JP7503004B2 - Complex Welding Equipment - Google Patents

Complex Welding Equipment Download PDF

Info

Publication number
JP7503004B2
JP7503004B2 JP2021006263A JP2021006263A JP7503004B2 JP 7503004 B2 JP7503004 B2 JP 7503004B2 JP 2021006263 A JP2021006263 A JP 2021006263A JP 2021006263 A JP2021006263 A JP 2021006263A JP 7503004 B2 JP7503004 B2 JP 7503004B2
Authority
JP
Japan
Prior art keywords
welding
arc
period
short circuit
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021006263A
Other languages
Japanese (ja)
Other versions
JP2022110699A (en
Inventor
賢人 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2021006263A priority Critical patent/JP7503004B2/en
Publication of JP2022110699A publication Critical patent/JP2022110699A/en
Application granted granted Critical
Publication of JP7503004B2 publication Critical patent/JP7503004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、消耗電極アーク溶接とレーザ溶接とを併用して溶接する複合溶接装置に関するものである。 The present invention relates to a hybrid welding device that uses both consumable electrode arc welding and laser welding.

消耗電極アーク溶接とレーザ溶接とを併用して溶接する複合溶接装置が慣用されている(例えば、特許文献1参照)。 Hybrid welding equipment that combines consumable electrode arc welding and laser welding is commonly used (see, for example, Patent Document 1).

上記の消耗電極アーク溶接としては、炭酸ガスアーク溶接、マグ溶接、ミグ溶接等が使用される。 The above-mentioned consumable electrode arc welding methods include carbon dioxide gas arc welding, MAG welding, and MIG welding.

上記のレーザとしては、半導体レーザ、YAGレーザ、炭酸ガスレーザ等が使用される。 The lasers used in the above-mentioned cases include semiconductor lasers, YAG lasers, and carbon dioxide lasers.

特開2004-9061号公報JP 2004-9061 A

消耗電極アーク溶接のアーク発生部にレーザを照射して行う複合溶接方法では、レーザからの熱の影響によってアーク長の変動が発生しやすい。消耗電極アーク溶接は定電圧制御のアーク溶接装置を使用するために、アーク長が変動すると溶接電流が変動することになる。この結果、母材への入熱量が変動してビード外観及び溶け込み深さ等が変動し、溶接品質が悪くなるという問題がある。 In hybrid welding methods in which a laser is irradiated onto the arc generating portion of consumable electrode arc welding, the heat from the laser can easily cause fluctuations in the arc length. Because consumable electrode arc welding uses an arc welding device with constant voltage control, fluctuations in the arc length result in fluctuations in the welding current. As a result, there is a problem that the amount of heat input to the base material fluctuates, causing fluctuations in the bead appearance and penetration depth, etc., resulting in poor welding quality.

そこで、本発明では、消耗電極アーク溶接とレーザ溶接とを併用して行う複合溶接方法において、レーザからの熱の影響によってアーク長が変動しても、ビード外観、溶け込み深さ等の変動を抑制して良好な溶接品質を得ることができる複合溶接装置を提供することを目的とする。 The present invention aims to provide a hybrid welding device that can suppress variations in bead appearance, penetration depth, etc., and obtain good welding quality, even if the arc length varies due to the effect of heat from the laser, in a hybrid welding method that combines consumable electrode arc welding and laser welding.

上述した課題を解決するために、請求項1の発明は、溶接ワイヤを送給して消耗電極アーク溶接を行うアーク溶接装置と、前記消耗電極アーク溶接のアーク発生部にレーザを照射してレーザ溶接を行うレーザ溶接装置と、を備えた複合溶接装置において、
前記アーク溶接装置は、前記溶接ワイヤをアーク期間中は正送し短絡期間中は逆送し、前記アーク期間及び前記短絡期間の全期間中は溶接電流を定電流制御によって通電する、
ことを特徴とする複合溶接装置である。
In order to solve the above-mentioned problems, the present invention provides a hybrid welding apparatus including an arc welding apparatus that performs consumable electrode arc welding by feeding a welding wire, and a laser welding apparatus that performs laser welding by irradiating an arc generating portion of the consumable electrode arc welding,
The arc welding device feeds the welding wire in a forward direction during an arc period and in a reverse direction during a short circuit period, and applies a welding current by constant current control during the entire arc period and the entire short circuit period .
This is a hybrid welding device characterized by the above.

