JP2749968B2 - High current density welding method - Google Patents

High current density welding method

Info

Publication number
JP2749968B2
JP2749968B2 JP19290590A JP19290590A JP2749968B2 JP 2749968 B2 JP2749968 B2 JP 2749968B2 JP 19290590 A JP19290590 A JP 19290590A JP 19290590 A JP19290590 A JP 19290590A JP 2749968 B2 JP2749968 B2 JP 2749968B2
Authority
JP
Japan
Prior art keywords
wire
welding
current density
flux
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19290590A
Other languages
Japanese (ja)
Other versions
JPH0481280A (en
Inventor
一郎 須田
仁 河辺
汎司 小山
礦三 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19290590A priority Critical patent/JP2749968B2/en
Publication of JPH0481280A publication Critical patent/JPH0481280A/en
Application granted granted Critical
Publication of JP2749968B2 publication Critical patent/JP2749968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガスシールドアーク溶接方法に係るもので
あり、さらに詳しくは、高電流密度溶接において高溶着
で、溶接作業性に優れ、かつ良好な溶込み形状が得られ
る高能率・高品質な溶接方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a gas shielded arc welding method, and more particularly, to high welding at high current density welding, excellent welding workability, and good performance. The present invention relates to a high-efficiency and high-quality welding method capable of obtaining a suitable penetration shape.

[従来の技術] 近年各種溶接構造物の建造において、ガスシールドア
ーク溶接法が溶接能率の向上が図れることから各分野で
急速にその適用が増大している。中でも鉄骨、橋梁、造
船分野における厚板溶接の高溶着・高能率化、下向大脚
長溶接及び溶接施工を含めたトータルコスト低減が現在
の最大の課題となっている。
[Related Art] In recent years, in the construction of various welded structures, the application of the gas shielded arc welding method has been rapidly increasing in various fields since the welding efficiency can be improved. Above all, the biggest issues at present are how to increase the welding and efficiency of thick plate welding in the steel frame, bridge and shipbuilding fields, as well as the total cost reduction including downward long leg welding and welding work.

高能率化の手段として電流密度を高めてワイヤの溶接
速度を増加させることが一般的に採られている。しか
し、高電流密度溶接では、スパッタの多発、耐気孔性、
耐割れ性、融合不良等多くの問題が生ずる。
As a means for increasing the efficiency, it is generally employed to increase the current density to increase the welding speed of the wire. However, in high current density welding, spatter frequently occurs, porosity resistance,
Many problems such as crack resistance and poor fusion occur.

まず、細径ソリッドワイヤを炭酸ガスで溶接するガス
シールドアーク溶接で、溶接電流が250A程度(電流密度
としては約180A/mm2)のいわゆる短絡移行領域では、ワ
イヤ径より小さい粒の溶滴移行でスパッタ粒も小さく安
定したショートアーク溶接が出来る。順次溶接電流を上
げ200〜400A(電流密度としては約180〜約350A/mm2)で
はアークは短絡せず、ワイヤ径より若干大きい粒の溶滴
が母材に移行し、スパッタ粒も大きく発生量も増加し、
溶接作業性も劣化する。さらに溶接電流が400A(電流密
度としては約350A/mm2)を越える大電流域では、アーク
は極端に不安定となり、ワイヤ径以上の大きな粒のスパ
ッタが多発し、作業性が非常に悪く、ビード外観及び止
端の不揃えが発生する。そこでシールドガスにArをベー
スにCO2またはO2を含有する混合ガスを使用すると、ス
パッタ発生の少ないビード外観の良好な溶接が行える
が、ピンチ力によってビード中央部に巾の狭い過大な溶
込み、いわゆる“フィンガー状”の溶込みを呈する。ま
た、積層溶接や突合せ継手溶接では、溶込み巾が小さい
ため、しばしば融合不良などの形状欠陥が発生するなど
の問題があった。
First, in gas shielded arc welding in which a small diameter solid wire is welded with carbon dioxide gas, in the so-called short-circuit transition area where the welding current is about 250 A (current density is about 180 A / mm 2 ), droplet transfer of particles smaller than the wire diameter As a result, stable short arc welding with small spatter particles can be performed. When the welding current is sequentially increased, the arc does not short-circuit at 200 to 400 A (current density of about 180 to about 350 A / mm 2 ), droplets slightly larger than the wire diameter migrate to the base metal, and large spatter particles are generated. The amount also increased,
The welding workability also deteriorates. Furthermore, in the large current range where the welding current exceeds 400 A (current density is about 350 A / mm 2 ), the arc becomes extremely unstable, spatters of large grains larger than the wire diameter occur frequently, and the workability is extremely poor. Misalignment of bead appearance and toe occurs. Therefore, if a gas mixture containing Ar and CO 2 or O 2 is used as the shielding gas, welding with good bead appearance with less spatter can be performed, but excessive penetration with a narrow width at the center of the bead due to pinch force. So-called "finger-shaped" penetration. In addition, in lamination welding and butt joint welding, since the penetration width is small, there has been a problem that shape defects such as poor fusion often occur.

