JPS6247111B2 - - Google Patents

Info

Publication number
JPS6247111B2
JPS6247111B2 JP56096615A JP9661581A JPS6247111B2 JP S6247111 B2 JPS6247111 B2 JP S6247111B2 JP 56096615 A JP56096615 A JP 56096615A JP 9661581 A JP9661581 A JP 9661581A JP S6247111 B2 JPS6247111 B2 JP S6247111B2
Authority
JP
Japan
Prior art keywords
welding
insert
arc
weld metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56096615A
Other languages
Japanese (ja)
Other versions
JPS58377A (en
Inventor
Kozo Akahide
Osami Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9661581A priority Critical patent/JPS58377A/en
Publication of JPS58377A publication Critical patent/JPS58377A/en
Publication of JPS6247111B2 publication Critical patent/JPS6247111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0203Inserts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 この発明は、厚肉鋼材の多電極深溶込みアーク
溶接法に関し、とくに厚肉大径鋼管のシーム溶接
や、圧力容器胴壁の長手方向または周方向にわた
る突合わせ溶接などに適用して有用な、多電極の
サブマージアークまたはガスシールドアーク溶接
の改良方法を提案しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-electrode deep penetration arc welding method for thick-walled steel materials, and particularly for seam welding of thick-walled, large-diameter steel pipes and butt welding in the longitudinal or circumferential direction of a pressure vessel shell. This paper attempts to propose an improved method for multi-electrode submerged arc or gas-shielded arc welding that is useful for applications such as this.

多電極溶接の先行電極または多層盛り溶接の第
1層に、うもれアークを利用すると、アークが母
材内にうもれるため、小入熱で効果的に溶込みが
確保でき、第1図に溶接継手の開先形状を示した
ように、厚肉母材1,1′間の、突合わせ面2が
大きく、開先面積の小さいものとなし得る。従つ
て溶接の層数を著しく減少させることができて厚
板の突合わせ溶接が、極めて高能率に、しかも、
入熱量が板厚の割には少ないため熱影響部の特性
にすぐれた高品質に実現されることが期待され
る。
When a penetrating arc is used for the leading electrode in multi-electrode welding or the first layer in multi-layer welding, the arc burrows into the base metal, effectively ensuring penetration with a small heat input, as shown in Figure 1. As shown in the groove shape of the welded joint, the butt surface 2 between the thick base materials 1 and 1' is large, and the groove area can be small. Therefore, the number of welding layers can be significantly reduced, making butt welding of thick plates extremely efficient.
Since the amount of heat input is small relative to the thickness of the plate, it is expected that high quality products with excellent heat-affected zone characteristics will be realized.

しかし実際上は、かゝる溶接を適用したときし
ばしば第2図に示すように、溶接金属部3に、微
小な割れが発生することがあり、これは通常のサ
ブマージアーク溶接や、ガスシールドアーク溶接
で得られる溶接金属には、従来認められなかつた
特異の挙動であり、現象的には、溶接金属の板厚
方向の大きさ、すなわち厚さが大きい程発生し易
く、この割れは一般に板厚方向の開口、つまり母
材表面に沿うものとして現れることが多い。
However, in practice, when such welding is applied, minute cracks often occur in the weld metal part 3, as shown in Figure 2. This is a unique behavior that has not been previously observed in weld metal obtained by welding, and the phenomenon is that the larger the thickness of the weld metal is, the more likely it is to occur, and this cracking generally occurs in the plate. It often appears as an opening in the thickness direction, that is, along the surface of the base material.

このうもれアークを利用した深溶込み溶接に特
有な溶接欠かんとも云うべき割れの発生原因とし
て次のことが考えられる。
The following may be considered as the cause of the occurrence of cracks which are characteristic of deep penetration welding using a leaking arc and which should be called a weld failure.

