JP4707949B2 - Multi-electrode single-sided submerged arc welding method - Google Patents

Multi-electrode single-sided submerged arc welding method Download PDF

Info

Publication number
JP4707949B2
JP4707949B2 JP2003390272A JP2003390272A JP4707949B2 JP 4707949 B2 JP4707949 B2 JP 4707949B2 JP 2003390272 A JP2003390272 A JP 2003390272A JP 2003390272 A JP2003390272 A JP 2003390272A JP 4707949 B2 JP4707949 B2 JP 4707949B2
Authority
JP
Japan
Prior art keywords
electrode
current
welding
bead
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003390272A
Other languages
Japanese (ja)
Other versions
JP2005246385A (en
Inventor
健蔵 増田
正博 中島
純一 出口
繁男 大山
良介 杉田
新平 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oshima Shipbuilding Co Ltd
Original Assignee
Oshima Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oshima Shipbuilding Co Ltd filed Critical Oshima Shipbuilding Co Ltd
Priority to JP2003390272A priority Critical patent/JP4707949B2/en
Publication of JP2005246385A publication Critical patent/JP2005246385A/en
Application granted granted Critical
Publication of JP4707949B2 publication Critical patent/JP4707949B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、3電極または4電極の電極を用いて行う高能率な片面サブマージアーク溶接方法に関する。   The present invention relates to a highly efficient single-sided submerged arc welding method that uses three or four electrodes.

従来より、厚鋼板の高能率溶接方法として、片面サブマージアーク溶接方法が造船を中心に盛んに適用されている。近年さらに効率化の要求は高くなり、フラックスを裏当に使用した3電極以上の電極を用いて、溶接速度が100cm/min以上の高速度で溶接可能な技術が開発されている。例えば特開平6−254683号公報においては、第1電極に直流電流を流し低電圧としてアークを集中させ、第2電極の電圧を高くして安定且つ健全な裏ビードを形成する。また特開平8−99178号公報においては、各電極のワイヤ径、第1電極と第2電極の溶接電流、電極間距離および裏当てフラックスの散布厚と嵩密度を限定して高速溶接で裏ビードの幅および高さが安定した滑らかな裏ビードを得ている。さらに特開平5−337651号公報には、4電極で、各電極のワイヤ径、各電極の溶接電流、電極間距離、裏フラックス成分、表フラックス成分およびワイヤのC量を限定して健全な欠陥のない溶接金属を得る技術の開示がある。   Conventionally, as a high-efficiency welding method for thick steel plates, a single-sided submerged arc welding method has been actively applied mainly to shipbuilding. In recent years, the demand for further efficiency has increased, and a technique has been developed that enables welding at a high speed of 100 cm / min or more using three or more electrodes using a flux as a backing. For example, in Japanese Patent Application Laid-Open No. 6-254683, a direct current is passed through the first electrode to concentrate the arc as a low voltage, and the voltage of the second electrode is increased to form a stable and sound back bead. In JP-A-8-99178, the back bead is formed by high-speed welding by limiting the wire diameter of each electrode, the welding current of the first electrode and the second electrode, the distance between the electrodes, the spreading thickness and the bulk density of the backing flux. A smooth back bead with a stable width and height is obtained. Furthermore, Japanese Patent Application Laid-Open No. 5-337651 discloses a sound defect with four electrodes, with the wire diameter of each electrode, the welding current of each electrode, the distance between the electrodes, the back flux component, the front flux component, and the C amount of the wire being limited. There is a disclosure of a technique for obtaining a weld metal having no crack.

しかしながら、最近の造船における国際競争力の激化からさらに高能率化が要望されており、前述の技術でさらに溶接速度を早くして高能率化を図るには問題がある。すなわち、溶接電流を高くすると裏ビードが出過ぎてビードが不均一になり、かつ裏当銅板からの冷却により溶接金属の凝固が早く、図3の溶接部のマクロ組織の概念図に示すように溶接金属21がビード幅中央部でデンドライト(樹枝状晶)が会合した組織となって、この個所で非常に割れやすくなる。したがって、これ以上の高速化は不可能であり、他の手段からの能率向上が望まれる。   However, there has been a demand for higher efficiency due to the recent intensification of international competitiveness in shipbuilding, and there is a problem in achieving higher efficiency by further increasing the welding speed with the above-described technology. In other words, when the welding current is increased, the back bead becomes excessive and the bead becomes non-uniform, and the solidification of the weld metal is fast due to the cooling from the backing copper plate. As shown in the macro structure conceptual diagram of FIG. The metal 21 has a structure in which dendrites (dendritic crystals) are associated with each other at the center of the bead width. Therefore, it is impossible to increase the speed further, and an improvement in efficiency from other means is desired.

図1(a)、(b)はそれぞれ、ここでいう片面サブマージアーク溶接方法の例を示す断面図である。図1(a)においては、突き合わされた被溶接材1の裏面から、銅当金2上に層状に散布した裏フラックス4をエアーホース5等の押し上げ機構により被溶接材1の裏面に押圧して、表面よりワイヤ3、表フラックス6を用いてサブマージアーク溶接を行なう。また図1(b)においては銅当金を使用せず、耐火性キャンバス7内に収納された裏フラックス4をエアーホース5等の押し上げ機構により被溶接材1の裏面に押圧している。これらの方法により被溶接材1の表側と裏側に同時に溶接ビードが形成される。
特開平6−254683号公報 特開平8−99178号公報 特開平5−337651号公報
1A and 1B are cross-sectional views showing examples of the single-sided submerged arc welding method referred to here. In Fig.1 (a), the back flux 4 spread | diffused in the layer form on the copper metal 2 is pressed on the back surface of the to-be-welded material 1 by the raising mechanism, such as the air hose 5, from the back surface of the to-be-welded material 1 which faced | matched. Then, submerged arc welding is performed from the surface using the wire 3 and the surface flux 6. Further, in FIG. 1 (b), copper backing is not used, and the back flux 4 housed in the fireproof canvas 7 is pressed against the back surface of the workpiece 1 by a push-up mechanism such as an air hose 5. By these methods, weld beads are simultaneously formed on the front side and the back side of the workpiece 1.
Japanese Patent Laid-Open No. 6-254683 JP-A-8-99178 Japanese Patent Laid-Open No. 5-337651

本発明は、3電極または4電極の電極を用いて鋼板の板厚全体を1ランで溶接する片面サブマージアーク溶接において、高能率に健全な溶接金属を得る溶接方法を提供することを目的とする。   An object of the present invention is to provide a welding method for obtaining a sound weld metal with high efficiency in single-sided submerged arc welding in which the entire thickness of a steel plate is welded in one run using three or four electrodes. .