このフィンガー状溶込み形状を円形状の溶込みに改善
する手段としてシールドガスにHeを添加した、例えば特
開昭59−45084号公報のAr−He−CO2−O2の4種類混合ガ
スによる溶接方法が提案されている。しかしこの方法
は、溶融状態にあるワイヤ先端が回転するため微小な溶
滴がビード両端に飛散して付着してしまい、その除去が
難しいことと特殊なシールドガスを使用するためガスコ
ストが高くなることから事実上に課題を残すものであ
る。
As a means for improving this finger-shaped penetration shape into a circular penetration, He is added to a shielding gas, for example, by using a mixed gas of four kinds of Ar-He-CO 2 -O 2 disclosed in JP-A-59-45084. Welding methods have been proposed. However, in this method, a small droplet scatters and adheres to both ends of the bead due to the rotation of the tip of the wire in a molten state, which is difficult to remove, and a special shielding gas is used, so the gas cost increases. This leaves a practical challenge.

そこで、シールドガスは炭酸ガスでワイヤはフラック
ス入りワイヤを用いた高電流密度溶接が例えば特開昭53
−91041、特開昭55−68184及び特開昭56−160878〜56−
160880号公報で提案されている。しかし、これらの方法
はエレクトロガス溶接方法に関するもので、ワイヤ全断
面積に対するフラックス+鉄粉の合計断面積が30〜35%
と高値に限定されたもので、このような薄肉のフラック
ス入りワイヤにすることでアーク安定や溶滴移行性を良
くし、高溶融速度を得ようとするため、ワイヤの突出し
長さも通常溶接で使用している20〜30nmを越えた35〜70
mmと非常に長く設定して溶接する方法である。そのため
スパッタ発生も非常に多く、ワイヤ製造上も非常に薄肉
のフラックス入りワイヤであるため、細径への線引が非
常に困難であるという問題が残っている。
Therefore, high current density welding using a shielding gas of carbon dioxide gas and a flux cored wire is disclosed in
91041, JP-A-55-68184 and JP-A-56-160878-56-
It is proposed in Japanese Patent Publication No. 160880. However, these methods are related to the electrogas welding method, and the total cross-sectional area of flux + iron powder with respect to the total cross-sectional area of the wire is 30 to 35%.
In order to improve arc stability and droplet transferability by using such a thin-walled flux-cored wire, and to obtain a high melting rate, the length of the projecting wire is usually set by welding. 35-70 beyond 20-30nm used
This is a method of setting a very long length of mm and welding. For this reason, spatter is generated very frequently, and the flux cored wire is very thin in terms of wire production, so that there remains a problem that it is extremely difficult to draw a thinner wire.

[発明が解決しようとする課題] 本発明は、このような事情に着目し、高電流密度溶接
の諸問題を解決したもので、高溶着量が得られ、大電流
域でもアークがソフトで溶滴も小さく安定した移行性を
示し、スパッタも小粒で発生量も少なく、良好なビード
外観並びに円形状溶込みでかつ溶接作業性に優れた高電
流密度溶接方法を提供することを目的とするものであ
る。
[Problems to be Solved by the Invention] The present invention focuses on such circumstances, and solves various problems of high current density welding. A high welding amount can be obtained, and the arc is soft even in a large current range. The purpose of the present invention is to provide a high current density welding method in which droplets show small and stable transferability, spatter is small, the amount of generation is small, good bead appearance, circular penetration, and excellent welding workability. It is.

[課題を解決するための手段] 本発明の要旨は、炭酸ガスをシールドガスとして、鉄
粉を含むフラックスが占める断面積がワイヤ全断面積に
対して5〜30%未満としたフラックス入りワイヤを用
い、300(A/mm2)以上の高電流密度で溶接することを特
徴とする高電流密度ガスシールドアーク溶接方法であ
る。
Means for Solving the Problems The gist of the present invention is to provide a flux-cored wire in which the cross-sectional area occupied by a flux containing iron powder using carbon dioxide gas as a shielding gas is less than 5 to 30% of the total cross-sectional area of the wire. It is a high current density gas shielded arc welding method characterized in that welding is performed at a high current density of 300 (A / mm 2 ) or more.