請求項2の発明は、
前記アーク溶接装置は、前記定電流制御によって前記アーク期間及び前記短絡期間に一定の溶接電流を通電する、
ことを特徴とする請求項1に記載の複合溶接装置である。
The invention of claim 2 is as follows:
The arc welding apparatus applies a constant welding current during the arc period and the short circuit period by the constant current control.
2. The hybrid welding apparatus according to claim 1 .

請求項3の発明は、
前記アーク溶接装置は、不活性ガスを含んだシールドガスを前記アーク発生部に流す、
ことを特徴とする請求項1又は2に記載の複合溶接装置である。
The invention of claim 3 is as follows:
The arc welding apparatus causes a shielding gas containing an inert gas to flow into the arc generating portion.
3. A hybrid welding apparatus according to claim 1 or 2.

請求項4の発明は、
前記溶接ワイヤの材質が、アルミニウム又はその合金である、
ことを特徴とする請求項1~3のいずれか1項に記載の複合溶接装置である。
The invention of claim 4 is as follows:
The material of the welding wire is aluminum or an alloy thereof.
The hybrid welding device according to any one of claims 1 to 3, characterized in that:

本発明の複合溶接装置によれば、消耗電極アーク溶接とレーザ溶接とを併用して行う複合溶接方法において、レーザからの熱の影響によってアーク長が変動しても、ビード外観、溶け込み深さ等の変動を抑制して良好な溶接品質を得ることができる。 According to the hybrid welding device of the present invention, in a hybrid welding method that combines consumable electrode arc welding and laser welding, even if the arc length fluctuates due to the effect of heat from the laser, fluctuations in the bead appearance, penetration depth, etc. can be suppressed, and good welding quality can be obtained.

本発明の実施の形態に係る複合溶接装置の構成図である。1 is a configuration diagram of a hybrid welding device according to an embodiment of the present invention; 本発明の実施の形態に係る複合溶接方法を示す図1の複合溶接装置における各信号のタイミングチャートである。2 is a timing chart of each signal in the hybrid welding apparatus of FIG. 1 , illustrating a hybrid welding method according to an embodiment of the present invention.

以下、図面を参照して本発明の実施の形態について説明する。 The following describes an embodiment of the present invention with reference to the drawings.

図1は、本発明の実施の形態に係る複合溶接装置の構成図である。複合溶接装置は、消耗電極アーク溶接を行うためのアーク溶接装置と、レーザ溶接を行うためのレーザ溶接装置と、を備えている。以下、同図を参照して各構成物について説明する。 Figure 1 is a diagram showing the configuration of a hybrid welding device according to an embodiment of the present invention. The hybrid welding device includes an arc welding device for performing consumable electrode arc welding, and a laser welding device for performing laser welding. Each component will be described below with reference to the diagram.

アーク溶接装置は、溶接電源PS、送給機WF、溶接トーチWT、短絡判別回路SD、送給速度設定回路FR及び溶接電流設定回路IRを備えている。 The arc welding device is equipped with a welding power source PS, a wire feeder WF, a welding torch WT, a short circuit determination circuit SD, a wire feed speed setting circuit FR, and a welding current setting circuit IR.

短絡判別回路SDは、溶接電源PSの出力端子間の電圧を入力として、この電圧値が短絡判別値(10V程度)未満のときは溶接ワイヤ1と母材2との間が短絡期間にあると判別してHighレベルとなり、以上のときはアーク期間にあると判別してLowレベルとなる短絡判別信号Sdを出力する。 The short circuit determination circuit SD receives the voltage between the output terminals of the welding power source PS as input, and when this voltage value is less than the short circuit determination value (approximately 10 V), it determines that a short circuit is occurring between the welding wire 1 and the base material 2 and outputs a short circuit determination signal Sd that goes to a high level, and when this voltage value is equal to or greater than this, it determines that an arc period is occurring and outputs a short circuit determination signal Sd that goes to a low level.

送給速度設定回路FRは、上記の短絡判別信号Sdを入力として、短絡判別信号SdがLowレベル(アーク期間)のときは予め定めた正の値の正送送給速度Fwsの設定値となり、短絡判別信号SdがHighレベル(短絡期間)のときは予め定めた負の値の逆送送給速度Fwrの設定値となる送給速度設定信号Frを出力する。正送とは溶接ワイヤ1を母材2に近づく方向に送給することであり、逆送とは溶接ワイヤ1を母材2から離れる方向に送給することである。 The feed speed setting circuit FR receives the above-mentioned short circuit detection signal Sd as an input, and outputs a feed speed setting signal Fr that is set to a predetermined positive value for the forward feed speed Fws when the short circuit detection signal Sd is at a low level (arcing period), and is set to a predetermined negative value for the reverse feed speed Fwr when the short circuit detection signal Sd is at a high level (short circuit period). Forward feed means feeding the welding wire 1 in a direction approaching the base material 2, and reverse feed means feeding the welding wire 1 in a direction away from the base material 2.