一般的に溶接金属には、その凝固冷却に伴つて
生じる応力により、横割れ、縦割れなどが発生す
るところ、とくにうもれアークにより深溶込みを
得て形成される溶接金属では、収縮が厚さ方向に
対して無視し得ないような大きさになることが、
第2図の事実から予想され、加えて溶接金属の厚
さが大きい程、割れの発生する確率が増大するこ
との経験によつて示唆されたのである。
In general, horizontal and vertical cracks occur in weld metal due to the stress generated as it solidifies and cools.Especially in weld metal that is formed by deep penetration due to a penetrating arc, shrinkage causes the thickness to increase. The fact that the size becomes so large that it cannot be ignored in the direction is
This was predicted from the fact shown in FIG. 2, and was also suggested by experience that the greater the thickness of the weld metal, the greater the probability of cracking.

進んでこの種の微小割れの防止に関して実験を
繰り返し行つたところ、割れの発生傾向は上記の
母板板厚のほか、その化学成分にも依存すること
が明らかになつた。
After repeatedly conducting experiments to prevent this type of micro-cracking, it became clear that the tendency for cracks to occur depends not only on the thickness of the mother plate mentioned above, but also on its chemical composition.

母材の化学成分についてはそのうちでもとくに
C量との相関がことに著しく、これにつき、Si−
Mn系の軟鋼と、HT−50鋼とを用いて実験的に求
めた割れ発生限界の一例を第3図に示した。
Among the chemical components of the base material, the correlation with the amount of C is particularly remarkable, and in this regard, Si-
Figure 3 shows an example of the cracking limit determined experimentally using Mn-based mild steel and HT-50 steel.

第3図では横軸に母材の炭素含有量(%)を、
また縦軸に、1層での溶接金属の溶込み深さ
(P)をとり、割れなしを〇、割れありを×であ
らわしてある。第3図によれば、この実験から母
材のC量が0.20%以上で溶接金属の厚さつまり溶
込み深さが大きいほど割れが発生し易いことがわ
かる。なお、溶込み深さに対してビード幅が極め
て小さくなるような溶接、たとえば片側2層以上
で開先内ビードとなるような場合には、溶込み深
さが小さい範囲から割れが発生するようになる。
以上のべたような割れ発生傾向についてうもれア
ークを利用する深溶込み溶接では次のような現象
が関係する。この溶接では母板を深さ方向に多量
に溶融するため溶接金属中に占める母材溶融金属
の割合(母材希釈率)が60〜70%と高くなり、換
言すると溶接金属の組成が母板成分に大きく影響
される。すなわち、溶接金属の微小割れ発生傾向
が母板成分によつて著しく変化すると考えられ
る。したがつて割れ防止には母板の組成を調整す
ればよいが、強度などの特性を確保するために
も、また経済性からもそれが制限される。
In Figure 3, the horizontal axis shows the carbon content (%) of the base material,
Further, the vertical axis represents the penetration depth (P) of the weld metal in one layer, and no cracks are represented by ○, and cracks are represented by ×. According to FIG. 3, it can be seen from this experiment that cracks are more likely to occur as the C content of the base metal is 0.20% or more and the thickness of the weld metal, that is, the penetration depth is larger. In addition, in welding where the bead width is extremely small relative to the penetration depth, for example, when there is a bead within the groove with two or more layers on one side, cracks may occur from an area where the penetration depth is small. become.
The following phenomena are related to the above-mentioned tendency for sticky cracks to occur in deep penetration welding that utilizes a penetrating arc. In this welding, a large amount of the base metal is melted in the depth direction, so the proportion of the base metal molten metal in the weld metal (base metal dilution ratio) is as high as 60 to 70%.In other words, the composition of the weld metal is the same as the base metal. greatly influenced by ingredients. In other words, it is thought that the tendency of microcracks to occur in weld metal changes significantly depending on the base plate components. Therefore, to prevent cracking, it is possible to adjust the composition of the base plate, but this is limited by the need to ensure properties such as strength and from economical considerations.

