of argon gas and CO 2 gas as a shielding gas is called MAG welding (mag welding), and arc welding using an inert gas such as argon gas is MIG welding (mig welding) It is called.

(継手部の隙間)
板を貫通して溶接するために継手部に隙間を設けることがある。本発明に係る複合溶接は、継手部に隙間を設けないで溶接しても良好な溶接部が得られる。素材板厚が例えば9mm以下の薄い場合には、隙間を広げる必要がない。他方、隙間を設定する場合であっても、レーザ溶接で接合可能とされる隙間の2倍程度の隙間でも接合可能である。一般に、継手部の隙間については、レーザ溶接の場合は0.3mmまでが接合可能であるとされているのに対し、本発明に係る複合溶接は、0.8mmまで接合可能である。
(Near gap of joint)
There may be gaps in the joint to weld through the plate. In the composite welding according to the present invention, a good weld can be obtained even if welding is performed without providing a gap in the joint. When the material plate thickness is thin, for example, 9 mm or less, it is not necessary to widen the gap. On the other hand, even in the case of setting the gap, it is possible to join even about twice the gap which can be joined by laser welding. Generally, with regard to the gap of the joint portion, in the case of laser welding, up to 0.3 mm is considered to be joinable, whereas the composite weld according to the present invention is able to join up to 0.8 mm.

(溶接部)
本発明に係る複合溶接法によれば、ブローホール占有率が低減し、溶接部周辺のスパッタ付着量が低減した溶接部が得られる点で好ましい。そのため、溶接部の引張強さが本体部の引張強さの1.3倍以上である継手が得られる。ブローホール占有率は、後記する評価試験の手法により測定された数値を意味する。ブローホール占有率は、10%以下が好ましく、7%以下、5%以下、3%以下または2%以下がより好ましい。溶接部周辺のスパッタ付着量は、100mm×50mm当たり40個以下が好ましく、30個以下、20個以下、10個以下がより好ましい。
(welded part)
The composite welding method according to the present invention is preferable in that the area occupied by the blow hole is reduced, and a welded portion with a reduced amount of sputter deposition around the welded portion can be obtained. Therefore, a joint is obtained in which the tensile strength of the weld is 1.3 times or more the tensile strength of the main body. The blowhole occupancy means a numerical value measured by the method of the evaluation test described later. The blow hole occupancy rate is preferably 10% or less, more preferably 7% or less, 5% or less, 3% or less, or 2% or less. The amount of sputter deposition around the weld is preferably 40 or less per 100 mm × 50 mm, and more preferably 30 or less, 20 or less, or 10 or less.

T字突合せ溶接をアーク溶接で行うと、2パス溶接を行う必要があるのに対し、本発明に係る複合溶接は、1パスでT字突合せ溶接が可能である点で有用である。   When T-shaped butt welding is performed by arc welding, two-pass welding needs to be performed, whereas the composite welding according to the present invention is useful in that T-shaped butt welding can be performed in one pass.

以下、本発明の実施例について説明する。本発明は、以下の説明に限定されない。   Hereinafter, examples of the present invention will be described. The invention is not limited to the following description.

本実施形態に関する評価試験は、板厚が4.5mmの両面亜鉛系めっき鋼板を用いた。当該鋼板の素材強度は400N級である。当該亜鉛系めっきは、Zn−Al−Mg組成であり、鋼板表面における付着量が約90g/mである。当該めっき鋼板から、長さ200mm、幅100mmの寸法の被溶接材を切り出して、以下に記載する溶接に供した。 The evaluation test regarding this embodiment used the double-sided zinc-based plated steel plate whose thickness is 4.5 mm. The material strength of the steel plate is 400N grade. The said zinc-based plating is a Zn-Al-Mg composition, and the adhesion amount on a steel plate surface is about 90 g / m < 2 >. From the said plated steel plate, the to-be-welded material of the dimension of length 200 mm and width 100 mm was cut out, and it used for the welding described below.