[作用] 本発明者等は、フラックス入りワイヤによる高電流密
度ガスシールドアーク溶接のビード形成について種々実
験を重ねた結果、次のような知見を得て本発明を完成し
たものである。
[Operation] The present inventors have conducted various experiments on bead formation of high current density gas shielded arc welding using a flux-cored wire, and as a result, obtained the following knowledge and completed the present invention.

高電流密度300(A/mm2)以上で溶接を行った時のビー
ド形状とシールドガス組成の関係は、第1図に示すよう
に、シールドガスが純Ar(第1図(イ))、Ar−CO
2(同(ロ))、Ar−O2(同(ハ))Ar−CO2−O2(同
(ホ))、Ar−He−CO2−O2(同(ニ))等各種混合ガ
スのいずれを用いても溶込み形状はフィンガー状を呈
し、場合によっては、溶接金属に融合不良を発生する
が、第1図(ヘ)に示すCO2ガスを用いた場合のみ安定
した円形状の溶込みが得られる。
As shown in FIG. 1, the relationship between the bead shape and the shielding gas composition when welding was performed at a high current density of 300 (A / mm 2 ) or more was that the shielding gas was pure Ar (FIG. 1 (a)), Ar-CO
2 (the (b)), Ar-O 2 (the (c)) Ar-CO 2 -O 2 (same (e)), Ar-He-CO 2 -O 2 ( same (d)) and various mixtures The penetration shape is finger-like even when any of the gases is used, and in some cases, poor fusion occurs in the weld metal. However, only when the CO 2 gas shown in FIG. Is obtained.

炭酸ガスによる溶接においては、アーク状況、溶滴の
移行性、ビード外観、形状及びスパッタ発生の観点か
ら、フラックス入りワイヤの適用が最も好ましい。
In welding with carbon dioxide gas, it is most preferable to use a flux-cored wire from the viewpoints of arc conditions, droplet transferability, bead appearance, shape, and spatter generation.

さらにフラックス入りワイヤの鉄粉を含むフラックス
の占める断面積がワイヤ全断面積に対する割合を限定す
ることにより、高電流において溶滴移行性が安定し、ワ
イヤ突出し長さを長くすることなく高溶着量が得られ
る。
Furthermore, the cross-sectional area of the flux containing the iron powder of the flux-cored wire limits the ratio to the total cross-sectional area of the wire, so that the droplet transferability at high current is stable, and the amount of welding can be increased without increasing the wire protrusion length Is obtained.

本発明は上記知見に基づいて完成したものであり、以
下に本発明の構成理由について詳細に説明する。
The present invention has been completed based on the above findings, and the reasons for the constitution of the present invention will be described in detail below.

シールドガスとしては、炭酸ガスを使用するが、使用
するワイヤがソリッドワイヤの場合、安定した溶滴移行
性が得られず、スパッタ発生も多く良好なビード外観及
び形状が得られない。そこでフラックス入りワイヤを使
用すれば、若干のアーク安定剤やスラグ剤も含まれてい
るため、ビード外観、形状及び安定なアーク状態が得ら
れ、優れた溶接作業性が得られる。
Carbon dioxide gas is used as the shielding gas. However, if the wire used is a solid wire, stable droplet transferability cannot be obtained, spatter is generated frequently, and a good bead appearance and shape cannot be obtained. Therefore, if a flux-cored wire is used, since a small amount of an arc stabilizer and a slag agent are also contained, a bead appearance, a shape and a stable arc state can be obtained, and excellent welding workability can be obtained.

電流密度については、300(A/mm2)未満では所定の効
果、特に巾広の円形状溶込みや高溶着量が得られず、ひ
いては溶接能率の向上も図れないため、300(A/mm2)以
上と限定した。
Regarding the current density, if the current density is less than 300 (A / mm 2 ), a predetermined effect, particularly a wide circular penetration and a high welding amount cannot be obtained, and the welding efficiency cannot be improved. 2 ) Limited to the above.

なお、電流密度の算出は次式で行う。 The current density is calculated by the following equation.

電流÷ワイヤの鋼製外皮部断面積=電流密度 ところで、ソリッドワイヤのワイヤ断面積は単に{π
×(ワイヤ直径)}/4で算出できるが、フラックス入
りワイヤの場合、電流を流す鋼製外皮部と見掛上電流を
流さないフラックス部に区別されるため、同一ワイヤ径
であっても、フラックスの充填率及び充填フラックスの
比重の大小によって、電流を流す鋼製外皮の厚さが変わ
るため、それに基づいて面積も変化する。そのため、フ
ラックス入りワイヤのワイヤ断面積はソリッドワイヤに
比べ実質的に小さくなり、電流密度も高くなる。そこで
本発明の溶接方法で規定する電流密度算出のためのワイ
ヤ断面積は、第2図に示す鋼製外皮の断面積を使用す
る。
Current ÷ cross-sectional area of steel sheath of wire = current density By the way, wire cross-sectional area of solid wire is simply {π
× (wire diameter) It can be calculated as 2 } / 4. However, in the case of flux-cored wire, since it is distinguished into a steel sheath portion that carries current and a flux portion that does not seem to carry current, even if the wire diameter is the same, The thickness of the steel sheath through which the current flows varies depending on the filling rate of the flux and the specific gravity of the filling flux, so that the area also changes based on the thickness. Therefore, the cross-sectional area of the flux-cored wire is substantially smaller than that of the solid wire, and the current density is higher. Therefore, as the wire cross-sectional area for calculating the current density specified by the welding method of the present invention, the cross-sectional area of the steel sheath shown in FIG. 2 is used.