本発明の要旨は、粒状または粉状フラックスを裏当に使用し、3電極または4電極の電極を使用して板厚全体を1ランで行う片面サブマージアーク溶接方法において、被溶接材の開先角度を35〜60°のルート面を有しないV形状の開先とし、該開先内に鋼粒または鉄粉を被溶接材板厚の1/3から被溶接材表面の高さまで充填し、各電極のワイヤ径は4.8mm以上で、第1電極の電流(I1)を1200〜2000Aとし、また第2電極の電流(I2)および第3電極の電流(I3)はI1>I2≧I3とすると共に、I1+I2を2450〜3400Aとし、かつ第1電極と第2電極の電極間距離を20〜70mm、第2電極と第3電極の電極間距離を3電極溶接の場合100〜150mm、4電極溶接の場合150〜300mmで溶接することを特徴とする多電極片面サブマージアーク溶接方法にある。
また、第4電極の電流(I4)は、第3電極の電流(I3)以下(I3≧I4)であることも特徴とする。
The gist of the present invention is that in a single-sided submerged arc welding method in which granular or powdery flux is used as a backing, and the entire plate thickness is made in one run using three or four electrodes, the groove of the workpiece is welded. The angle is set to a V-shaped groove having no root surface of 35 to 60 °, and steel grains or iron powder is filled in the groove from 1/3 of the thickness of the material to be welded to the height of the surface of the material to be welded. wire diameter of each electrode at least 4.8 mm, the current of the first electrode (I1) and 1200~2000A, and the current of the second electrode (I2) and the third electrode current (I3) is I1> I2 ≧ In the case of I3 and I1 + I2 of 2450 to 3400A, the distance between the first electrode and the second electrode of 20 to 70 mm, and the distance between the second electrode and the third electrode of 3 electrode welding is 100 to 150 mm, In the case of 4-electrode welding, it is 150-300mm In multielectrode one side submerged arc welding method, characterized in that contact.
Further, the current (I4) of the fourth electrode is also characterized by being not more than the current (I3) of the third electrode (I3 ≧ I4).

本発明の多電極片面サブマージアーク溶接方法によれば、被溶接材の開先形状をV形状の開先とすることにより、溶接前処理の開先加工工程を1工程省略でき、開先内に鋼粒または鉄粉を充填して各電極のワイヤ径、溶接電流および電極間距離を適正にすることによって高能率に健全な溶接金属を得ることができる。   According to the multi-electrode single-sided submerged arc welding method of the present invention, by setting the groove shape of the material to be welded to a V-shaped groove, it is possible to omit one step of the groove processing step of the welding pretreatment, and within the groove. By filling steel grains or iron powder and making the wire diameter, welding current and interelectrode distance of each electrode appropriate, it is possible to obtain a sound weld metal with high efficiency.

本発明者等は、多電極片面サブマージアーク溶接方法において、さらなる高能率化について、溶接工程前後の工程および溶接施工条件等種々検討した結果、以下の知見を得た。   As a result of various investigations such as processes before and after the welding process, welding conditions, and the like, the inventors have obtained the following knowledge in the multi-electrode single-sided submerged arc welding method.

本発明のサブマージアーク溶接は3電極または4電極で行なうが、第1、第2電極と第3電極以降の電極とは、後に詳細に説明するように別のプールを形成する条件で溶接する。これにより図2の本発明の方法による溶接部のマクロ組織の概念図に示すように、第1、第2電極による溶接金属22が凝固した後に第3電極以降の電極による溶接金属23が凝固した組織になる。このためデンドライトは図2に示すように上方に成長した形になり、図3のようなビード幅中央部でデンドライトが会合した組織と異なり割れが発生し難い。なおサブマージアーク溶接においては凝固した溶接金属はスラグで覆われるが、スラグが溶融状態であるか凝固しても未だ高温の状態であればスラグは導電性があり、後の電極によるアーク発生に対して障害にはならない。   The submerged arc welding of the present invention is performed with three electrodes or four electrodes, but the first and second electrodes and the third and subsequent electrodes are welded under the conditions of forming another pool as will be described in detail later. As a result, as shown in the conceptual diagram of the macrostructure of the welded portion by the method of the present invention in FIG. 2, the weld metal 22 by the third and subsequent electrodes solidifies after the weld metal 22 by the first and second electrodes solidifies. Become an organization. For this reason, the dendrite has a shape that grows upward as shown in FIG. 2, and unlike the structure in which the dendrite is associated at the center of the bead width as shown in FIG. In submerged arc welding, the solidified weld metal is covered with slag. It will not be an obstacle.

また本発明の溶接方法は鋼板の板厚全体を1ランで溶接するものであるが、板厚10mm程度から40mm程度まで適用できる。また3電極で溶接するか4電極で溶接するかは板厚20mm程度まではどちらでも良く、4電極にすれば溶接速度をより高速にできる。また板厚が20mm程度より大きい場合には4電極にして溶着すべき金属量の増大に対処し、表ビードの余盛り不足の発生を確実を防止することが好ましい。   The welding method of the present invention welds the entire thickness of the steel sheet in one run, but can be applied to a thickness of about 10 mm to about 40 mm. Whether welding with three electrodes or four electrodes is sufficient up to a plate thickness of about 20 mm, the welding speed can be increased by using four electrodes. Further, when the plate thickness is larger than about 20 mm, it is preferable to cope with an increase in the amount of metal to be deposited by using four electrodes and to prevent the occurrence of insufficient surplus of the front bead.