溶接電流設定回路IRは、上記の短絡判別信号Sdを入力として、短絡判別信号SdがLowレベル(アーク期間)のときは予め定めたアーク電流Iwaの設定値となり、短絡判別信号SdがHighレベル(短絡期間)のときは予め定めた短絡電流Iwsの設定値となる溶接電流設定信号Irを出力する。例えば、送給速度Fwの平均値が大きいときは、Iwa>Iwsとすることで短絡期間からアーク期間への移行を円滑にすることができる。送給速度Fwの平均値が小さいときは、Iwa<Iwsとすることでスパッタの発生量を少なくすることができる。また、Iwa=Iwsとすることによって、短絡期間及びアーク期間の時間長さが変動しても、溶接電流Iwの平均値を一定にすることができる。 The welding current setting circuit IR receives the short circuit detection signal Sd and outputs a welding current setting signal Ir that is a preset arc current Iwa when the short circuit detection signal Sd is at a low level (arc period) and a preset short circuit current Iws when the short circuit detection signal Sd is at a high level (short circuit period). For example, when the average value of the feed speed Fw is large, the transition from the short circuit period to the arc period can be made smooth by setting Iwa > Iws. When the average value of the feed speed Fw is small, the amount of spatter can be reduced by setting Iwa < Iws. Furthermore, by setting Iwa = Iws, the average value of the welding current Iw can be kept constant even if the length of the short circuit period and the arc period varies.

溶接電源PSは、3相200V等の交流商用電源(図示は省略)を入力として、定電流制御によって上記の溶接電流設定信号Irによって設定された溶接電流Iwを通電する。 The welding power source PS receives an AC commercial power source (not shown) such as a three-phase 200V power source as input, and applies the welding current Iw set by the above-mentioned welding current setting signal Ir using constant current control.

送給機WFは、上記の送給速度設定信号Frによって定まる送給速度Fwで溶接ワイヤ1を送給する。したがって、溶接ワイヤ1は、アーク期間中は正送送給速度Fwsで正送され、短絡期間中は逆送送給速度Fwrで逆送される。 The feeder WF feeds the welding wire 1 at a feed speed Fw determined by the above-mentioned feed speed setting signal Fr. Therefore, the welding wire 1 is fed forward at a forward feed speed Fws during the arc period, and fed backward at a reverse feed speed Fwr during the short circuit period.

溶接トーチWTは、装着された給電チップ(図示は省略)を介して溶接ワイヤ1に給電し、溶接ワイヤ1を母材2の被溶接部に送出する。溶接ワイヤ1と母材2との間にアーク3が発生する。給電チップと母材2との間に溶接電圧Vwが印加し、溶接電流Iwが通電する。溶接トーチWTのノズル(図示は省略)からはシールドガス5が噴出されて、アーク3を大気から遮蔽する。溶接ワイヤ1の材質は、鉄鋼、アルミニウム、アルミニウム合金等である。シールドガス5としては、炭酸ガス、不活性ガス(アルゴンガス、ヘリウムガス等)、炭酸ガスと不活性ガスとの混合ガスである。 The welding torch WT supplies power to the welding wire 1 through an attached power feed tip (not shown), and delivers the welding wire 1 to the part to be welded of the base material 2. An arc 3 is generated between the welding wire 1 and the base material 2. A welding voltage Vw is applied between the power feed tip and the base material 2, and a welding current Iw flows. A shielding gas 5 is ejected from a nozzle (not shown) of the welding torch WT to shield the arc 3 from the atmosphere. The material of the welding wire 1 is steel, aluminum, an aluminum alloy, or the like. The shielding gas 5 is carbon dioxide gas, an inert gas (argon gas, helium gas, or the like), or a mixture of carbon dioxide gas and an inert gas.

レーザ溶接装置は、主に、レーザ発振器LS、光ファイバーLF及び加工ヘッドLHを備えている。 The laser welding device mainly comprises a laser oscillator LS, an optical fiber LF, and a processing head LH.