レーザ溶接及びアーク溶接を併用する複合溶接は、レーザ溶接を先行させて行った。複合溶接におけるアーク溶接は、通常のアーク溶接手段に加えて、ワイヤ制御・アーク溶接(溶接ワイヤの正送・逆送を繰り返しながら溶接する方法)、パルスアーク溶接(溶接電流をパルス的に印加して溶接する方法)による溶接手段を用いた。さらに、複合溶接と比較するため、アーク溶接のみ、レーザ溶接のみを行った。溶接ワイヤとしては、ワイヤ径φ1.2mmのYGW−12相当品を用いた。溶接された試験材は、溶接部を含む領域から長さ180mm、幅50mmの寸法の試験体を切り出して、以下に記載するように、外観観察、ブローホール占有率の測定、溶接部の強度比の測定などの評価試験に供した。   Composite welding using laser welding and arc welding in combination was preceded by laser welding. Arc welding in composite welding includes wire control and arc welding (a method of welding while repeating forward and reverse feeding of welding wire), pulse arc welding (pulsed welding current is applied in addition to ordinary arc welding means). Method) is used. Furthermore, only arc welding and only laser welding were performed to compare with composite welding. As a welding wire, YGW-12 equivalent goods of wire diameter phi 1.2 mm were used. The welded test material is cut out of a test body of dimensions 180 mm long and 50 mm wide from the region including the weld, and appearance observation, measurement of blow hole occupancy, strength ratio of weld as described below Used for evaluation tests such as measurement of

(外観観察)
溶接部の表面を観察し、ビード表面のスパッタ付着量として、溶接部周辺で任意に選定された100mm×50mmの領域におけるスパッタの個数を測定した。
(Appearance observation)
The surface of the weld was observed, and as the amount of sputter deposition on the bead surface, the number of sputters in an area of 100 mm × 50 mm arbitrarily selected around the weld was measured.

溶接部を切断し、その断面を目視で観察した。表ビードにアンダーカット等の欠陥がなく、裏ビードが安定して形成されている場合を良好と評価した。   The weld was cut and the cross section was observed visually. The case where there was no defect such as undercut on the front bead and the back bead was stably formed was evaluated as good.

突き合わせ溶接を施した鋼板表面と反対側の背面では、溶接時の熱によりめっき層の亜鉛が蒸発してめっき層が消失する場合がある。背面におけるめっき層の蒸発幅(mm)を測定した。   On the back side opposite to the steel plate surface subjected to butt welding, zinc in the plating layer may evaporate due to heat at the time of welding, and the plating layer may disappear. The evaporation width (mm) of the plating layer on the back surface was measured.

(ブローホール占有率)
溶接部の断面に存在するブローホールの割合を測定した。図2に示すように、溶接ビードにおいて観察される個々のブローホールの長さa1、a2等を計測した。下記に示すように、計測されたブローホール長さの総和をビード長さLで除して、ブローホール占有率(%)を算出した。
(Blowhole occupancy rate)
The percentage of blow holes present in the cross section of the weld was measured. As shown in FIG. 2, the lengths a1, a2, etc. of the individual blow holes observed in the weld bead were measured. As shown below, the blowhole occupancy rate (%) was calculated by dividing the total of the measured blowhole lengths by the bead length L.