本発明は被溶接材の開先形状としてルート面を有しないV形開先を採用することを特徴とする。すなわち従来からの多電極片面サブマージアーク溶接方法における被溶接材の開先形状は、仮組の容易性および溶接施工条件範囲の広さから、Y形開先が採用されていた。なお、この後の説明においてV開先ないしはV形開先、V形状の開先とはルート面を有しないものを指し、この点でY開先と区別している。図4(a)、(b)は仮組工程の前工程に位置する開先加工工程を説明する図であって、(a)図はY開先、(b)図はV開先の場合であり、図中符号A、B、Cはそれぞれ切断トーチの方向を示している。図4(a)に示すように、Y形開先の場合は被溶接材端部を目標の板幅になるようにA方向に垂直切断した後、所定の開先角度になるようにB方向に切断するという、一つの端面に対して2度の切断工程が必要である。これに対してV形開先を採用することによって図4(b)に示すようにC方向の切断を1回するだけで板幅の決定と開先切断ができることになる。 The present invention is characterized in that a V-shaped groove having no root surface is adopted as the groove shape of the material to be welded. That is, a Y-shaped groove has been adopted as the groove shape of the material to be welded in the conventional multi-electrode single-sided submerged arc welding method because of the ease of temporary assembly and the wide range of welding conditions. In the following description, the V groove, the V-shaped groove, and the V-shaped groove are those having no root surface, and are distinguished from the Y groove in this respect. 4 (a) and 4 (b) are diagrams for explaining a groove working step located in the pre-process of the temporary assembly step, where FIG. 4 (a) shows a Y groove and FIG. 4 (b) shows a V groove. In the figure, reference signs A, B, and C respectively indicate the directions of the cutting torch. As shown in FIG. 4A, in the case of a Y-shaped groove, the end of the welded material is cut perpendicularly to the A direction so as to have a target plate width, and then the B direction so that a predetermined groove angle is obtained. It is necessary to perform two cutting steps for one end face. On the other hand, by adopting the V-shaped groove, as shown in FIG. 4B, the plate width can be determined and the groove can be cut only by cutting once in the C direction.

しかしV形開先を採用した場合Y形開先と異なり開先にルート面24(図4(a))が無いので、図5の開先断面図に示すように仮組溶接時に開先の突き合わせ部が上下にずれるという問題が生じた。そこで本発明者等が先に提案した特許第3215312号公報および特許第3215313号公報に記載の2枚の板体の相対位置決め装置を用いることによって、被溶接材の開先面にずれがないように固定でき、仮組溶接が容易となった。   However, when the V-shaped groove is adopted, unlike the Y-shaped groove, the groove has no root surface 24 (FIG. 4A). There was a problem that the butt portion shifted up and down. Therefore, by using the two plate relative positioning devices described in Japanese Patent No. 3215312 and Japanese Patent No. 3215313 previously proposed by the present inventors, the groove surface of the welded material does not shift. The temporary assembly welding became easy.

上記のようにV形開先を採用した場合ルート面が無いので、従来からのサブマージアーク溶接方法では裏ビードが出過ぎてビードが不均一になり、低電流、低速度での溶接施工条件を余儀なくされる。本発明においては開先内に鋼粒または鉄粉を被溶接材板厚の1/3から被溶接材表面の高さまで充填することにしたので、溶接施工条件の許容範囲を広くできる。このさい開先内への鋼粒または鉄粉の充填厚さが板厚の1/3未満であると、裏ビードが出過ぎてビードが不均一となる。このため裏ビードの幅および高さを均一にしようとすると、低電流で低速度の溶接施工条件を採用することになり能率が悪くなる。逆に開先内への鋼粒または鉄粉の充填厚さが被溶接材の表面を超えると、裏ビードが出難くなる。このため高電流で高速度の溶接施工条件を採用した場合に裏ビードが不均一で溶接金属の凝固が早く、溶接金属がビード幅中央でデンドライトが会合した組織になるので割れやすくなる。   When the V-shaped groove is used as described above, there is no root surface, so in the conventional submerged arc welding method, the back bead is excessively uneven and the bead becomes non-uniform, and the welding conditions at low current and low speed are unavoidable. Is done. In the present invention, since the steel grain or iron powder is filled in the groove from 1/3 of the thickness of the material to be welded to the height of the surface of the material to be welded, the allowable range of welding conditions can be widened. In this case, if the filling thickness of the steel grains or iron powder in the groove is less than 1/3 of the plate thickness, the back bead is excessively formed and the bead becomes non-uniform. For this reason, when trying to make the width and height of the back bead uniform, low-current and low-speed welding conditions are adopted, resulting in poor efficiency. On the contrary, when the filling thickness of the steel grains or iron powder in the groove exceeds the surface of the material to be welded, the back bead is hardly produced. For this reason, when high current and high speed welding conditions are adopted, the back bead is non-uniform and the weld metal is rapidly solidified, and the weld metal becomes a structure in which the dendrite is associated at the center of the bead width, so that it is easily cracked.

なお、鋼粒または鉄粉の粒度分布は、粒径1.5mm以下であることがアークの安定性および裏ビードの形状を良好にすることから好ましい。また、成分は主にFeからなるが、耐割れ性からCは0.10質量%以下、SおよびPは0.020質量%以下が好ましく、他の成分は、溶接金属の強度および靭性を考慮してSi、Mn、Mo、その他脱酸剤や合金剤を含有させることもできる。以上の粒度と成分を満足すれば、各種サイズの鋼ワイヤをカットした粒状体でも良い。   The particle size distribution of the steel grains or iron powder is preferably 1.5 mm or less from the viewpoint of improving the arc stability and the shape of the back bead. In addition, the component is mainly composed of Fe, but C is preferably 0.10% by mass or less, and S and P are preferably 0.020% by mass or less from the viewpoint of crack resistance, and the other components take into account the strength and toughness of the weld metal. Si, Mn, Mo, and other deoxidizing agents and alloying agents can be contained. If the above particle size and components are satisfied, a granular body obtained by cutting steel wires of various sizes may be used.