高電流密度ガスシールドアーク溶接方法で溶滴移行性
の安定性、良好なビード形状及びワイヤ突出し長さを35
mm以下としても、高溶着量が得られるためにはフラック
ス入りワイヤの鉄粉を含むフラックスが占める断面積と
ワイヤ全断面積の比を限定する必要がある。
High current density gas shielded arc welding method ensures stable droplet transferability, good bead shape and wire protrusion length of 35
Even if it is less than mm, it is necessary to limit the ratio of the cross-sectional area occupied by the flux containing the iron powder of the flux-cored wire to the total cross-sectional area of the wire in order to obtain a high welding amount.

すなわち、鉄粉を含むフラックスが占める断面積がワ
イヤ全断面積の5〜30%未満に限定する理由は、5%未
満ではフラックス入りワイヤが本来具備すべきワイヤ成
分たとえばフラックスを構成するアーク安定剤、スラグ
生成剤、合金剤、脱酸剤を所定量含有することが出来
ず、ワイヤの溶融速度が遅くなり電流密度も減少し、高
溶着量が得られないだけでなく、アーク状態及びスパッ
タ発生はソリッドワイヤを使用した場合に非常に類似し
たものとなる。また、30%以上では、アーク状態や溶滴
移行性は良くなるものの、高電流密度溶接では、第3図
に示すように、鋼製外皮2が先に急激に溶融し母材に移
行してしまい、未溶融フラックスLが長くなり、これが
溶融池に突っこみ、スパッタ発生も多くなり、さらには
ワイヤ製造上通常使用されている細径まで線引すること
が困難となる。従って、鉄粉を含むフラックスが占める
断面積とワイヤ全断面積の比率を5〜30%未満に限定し
た。
That is, the reason why the cross-sectional area occupied by the flux containing iron powder is limited to less than 5 to 30% of the total cross-sectional area of the wire is that if it is less than 5%, the wire component that the flux-cored wire should have originally, for example, the arc stabilizer constituting the flux Cannot contain a predetermined amount of slag forming agent, alloying agent, and deoxidizing agent, which slows down the melting rate of the wire and reduces the current density, not only does not provide a high welding amount, but also causes arcing and spattering. Is very similar when a solid wire is used. At 30% or more, the arc state and droplet transferability are improved, but in the case of high current density welding, as shown in FIG. 3, the steel outer shell 2 rapidly melts first and transfers to the base material. As a result, the unmelted flux L becomes longer, penetrates into the molten pool, spatters are generated more frequently, and it becomes difficult to draw a thinner diameter which is usually used in wire production. Therefore, the ratio of the cross-sectional area occupied by the flux containing iron powder to the total cross-sectional area of the wire is limited to less than 5 to 30%.

また、ワイヤの断面形状は特に制限はなく、第2図
(a)〜(d)に示したいずれの形状も採用できるが
(2は鋼製外皮、3はフラックスを示す)、アークの安
定性、ワイヤの送給性及び直進性に優れたシームレスタ
イプ(第2図(d))が高電流密度溶接には最適であ
る。なお、本発明の鋼製外皮の材質は特に限定しないが
軟鋼材や合金鋼材が使用できる。
The sectional shape of the wire is not particularly limited, and any of the shapes shown in FIGS. 2 (a) to 2 (d) can be adopted (2 indicates a steel sheath, 3 indicates a flux), but arc stability is shown. The seamless type (FIG. 2 (d)), which is excellent in wire feedability and straightness, is most suitable for high current density welding. The material of the steel shell of the present invention is not particularly limited, but mild steel and alloy steel can be used.

[実施例] 以下に本発明を実施例により、更に具体的に説明す
る。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples.