レーザ発振器LSは、レーザ溶接を行うためのレーザ光4を出力する。 The laser oscillator LS outputs laser light 4 for performing laser welding.

光ファイバーLFは、レーザ光4を加工ヘッドLHに導く。 The optical fiber LF guides the laser light 4 to the processing head LH.

加工ヘッドLHは、内蔵された種々の光学系(図示は省略)によって集光し、アーク3の発生部に照射する。同図では、アーク3よりも前方からレーザ光4を照射しているが、後方から照射する場合もある。アーク溶接の狙い位置とレーザの照射位置との距離は2~4mm程度である。 The processing head LH focuses the light using various built-in optical systems (not shown) and irradiates it on the area where the arc 3 is generated. In the figure, the laser light 4 is irradiated from in front of the arc 3, but it can also be irradiated from behind. The distance between the target position for arc welding and the laser irradiation position is about 2 to 4 mm.

図2は、本発明の実施の形態に係る複合溶接方法を示す図1の複合溶接装置における各信号のタイミングチャートである。同図(A)はレーザ出力Lwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)は短絡判別信号Sdの時間変化を示し、同図(E)は送給速度Fwの時間変化を示す。以下、同図を参照して各信号の動作について説明する。 Figure 2 is a timing chart of each signal in the hybrid welding device of Figure 1, which illustrates the hybrid welding method according to an embodiment of the present invention. Figure (A) shows the change over time in the laser output Lw, Figure (B) shows the change over time in the welding current Iw, Figure (C) shows the change over time in the welding voltage Vw, Figure (D) shows the change over time in the short circuit determination signal Sd, and Figure (E) shows the change over time in the feed speed Fw. The operation of each signal will be explained below with reference to the figure.

同図(A)に示すように、レーザ出力Lwは溶接中は常に出力されており、レーザ光4がアーク発生部に照射される。 As shown in FIG. 1A, the laser output Lw is always output during welding, and the laser light 4 is irradiated onto the arc generating portion.

同図(B)に示すように、溶接電流Iwは、図1の溶接電流設定信号Irによって設定され、アーク期間中は予め定めたアーク電流Iwaとなり、短絡期間中は予め定めた短絡電流Iwsとなる。 As shown in FIG. 1B, the welding current Iw is set by the welding current setting signal Ir in FIG. 1, and is a predetermined arc current Iwa during the arc period, and is a predetermined short-circuit current Iws during the short-circuit period.

同図(C)に示すように、溶接電圧Vwは、短絡期間中は数Vの短絡電圧値となり、アーク期間中は数十Vのアーク電圧値となる。短絡期間とアーク期間は、20~200Hz程度で周期的に繰り返される。したがって、本実施の形態における消耗電極アーク溶接は、短絡移行アーク溶接となる。 As shown in FIG. 1C, the welding voltage Vw has a short circuit voltage value of several volts during the short circuit period, and an arc voltage value of several tens of volts during the arc period. The short circuit period and the arc period are repeated periodically at about 20 to 200 Hz. Therefore, the consumable electrode arc welding in this embodiment is short circuit transfer arc welding.

同図(D)に示すように、短絡判別信号Sdは、短絡期間中はHighレベルとなり、アーク期間中はLowレベルとなる。 As shown in FIG. 3D, the short circuit detection signal Sd is at a high level during the short circuit period and at a low level during the arc period.

同図(E)に示すように、送給速度Fwは、図1の送給速度設定信号Frによって設定され、アーク期間中は正の値の正送送給速度Fwsで正送され、短絡期間中は負の値の逆送送給速度Fwrで逆送される。 As shown in FIG. 1(E), the feed speed Fw is set by the feed speed setting signal Fr in FIG. 1, and during the arc period, the wire is fed forward at a positive value of the forward feed speed Fws, and during the short circuit period, the wire is fed backward at a negative value of the reverse feed speed Fwr.