ブローホール占有率(%)=[(a1+a2+a3+a4+・・・)/L]×100   Blowhole occupancy rate (%) = [(a1 + a2 + a3 + a4 +...) / L] × 100

(溶接部の強度比)
図3に溶接部の強度を測定する試験方法を模式的に示す。試験体に開先加工を施して、試験時に母材破断を起こさない程度の板厚まで薄くした試験片2を作製した後、亜鉛系めっき鋼板1との間で各溶接方法により溶接を行い、引張試験用の溶接組立体を作製した。この溶接組立体を用いて、試験片2を図3に示す引張り方向5へ荷重を加えて引張試験を行った。この引張試験により溶接組立体の溶接部3で破断が起きて、溶接部の引張強さが得られた。また、めっき鋼板の板厚を薄くした試験片2を用いて引張試験に供し、同様に、母材の引張強さを測定した。これらの測定値により、「溶接部の引張強さ」と「母材の引張強さ」との比(以下、「溶接部の強度比」という。)を算出した。
(Strength ratio of welds)
FIG. 3 schematically shows a test method for measuring the strength of the weld. After making a test piece to the test piece and making the test piece 2 thinned to a thickness that does not cause breakage of the base material at the time of the test, welding is performed with the zinc-based plated steel sheet 1 by each welding method A welded assembly for tensile testing was made. Using this welded assembly, a tensile test was conducted by applying a load to the test piece 2 in the tensile direction 5 shown in FIG. By this tensile test, fracture occurred at the weld 3 of the welded assembly, and the tensile strength of the weld was obtained. Moreover, it used for the tensile test using the test piece 2 which made the plate | board thickness of the plated steel plate thin, and measured the tensile strength of the base material similarly. From these measured values, the ratio between the “tensile strength of the welded portion” and the “tensile strength of the base material” (hereinafter referred to as “the strength ratio of the welded portion”) was calculated.

<試験例1> パルスアーク溶接手段を用いた場合
レーザ溶接及びアーク溶接を併用し、レーザ溶接がアーク溶接に先行する複合溶接を試験体に施した。レーザ溶接は、4kWの出力でレーザビームを照射した。アーク溶接は、シールドガスを用いて、パルス状の溶接電流を印加したマグ溶接を行った。アーク溶接の溶接条件は、表1に示すベース電流(A)、ピーク電流(A)、平均溶接電流(A)および周期(ms)に加えて、電圧が26V、シールドガス種がAr+10体積%CO、流量が20L/min、前後角が前20°、トーチ角が20°であった。そして、溶接速度が1.0m/min、継手の隙間が0mmであった。これらの溶接により得られた試験体を用いて、所定の評価試験に供した。評価試験の結果を表1に示す。
<Test Example 1> When Pulsed Arc Welding Means was Used Laser welding and arc welding were used in combination, and composite welding in which laser welding preceded arc welding was applied to a test sample. Laser welding emitted a laser beam with an output of 4 kW. In the arc welding, a shield gas was used to perform mag welding in which a pulsed welding current was applied. The welding conditions for arc welding are shown in Table 1 in addition to the base current (A), peak current (A), average welding current (A) and period (ms), the voltage is 26 V, shield gas type is Ar + 10 volume% CO 2 , the flow rate was 20 L / min, the front and rear angle was 20 ° forward, and the torch angle was 20 °. The welding speed was 1.0 m / min, and the joint gap was 0 mm. The test body obtained by these welding was used for the predetermined evaluation test. The results of the evaluation test are shown in Table 1.

Figure 2019089099
Figure 2019089099

表1に示すように、レーザ溶接がアーク溶接に先行する複合溶接を行うとともに、アーク溶接においてパルスアーク(パルスマグ)溶接手段を用いることにより、ブローホール占有率が小さく、スパッタ付着量が少ない溶接部が得られた。平均電流が100〜300Aである試験体A3〜試験体A10は、ブローホール占有率が4%以下の低い範囲であり、また、スパッタ付着量が20個以下の低い範囲であった。   As shown in Table 1, laser welding performs composite welding prior to arc welding, and by using pulse arc (pulse mug) welding means in arc welding, a weld with a small blow hole occupancy rate and a small amount of spatter adhesion was gotten. The test A3 to the test A10 having an average current of 100 to 300 A had a blow hole occupancy rate in a low range of 4% or less, and a sputter deposition amount in a low range of 20 or less.

