JP4319713B2 - Multi-electrode gas shield arc single-sided welding method - Google Patents

Multi-electrode gas shield arc single-sided welding method Download PDF

Info

Publication number
JP4319713B2
JP4319713B2 JP27335398A JP27335398A JP4319713B2 JP 4319713 B2 JP4319713 B2 JP 4319713B2 JP 27335398 A JP27335398 A JP 27335398A JP 27335398 A JP27335398 A JP 27335398A JP 4319713 B2 JP4319713 B2 JP 4319713B2
Authority
JP
Japan
Prior art keywords
electrode
welding
electrodes
value
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27335398A
Other languages
Japanese (ja)
Other versions
JP2000102871A (en
Inventor
正晴 佐藤
朋和 森本
禎和 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27335398A priority Critical patent/JP4319713B2/en
Publication of JP2000102871A publication Critical patent/JP2000102871A/en
Application granted granted Critical
Publication of JP4319713B2 publication Critical patent/JP4319713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接線方向に一列に複数の電極を配し、裏ビード形成用の裏当て材を使用し、軟鋼・高張力鋼よりなる中・厚板で構成される突合せ継手を前記複数の電極でガスシールドアーク溶接にて片面溶接する方法に関し、高温割れのない健全な初層ビードが得られ、耐高温割れ性に優れた片面溶接を行うことができる多電極ガスシールドアーク片面溶接方法に関するものである。
【0002】
【従来の技術、及び発明が解決しようとする課題】
周知のように、片面溶接は、突合せ継手の開先裏面側に耐火性裏当て材を押し当て、開先表側から溶接を行って開先裏面側にも裏ビードを出すようにしたもので、継手を反転することなく片側からの溶接で完全溶込みが得られる点に特長がある。さて、板厚が一般に16mm以上の中・厚板の鋼板で構成される突合せ継手のガスシールドアーク溶接による片面溶接の能率を向上させるためには、溶接電流を高電流化したり、また、開先断面積を減少させて狭開先化したりする必要がある。
【0003】
このような高電流化や狭開先化をすると、溶接ビードの断面形状はビード幅に対してビード高さ(溶込み深さ)が過大となり、溶融金属の最終凝固点はビード断面中央部に縦方向(板厚方向)に線状に現れる。そして、溶融金属の最終凝固部には不純物が偏析しやすいので、このような最終凝固点が縦方向に線状に現れる凝固形態となった場合、不純物を含む延性に乏しいビード中央部に高温割れが発生し易い。
【0004】
このため、高い溶接能率を確保しつつ高電流化による高温割れをなくすべく、高電流の分散すなわち単一電極でなく多電極化して初層の裏ビードを出す溶接を行うようにした多電極ガスシールドアーク片面溶接方法が知られている。すなわち、消耗性電極(溶接用ワイヤ)を用いた少なくとも2つの電極を溶接線方向に一列に配し、第2電極の溶接電流値を先頭の第1電極の溶接電流値以上とするとともに、第1電極と第2電極の極間距離については、第1電極による溶融池(溶融金属)がすでに完全に凝固している状態で次の第2電極が到達するように該極間距離を設定し、これにより第1電極による溶接金属に生じた高温割れを第2電極で再溶融することで高温割れをなくすようにしている。
【0005】
しかし前記従来の多電極ガスシールドアーク片面溶接方法では、第1電極による溶接金属に生じた高温割れを第2電極で再溶融するのに必要な該第2電極による溶込みを確実に得ることが難しく、このため高温割れのあるものがしばしば発生した。
【0006】
そこで、本発明の目的は、溶接能率を向上させるべく溶接線方向に複数の電極を一列に配し、これら複数の電極を用い、ガスシールドアーク溶接にて片面溶接を行うに際し、高温割れのない健全な初層ビードが得られ、耐高温割れ性に優れた片面溶接を高い溶接能率で行うことができる多電極ガスシールドアーク片面溶接方法を提供することにある。
【0007】
【課題を解決するための手段】
前記の目的を達成するために、本発明による多電極ガスシールドアーク片面溶接方法は、溶接線方向に一列に複数の電極を配し、これら複数の電極を用いガスシールドアーク溶接にて片面溶接を行うに際し、板厚:16〜32mm、開先角度:35〜50°、ルート間隔:0〜5mm及び開先充填材の散布高さ:0〜10mmの各範囲を満たし、軟鋼・高張力鋼よりなるV形突合せ継手を溶接対象とし、第1電極に消耗性電極、第2電極にルチール系フラックス入りワイヤ又は非消耗性電極を用い、第1電極の極性をDCEP(逆極性)、第2電極の極性をDCEN(正極性)とし、溶接速度範囲:200〜400mm/minとし、第1電極の溶接電流範囲:350〜550Aとし、第2電極の溶接電流値は150Aを下限、第1電極の溶接電流値の80%を上限とした範囲とし、第1電極と第2電極の極間距離は20mmを下限、第1電極のみの場合での該第1電極による溶融池長さの値であって上限値として下記(1)式により定められる値DU (mm)を上限とした範囲とすることを特徴とするものである。
【0008】
ここで、前記極間距離の上限値DU (mm)は、予め実施した実験から下記(1)式により定められるものである。但し、IL は第1電極の溶接電流(A)、VL は第1電極の溶接電圧(V)、Sは溶接速度(mm/min)である。
【0009】
【数1】