上記の各パラメータの数値例を以下に示す。
レーザ出力Lw=2kW、溶接ワイヤ=アルミニウムワイヤφ1.2、溶接電流Iw=Iwa=Iws=100A、正送送給速度Fws=15m/min、逆送送給速度Fwr=-10m/min
Numerical examples of the above parameters are shown below.
Laser output Lw = 2 kW, welding wire = aluminum wire φ1.2, welding current Iw = Iwa = Iws = 100 A, forward feed speed Fws = 15 m/min, reverse feed speed Fwr = -10 m/min

消耗電極アーク溶接では、溶接状態を安定化するためにアーク長が適正値になるようにアーク長制御をおこなっている。このアーク長制御は、アーク長が溶接電圧と比例関係にあることを利用して、溶接電圧が所望値になるように溶接電源を定電圧制御することによって行っている。しかし、消耗電極アーク溶接とレーザ溶接とを併用して行う複合溶接方法では、消耗電極アーク溶接を通常とおりに定電圧制御して行うと、レーザからの熱の影響によってアーク長が変動し、その結果溶接電流の平均値が変動することになり、溶接品質が悪くなるという問題が発生する。 In consumable electrode arc welding, arc length control is performed to keep the arc length at an appropriate value in order to stabilize the welding condition. This arc length control utilizes the fact that the arc length is proportional to the welding voltage, and is performed by constant voltage control of the welding power source so that the welding voltage is at the desired value. However, in a hybrid welding method that combines consumable electrode arc welding and laser welding, if consumable electrode arc welding is performed using constant voltage control as usual, the arc length will fluctuate due to the influence of heat from the laser, and as a result, the average value of the welding current will fluctuate, causing problems such as poor welding quality.

本実施の形態によれば、複合溶接方法において、アーク溶接装置は、溶接ワイヤをアーク期間中は正送し短絡期間中は逆送し、溶接電流を定電流制御によって通電する。消耗電極アーク溶接において、溶接電源を定電流制御して溶接電流を通電すると、アーク長が大きく変動して溶接状態が不安定になり、不良な溶接品質となる。しかし、消耗電極アーク溶接とレーザ溶接とを併用して行う複合溶接方法において、溶接ワイヤをアーク期間中は正送し短絡期間中は逆送し、溶接電流を定電流制御によって通電することによって、安定した溶接を行うことができ、良好な溶接品質を得ることができる。発明者は、レーザ照射と溶接ワイヤの正逆送給によって、定電流制御して溶接電流を通電しても消耗電極アーク溶接が安定化することを見いだした。このようにすると、レーザからの熱の影響によってアーク長が変動しても、正逆送給制御によって短絡期間とアーク期間との繰り返し周期が安定化する。このために、短絡電流及びアーク電流を異なる値に定電流制御しても、周期が安定化しているので、溶接電流の平均値を略一定値に維持することができる。この結果、母材への入熱量が略一定値となり、ビード外観、溶け込み深さ等の溶接品質が良好になる。 According to this embodiment, in the hybrid welding method, the arc welding device feeds the welding wire forward during the arc period and feeds it backward during the short circuit period, and the welding current is applied by constant current control. In consumable electrode arc welding, if the welding current is applied by constant current control of the welding power source, the arc length fluctuates greatly, making the welding state unstable and resulting in poor welding quality. However, in a hybrid welding method that uses consumable electrode arc welding and laser welding in combination, the welding wire is fed forward during the arc period and fed backward during the short circuit period, and the welding current is applied by constant current control, so that stable welding can be performed and good welding quality can be obtained. The inventor has found that consumable electrode arc welding can be stabilized even when the welding current is applied by constant current control through laser irradiation and forward and reverse feeding of the welding wire. In this way, even if the arc length fluctuates due to the influence of heat from the laser, the repeating cycle of the short circuit period and the arc period is stabilized by forward and reverse feed control. For this reason, even if the short circuit current and the arc current are constant current controlled to different values, the cycle is stabilized, so that the average value of the welding current can be maintained at an approximately constant value. As a result, the amount of heat input to the base material remains approximately constant, improving the weld quality, including bead appearance and penetration depth.

さらに、本実施の形態によれば、アーク溶接装置は、定電流制御によってアーク期間及び短絡期間に一定の溶接電流を通電するようにすることが好ましい。このようにすると、短絡期間及びアーク期間の時間長さが変動しても、常に溶接電流の平均値を一定値に維持することができる。この結果、母材への入熱量が一定値となり、ビード外観、溶け込み深さ等の溶接品質がさらに良好になる。 Furthermore, according to this embodiment, it is preferable that the arc welding device applies a constant welding current during the arc period and short circuit period by constant current control. In this way, even if the length of the short circuit period and the arc period varies, the average value of the welding current can always be maintained at a constant value. As a result, the amount of heat input to the base material becomes a constant value, and the welding quality, such as the bead appearance and penetration depth, is further improved.