<試験例2> ワイヤ送給制御手段を用いた場合
レーザ溶接及びアーク溶接を併用し、レーザ溶接がアーク溶接に先行する複合溶接を試験体に施した。レーザ溶接は、4kWの出力でレーザビームを照射した。アーク溶接は、溶接ワイヤの正送及び逆送を繰り返して溶接を行った。溶接ワイヤ速度は、表2に示すとおりであり、正送時及び逆送時の溶接ワイヤ速度が同じとした。ワイヤの移動距離を約2.5mmとした。それに加えて、アーク溶接の溶接条件は、平均電流が180A、電圧が20V、シールドガス種がAr+10体積%CO、流量が20L/min、前後角が前20°、トーチ角が20°であった。そして、溶接速度が1.0m/min、継手の隙間が0mmであった。これらの溶接により得られた試験体を用いて、所定の評価試験に供した。評価試験の結果を表2に示す。
<Test Example 2> When Wire Feed Control Means was Used Laser welding and arc welding were used in combination, and composite welding in which laser welding preceded arc welding was applied to a test sample. Laser welding emitted a laser beam with an output of 4 kW. In arc welding, welding was performed by repeating forward and reverse feeding of the welding wire. The welding wire speeds are as shown in Table 2, and the welding wire speeds at the time of forward feeding and at the time of reverse feeding were the same. The moving distance of the wire was about 2.5 mm. In addition, welding conditions for arc welding are: average current 180A, voltage 20V, shield gas type Ar + 10% by volume CO 2 , flow rate 20L / min, front and back angle 20 ° front, torch angle 20 ° The The welding speed was 1.0 m / min, and the joint gap was 0 mm. The test body obtained by these welding was used for the predetermined evaluation test. The results of the evaluation test are shown in Table 2.

Figure 2019089099
Figure 2019089099

表2に示すように、レーザ溶接がアーク溶接に先行する複合溶接を行うとともに、溶接ワイヤの正送及び逆送を繰り返すワイヤ送給制御手段を用いることにより、ブローホール占有率が小さく、スパッタ付着量が少ない溶接部が得られた。溶接ワイヤ速度が200〜500mm/sである試験体B2〜試験体B6は、ブローホール占有率が4%以下の低い範囲であり、また、スパッタ付着量が20個以下の低い範囲であった。   As shown in Table 2, the laser beam welding performs composite welding prior to arc welding, and by using a wire feeding control means that repeats forward feeding and reverse feeding of the welding wire, the blow hole occupancy rate is small and spatter adhesion Less welds were obtained. The test body B2 to test body B6 having a welding wire speed of 200 to 500 mm / s had a blow hole occupancy rate in a low range of 4% or less, and a sputter deposition amount in a low range of 20 or less.

<試験例3> 複合溶接法とアーク単独溶接法との比較
次に、本発明に係る複合溶接法を従来の溶接法と比較した。本発明例として試験例1の試験体A9、試験例2の試験体B4を選定した。従来法としてマグ溶接だけを行い、表3に示す溶接条件により試験体C1、C2を得た。これらの試験体を用いて、スパッタ付着量、ブルローホール占有率、溶接部の強度比、背面のめっき蒸発幅をそれぞれ測定した。その結果を表3に示す。
Test Example 3 Comparison of Composite Welding Method and Arc Only Welding Method Next, the composite welding method according to the present invention was compared with a conventional welding method. Test body A9 of Test Example 1 and Test body B4 of Test Example 2 were selected as examples of the present invention. As a conventional method, only mag welding was performed, and specimens C1 and C2 were obtained according to the welding conditions shown in Table 3. Using these test pieces, the amount of sputter deposition, the Bulllow hole occupancy rate, the strength ratio of the weld, and the plating evaporation width on the back surface were each measured. The results are shown in Table 3.