Figure 0004319713
【0010】
本発明による多電極ガスシールドアーク片面溶接方法では、先頭の第1電極による溶融池が凝固する前に該溶融池を第2電極で再加熱するようにしたので、第2電極後方における溶融金属表面付近の温度が溶融金属内部の温度よりも高くなり、最終凝固部がビード表面付近になるため、溶融金属の凝固過程においてビード断面におけるビード中央部に不純物が偏析することを防ぐことができ、高温割れの発生を防止できる。なお、前記した再加熱するための第2電極は、消耗性電極ではなくて、TIGアーク溶接あるいはプラズマアーク溶接を行う非消耗性電極であってもよい。以下、本発明の技術的手段についてさらに説明する。
【0011】
第2電極の溶接電流値IT は、その下限値が150A、上限値が第1電極の溶接電流値IL の80%の値である。150Aを下回ると溶融池の再加熱が足りないため凝固の形態を改善できず、高温割れの発生を防止できない。一方、第1電極の溶接電流値IL の80%の値を上回ると、第2電極のアーク力が増すことや、第2電極と第1電極とのアーク干渉(電磁気的反発力)が強まることで溶融池の安定を確保し難くなり、結果として開先裏面側の裏ビード外観が不良となり、また、第2電極による溶込みが深くなりすぎて逆に第2電極による高温割れ発生の危険性が高くなる。したがって、第2電極の溶接電流値は150Aを下限、第1電極の溶接電流値の80%を上限とした範囲とする。なお、第1電極の溶接電流値IL は、当然ながら裏ビードを形成するための所要値に定められるものである。
【0012】
第1電極と第2電極の極間距離は、20mmを下限値、第1電極のみの場合での該第1電極による後方へ延びる溶融池の長さの値を上限値DU とした範囲とする(図2参照)。20mmを下回ると第1電極による溶融金属と第2電極による溶融金属とがほとんど一体化してしまうため、高電流による単一電極での片面溶接の場合と同じ状態となって高温割れの発生を防止できない。また、極間距離が小さすぎ、相当量の溶融金属が第1電極のアークより先行する状態となって開先裏面側に裏ビードが出難く該ビード外観が悪い。一方、極間距離が前記上限値DU よりも長くなると、当然ながら第1電極による溶融池はすでに凝固しているので、前記再加熱による高温割れ防止効果が得られない。したがって、第1電極と第2電極の極間距離は、20mmを下限値、第1電極のみの場合での該第1電極による溶融池長さの値を上限値DU とした範囲とする。
【0013】
前記第1電極による溶融池長さ、つまり極間距離の上限値DU は第1電極の溶接条件によって異なる値であり、極間距離を設定する実溶接時には知っておく必要があるので、予め実施した実験から前記(1)式に従って求めることができるようにしてある。(1)式は、消耗性電極としてワイヤ径φ1.4mmのソリッドワイヤ及びフラックス入りワイヤ(FCW)を用い、単一電極での炭酸ガスアーク溶接によるV形突合せ継手の片面溶接実験に基づいて得たものである。すなわち、継手の板厚t:16〜32mm、継手のV形開先角度θ:35〜50°(狭開先の開先角度にしてある)、継手のルート間隔:0〜5mm、溶接電流:350〜550A、溶接速度:200〜400mm/min、開先充填材(カットワイヤ)の散布高さ(図4参照):0〜10mm、のように溶接条件パラメータを変えて各溶接を行った。
【0014】
その結果、溶接入熱Qと凝固時間(ある点をアークが通過した時点から該点で溶融金属が完全に凝固するまでの時間)Yとの間には図1に示すような関係があることが分かった。すなわち、溶接入熱Q(J/mm)に対して凝固時間Y(s)は下記の範囲にある。
【0015】
【数2】
Figure 0004319713
【0016】
そして、本発明方法では第1電極による溶融池が凝固する前に該溶融池を第2電極で再加熱する必要があるので、極間距離の上限値となる第1電極による溶融池長さの値DU (mm)は、前記凝固時間Yの下限側の値に溶接速度を乗じて求めることができる。これが前記した(1)式である。
【0017】
【数3】
Figure 0004319713
【0018】
【実施例】
第1、及び第2の2電極を用いて表1に示す溶接条件で、490N/mm2 級高張力鋼(JIS G 3160 SM490A )よりなるV形突合せ継手の片面初層溶接を実施し、初層ビードについてその断面試験片を切り出してエッチングし、不純物の偏析を示すゴーストライン(ビード断面中央部を縦方向に走る線)の有無を調べて高温割れの危険性を調べた。なお、No.11の実施例とNo.13の比較例では第2電極は非消耗性電極であるタングステン電極を使用し、アルゴンガスシールドによるTIGアークを発生させた。また、No.14及び15の実施例では第2電極はタングステン電極を使用し、拘束ノズル径4.0mm、動作ガスとしてアルゴンガス(No.14:流量1リットル/min、No.15:流量3リットル/min)を用いたプラズマアークを発生させた。これら以外のものでは炭酸ガス:流量25リットル/minをシールドガスとして使用した。また、消耗性電極であるソリッドワイヤはJIS Z3312 YGW14相当品を使用し、同じく消耗性電極であるフラックス入りワイヤ(FCW)はJIS Z3313 YFL−C504R相当品を使用した。
【0019】
図3はテストピース(溶接試験用のV形突合せ継手)の説明図で、その(a)は平面図、(b)は側面図である。耐高温割れ性を評価するために拘束板付きのテストピースを製作した。同図に示すように、2枚の開先付き供試鋼板1を突き合わせてなるV形突合せ継手(板厚t:20,25mm、幅W:400mm、長さL:1000mm)の裏面に4枚の拘束板2を溶接接合してテストピースを製作した。開先角度θは50°以下で狭開先にしてある。各拘束板2はその脚部(開先長手方向に対し直角方向へ延びる部位)の両サイドをすみ肉溶接(全長)して継手裏面に溶接接合してある。符号3は開先面内仮付け溶接部、4は裏当て材(神戸製鋼所製:FBB−3)である。
【0020】
図4は図3におけるV形突合せ継手の開先内への充填材の散布を説明するための図である。本例では充填材としてワイヤ径φ1.0mmの炭酸ガス溶接用ソリッドワイヤを細かく切断したいわゆるカットワイヤを使用した。
【0021】
【表1】
Figure 0004319713
【0022】
【表2】
Figure 0004319713
【0023】
試験結果を表2に示す。比較例では本発明で規定する要件の何れかを欠くために次のような問題があった。すなわち、No.3は極間距離が上限値を上回るため第2電極による再加熱効果が得られず、初層ビードに不純物の偏析を示すゴーストラインがあり、高温割れ自体は認められなかったものの高温割れが発生する危険性が高いものであった。No.4は極間距離が下限値を下回るため高電流による単一電極の場合と同じ状態となって高温割れが発生する危険性が高く、また、開先裏面側に裏ビードが出難く該ビード外観が悪かった。No.6は第2電極の電流値が上限値を上回るため溶融池が激しく揺動して安定性せず、開先裏面側の裏ビード外観が不良であった。No.9は第2電極の電流値及び極間距離が上限値を上回るため第2電極による溶込みが深くなりすぎ、第2電極による高温割れが発生する危険性が高いものであった。また、No.13は第2電極の電流値が下限値を下回るため該電極による再加熱効果が得られず高温割れが発生する危険性が高いものであった。
【0024】
これに対して、本発明例(No.1,2,5,7,8,11,12,14,15)では、高温割れが発生する心配のない健全な初層ビードが得られており、耐高温割れ性に優れた片面溶接を高い溶接能率で行うことができた。
【0025】
【発明の効果】
以上述べたように、本発明による多電極ガスシールドアーク片面溶接方法によると、溶接能率を向上させるべく溶接線方向に複数の電極を一列に配し、これら複数の電極を用い、ガスシールドアーク溶接にて片面溶接を行うに際し、第1電極による溶融池が凝固する前に該溶融池を第2電極で再加熱するようにしたものであるから、高温割れのない健全な初層ビードが得られ、耐高温割れ性に優れた片面溶接を高い溶接能率で行うことができる。
【図面の簡単な説明】
【図1】本発明に係わる図であって、第1電極における溶接入熱と凝固時間との関係を示す図である。
【図2】本発明に係わる図であって、第1電極による溶融池長さを説明するための平面図である。
【図3】実施例における溶接用テストピースの説明図で、その(a)は平面図、(b)は側面図である。
【図4】図3におけるV形突合せ継手の開先内への充填材の散布を説明するための図である。
【符号の説明】
1…供試鋼板 2…拘束板 3…開先面内仮付け溶接部 4…裏当て材[0001]
BACKGROUND OF THE INVENTION