V形開先の開先角度は、裏ビードおよび表ビードの形成、溶け込み形状および溶着量に影響するので35〜60°とする。開先角度が35°未満であると、アークが発生する点が高くなるので裏ビードが安定して形成できない。また溶接金属がビード幅中央でデンドライトが会合した組織になるので割れやすくなる。一方、開先角度が60°を超えると開先断面積が大きく、溶着金属量を確保するために溶接速度を遅くする必要が生じて溶接能率が悪くなる。なおV開先のルート間隔は原則的にはゼロ、すなわち斜めに切断された板の端部同士を接触させた状態にするが、3mm程度までは許容できる。   The groove angle of the V-shaped groove is 35 to 60 ° because it affects the formation of the back and front beads, the penetration shape, and the amount of welding. If the groove angle is less than 35 °, the point where the arc is generated becomes high, so that the back bead cannot be stably formed. Further, since the weld metal has a structure in which the dendrite is associated at the center of the bead width, the weld metal is easily broken. On the other hand, when the groove angle exceeds 60 °, the groove cross-sectional area is large, and it is necessary to reduce the welding speed in order to secure the amount of deposited metal, resulting in poor welding efficiency. The root interval of the V groove is basically zero, that is, the ends of the diagonally cut plates are brought into contact with each other, but up to about 3 mm is allowable.

次に、溶接施工条件についての好ましい範囲について説明する。まず、各電極のワイヤ径は4.8mm以上とする。本発明は溶接速度を遅くすることなく高能率に被溶接材を片面溶接するために高電流の溶接条件で第1電極および第2電極によって健全な裏ビードを形成するが、ワイヤ径が4.8mm未満であるとアークが集中して裏ビードが凸状になりアンダーカットが発生する。したがってアークをソフトにして裏ビードを広げるために、ワイヤ径を4.8mm以上とする。第3電極および必要に応じて使用する第4電極は、割れ、融合不良およびスラグ巻き込み欠陥等の内部欠陥の発生を防止し、適度な余盛りの表ビードを形成するために必要な溶着量を確保する。第3電極および第4電極のワイヤ径が4.8mm未満であると、アークが集中して広がらず、溶接金属がビード幅中央でデンドライトが会合した組織になるので割れやすくなる。さらには融合不良が生じたり、溶着量が不足して表ビードの余盛り不足を生じる場合がある。   Next, the preferable range about welding construction conditions is demonstrated. First, the wire diameter of each electrode is set to 4.8 mm or more. In the present invention, a sound back bead is formed by the first electrode and the second electrode under high-current welding conditions in order to weld a material to be welded on one side with high efficiency without slowing the welding speed. If it is less than 8 mm, the arc concentrates, the back bead becomes convex, and undercut occurs. Therefore, in order to widen the back bead by softening the arc, the wire diameter is set to 4.8 mm or more. The third electrode and the fourth electrode used as necessary prevent the occurrence of internal defects such as cracks, poor fusion and slag entrainment defects, and provide the amount of welding necessary to form a moderately large surface bead. Secure. When the wire diameters of the third electrode and the fourth electrode are less than 4.8 mm, the arc is not concentrated and spreads, and the weld metal becomes a structure in which the dendrite is associated at the center of the bead width, so that it is easy to break. Further, poor fusion may occur, or the amount of welding may be insufficient, resulting in insufficient surface bead accumulation.

第1電極の電流(I1)は、健全な裏ビードを形成するために1200〜2000Aとする。第1電極の電流(I1)が1200A未満であると、裏ビードが安定して形成できない。逆に、2000Aを超えると、裏ビードが出過ぎてビードが不均一になる。また第2電極の電流(I2)および第3電極の電流(I3)は、第1電極の電流(I1)を基準として、I1>I2≧I3とすると共に、I1+I2を2450〜3400Aとする。第2電極の電流(I2)は裏ビードの形成をコントロールするために第1電極の電流(I1)未満とする。第2電極の電流(I2)が第1電極の電流(I1)以上(I1≦I2)になると、裏ビードが出過ぎてビードが不均一になる。 The current (I1) of the first electrode is 1200 to 2000 A in order to form a healthy back bead. If the current (I1) of the first electrode is less than 1200 A, the back bead cannot be formed stably. On the other hand, if it exceeds 2000 A, the back bead is excessively produced and the bead becomes non-uniform. The current (I2) of the second electrode and the current (I3) of the third electrode are set such that I1> I2 ≧ I3 and I1 + I2 are 2450 to 3400A based on the current (I1) of the first electrode. The current (I2) of the second electrode is less than the current (I1) of the first electrode in order to control the formation of the back bead. When the current (I2) of the second electrode is equal to or greater than the current (I1) of the first electrode (I1 ≦ I2), the back bead is excessively formed and the bead becomes non-uniform.

また図6は溶接線方向における電極の配置を示す図であるが、第1電極8と第2電極9の電極間距離12は裏ビード形状をコントロールするために20〜70mmとする。第1電極8と第2電極9の電極間距離12が20mm未満であると、裏ビードが出過ぎとなる。逆に70mmを超えると裏ビードに広がりがなく、アンダーカットが発生する。   FIG. 6 is a diagram showing the arrangement of the electrodes in the weld line direction. The distance 12 between the first electrode 8 and the second electrode 9 is 20 to 70 mm in order to control the back bead shape. If the inter-electrode distance 12 between the first electrode 8 and the second electrode 9 is less than 20 mm, the back bead becomes excessive. Conversely, if it exceeds 70 mm, the back bead does not spread and undercut occurs.