この発明は鋼板の種類にかかわらず微小割れの
発生しない溶接方法を提供しようとするものであ
る。さて第4図にこの発明に従うサブマージアー
ク溶接に用いる溶接継手の開先を示した。溶接し
ようとする鋼板1,1′の突合わせ面に鋼ブロツ
クよりなるインサート5をはさむ。そしてフラツ
クス6内でワイヤ7とインサート5との間にアー
クを発生させてインサートを第5図のように部分
的に溶融させて溶接金属3を形成する。その後母
板1,1′を反転させて反対側を同様の方法で溶
接を行い、未溶融のインサート5を完全に溶融さ
せ鋼板1,1′の溶接を完了させる。
This invention aims to provide a welding method that does not cause microcracks regardless of the type of steel plate. Now, FIG. 4 shows the groove of a weld joint used in submerged arc welding according to the present invention. An insert 5 made of a steel block is placed between the abutting surfaces of the steel plates 1 and 1' to be welded. Then, an arc is generated between the wire 7 and the insert 5 within the flux 6 to partially melt the insert as shown in FIG. 5, thereby forming the weld metal 3. Thereafter, the base plates 1, 1' are reversed and welding is performed on the opposite side in the same manner, thereby completely melting the unmelted insert 5 and completing the welding of the steel plates 1, 1'.

この場合にインサート5はたとえばC量を0.07
%以下とした板厚2〜12mm、高さ10mm以上のもの
である。
In this case, the insert 5 has a C content of 0.07, for example.
% or less, the plate thickness is 2 to 12 mm, and the height is 10 mm or more.

このような溶接を行えば溶接金属3は鋼板1,
1′すなわち母材の溶融物、インサート5の溶融
物およびワイヤ7が溶融した溶着物が混合して形
成され、そして、溶接金属全体に占める母材溶融
金属の割合は、30〜45%程度となつてインサート
5を用いない従来法よりも約30%低下する。ま
た、インサート5の溶融金属が占める割合は20〜
35%となる。
If such welding is performed, the weld metal 3 will become the steel plate 1,
1', that is, the molten material of the base metal, the molten material of the insert 5, and the welded material of the wire 7 are mixed and formed, and the proportion of the molten material of the base material to the entire weld metal is about 30 to 45%. This is approximately 30% lower than the conventional method that does not use the insert 5. In addition, the proportion of molten metal in insert 5 is 20~
It will be 35%.

すなわち、インサート5の併用によつて溶接金
属組成の母材依存度が低下でき、従つてインサー
ト5として、母材よりも低炭素当量成分とした鋼
片を用いることにより耐割れ性に優れた溶接金属
が形成される。
In other words, by using the insert 5 in combination, the dependence of the weld metal composition on the base metal can be reduced, and by using a steel piece with a lower carbon equivalent content than the base metal as the insert 5, welding with excellent crack resistance can be achieved. Metal is formed.

この例でインサートのC量を0.07%以下にした
が、より高いC量では微小割れの発生確率が高ま
る。すなわち0.07%をこえるC量のとき、溶接金
属のC量が0.1%以上になることがあり、溶接時
の拘束が大きい場合に割れが発生することがあ
る。一方インサートの厚みについては2mmより薄
いインサートは熱容量が小さ過ぎて最初に溶接す
る側で溶落ちが発生するおそれがあり、また12mm
をこえるとインサートと母材との間のどちらかの
側に融合不良が発生して完全な継手を形成でき難
いことがたしかめられている。
In this example, the C content of the insert was set to 0.07% or less, but a higher C content increases the probability of microcracks occurring. That is, when the C content exceeds 0.07%, the C content of the weld metal may exceed 0.1%, and cracks may occur if the restraint during welding is large. On the other hand, regarding the thickness of the insert, an insert thinner than 2 mm has too small a heat capacity and may cause burn-through on the side that is welded first.
It has been confirmed that if the temperature is exceeded, poor fusion occurs on either side between the insert and the base metal, making it difficult to form a complete joint.

この発明に従いうもれアークを利用した深溶込
み溶接で、溶接金属中に占める母材溶融金属の稀
釈を低率に制御するには、間先突合せ面に上記の
ような鋼片ブロツクのインサートをはさみ込めば
よい。
In order to control the dilution of the molten base metal in the weld metal to a low rate in deep penetration welding using a leakage arc according to the present invention, inserts of steel billet blocks as described above are inserted between the butt surfaces of the weld metal. Just put it in.