In the present invention, a plurality of electrodes are arranged in a line in the weld line direction, a backing material for forming a back bead is used, and a butt joint composed of medium and thick plates made of mild steel and high-tensile steel is used. The present invention relates to a method of performing single-sided welding with electrodes by gas shielded arc welding, and relates to a multi-electrode gas-shielded arc single-sided welding method that can obtain a healthy first layer bead without hot cracking and can perform single-sided welding with excellent hot cracking resistance. Is.
[0002]
[Background Art and Problems to be Solved by the Invention]
As is well known, single-sided welding is a method in which a refractory backing material is pressed against the groove back side of the butt joint, welding is performed from the groove front side, and the back bead is also put out on the groove back side. It is characterized in that complete penetration can be obtained by welding from one side without reversing the joint. In order to improve the efficiency of single-sided welding by gas shield arc welding of butt joints that are generally made of medium and thick steel plates with a thickness of 16 mm or more, the welding current can be increased or the groove can be grooved. It is necessary to reduce the cross-sectional area to narrow the groove.
[0003]
If the current is increased or the groove is narrowed, the cross-sectional shape of the weld bead becomes excessive in the bead height (penetration depth) with respect to the bead width, and the final solidification point of the molten metal is vertical to the center of the bead cross-section. Appears linearly in the direction (thickness direction). And since impurities tend to segregate in the final solidified part of the molten metal, when such a solidified form in which the final solidification point appears linearly in the vertical direction, high temperature cracking occurs in the central part of the bead having impurities and poor ductility. It is easy to generate.
[0004]
For this reason, in order to eliminate high temperature cracks due to high current while ensuring high welding efficiency, multi-electrode gas that performs high-current dispersion, that is, welding that uses multiple electrodes instead of a single electrode to produce the back bead of the first layer A shielded arc single-sided welding method is known. That is, at least two electrodes using consumable electrodes (welding wires) are arranged in a line in the welding line direction, the welding current value of the second electrode is set to be equal to or higher than the welding current value of the first first electrode, and the first The interelectrode distance between the first electrode and the second electrode is set so that the next second electrode arrives when the molten pool (molten metal) of the first electrode is already completely solidified. Thus, the high temperature crack generated in the weld metal by the first electrode is remelted by the second electrode to eliminate the high temperature crack.
[0005]
However, in the conventional multi-electrode gas shielded arc single-side welding method, it is possible to reliably obtain the penetration by the second electrode necessary for remelting the hot crack generated in the weld metal by the first electrode by the second electrode. Difficult, and for this reason, hot cracks often occurred.
[0006]
Accordingly, an object of the present invention is to arrange a plurality of electrodes in a line in the direction of the weld line in order to improve the welding efficiency, and when performing single-sided welding by gas shielded arc welding using these electrodes, there is no hot cracking. An object of the present invention is to provide a multi-electrode gas shielded arc single-sided welding method capable of obtaining a sound first layer bead and performing single-sided welding excellent in hot cracking resistance with high welding efficiency.