Figure 2019089099
Figure 2019089099

本発明の溶接方法に相当する試験体A9、試験体B4の本発明例は、スパッタ付着量及びブローホール占有率が低く、高い強度比を示した。背面において亜鉛系めっきの蒸発が生じなかったので、耐食性が維持された点で有用であった。それに対し、本発明の溶接方法に該当しない試験体C1及びC2の比較例は、本発明例より劣っていた。試験体C1及びC2は、スパッタ付着量及びブローホール占有率が低く、強度比が低く、背面にめっき蒸発が生じていた。   The invention examples of the test body A9 and the test body B4 corresponding to the welding method of the present invention showed a low sputter deposition amount and a blow hole occupancy rate, and exhibited a high strength ratio. Since evaporation of the zinc-based plating did not occur on the back surface, it was useful in that the corrosion resistance was maintained. On the other hand, the comparative example of the test bodies C1 and C2 which does not correspond to the welding method of this invention was inferior to the example of this invention. The specimens C1 and C2 had low sputter deposition amounts and blow hole occupancy rates, low strength ratios, and plating evaporation occurred on the back surface.

1 亜鉛系めっき鋼板
2 試験片
3 溶接部
4 継手部の隙間
5 引張り方向
11 レーザビーム
12 アークトーチ
13 狙い位置の距離
14 溶接方向
DESCRIPTION OF SYMBOLS 1 Zinc-based plated steel plate 2 Test piece 3 Weld 4 Gap in joint 5 5 Tension direction 11 Laser beam 12 Arc torch 13 Distance of aiming position 14 Welding direction

Claims (7)

亜鉛系めっき鋼板を突合せ溶接するレーザ溶接及びアーク溶接による複合溶接方法であって、前記レーザ溶接を前記アーク溶接に先行させて溶接するとともに、前記アーク溶接として、溶接電流をパルス状に印加するパルスアーク溶接手段、または、溶接ワイヤの正送及び逆送を繰り返すワイヤ送給制御手段のいずれかの手段を用いる、亜鉛系めっき鋼板の複合溶接方法。   A composite welding method by laser welding and arc welding for butt welding of a zinc-based plated steel sheet, wherein the laser welding is performed prior to the arc welding and the pulse for applying a welding current in a pulse shape as the arc welding A composite welding method of a zinc-based plated steel sheet using arc welding means or wire feeding control means for repeating forward feeding and reverse feeding of a welding wire. 前記パルスアーク溶接手段は、ピーク電流(IP)及びベース電流(IB)の電流波形が周期(PF)によって繰り返して印加する溶接方法であって、下記の式(1)で示される平均溶接電流(I)が100〜300Aの範囲である、請求項1に記載の亜鉛系めっき鋼板の複合溶接方法。
I=(IP+IB)/PF・・・式(1)
The pulse arc welding means is a welding method in which a current waveform of a peak current (IP) and a base current (IB) is repeatedly applied by a period (PF), and the average welding current represented by the following equation (1) The composite welding method of the zinc-based plated steel plate according to claim 1, wherein I) is in the range of 100 to 300A.
I = (IP + IB) / PF (1)
前記ワイヤ送給制御手段は、溶接ワイヤ速度が200〜500mm/sである、請求項1に記載の亜鉛系めっき鋼板の複合溶接方法。   The method according to claim 1, wherein the wire feeding control means has a welding wire speed of 200 to 500 mm / s. 前記アーク溶接は、シールドガスとして、アルゴンガスに2〜30体積%の炭酸ガスを混合したガスを用いる、請求項1〜3のいずれかに記載の亜鉛系めっき鋼板の複合溶接方法。   The composite welding method for a zinc-based plated steel sheet according to any one of claims 1 to 3, wherein the arc welding uses, as a shielding gas, a gas obtained by mixing 2 to 30% by volume of carbon dioxide gas with argon gas. 前記突合せ溶接は、隙間を設けない継手に対して溶接する、請求項1〜4のいずれかに記載の亜鉛系めっき鋼板の複合溶接方法。   The composite welding method of a galvanized steel sheet according to any one of claims 1 to 4, wherein the butt welding is performed on a joint having no gap. 溶接後の溶接部におけるブローホール占有率が10%以下であり、溶接部周辺のスパッタ付着量が100mm×50mm当たり20個以下である、請求項1〜5のいずれかに記載の亜鉛系めっき鋼板の複合溶接方法。   The zinc-based plated steel plate according to any one of claims 1 to 5, wherein a blow hole occupancy rate in a welded portion after welding is 10% or less, and a spatter adhesion amount around the welded portion is 20 or less per 100 mm x 50 mm. Composite welding method. 溶接部の引張強さが本体部の引張強さの1.3倍以上である、請求項1〜6のいずれかに記載の亜鉛系めっき鋼板の複合溶接方法。   The composite welding method of the zinc-based plated steel plate according to any one of claims 1 to 6, wherein the tensile strength of the welded portion is 1.3 times or more the tensile strength of the main body portion.
JP2017219390A 2017-11-14 2017-11-14 Composite welding method of zinc-based plated steel sheet Pending JP2019089099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017219390A JP2019089099A (en) 2017-11-14 2017-11-14 Composite welding method of zinc-based plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017219390A JP2019089099A (en) 2017-11-14 2017-11-14 Composite welding method of zinc-based plated steel sheet