(実施例1) ソリッドワイヤ及び鉄粉を含むフラックスが占める断
面積とワイヤ全断面積の割合を種々変えたフラックス入
りワイヤを用い、シールドガスにAr−He−CO2−O2混合
ガス(以下4種混合と略す)、Ar−CO2混合ガス(以下
2種混合と略す)及び炭酸ガス(以下CO2と略す)の3
種類を使用し、第1表に示す溶接条件でビードオンプレ
ート溶接を行った。なお、シールドガスの流量は25/m
in、使用した鋼板はSM−50B(板厚25mm)で実施した。
この溶接結果を第2表に示す。
(Example 1) with various changing the flux cored wire the ratio of the cross-sectional area and the total wire cross-sectional area occupied by the flux containing solid wire and iron powder, Ar-He-CO 2 -O 2 gas mixture shield gas (hereinafter 4), Ar-CO 2 mixed gas (hereinafter abbreviated as 2 types) and carbon dioxide (hereinafter abbreviated as CO 2 )
Bead-on-plate welding was performed under the welding conditions shown in Table 1 using the types. The flow rate of the shielding gas is 25 / m
In, the steel plate used was implemented with SM-50B (plate thickness 25 mm).
Table 2 shows the welding results.

ここでアーク安定性は溶接中にアークがシャープで乱
れることなく安定した溶滴が移行するものを非常に良好
とし◎、アークが乱れることはないが溶滴が若干大きな
形で移行するものを良好とし○、アークが若干でもバタ
ツキ溶滴もその分不規則に移行するものを不良とし×と
した。
Here, the arc stability is very good when the arc is sharp and stable droplets are transferred without being disturbed during welding. ◎ The arc stability is good when the arc is not disturbed but the droplets are transferred in a slightly larger form. ○, and those in which even a slight arc also caused the flapping droplets to move irregularly by that amount were regarded as defective, and were evaluated as ×.

また、溶込み形状は第4図に示すように、最大溶込み
深さ(P)の1/2位置(P/2)におけるビード巾(W1)が
最大ビード巾(W)の60%以上を良好と判定した。すな
わちこの60%より小さければいわゆるフィンガー状溶込
みとなり、大きな値になるほど広巾の円形状溶込みとな
る。
In addition, as shown in FIG. 4, the penetration width (W 1 ) at a half position (P / 2) of the maximum penetration depth (P) is 60% or more of the maximum bead width (W), as shown in FIG. Was determined to be good. That is, if it is smaller than 60%, so-called finger-shaped penetration is obtained, and as the value becomes larger, a circular penetration becomes wider.

ワイヤ番号14〜18はソリッドワイヤを用いた場合の結
果であり、中でも番号14〜16はワイヤ送給速度が30m/mi
nと速い高電流密度での溶接結果で、番号17〜18は従来
から用いられているワイヤ送給速度が10m/min程度の溶
接結果である。
Wire numbers 14 to 18 are the results when solid wires were used, and among them, numbers 14 to 16 had a wire feed speed of 30 m / mi
n is a welding result at a high current density which is fast, and Nos. 17 to 18 are welding results at a wire feeding speed of about 10 m / min which has been conventionally used.

さて、ワイヤ番号15〜16はシールドガスとして2種又
は4種の混合ガスを使用しており、アークの安定性及び
ビード形成とも良好であるものの、ガスコストが高く、
スパッタ発生自体少ないものの、ビード両端に微小な溶
滴が付着し、除去が困難である。
By the way, wire numbers 15 to 16 use two or four kinds of mixed gas as shielding gas, and although the arc stability and bead formation are good, the gas cost is high,
Although spatter generation itself is small, minute droplets adhere to both ends of the bead, and it is difficult to remove the droplet.

ワイヤ番号14ではアーク状態は劣化し、スパッタの多
発を起こしビード外観も不均一なものとなる。同様にワ
イヤ番号17においてもアーク状態の劣化、スパッタの多
発とビード外観不良が発生するとともに電流密度も本発
明範囲以下と低いため高溶着が得られない。
In the case of wire number 14, the arc state deteriorates, spatter occurs frequently, and the bead appearance becomes uneven. Similarly, the wire No. 17 also suffers from deterioration of the arc state, frequent spattering and poor bead appearance, and cannot have high welding because the current density is lower than the range of the present invention.

ワイヤ番号18はワイヤ番号15〜16に比べワイヤ送給速
度が1/3と遅く電流密度も本発明範囲以下と低く、溶接
電流も300Aと低いため、ビード両端に微小な溶滴が付着
することはないものの、高溶着が得られず混合ガスを使
用するためガスコストが高くなる。
Wire No. 18 has a wire feeding speed of 1/3 slower than wire Nos. 15 to 16, and the current density is lower than the range of the present invention, and the welding current is as low as 300 A, so that fine droplets adhere to both ends of the bead. However, high welding cannot be obtained, and the gas cost increases because a mixed gas is used.