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a multi-electrode gas shielded arc single-side welding method according to the present invention has a plurality of electrodes arranged in a line in the welding line direction, and single-sided welding is performed by gas shielded arc welding using these multiple electrodes. in performing, thickness: 16 ~32Mm, included angle: 35 to 50 °, root gap: 0 to 5 mm and the groove filling material scatter height: meet the respective ranges of 0 to 10 mm, mild steel, high tensile steel and welded the V shape butt joint become more consumable electrodes to the first electrode, with a rutile-based flux cored wire or non-consumable electrode to the second electrode, the polarity of the first electrode DCEP (opposite polarity), the second The polarity of the electrode is DCEN (positive polarity), the welding speed range is 200 to 400 mm / min, the welding current range of the first electrode is 350 to 550 A, the welding current value of the second electrode is 150 A, and the first electrode Melting The upper limit is 80% of the contact current value, the distance between the first electrode and the second electrode is 20 mm, and the weld pool length is determined by the first electrode when only the first electrode is used. In this case, the upper limit value is a range having an upper limit value DU (mm) determined by the following equation (1).
[0008]
Here, the upper limit value DU (mm) of the distance between the poles is determined by the following equation (1) from an experiment performed in advance. However, IL is the welding current (A) of the first electrode, VL is the welding voltage (V) of the first electrode, and S is the welding speed (mm / min).
[0009]
[Expression 1]
Figure 0004319713
[0010]
In the multi-electrode gas shielded arc single-side welding method according to the present invention, the molten pool is reheated by the second electrode before the molten pool by the first first electrode is solidified. The temperature in the vicinity is higher than the temperature inside the molten metal, and the final solidified part is near the bead surface, so that impurities can be prevented from segregating in the center of the bead in the bead cross section during the solidification process of the molten metal. Generation of cracks can be prevented. The second electrode for reheating described above may be a non-consumable electrode that performs TIG arc welding or plasma arc welding instead of the consumable electrode. The technical means of the present invention will be further described below.
[0011]
The welding current value IT of the second electrode has a lower limit value of 150 A and an upper limit value of 80% of the welding current value IL of the first electrode. If the temperature is lower than 150 A, the reheating of the molten pool is insufficient, so that the solidification mode cannot be improved and the occurrence of hot cracking cannot be prevented. On the other hand, when the value exceeds 80% of the welding current value IL of the first electrode, the arc force of the second electrode increases and the arc interference (electromagnetic repulsive force) between the second electrode and the first electrode increases. As a result, it becomes difficult to ensure the stability of the molten pool, and as a result, the back bead appearance on the back side of the groove becomes poor, and the penetration by the second electrode becomes too deep, and conversely the danger of hot cracking by the second electrode. Becomes higher. Therefore, the welding current value of the second electrode is in a range where 150A is the lower limit and 80% of the welding current value of the first electrode is the upper limit. Note that the welding current value IL of the first electrode is naturally determined to be a required value for forming the back bead.
[0012]