さらに、本実施の形態によれば、アーク溶接装置は、不活性ガスを含んだシールドガスをアーク発生部に流すことが好ましい。不活性ガスを含むシールドガスを使用して複合溶接方法を行うと、定電流制御によって溶接電流を通電したときの溶接状態がより安定になる。不活性ガスを含むシールドガスは、例えば、炭酸ガス20%+アルゴンガス80%の混合ガス、アルゴンガス100%等である。 Furthermore, according to this embodiment, it is preferable that the arc welding device flows a shielding gas containing an inert gas into the arc generating portion. When a composite welding method is performed using a shielding gas containing an inert gas, the welding state becomes more stable when the welding current is passed through by constant current control. The shielding gas containing an inert gas is, for example, a mixed gas of 20% carbon dioxide gas + 80% argon gas, 100% argon gas, etc.

さらに、本実施の形態によれば、溶接ワイヤの材質が、アルミニウム又はその合金であることが好ましい。アルミニウム又はその合金の溶接ワイヤを使用して複合溶接方法を行うと、定電流制御によって溶接電流を通電したときの溶接状態が、鉄鋼ワイヤを使用したときよりも安定になる。 Furthermore, according to this embodiment, it is preferable that the material of the welding wire is aluminum or an alloy thereof. When performing a hybrid welding method using a welding wire made of aluminum or an alloy thereof, the welding state when the welding current is passed through by constant current control becomes more stable than when a steel wire is used.

1 溶接ワイヤ
2 母材
3 アーク
4 レーザ光
5 シールドガス
FR 送給速度設定回路
Fr 送給速度設定信号
Fw 送給速度
Fwr 逆送送給速度
Fws 正送送給速度
IR 溶接電流設定回路
Ir 溶接電流設定信号
Iw 溶接電流
Iwa アーク電流
Iws 短絡電流
LF 光ファイバー
LH 加工ヘッド
LS レーザ発振器
PS 溶接電源
SD 短絡判別回路
Sd 短絡判別信号
Vw 溶接電圧
WF 送給機
WT 溶接トーチ
1 Welding wire
2. Base material
3. Arc
4 Laser light 5 Shielding gas FR Feed speed setting circuit Fr Feed speed setting signal Fw Feed speed Fwr Reverse feed speed Fws Forward feed speed IR Welding current setting circuit Ir Welding current setting signal Iw Welding current Iwa Arc current Iws Short circuit current LF Optical fiber LH Processing head LS Laser oscillator PS Welding power source SD Short circuit determination circuit Sd Short circuit determination signal Vw Welding voltage WF Feeder WT Welding torch

Claims (4)

溶接ワイヤを送給して消耗電極アーク溶接を行うアーク溶接装置と、前記消耗電極アーク溶接のアーク発生部にレーザを照射してレーザ溶接を行うレーザ溶接装置と、を備えた複合溶接装置において、
前記アーク溶接装置は、前記溶接ワイヤをアーク期間中は正送し短絡期間中は逆送し、前記アーク期間及び前記短絡期間の全期間中は溶接電流を定電流制御によって通電する、
ことを特徴とする複合溶接装置。
A hybrid welding apparatus including an arc welding apparatus for performing consumable electrode arc welding by feeding a welding wire, and a laser welding apparatus for performing laser welding by irradiating a laser onto an arc generating portion of the consumable electrode arc welding,
The arc welding device feeds the welding wire in a forward direction during an arc period and in a reverse direction during a short circuit period, and applies a welding current by constant current control during the entire arc period and the entire short circuit period .
A composite welding device characterized by:
前記アーク溶接装置は、前記定電流制御によって前記アーク期間及び前記短絡期間に一定の溶接電流を通電する、
ことを特徴とする請求項1に記載の複合溶接装置。
The arc welding apparatus applies a constant welding current during the arc period and the short circuit period by the constant current control.
2. The hybrid welding apparatus according to claim 1.
前記アーク溶接装置は、不活性ガスを含んだシールドガスを前記アーク発生部に流す、
ことを特徴とする請求項1又は2に記載の複合溶接装置。
The arc welding apparatus causes a shielding gas containing an inert gas to flow into the arc generating portion.
3. The hybrid welding apparatus according to claim 1 or 2.
前記溶接ワイヤの材質が、アルミニウム又はその合金である、
ことを特徴とする請求項1~3のいずれか1項に記載の複合溶接装置。
The material of the welding wire is aluminum or an alloy thereof.
4. The hybrid welding apparatus according to claim 1, wherein the welding is performed by applying a pressure to the welding member.
JP2021006263A 2021-01-19 2021-01-19 Complex Welding Equipment Active JP7503004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021006263A JP7503004B2 (en) 2021-01-19 2021-01-19 Complex Welding Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021006263A JP7503004B2 (en) 2021-01-19 2021-01-19 Complex Welding Equipment