次に、ワイヤ番号9〜13及び19、20はフラックス入り
ワイヤを用いた場合の結果である。
Next, the wire numbers 9 to 13 and 19 and 20 are the results when the flux-cored wires were used.

ワイヤ番号13はシールドガス組成以外本発明範囲内に
あるが、シールドガスに4種混合ガスを使用すると、ア
ークの安定性、スパッタの発生も少なく溶接作業性は良
好なものの、ビード外観が不均一でビード両端不揃いと
なり、溶込み形状はフィンガー状を呈し、ガスコストも
高くすべてに問題がある。
Wire number 13 is within the scope of the present invention except for the composition of the shielding gas. However, when a mixed gas of four types is used as the shielding gas, the arc stability, the occurrence of spatter is small, and the welding workability is good, but the bead appearance is uneven. In this case, both ends of the bead are not uniform, the penetration shape is a finger shape, the gas cost is high, and there is a problem in everything.

ワイヤ番号9は鉄粉を含むフラックスが占める断面積
とワイヤ全断面積の割合が本発明範囲を超える32%と薄
肉のフラックス入りワイヤで、なおかつワイヤの突出し
長さが非常に長い50mmの結果であり、アークの安定性も
悪く、未溶融フラックス柱(第3図L)長さも長くスパ
ッタも多く溶込み形状、ビード外観とも不良となる。
Wire No. 9 is a thin-walled flux-cored wire in which the ratio of the cross-sectional area occupied by the flux containing iron powder to the total cross-sectional area of the wire exceeds the scope of the present invention, and the result is that the protruding length of the wire is 50 mm. In addition, the arc stability is poor, the length of the unmelted flux column (FIG. 3L) is long, the amount of spatter is large, and the penetration shape and bead appearance are poor.

ワイヤ番号10は鉄粉を含むフラックスが占める断面積
とワイヤ全断面積の割合が本発明範囲以下の2%と非常
に厚肉のフラックス入りワイヤで、さらに電流密度も本
発明範囲以下の場合で、アーク状態はソリッドワイヤの
場合と同じくアークの吹付けが強く不安定で、スパッタ
発生及びビード外観の点でも不良となる。さらにワイヤ
番号11はワイヤ番号10のフラックス入りワイヤを本発明
範囲内の高電流密度で使用した場合で、ワイヤ番号10と
同様でアーク状態、スパッタ発生、ビード外観等の不良
に加え、溶込み形状はソリッドワイヤの場合と同様なフ
ィンガー状溶込み形状に類似し不良となる。
Wire No. 10 is a very thick flux-cored wire in which the ratio of the cross-sectional area occupied by the flux containing iron powder to the total cross-sectional area of the wire is 2% or less, which is below the range of the present invention. As in the case of the solid wire, the arc spray is strong and unstable as in the case of the solid wire, and the spatter generation and the bead appearance are poor. Further, wire number 11 is a case where the flux-cored wire of wire number 10 is used at a high current density within the range of the present invention. Similar to wire number 10, in addition to defects such as arc state, spatter generation, bead appearance, etc. Is similar to a finger-shaped penetration shape as in the case of a solid wire and is defective.

ワイヤ番号12は、鉄粉を含むフラックスが占める断面
積とワイヤ全断面積の割合が本発明範囲を超える33%で
あるためワイヤ製造上何度となく断線が発生したものの
良好な部分を用いて溶接した結果、アークの安定性及び
溶込み形状は良好なものの、未溶融フラックス柱が長く
溶融池に未溶融フラックス柱が溶込みぎみとなり、スパ
ッタ発生も多くビード外観も不良となる。
Wire No. 12, using a good portion of the wire that has been broken several times in the wire production because the ratio of the cross-sectional area occupied by the flux containing iron powder and the total cross-sectional area of the wire is 33%, which exceeds the range of the present invention. As a result of welding, although the stability and penetration shape of the arc are good, the unmelted flux column is long and the unmelted flux column penetrates into the molten pool, spatters are generated and the bead appearance is poor.

ワイヤ番号19はワイヤ番号11の場合と同様でワイヤ径
が1.4mmと太いものであるが、アークの安定性、スパッ
タ発生、ビード外観、溶込み形状ともいずれも不良とな
る。
The wire number 19 is the same as the wire number 11 and has a thick wire diameter of 1.4 mm, but all of the arc stability, spatter generation, bead appearance, and penetration shape are poor.