The distance between the electrodes between the first electrode and the second electrode is set to a range in which the lower limit is 20 mm, and the length of the molten pool extending backward by the first electrode in the case of only the first electrode is the upper limit DU. (See FIG. 2). If it is less than 20 mm, the molten metal from the first electrode and the molten metal from the second electrode are almost integrated. Can not. Further, the distance between the electrodes is too small, and a considerable amount of molten metal precedes the arc of the first electrode, making it difficult for the back bead to appear on the back side of the groove, and the bead appearance is poor. On the other hand, when the distance between the electrodes becomes longer than the upper limit value DU, the molten pool by the first electrode is naturally solidified, so that the hot cracking preventing effect by the reheating cannot be obtained. Therefore, the distance between the first electrode and the second electrode is set to a range in which 20 mm is a lower limit value and the value of the molten pool length by the first electrode in the case of only the first electrode is an upper limit value DU.
[0013]
The weld pool length by the first electrode, that is, the upper limit value DU of the distance between the electrodes is a value that varies depending on the welding conditions of the first electrode and needs to be known at the time of actual welding for setting the distance between the electrodes. It can be determined according to the above equation (1) from the experiment. Equation (1) was obtained based on a single-sided welding experiment of a V-shaped butt joint by carbon dioxide arc welding with a single electrode using a solid wire and a flux-cored wire (FCW) with a wire diameter of 1.4 mm as a consumable electrode. Is. That is, joint thickness t: 16 to 32 mm, joint V-shaped groove angle θ: 35 to 50 ° (with a narrow groove angle), joint route interval: 0 to 5 mm, welding current: Each welding was performed by changing the welding condition parameters such as 350 to 550 A, welding speed: 200 to 400 mm / min, and application height of groove filler (cut wire) (see FIG. 4): 0 to 10 mm.
[0014]
As a result, there is a relationship as shown in FIG. 1 between the welding heat input Q and the solidification time Y (the time from when the arc passes through a point until the molten metal completely solidifies at that point) Y. I understood. That is, the solidification time Y (s) is within the following range with respect to the welding heat input Q (J / mm).
[0015]
[Expression 2]
Figure 0004319713
[0016]
In the method of the present invention, since the molten pool needs to be reheated with the second electrode before the molten pool by the first electrode solidifies, the length of the molten pool by the first electrode, which is the upper limit value of the distance between the electrodes, is increased. The value DU (mm) can be determined by multiplying the lower limit value of the solidification time Y by the welding speed. This is the equation (1) described above.
[0017]
[Equation 3]
Figure 0004319713
[0018]
【Example】
Using the first and second electrodes, the first-layer single-layer welding of a V-shaped butt joint made of 490 N / mm 2 grade high-strength steel (JIS G 3160 SM490A) was carried out under the welding conditions shown in Table 1. The layer bead was cut out and etched, and the presence of a ghost line indicating a segregation of impurities (a line running in the center of the bead cross section in the vertical direction) was checked for the risk of hot cracking. In addition, No. No. 11 and No. 11 In 13 comparative examples, the second electrode was a non-consumable tungsten electrode, and a TIG arc was generated by an argon gas shield. No. In Examples 14 and 15, the second electrode uses a tungsten electrode, the diameter of the restricting nozzle is 4.0 mm, and the working gas is argon gas (No. 14: flow rate 1 liter / min, No. 15: flow rate 3 liter / min). A plasma arc using was generated. Other than these, carbon dioxide gas: flow rate of 25 l / min was used as the shielding gas. Moreover, the solid wire which is a consumable electrode used JIS Z3312 YGW14 equivalent, and the flux cored wire (FCW) which is also the consumable electrode used JIS Z3313 YFL-C504R equivalent.
[0019]