第3電極以降は融合不良やスラグ巻き込み等内部欠陥の発生を防止し、必要な溶着量を確保し、同時に第1電極および第2電極で形成された溶接金属を溶融し、図2に示すように溶接金属のデンドライトを上方に成長した形に制御して高温割れを防止する。先に述べた条件に反して第3電極の電流(I3)が第2電極の電流(I2)を超える(I2<I3)と、溶着量は多くなるが溶け込みが深くなり、溶接金属がビード幅中央でデンドライトが会合した組織になるので割れやすくなる。   After the third electrode, internal defects such as poor fusion and slag entrainment are prevented, the necessary amount of welding is secured, and at the same time, the weld metal formed by the first electrode and the second electrode is melted, as shown in FIG. In addition, the weld metal dendrite is controlled to grow upward to prevent hot cracking. If the current (I3) of the third electrode exceeds the current (I2) of the second electrode (I2 <I3) contrary to the conditions described above, the amount of welding increases but the penetration becomes deeper, and the weld metal has a bead width. It becomes easy to break because it becomes an organization where dendrites meet in the center.

また、第1電極および第2電極で形成される溶融池(プール)内に第3電極が配置されると、いわゆるワンプールとなり第3電極によるアークが裏ビードまで達し、裏ビードが出過ぎるとともに溶接金属がビード幅中央でデンドライトが会合した組織になり、割れやすくなる。したがって、図6に示すように第2電極9と第3電極10の電極間距離13は3電極溶接の場合100〜150mm、4電極溶接の場合150〜300mmとする。第2電極9と第3電極10の電極間距離が3電極溶接の場合100mm未満、4電極溶接の場合150mm未満であると、溶融池はワンプールとなり、裏ビードが出過ぎるとともにビード幅中央でデンドライトが会合した組織になり割れやすくなる。逆に、第2電極9と第3電極10の電極間距離13が3電極溶接の場合150mm超、4電極溶接の場合300mm超であると、第1電極8および第2電極9で生成した溶融スラグが完全に凝固してしまい、アークが不安定となり表ビード形状が不良になるとともに融合不良やスラグ巻き込み欠陥が生じる。なお本発明における各電極間距離12、13、14とは、開先底面15におけるワイヤの中心間距離をいう。   Moreover, when the third electrode is arranged in the molten pool (pool) formed by the first electrode and the second electrode, a so-called one pool is formed, the arc by the third electrode reaches the back bead, the back bead is excessively discharged and welding is performed. The metal becomes a structure in which dendrites are associated with each other at the center of the bead width, and is easily broken. Therefore, as shown in FIG. 6, the inter-electrode distance 13 between the second electrode 9 and the third electrode 10 is 100 to 150 mm in the case of three-electrode welding, and 150 to 300 mm in the case of four-electrode welding. If the distance between the second electrode 9 and the third electrode 10 is less than 100 mm in the case of three-electrode welding and less than 150 mm in the case of four-electrode welding, the molten pool becomes one pool, and the back bead is excessively ejected and the dendrite is at the center of the bead width. Becomes a meeting organization and is easy to break. Conversely, if the inter-electrode distance 13 between the second electrode 9 and the third electrode 10 is more than 150 mm in the case of three-electrode welding and more than 300 mm in the case of four-electrode welding, the melting generated in the first electrode 8 and the second electrode 9 The slag is completely solidified, the arc becomes unstable, the surface bead shape becomes poor, and poor fusion and slag entrainment defects occur. The interelectrode distances 12, 13, and 14 in the present invention refer to the distance between the centers of the wires on the groove bottom surface 15.

また第4電極を使用する場合、第4電極の電流(I4)は第3電極の電流(I3)以下(I3≧I4)とする。第4電極は第3電極での溶着量の不足分を補うとともに、表ビードを広げてアンダーカットの発生を抑制する。第4電極の電流(I4)が第3電極の電流(I3)を超える(I3<I4)と、表ビードが凸状になりアンダーカットが生じる。なお、第3電極10と第4電極11の電極間距離14は、表ビードの幅を広げるために20〜70mmであることが好ましい。   When the fourth electrode is used, the current (I4) of the fourth electrode is equal to or lower than the current (I3) of the third electrode (I3 ≧ I4). The fourth electrode compensates for the insufficient amount of welding at the third electrode, and widens the front bead to suppress the occurrence of undercut. When the current (I4) of the fourth electrode exceeds the current (I3) of the third electrode (I3 <I4), the front bead becomes convex and an undercut occurs. In addition, it is preferable that the interelectrode distance 14 of the 3rd electrode 10 and the 4th electrode 11 is 20-70 mm in order to expand the width | variety of a surface bead.

表1に示す鋼材(材質JIS SM400)をV形状の開先に切断し、表2に示すワイヤ、表3に示す裏フラックスおよび表4に示す表フラックスを用いて、表5および表6に示す溶接条件で、溶接長2000mmの片面サブマージアーク溶接を図1(a)に示す装置で実施した。なお開先内に充填した鋼粒は、成分がC:0.05質量%、Si:0.01質量%、Mn:1.51質量%、P:0.008質量%、S:0.006質量%の1mm径の鋼ワイヤを長さ1mmに切断したものを用いた。   Steel materials (material JIS SM400) shown in Table 1 are cut into V-shaped grooves and shown in Tables 5 and 6 using the wires shown in Table 2, the back flux shown in Table 3, and the front flux shown in Table 4. Under welding conditions, single-sided submerged arc welding with a welding length of 2000 mm was performed with the apparatus shown in FIG. In addition, the steel grains filled in the groove have components of C: 0.05% by mass, Si: 0.01% by mass, Mn: 1.51% by mass, P: 0.008% by mass, S: 0.006. A steel wire having a diameter of 1 mm with a mass% cut to a length of 1 mm was used.