ワイヤ番号20はワイヤ径1.2mmで鉄粉を含むフラック
スの占める断面積とワイヤ全断面積の割合で本発明範囲
内にあるものの、電流密度は本発明範囲以下と低いもの
であるため、ビード形状はやや凸ビードとなり、溶込み
も浅く溶込み形状は不良となる。またこのように電流密
度が本発明範囲以下であると高溶着量が得られず、多層
盛溶接時には、数多くの溶接パスでないと積層出来な
く、そのため溶接時間が長くコストの面でも不利とな
る。
Wire No. 20 is within the scope of the present invention in terms of the ratio of the cross-sectional area occupied by the flux containing iron powder and the total cross-sectional area of the wire containing iron powder at a wire diameter of 1.2 mm, but the current density is as low as the present invention or lower. It becomes a slightly convex bead, the penetration is shallow, and the penetration shape becomes poor. If the current density is below the range of the present invention, a high welding amount cannot be obtained, and in multi-pass welding, lamination cannot be performed unless there are many welding passes, so that the welding time is long and the cost is disadvantageous.

これに対し、ワイヤ番号1〜8に示す各種ワイヤ径で
の本発明例によれば、アーク安定性、溶滴移行性、アー
クの吹付け及びビード形状が良好でガスコストも安く、
いずれの項目においても良好で格段に高安定性で高電流
密度ガスシールドアーク溶接ができる。
On the other hand, according to the present invention examples with various wire diameters shown in the wire numbers 1 to 8, arc stability, droplet transferability, arc spraying and bead shape are good, and gas cost is low,
In any of the items, gas shielded arc welding can be performed with good, remarkably high stability and high current density.

(実施例2) 第1表のワイヤの内、ワイヤ番号1,6,9,11のワイヤを
用い、第5図に示す鋼板(鋼種SM−50B、t=25mm、D
=100mm、H=100mm、長さ500mm)を第1表で示す溶接
電流、アーク電圧、チップ母材間距離で溶接速度45cm/m
in、下板側からのトーチ角度45度,溶接方向に対するト
ーチ角度0度として大脚長水平すみ肉溶接を実施した。
なお鋼板表面には無機ジンクプライマーを塗装した鋼板
(膜厚30μm)を使用した。
(Example 2) Among the wires in Table 1, wires Nos. 1, 6, 9, and 11 were used, and a steel plate (steel type SM-50B, t = 25 mm, D
= 100mm, H = 100mm, length 500mm) as shown in Table 1 with welding current, arc voltage and tip base metal distance of 45cm / m.
In, the large leg-length horizontal fillet welding was performed with the torch angle 45 degrees from the lower plate side and the torch angle 0 degrees with respect to the welding direction.
Note that a steel plate (thickness: 30 μm) coated with an inorganic zinc primer was used for the surface of the steel plate.

なお、アークの安定性及び溶込み形状は実施例1と同
様に評価した。その試験結果を第3表に示す。
The arc stability and penetration shape were evaluated in the same manner as in Example 1. Table 3 shows the test results.

鉄粉を含むフラックスが占める断面積とワイヤ全断面
積の割合が本発明範囲を超えるワイヤ番号9、同じくこ
の割合が本発明範囲未満のワイヤ番号11のものはアーク
が不安定であるため、下板側でのアンダーカットやビー
ド外観劣化を引き起こしていて到底採用出来ない。一
方、本発明例のワイヤ番号1及び6ではアーク状態、ス
パッタ発生状況やビード外観、溶込み形状、特に鋼板と
のなじみも良好でピットなどの溶接欠陥も発生しない優
れたワイヤであることが明らかになった。
Wire No. 9 in which the ratio of the cross-sectional area occupied by the flux containing iron powder to the total cross-sectional area of the wire exceeds the range of the present invention, and wire No. 11 in which this ratio is lower than the range of the present invention have unstable arcs. The undercut on the board side and the deterioration of the bead appearance are caused and cannot be adopted at all. On the other hand, it is clear that the wire numbers 1 and 6 of the present invention are excellent wires that have good arc state, spatter generation state, bead appearance, penetration shape, particularly good conformity with steel plates and no welding defects such as pits. Became.

[発明の効果] 以上説明したように本発明の高電流密度溶接方法によ
れば、安価な炭酸ガスを用いて高溶着量が得られ、アー
クが安定でソフト、溶滴も小さくスパッタも小粒で発生
量も少ない溶接作業性に優れた溶接ができ、さらに良好
なビード外観並びに円形状溶込みの溶接部が得られる。
この溶接方法は高能率化や省力化に大きく寄与するもの
である。
[Effects of the Invention] As described above, according to the high current density welding method of the present invention, a high welding amount can be obtained using inexpensive carbon dioxide gas, the arc is stable, soft, droplets are small, and spatter is small. Welding with a small amount of generation and excellent welding workability can be performed, and a weld having a better bead appearance and a circular penetration can be obtained.
This welding method greatly contributes to high efficiency and labor saving.