FIG. 3 is an explanatory view of a test piece (V-shaped butt joint for welding test), in which (a) is a plan view and (b) is a side view. In order to evaluate hot cracking resistance, a test piece with a restraint plate was manufactured. As shown in the figure, four on the back surface of a V-shaped butt joint (plate thickness t: 20, 25 mm, width W: 400 mm, length L: 1000 mm) formed by butting two test steel plates 1 with a groove. A test piece was manufactured by welding and joining the restraint plate 2. The groove angle θ is 50 ° or less and a narrow groove. Each constraining plate 2 is welded to the joint back surface by fillet welding (full length) on both sides of the leg portion (portion extending in the direction perpendicular to the groove longitudinal direction). The code | symbol 3 is a grooved surface tack welding part, 4 is a backing material (made by Kobe Steel: FBB-3).
[0020]
FIG. 4 is a view for explaining the spraying of the filler into the groove of the V-shaped butt joint in FIG. In this example, a so-called cut wire obtained by finely cutting a solid wire for carbon dioxide welding with a wire diameter of φ1.0 mm was used as the filler.
[0021]
[Table 1]
Figure 0004319713
[0022]
[Table 2]
Figure 0004319713
[0023]
The test results are shown in Table 2. The comparative example has the following problems because it lacks any of the requirements defined in the present invention. That is, no. In No. 3, the distance between the electrodes exceeds the upper limit value, so the effect of reheating by the second electrode cannot be obtained, and there is a ghost line indicating segregation of impurities in the first layer bead. There was a high risk of doing. No. No. 4 has a high risk of hot cracking in the same state as in the case of a single electrode with a high current because the distance between the electrodes is below the lower limit, and the bead appearance is less likely to occur on the back side of the groove. Was bad. No. In No. 6, since the current value of the second electrode exceeded the upper limit value, the molten pool fluctuated violently and became unstable, and the appearance of the back bead on the back side of the groove was poor. No. In No. 9, since the current value of the second electrode and the distance between the electrodes exceeded the upper limit values, the penetration by the second electrode became too deep, and the risk of high-temperature cracking by the second electrode was high. No. In No. 13, since the current value of the second electrode was below the lower limit, the reheating effect by the electrode could not be obtained, and the risk of hot cracking was high.
[0024]
On the other hand, in the present invention examples (No. 1, 2, 5, 7, 8 , 11 , 12, 14, 15), a healthy first layer bead that does not have to worry about hot cracking is obtained. Single-sided welding with excellent hot cracking resistance was achieved with high welding efficiency.
[0025]
【The invention's effect】
As described above, according to the multi-electrode gas shielded arc single-sided welding method according to the present invention, a plurality of electrodes are arranged in a line in the direction of the welding line in order to improve the welding efficiency, and these multiple electrodes are used to perform gas shielded arc welding. When performing single-sided welding at, the molten pool is reheated with the second electrode before the molten pool by the first electrode solidifies, so that a healthy first layer bead without hot cracks can be obtained. Moreover, single-sided welding excellent in hot crack resistance can be performed with high welding efficiency.
[Brief description of the drawings]
FIG. 1 is a diagram related to the present invention and is a diagram showing a relationship between welding heat input and solidification time in a first electrode.
FIG. 2 is a diagram related to the present invention, and is a plan view for explaining a molten pool length by a first electrode.
FIG. 3 is an explanatory view of a welding test piece in the embodiment, in which (a) is a plan view and (b) is a side view.
4 is a view for explaining the spraying of the filler into the groove of the V-shaped butt joint in FIG. 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Test steel plate 2 ... Restraint plate 3 ... Temporary welding part in groove surface 4 ... Backing material