Figure 0004707949
Figure 0004707949

Figure 0004707949
Figure 0004707949

Figure 0004707949
Figure 0004707949

Figure 0004707949
Figure 0004707949

Figure 0004707949
Figure 0004707949

Figure 0004707949
Figure 0004707949

表5に示した試験No.1〜4が本発明例で、表6に示した試験No.5〜8が比較例である。それぞれの試験例について、溶接後の裏ビードおよび表ビードの外観を調査した後、X線透過試験で溶接金属の内部欠陥の有無を調査した。それらの結果もそれぞれ表5および表6にまとめて示す。   Test No. shown in Table 5 1-4 are examples of the present invention, and the test Nos. Shown in Table 6 were performed. 5 to 8 are comparative examples. About each test example, after investigating the external appearance of the back bead and front bead after welding, the presence or absence of the internal defect of a weld metal was investigated by the X-ray penetration test. The results are also summarized in Table 5 and Table 6, respectively.

本発明例である試験No.1〜4は、いずれもV形状の開先角度および開先内への鋼粒充填厚さが適正であるので、裏ビードおよび表ビードともビード形状が良好で均一であり溶接金属内部にも欠陥がなく、高能率に溶接でき、極めて満足な結果であった。   Test No. which is an example of the present invention. For 1-4, the V-shaped groove angle and the steel grain filling thickness in the groove are appropriate, so that the back bead and the front bead have a good and uniform bead shape and are also defective inside the weld metal. The result was very satisfactory, with high efficiency welding.

比較例中試験No.5は、開先内への鋼粒充填高さが板厚に対して低いので、裏ビードが出過ぎてビードが不均一であった。
試験No.6は、開先内への鋼粒充填高さが板厚に対して高いので、裏ビードが出なかった。
試験No.7は、開先角度が広いので、開先断面積が大きく溶接金属の溶着量が不足した。
試験No.8は、開先角度が狭いので、裏ビードが出ない所があり、また一部高温割れも生じた。
Test No. in Comparative Examples. In No. 5, since the filling height of the steel grains in the groove was low with respect to the plate thickness, the back bead was excessively formed and the bead was not uniform.
Test No. In No. 6, the back bead did not come out because the steel grain filling height in the groove was higher than the plate thickness.
Test No. Since No. 7 has a wide groove angle, the groove cross-sectional area is large and the weld metal deposition amount is insufficient.
Test No. In No. 8, since the groove angle was narrow, there were places where the back bead did not come out, and some hot cracks also occurred.

実施例1に用いたものとそれぞれ同じの、表1に示す鋼材をV形状の開先に切断し、表2に示すワイヤ、表3に示す裏フラックスおよび表4に示す表フラックスを用いて、溶接長2000mmの片面サブマージアーク溶接を図1(a)に示す装置で実施した。開先内に充填した鋼粒は実施例1で用いたものと同一である。溶接条件を表7ないし表9に示すように、この溶接試験においてはワイヤ径、各電極の溶接電流および電極間距離を変えた溶接条件で行なった。   The steel materials shown in Table 1, which are the same as those used in Example 1, were cut into V-shaped grooves, and the wires shown in Table 2, the back flux shown in Table 3, and the front flux shown in Table 4 were used. Single-sided submerged arc welding with a weld length of 2000 mm was performed with the apparatus shown in FIG. The steel grains filled in the groove are the same as those used in Example 1. As shown in Tables 7 to 9, the welding conditions were performed under the welding conditions in which the wire diameter, the welding current of each electrode, and the distance between the electrodes were changed.

Figure 0004707949
Figure 0004707949

Figure 0004707949
Figure 0004707949

Figure 0004707949
Figure 0004707949

表7に示した試験No.9〜12が本発明例で、表8および表9に示した試験No.13〜20が比較例である。それぞれの試験例についての調査は実施例1と同様に行った。それらの結果もそれぞれ表7ないし表9にまとめて示す。   Test No. shown in Table 7 9 to 12 are examples of the present invention, and the test numbers shown in Table 8 and Table 9 were obtained. 13 to 20 are comparative examples. The investigation for each test example was performed in the same manner as in Example 1. The results are also summarized in Tables 7 to 9.

本発明例である試験No.9〜12は、いずれもV形状の開先角度、開先内への鋼粒充填厚さ、各電極のワイヤ径、第1電極の電流、各電極の電流バランス、第1電極と第2電極の電極間距離および第2電極と第3電極の電極間距離が適正であるので、裏ビードおよび表ビードともビード形状が良好で均一であり溶接金属内部にも欠陥がなく、高能率に溶接でき、極めて満足な結果であった。   Test No. which is an example of the present invention. 9 to 12 are all V-shaped groove angles, steel grain filling thicknesses in the grooves, wire diameters of the respective electrodes, currents of the first electrodes, current balances of the respective electrodes, the first electrode and the second electrode The inter-electrode distance and the inter-electrode distance between the second electrode and the third electrode are appropriate, so that the back bead and the front bead have a good and uniform bead shape, and there are no defects inside the weld metal, enabling high-efficiency welding. It was a very satisfactory result.

比較例中試験No.13は、第1電極のワイヤ径が細いので、裏ビードが凸状となりアンダーカットが生じた。
試験No.14は、第3電極のワイヤ径が細いので、溶接金属内部に融合不良および高温割れが生じた。
Test No. in Comparative Examples. In No. 13, since the wire diameter of the first electrode was thin, the back bead became convex and undercut occurred.
Test No. In No. 14, since the wire diameter of the third electrode was thin, poor fusion and hot cracking occurred in the weld metal.