これまでにもこの種溶接の能率向上を目指して
開先内に第6図、第7図のごとくあらかじめ鋼粒
や鉄粉8または三角形状の棒鋼9を添加して溶接
する方法が提案されている。しかし、これらの方
法では深溶込み溶接は実施できない。すなわち、
鋼粒や鉄粉8の場合には粒子個々の重量が小さい
ため、また棒鋼9の場合も溶接熱に基づく変形の
ため、これらの添加物が簡単に移動してしまいう
もれアークを安定して発生させることができな
い。したがつて、このような方法ではうもれアー
クを利用して深溶込みを形成するような高能率溶
接は不可能である。一方、この発明の方法では、
鋼片ブロツクのインサートが開先のルート面には
さみ込まれるためしつかりと固定化され、うもれ
アークを安定的に維持できるのである。
In order to improve the efficiency of this type of welding, methods have been proposed in which steel grains, iron powder 8 or triangular steel bars 9 are added in advance to the groove as shown in Figures 6 and 7. There is. However, deep penetration welding cannot be performed using these methods. That is,
In the case of steel grains and iron powder 8, the weight of each particle is small, and in the case of steel bar 9, these additives are easily moved due to deformation due to welding heat, resulting in stable generation of leakage arc. I can't do it. Therefore, with this method, it is impossible to perform high-efficiency welding that uses a leaking arc to form deep penetration. On the other hand, in the method of this invention,
Since the insert of the steel block block is inserted into the root surface of the groove, it is firmly fixed and the leakage arc can be maintained stably.

以下この発明の実施例についてのべる。 Examples of this invention will be described below.

実施例 1 SB−49(C:0.25%、Si:0.25%、Mn:0.85
%、P:0.019%、S:0.012%)板厚50mmの突合
せ溶接をこの発明に従うサブマージアーク溶接を
利用して行つた。
Example 1 SB-49 (C: 0.25%, Si: 0.25%, Mn: 0.85
%, P: 0.019%, S: 0.012%) Butt welding of a plate thickness of 50 mm was performed using submerged arc welding according to the present invention.

ルート面の高さ30mm、表面、裏面とも溝深さ10
mm、角度90゜のX型に母板端面を加工し、開先の
ルート面に板厚5mm、高さ30mmのインサートをは
さみこんで開先を形成した。このインサートの組
成はC0.06%、Si0.25%、Mn1.45%、P0.014%、
S0.008%の鋼片である。
Root surface height 30mm, groove depth 10 on both front and back sides
The end face of the base plate was machined into an X-shape with an angle of 90° and an insert with a thickness of 5 mm and a height of 30 mm was inserted into the root surface of the groove to form a groove. The composition of this insert is C0.06%, Si0.25%, Mn1.45%, P0.014%,
It is a steel billet with S0.008%.

溶接材料としてはワイヤにC0.09%、Si0.02
%、Mn1.95%のKW−36(4.8mm径)、フラツクス
に高塩基性、焼成型のもの(MgO29%、
CaCO314%、CaF215%、SiO220%、Al2O315%
その他7%:12〜200メツシユ)を用いて裏面
側、表面側ともに先行電極1700A、32V、後行電
極1300A、45V、速度65cm/min、電極間距離60
mmで溶接を行つた。
As welding materials, the wire contains C0.09% and Si0.02.
%, Mn 1.95% KW-36 (4.8 mm diameter), flux highly basic, calcined type (MgO 29%,
CaCO3 14%, CaF2 15%, SiO2 20%, Al2O3 15 %
Other 7%: 12 to 200 meshes), leading electrode 1700A, 32V, trailing electrode 1300A, 45V on both back and front sides, speed 65cm/min, distance between electrodes 60
Welding was done in mm.

溶接に際しては溶落ちなどの不具合は発生せ
ず、うもれアークによる深溶込みを確保すること
ができた。
There were no problems such as burn-through during welding, and we were able to ensure deep penetration due to the penetrating arc.

溶接後のX線透過試験の結果、溶接金属には割
れ、気孔、スラグ巻込みなどの内部欠陥は認めら
れなかつた。また継手引張試験では引張強さの規
格値49〜63Kg/mm2に対して55Kg/mm2で溶接金属に
て破断した。さらに側曲げ試験でも曲げ角度180
゜にて欠陥は発生せず十分な延性があつた。
As a result of an X-ray transmission test after welding, no internal defects such as cracks, pores, or slag entrainment were observed in the weld metal. In the joint tensile test, the weld metal broke at a tensile strength of 55 Kg/mm 2 compared to the standard tensile strength of 49 to 63 Kg/mm 2 . Furthermore, the bending angle was 180 in the side bending test.
There were no defects and sufficient ductility was obtained at °C.