Claims (1)

溶接線方向に一列に複数の電極を配し、これら複数の電極を用いガスシールドアーク溶接にて片面溶接を行うに際し、板厚:16〜32mm、開先角度:35〜50°、ルート間隔:0〜5mm及び開先充填材の散布高さ:0〜10mmの各範囲を満たし、軟鋼・高張力鋼よりなるV形突合せ継手を溶接対象とし、第1電極に消耗性電極、第2電極にルチール系フラックス入りワイヤ又は非消耗性電極を用い、第1電極の極性をDCEP(逆極性)、第2電極の極性をDCEN(正極性)とし、溶接速度範囲:200〜400mm/minとし、第1電極の溶接電流範囲:350〜550Aとし、第2電極の溶接電流値は150Aを下限、第1電極の溶接電流値の80%を上限とした範囲とし、第1電極と第2電極の極間距離は20mmを下限、第1電極のみの場合での該第1電極による溶融池長さの値であって上限値として下記式により定められる値DU (mm)を上限とした範囲とすることを特徴とする多電極ガスシールドアーク片面溶接方法。
DU =0.00234×IL ×VL −S/86
ただし、IL は第1電極の溶接電流(A)、VL は第1電極の溶接電圧(V)、Sは溶接速度(mm/min)である。
When a plurality of electrodes are arranged in a line in the weld line direction and single-side welding is performed by gas shield arc welding using the plurality of electrodes, plate thickness: 16 to 32 mm , groove angle: 35 to 50 °, route interval: 0~5mm and groove filler spraying height: meet the respective ranges of 0 to 10 mm, a V shape butt joint made of mild steel, high tensile steel and welded, the consumable electrode to the first electrode, the second electrode Using a rutile flux-cored wire or a non-consumable electrode, the polarity of the first electrode is DCEP (reverse polarity), the polarity of the second electrode is DCEN (positive polarity), and the welding speed range is 200 to 400 mm / min. Welding current range of the first electrode: 350 to 550A, the welding current value of the second electrode is a range with 150A as the lower limit and 80% of the welding current value of the first electrode as the upper limit, and the first electrode and the second electrode The distance between the electrodes is less than 20mm In the case of only the first electrode, the value is the length of the molten pool by the first electrode, and the upper limit value is a range with the upper limit being a value DU (mm) determined by the following equation. Electrode gas shielded arc single side welding method.
DU = 0.00234 * IL * VL-S / 86
However, IL is the welding current (A) of the first electrode, VL is the welding voltage (V) of the first electrode, and S is the welding speed (mm / min).
JP27335398A 1998-09-28 1998-09-28 Multi-electrode gas shield arc single-sided welding method Expired - Lifetime JP4319713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27335398A JP4319713B2 (en) 1998-09-28 1998-09-28 Multi-electrode gas shield arc single-sided welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27335398A JP4319713B2 (en) 1998-09-28 1998-09-28 Multi-electrode gas shield arc single-sided welding method