試験No.15は、第1電極の溶接電流が高いので、裏ビードが出過ぎて不均一であった。
試験No.16は、第1電極の電流が低いので、裏ビードが出ない所があり不均一であった。また、第2電極と第3電極との電極間距離が長いので、表ビードの形状が不良でスラグ巻き込み欠陥も生じた。
Test No. No. 15 was uneven because the welding current of the first electrode was high and the back bead was excessive.
Test No. No. 16 was non-uniform because there was no back bead because the current of the first electrode was low. Further, since the distance between the second electrode and the third electrode was long, the shape of the front bead was poor and slag entrainment defects were also generated.

試験No.17は、第2電極の電流が第1電極の電流以上であるので、裏ビードが出過ぎて不均一であった。また、第2電極と第3電極との電極間距離が長いので、表ビードの形状が不良でスラグ巻き込み欠陥も生じた。
試験No.18は、第3電極の電流が第2電極の電流を超えているので、高温割れが発生した。また、第1電極と第2電極の電極間距離が長いので、裏ビードに広がりがなくアンダーカットが生じた。
Test No. In No. 17, since the current of the second electrode was equal to or greater than the current of the first electrode, the back bead was excessive and non-uniform. Further, since the distance between the second electrode and the third electrode was long, the shape of the front bead was poor and slag entrainment defects were also generated.
Test No. No. 18 was hot cracked because the current of the third electrode exceeded the current of the second electrode. Further, since the distance between the first electrode and the second electrode was long, the back bead did not spread and undercut occurred.

試験No.19は、第1電極と第2電極の電極間距離が短いので、裏ビードが出過ぎて不均一であった。
試験No.20は、第4電極の電流が第3電極の電流を超えているので、表ビードが凸状になりアンダーカットが生じた。また、第2電極と第3電極との電極間距離が短いので、裏ビードが出過ぎ、さらに高温割れも生じた。
Test No. In No. 19, since the distance between the first electrode and the second electrode was short, the back bead appeared too much and was not uniform.
Test No. In No. 20, since the current of the fourth electrode exceeded the current of the third electrode, the front bead became convex and undercut occurred. Further, since the distance between the second electrode and the third electrode was short, the back bead was excessively formed and further hot cracking occurred.

(a)、(b)はそれぞれ片面サブマージアーク溶接方法の例を示す断面図(A), (b) is sectional drawing which shows the example of a single-sided submerged arc welding method, respectively 本発明の方法による溶接部のマクロ組織の概念図Conceptual diagram of the macrostructure of the weld by the method of the present invention 従来の方法による溶接部のマクロ組織の概念図Conceptual diagram of the macro structure of the welded part by the conventional method 開先加工工程を説明する図であって、(a)図はY開先、(b)図はV開先の場合It is a figure explaining a groove process, Comprising: (a) The figure is a Y groove, (b) The figure is a V groove 鋼板位置のずれを説明する開先断面図Groove cross-sectional view explaining the deviation of the steel plate position 溶接線方向における電極の配置を示す図Diagram showing the arrangement of electrodes in the weld line direction

符号の説明Explanation of symbols

1 被溶接材
2 銅当金
3 ワイヤ
4 裏フラックス
5 エアーホース
6 表フラックス
7 耐火性キャンバス
8 第1電極
9 第2電極
10 第3電極
11 第4電極
12 第1電極と第2電極の電極間距離
13 第2電極と第3電極の電極間距離
14 第3電極と第4電極の電極間距離
15 開先底部
21 溶接金属
22 第1、第2電極による溶接金属
23 第3電極以降の電極による溶接金属
24 ルート面
DESCRIPTION OF SYMBOLS 1 Material to be welded 2 Copper metal 3 Wire 4 Back flux 5 Air hose 6 Front flux 7 Fire-resistant canvas 8 1st electrode 9 2nd electrode 10 3rd electrode 11 4th electrode 12 Between electrode of 1st electrode and 2nd electrode Distance 13 Distance between second electrode and third electrode 14 Distance between third electrode and fourth electrode 15 Groove bottom 21 Weld metal 22 Weld metal by first and second electrodes 23 By electrodes after third electrode Weld metal 24 Route surface

Claims (2)

粒状または粉状フラックスを裏当に使用し、3電極または4電極の電極を使用して板厚全体を1ランで行う片面サブマージアーク溶接方法において、被溶接材の開先角度を35〜60°のルート面を有しないV形状の開先とし、該開先内に鋼粒または鉄粉を被溶接材板厚の1/3から被溶接材表面の高さまで充填し、各電極のワイヤ径は4.8mm以上で、第1電極の電流(I1)を1200〜2000Aとし、また第2電極の電流(I2)および第3電極の電流(I3)はI1>I2≧I3とすると共に、I1+I2を2450〜3400Aとし、かつ第1電極と第2電極の電極間距離を20〜70mm、第2電極と第3電極の電極間距離を3電極溶接の場合100〜150mm、4電極溶接の場合150〜300mmで溶接することを特徴とする多電極片面サブマージアーク溶接方法。 In a single-sided submerged arc welding method in which granular or powdery flux is used for the backing and the entire plate thickness is made in one run using three or four electrodes, the groove angle of the workpiece is 35 to 60 °. the root face is opened destination without V shape, the steel grains or iron powder was filled from 1/3 of workpieces thickness to the height of the workpieces surface in the open destination, wire diameter of each electrode 4.8 mm or more, the first electrode current (I1) is 1200 to 2000A, the second electrode current (I2) and the third electrode current (I3) are I1> I2 ≧ I3, and I1 + I2 is 2450 to 3400A, the distance between the first electrode and the second electrode is 20 to 70 mm, the distance between the second electrode and the third electrode is 100 to 150 mm in the case of three-electrode welding, and 150 to four in the case of four-electrode welding. Features to be welded at 300mm Multielectrode sided submerged arc welding method according to. 第4電極の電流(I4)は、第3電極の電流(I3)以下(I3≧I4)であることを特徴とする請求項記載の多電極片面サブマージアーク溶接方法。 Current of the fourth electrode (I4) is a multi-electrode single-sided submerged arc welding method according to claim 1, characterized in that the current of the third electrode (I3) hereinafter (I3 ≧ I4).
JP2003390272A 2003-11-20 2003-11-20 Multi-electrode single-sided submerged arc welding method Expired - Lifetime JP4707949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390272A JP4707949B2 (en) 2003-11-20 2003-11-20 Multi-electrode single-sided submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390272A JP4707949B2 (en) 2003-11-20 2003-11-20 Multi-electrode single-sided submerged arc welding method