Publications (1)

Publication Number Publication Date
JP2019089099A true JP2019089099A (en) 2019-06-13

Family

ID=66835555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219390A Pending JP2019089099A (en) 2017-11-14 2017-11-14 Composite welding method of zinc-based plated steel sheet

Country Status (1)

Country Link
JP (1) JP2019089099A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037519A (en) * 2019-08-30 2021-03-11 日本製鉄株式会社 Composite welding method
EP3827920A3 (en) * 2019-11-27 2021-06-23 DAIHEN Corporation Method of arc welding control
WO2021171749A1 (en) * 2020-02-26 2021-09-02 日本製鉄株式会社 T joint, building structure, and method for manufacturing t joint
JP7503004B2 (en) 2021-01-19 2024-06-19 株式会社ダイヘン Complex Welding Equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216972A (en) * 1997-02-04 1998-08-18 Kubota Corp Dual welding method of laser beam and consumable electrode arc
JPH11239880A (en) * 1998-02-23 1999-09-07 Kobe Steel Ltd Arc welding method for galvanized steel sheet
JP2001276969A (en) * 2000-03-30 2001-10-09 Kobe Steel Ltd Joint welding method
JP2002033774A (en) * 2000-07-14 2002-01-31 Nec Corp Device and method for controlling bus termination
JP2002248571A (en) * 2001-02-23 2002-09-03 Daihen Corp Laser irradiation arc start control method
JP2004009061A (en) * 2002-06-04 2004-01-15 Daihen Corp Laser irradiation arc length oscillation pulse arc welding method
JP2006021224A (en) * 2004-07-07 2006-01-26 Kobe Steel Ltd Solid wire for laser arc compound welding, and laser arc compound welding method
JP2009262182A (en) * 2008-04-24 2009-11-12 Mitsubishi Heavy Ind Ltd Laser arc hybrid welding head
JP2015020185A (en) * 2013-07-17 2015-02-02 株式会社ダイヘン Power supply device for arc-welding, and control method of power supply device for arc-welding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216972A (en) * 1997-02-04 1998-08-18 Kubota Corp Dual welding method of laser beam and consumable electrode arc
JPH11239880A (en) * 1998-02-23 1999-09-07 Kobe Steel Ltd Arc welding method for galvanized steel sheet
JP2001276969A (en) * 2000-03-30 2001-10-09 Kobe Steel Ltd Joint welding method
JP2002033774A (en) * 2000-07-14 2002-01-31 Nec Corp Device and method for controlling bus termination
JP2002248571A (en) * 2001-02-23 2002-09-03 Daihen Corp Laser irradiation arc start control method
JP2004009061A (en) * 2002-06-04 2004-01-15 Daihen Corp Laser irradiation arc length oscillation pulse arc welding method
JP2006021224A (en) * 2004-07-07 2006-01-26 Kobe Steel Ltd Solid wire for laser arc compound welding, and laser arc compound welding method
JP2009262182A (en) * 2008-04-24 2009-11-12 Mitsubishi Heavy Ind Ltd Laser arc hybrid welding head
JP2015020185A (en) * 2013-07-17 2015-02-02 株式会社ダイヘン Power supply device for arc-welding, and control method of power supply device for arc-welding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037519A (en) * 2019-08-30 2021-03-11 日本製鉄株式会社 Composite welding method
JP7332872B2 (en) 2019-08-30 2023-08-24 日本製鉄株式会社 Composite welding method
EP3827920A3 (en) * 2019-11-27 2021-06-23 DAIHEN Corporation Method of arc welding control
WO2021171749A1 (en) * 2020-02-26 2021-09-02 日本製鉄株式会社 T joint, building structure, and method for manufacturing t joint
JPWO2021171749A1 (en) * 2020-02-26 2021-09-02
CN115151364A (en) * 2020-02-26 2022-10-04 日本制铁株式会社 T-joint, building structure and method for manufacturing T-joint
JP7356064B2 (en) 2020-02-26 2023-10-04 日本製鉄株式会社 T-joint, architectural structure, and manufacturing method of T-joint
CN115151364B (en) * 2020-02-26 2023-12-29 日本制铁株式会社 T-joint, building structure and manufacturing method of T-joint
JP7503004B2 (en) 2021-01-19 2024-06-19 株式会社ダイヘン Complex Welding Equipment