Publications (2)

Publication Number Publication Date
JP2000102871A JP2000102871A (en) 2000-04-11
JP4319713B2 true JP4319713B2 (en) 2009-08-26

Family

ID=17526724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27335398A Expired - Lifetime JP4319713B2 (en) 1998-09-28 1998-09-28 Multi-electrode gas shield arc single-sided welding method

Country Status (1)

Country Link
JP (1) JP4319713B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190006446A (en) 2017-07-10 2019-01-18 가부시키가이샤 고베 세이코쇼 Multi-electrode gas-shielded arc one-side welding method
PH12018000192A1 (en) * 2017-07-10 2019-03-11 Kobe Steel Ltd Multi-electrode gas-shielded arc one-side welding method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132550B2 (en) 2018-09-12 2022-09-07 株式会社Ihi butt welding method
JP7097282B2 (en) * 2018-11-22 2022-07-07 日立造船株式会社 Butt welding method for extra-thick plates and butt welding equipment for extra-thick plates
JP7540976B2 (en) 2021-07-12 2024-08-27 株式会社神戸製鋼所 One-sided welding method and manufacturing method for welded joint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190006446A (en) 2017-07-10 2019-01-18 가부시키가이샤 고베 세이코쇼 Multi-electrode gas-shielded arc one-side welding method
PH12018000192A1 (en) * 2017-07-10 2019-03-11 Kobe Steel Ltd Multi-electrode gas-shielded arc one-side welding method
KR20190140427A (en) 2017-07-10 2019-12-19 가부시키가이샤 고베 세이코쇼 Multi-electrode gas-shielded arc one-side welding method

Also Published As

Publication number Publication date
JP2000102871A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP5515850B2 (en) Combined welding method combining gas shielded arc welding and submerged arc welding and its combined welding machine
KR101888780B1 (en) Vertical narrow gap gas shielded arc welding method
CN107921569B (en) Vertical narrow groove gas shielded arc welding method
JPS5913307B2 (en) Welding method
KR102126667B1 (en) Method for vertical narrow gas shield arc welding
JP4749555B2 (en) Three-electrode arc welding control method
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
CN108367376B (en) Vertical narrow groove gas shielded arc welding method
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP2007260684A (en) Multiple electrode submerged arc welding method of thick steel plate
JP2001276969A (en) Joint welding method
JP3423467B2 (en) High speed gas shielded arc welding apparatus and method
JP6383319B2 (en) Multi-electrode single-sided single layer submerged arc welding method
WO2021199815A1 (en) Multi-electrode gas-shielded single-sided arc welding method and multi-electrode gas-shielded single-sided arc welding device
JPH06285640A (en) Inner surface welding method for clad steel tube
JP6715682B2 (en) Submerged arc welding method
JP4707949B2 (en) Multi-electrode single-sided submerged arc welding method
JPH08276273A (en) Butt welding method for clad steel
JPH0428472B2 (en)
JP2833279B2 (en) Steel pipe welding method
JP2005319507A (en) Multiple electrodes one side submerged arc welding method
JPS6247111B2 (en)
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JP7560002B1 (en) Narrow gap gas shielded arc welding method
JP7351436B1 (en) Narrow gap gas shielded arc welding method and welding device for narrow gap gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070810

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

EXPY Cancellation because of completion of term