Publications (2)

Publication Number Publication Date
JP2005246385A JP2005246385A (en) 2005-09-15
JP4707949B2 true JP4707949B2 (en) 2011-06-22

Family

ID=35027370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390272A Expired - Lifetime JP4707949B2 (en) 2003-11-20 2003-11-20 Multi-electrode single-sided submerged arc welding method

Country Status (1)

Country Link
JP (1) JP4707949B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177643A (en) * 2017-01-17 2019-08-27 株式会社神户制钢所 Single side buried arc welding method and single side submerged arc welding apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607677B2 (en) * 2014-05-08 2019-11-20 株式会社神戸製鋼所 Four-electrode single-sided single-layer submerged arc welding method
CN108393562A (en) * 2018-05-09 2018-08-14 无锡洲翔成套焊接设备有限公司 Steel plate submerged arc welding assembly line
CN112207401B (en) * 2020-10-21 2022-03-18 山东华奥电气有限公司 Submerged-arc welding system and welding method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293658A (en) * 1992-04-22 1993-11-09 Nippon Steel Corp Multiple electrode one side submerged arc welding method
JPH06106352A (en) * 1992-09-30 1994-04-19 Kobe Steel Ltd One-side submerged arc welding method
JPH0788651A (en) * 1993-09-27 1995-04-04 Kobe Steel Ltd Method for one-side submerged arc welding
JPH07185821A (en) * 1993-12-28 1995-07-25 Imabari Zosen Kk Single submerged welding method
JPH09267175A (en) * 1996-03-29 1997-10-14 Nippon Steel Weld Prod & Eng Co Ltd One side submerged arc welding method
JPH10263881A (en) * 1997-03-21 1998-10-06 Nippon Steel Weld Prod & Eng Co Ltd Steel filler for single submerged arc welding groove
JPH1190680A (en) * 1997-09-18 1999-04-06 Kobe Steel Ltd Backing flux for one side submerged arc welding
JP2000271788A (en) * 1999-03-26 2000-10-03 Nippon Steel Corp Bevel filling material for simple one side surface submerged arc welding and welding method using this material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293658A (en) * 1992-04-22 1993-11-09 Nippon Steel Corp Multiple electrode one side submerged arc welding method
JPH06106352A (en) * 1992-09-30 1994-04-19 Kobe Steel Ltd One-side submerged arc welding method
JPH0788651A (en) * 1993-09-27 1995-04-04 Kobe Steel Ltd Method for one-side submerged arc welding
JPH07185821A (en) * 1993-12-28 1995-07-25 Imabari Zosen Kk Single submerged welding method
JPH09267175A (en) * 1996-03-29 1997-10-14 Nippon Steel Weld Prod & Eng Co Ltd One side submerged arc welding method
JPH10263881A (en) * 1997-03-21 1998-10-06 Nippon Steel Weld Prod & Eng Co Ltd Steel filler for single submerged arc welding groove
JPH1190680A (en) * 1997-09-18 1999-04-06 Kobe Steel Ltd Backing flux for one side submerged arc welding
JP2000271788A (en) * 1999-03-26 2000-10-03 Nippon Steel Corp Bevel filling material for simple one side surface submerged arc welding and welding method using this material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177643A (en) * 2017-01-17 2019-08-27 株式会社神户制钢所 Single side buried arc welding method and single side submerged arc welding apparatus
CN110177643B (en) * 2017-01-17 2023-08-29 株式会社神户制钢所 Single-sided submerged arc welding method and single-sided submerged arc welding device

Also Published As

Publication number Publication date
JP2005246385A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
RU2506148C2 (en) Combined welding process using combination of gas-arc welding by metallic electrode and hidden-arc welding, and combined-action arc welding machine
US4125758A (en) Vertical welding method
KR100526489B1 (en) Flux-containing wire for two-electrode electro gas arc welding, and two-electrode electro gas arc welding method and apparatus
US20230256532A1 (en) Joining of lead and lead alloys
JPH08243754A (en) Inner face welding method of clad steel tube
JP4707949B2 (en) Multi-electrode single-sided submerged arc welding method
JP2005319507A (en) Multiple electrodes one side submerged arc welding method
JP6383319B2 (en) Multi-electrode single-sided single layer submerged arc welding method
JPH07204854A (en) High speed gas shield arc welding equipment and method therefor
WO2021199815A1 (en) Multi-electrode gas-shielded single-sided arc welding method and multi-electrode gas-shielded single-sided arc welding device
CN115703163A (en) Multi-electrode single-side submerged arc welding method
JP2006035279A (en) Multi-electrode one side submerged arc welding method
JP3596723B2 (en) Two-electrode vertical electrogas arc welding method
US7371994B2 (en) Buried arc welding of integrally backed square butt joints
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JP6607677B2 (en) Four-electrode single-sided single-layer submerged arc welding method
JPH08276273A (en) Butt welding method for clad steel
JPS6247111B2 (en)
JP7351436B1 (en) Narrow gap gas shielded arc welding method and welding device for narrow gap gas shielded arc welding
JP2019150840A (en) Different material coupling joint and different material joint method
WO2023189026A1 (en) Narrow gap gas-shielded arc welding method and welding apparatus for narrow gap gas-shielded arc welding
JP3583561B2 (en) Horizontal electrogas welding method
JP6715682B2 (en) Submerged arc welding method
JP3120907B2 (en) Single-sided submerged arc welding method
JP3741402B2 (en) Two-electrode electrogas welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Ref document number: 4707949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term