【図面の簡単な説明】[Brief description of the drawings]

第1図は各種シールドガス組成によるビード形状を示す
模式図、第2図はフラックス入りワイヤの断面図、第3
図はワイヤ溶融状況を示す模式図、第4図は溶込み形状
を示す図、第5図は試験片断面図である。 1……融合不良部、2……鋼製外皮、3……フラック
ス、4……溶滴、5……アーク、6……トーチ、7……
鋼板表面、8……ワイヤ
FIG. 1 is a schematic view showing a bead shape by various shield gas compositions, FIG. 2 is a cross-sectional view of a flux-cored wire, and FIG.
The figure is a schematic diagram showing the wire melting state, FIG. 4 is a diagram showing the penetration shape, and FIG. 5 is a cross-sectional view of the test piece. 1 ... defective fusion part, 2 ... steel sheath, 3 ... flux, 4 ... droplet, 5 ... arc, 6 ... torch, 7 ...
Steel plate surface, 8 Wire

フロントページの続き (72)発明者 山下 礦三 神奈川県相模原市淵野辺5―10―1 新 日本製鐵株式会社第2技術研究所内 (56)参考文献 特開 昭56−160880(JP,A) 特開 昭56−160878(JP,A) 特開 平3−35881(JP,A) 特開 平3−169485(JP,A)Continuation of the front page (72) Inventor Kozo Yamashita 5-10-1 Fuchinobe, Sagamihara-shi, Kanagawa Prefecture Nippon Steel Corporation 2nd Technical Research Institute (56) References JP-A-56-160880 (JP, A) JP-A-56-160878 (JP, A) JP-A-3-35881 (JP, A) JP-A-3-169485 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭酸ガスをシールドガスとして、鉄粉を含
むフラックスが占める断面積がワイヤ全断面積に対して
5〜30%未満としたフラックス入りワイヤを用い、300
(A/mm2)以上の高電流密度で溶接することを特徴とす
る高電流密度ガスシールドアーク溶接方法。
A flux-cored wire having a cross-sectional area occupied by a flux containing iron powder of less than 5 to 30% of the total cross-sectional area of the wire using carbon dioxide gas as a shielding gas.
A high current density gas shielded arc welding method characterized by welding at a high current density of (A / mm 2 ) or more.
JP19290590A 1990-07-23 1990-07-23 High current density welding method Expired - Lifetime JP2749968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19290590A JP2749968B2 (en) 1990-07-23 1990-07-23 High current density welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19290590A JP2749968B2 (en) 1990-07-23 1990-07-23 High current density welding method

Publications (2)

Publication Number Publication Date
JPH0481280A JPH0481280A (en) 1992-03-13
JP2749968B2 true JP2749968B2 (en) 1998-05-13

Family

ID=16298933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19290590A Expired - Lifetime JP2749968B2 (en) 1990-07-23 1990-07-23 High current density welding method

Country Status (1)

Country Link
JP (1) JP2749968B2 (en)

Also Published As

Publication number Publication date
JPH0481280A (en) 1992-03-13

Similar Documents

Publication Publication Date Title
WO2010038429A1 (en) Method for gas-shielded arc brazing of steel sheet
JPWO2008016084A1 (en) Tandem gas metal arc welding method, welding torch and welding apparatus used therefor
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP3759114B2 (en) Multi-electrode gas shielded arc welding method
JP3529359B2 (en) Flux-cored wire for welding galvanized steel sheet with excellent pit and blow hole resistance
JP2003053545A (en) Tandem arc welding method
JP2614968B2 (en) High speed gas shielded arc welding
JP3288535B2 (en) Flux-cored wire for gas shielded arc welding
JP2694034B2 (en) Flux-cored wire for high current density gas shielded arc welding
JPS5813269B2 (en) DC gas shield arc welding method
JP2749968B2 (en) High current density welding method
JPH0521677B2 (en)
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JPH08276273A (en) Butt welding method for clad steel
JPH11226735A (en) Gas shield arc welding method
JP3102821B2 (en) Single-sided gas shielded arc welding method for in-plane tack joints
JP2795992B2 (en) Flux-cored wire for gas shielded arc welding
JP2010125496A (en) Tandem arc welding method
JP3333305B2 (en) Gas shielded arc welding method
JP3583561B2 (en) Horizontal electrogas welding method
JP2614966B2 (en) Gas shielded arc welding flux cored wire for multiple electrodes
KR0125262B1 (en) Flux-cored wire for use in gas shielded arc welding with multi-electrodes and process using the same
JPS62110897A (en) Iron power flux cored wire
JP3574038B2 (en) High-speed MAG welding method
JPH08332568A (en) High speed horizontal fillet gas shield arc welding method