Publications (2)

Publication Number Publication Date
JP2022110699A JP2022110699A (en) 2022-07-29
JP7503004B2 true JP7503004B2 (en) 2024-06-19

Family

ID=82570066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021006263A Active JP7503004B2 (en) 2021-01-19 2021-01-19 Complex Welding Equipment

Country Status (1)

Country Link
JP (1) JP7503004B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017059A (en) 2002-06-13 2004-01-22 Daihen Corp Arc start control method of laser irradiation electric arc welding
US20070251927A1 (en) 2004-05-10 2007-11-01 Fronius International Gmbh Laser Hybrid Welding Method and Laser Hybrid Welding Torch Using a Zinc and/or Carbon and/or Aluminum-Containing Rod
JP2015522426A (en) 2012-07-20 2015-08-06 リンカーン グローバル,インコーポレイテッド Method and system for starting and stopping hot wire processing
JP2019089099A (en) 2017-11-14 2019-06-13 日新製鋼株式会社 Composite welding method of zinc-based plated steel sheet
JP2020093292A (en) 2018-12-14 2020-06-18 株式会社ダイヘン Composite welding method
WO2021005690A1 (en) 2019-07-08 2021-01-14 三菱電機株式会社 Additive manufacturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017059A (en) 2002-06-13 2004-01-22 Daihen Corp Arc start control method of laser irradiation electric arc welding
US20070251927A1 (en) 2004-05-10 2007-11-01 Fronius International Gmbh Laser Hybrid Welding Method and Laser Hybrid Welding Torch Using a Zinc and/or Carbon and/or Aluminum-Containing Rod
JP2015522426A (en) 2012-07-20 2015-08-06 リンカーン グローバル,インコーポレイテッド Method and system for starting and stopping hot wire processing
JP2019089099A (en) 2017-11-14 2019-06-13 日新製鋼株式会社 Composite welding method of zinc-based plated steel sheet
JP2020093292A (en) 2018-12-14 2020-06-18 株式会社ダイヘン Composite welding method
WO2021005690A1 (en) 2019-07-08 2021-01-14 三菱電機株式会社 Additive manufacturing device

Also Published As

Publication number Publication date
JP2022110699A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
JP5278426B2 (en) Composite welding method and composite welding apparatus
JP3198223U (en) Method and system for overheating a consumable during a hot wire process
JP5292459B2 (en) Method and system for increasing welding heat input during a short-circuit arc welding process
US20100301030A1 (en) Systems and methods to modify gas metal arc welding and its variants
US10179369B2 (en) Welding system for AC welding with reduced spatter
EP1136167B1 (en) Method for guiding arc by laser, and arc guiding welding and device by the method
JP6959941B2 (en) Arc welding method and arc welding equipment
JP2010064096A (en) Composite welding method and composite welding apparatus
JP2001246465A (en) Gas shielded-system arc welding method
US20220410300A1 (en) Method and apparatus for welding a weld seam
JP7503004B2 (en) Complex Welding Equipment
US11285559B2 (en) Welding system and method for shielded welding wires
JP2022025953A (en) Laser/arc hybrid welding apparatus
JP7170373B2 (en) Composite welding method
Chen et al. Laser-enhanced short-circuiting metal transfer in GMAW
JP6525625B2 (en) 2-wire welding control method
JP3875082B2 (en) Multi-electrode pulse arc welding method
JP2010064086A (en) Composite welding method and composite welding apparatus
WO2022035821A3 (en) Arc welding, cladding, and additive manufacturing method and apparatus
JP2013056374A (en) Method and device for composite welding
JP6969976B2 (en) Arc welding equipment and arc welding method
JP2012240063A (en) Laser welding method and laser welding equipment
JP7407092B2 (en) Composite welding equipment
JP2024006194A (en) Laser-arc hybrid welding method
JP7198067B2 (en) Horizontal fillet arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240412

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240607

R150 Certificate of patent or registration of utility model

Ref document number: 7503004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150