Similar Documents

Publication Publication Date Title
US10155276B2 (en) Method of welding surface-treated members using a welding wire
JP5934890B2 (en) Arc welding control method
JP4256879B2 (en) Method of joining iron-based material and aluminum-based material and joint
US9339887B2 (en) Method for bonding dissimilar metals to each other
JP2019089099A (en) Composite welding method of zinc-based plated steel sheet
US20220402078A1 (en) Mig welding method
JP6518160B2 (en) Welding method of galvanized steel sheet
CN105382383A (en) Multi-electrode gas-shielded arc welding method
JP3529359B2 (en) Flux-cored wire for welding galvanized steel sheet with excellent pit and blow hole resistance
JP4978121B2 (en) Butt joining method of metal plates
JP6285062B1 (en) Arc welding method of hot-dip Zn-based plated steel sheet and method of manufacturing welded member
KR20220148285A (en) Arc Welded Joints and Arc Welding Methods
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
RU2702168C1 (en) Method of multi-electrode arc welding in protective gas medium
Yao et al. Influence of joint geometry and fit-up gaps on hybrid laser-metal active gas (MAG) welding
JP6487877B2 (en) Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member
US20180354049A1 (en) Arc welding method for hot-dip galvanized steel plate having excellent appearance of welded part and high welding strength, method for manufacturing welding member, and welding member
JP6965071B2 (en) Plasma keyhole welding method
Makino et al. Combination welding between CO2 laser beam and MIG arc
JP5173558B2 (en) Manufacturing method of MIG welded joint of steel and aluminum
JP2007216275A (en) Shield gas for hybrid welding, and hybrid welding method using the shield gas
JP2019038006A (en) ARC-WELDING METHOD OF MOLTEN Zn-BASED PLATED STEEL SHEET, AND MANUFACTURING METHOD OF WELDING MEMBER
WO2022230905A1 (en) Arc-welded joint and arc-welding method
JP7364088B2 (en) Arc welding joints and arc welding methods
WO2024095614A1 (en) Lap fillet arc welding method, and method for producing welding joint

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220215