なお溶接金属の化学分析ではC0.10%、Si0.23
%、Mn1.21%、P0.013%、S0.010%で良好なも
のであつた。
Chemical analysis of weld metal shows C0.10% and Si0.23.
%, Mn 1.21%, P 0.013%, and S 0.010%.

以上のように従来法では通常15〜20パスを要す
るような厚肉鋼材の突合わせ溶接がこの発明の方
法によれば2パスで可能となり、その継手の機械
的性質も良好なものであることが立証できた。
As described above, butt welding of thick steel materials, which normally requires 15 to 20 passes using conventional methods, can be performed in two passes using the method of the present invention, and the mechanical properties of the joint are also good. was proven.

実施例 2 SS−41(C:0.23%、Si:0.26%、Mn:0.96
%、P:0.018%、S:0.015%)板厚80mmの突合
せ両側溶接にサブマージアークを利用してこの発
明の方法を適用した。この溶接は表、裏面からそ
れぞれ25mmずつ溶着すればよい部分溶込みの継手
である。開先のルート面の高さを60mm、両側の溝
深さを各15mm、角度60゜のX極に母材端面を加工
し、ルート面に板厚9mm、高さ60mmのインサート
をはさみこんで開先を形成した。インサートの組
成はC0.04%、Si0.15%、Mn0.95%、P0.010%、
S0.004%である。溶接材料としてワイヤにC0.08
%、Si0.02%、Mn1.05%、P0.018%、S0.010%の
KW−43B(4.8mm径)、フラツクスにCaO24%、
MgO12%、SiO234%、Al2O318%、CaF29%、そ
の他3%からなる溶融型フラツクス(20〜200メ
ツシユ)を用い、2電極にて裏面側、表面側とも
に先行電極1650A、32V、後行電極1250A、45V、
速度55cm/min、電極間距離40mmで溶接を完了し
た。
Example 2 SS-41 (C: 0.23%, Si: 0.26%, Mn: 0.96
%, P: 0.018%, S: 0.015%) The method of this invention was applied to butt welding on both sides of a plate with a thickness of 80 mm using a submerged arc. This is a partial penetration joint that only requires welding 25mm from the front and back sides. The height of the root surface of the groove is 60 mm, the groove depth on both sides is 15 mm each, the end surface of the base metal is machined into an X-pole with an angle of 60 degrees, and an insert with a thickness of 9 mm and a height of 60 mm is inserted into the root surface. A groove was formed. The composition of the insert is C0.04%, Si0.15%, Mn0.95%, P0.010%,
S0.004%. C0.08 to wire as welding material
%, Si0.02%, Mn1.05%, P0.018%, S0.010%
KW-43B (4.8mm diameter), CaO24% in flux,
Using a molten flux (20 to 200 meshes) consisting of 12% MgO, 34% SiO 2 , 18% Al 2 O 3 , 9% CaF 2 and 3% others, two electrodes were used, with the leading electrode 1650A on both the back and front sides. , 32V, trailing electrode 1250A, 45V,
Welding was completed at a speed of 55cm/min and a distance between electrodes of 40mm.

超音波探傷検査の結果、溶接部には割れ、気
孔、スラグ巻込みなどの内部欠陥は認められなか
つた。また、溶込み深さが裏側で29mm、表側30mm
あり、設計上の25mmに対して十分大きなものであ
つた。なお、ビート表面形状は良好であり、アン
ダカツトなどの表面欠陥は認められなかつた。溶
接継手表面側から採取したA1号丸棒引張試験片
による引張試験では引張強さ44Kg/mm2、伸び35%
で熱影響部にて破断し、十分なる継手強度と延性
を有していることがわかつた。表面側溶接金属部
から採取した2mmVノツチ衝撃試験では0℃にて
6.2Kg−m(3個の平均値)で良好な靭性を示し
た。溶接金属部の化学成分はC0.08%、Si0.21
%、Mn1.15%、P0.017%、S0.012%であり、イ
ンサートの効果でC量が低下した。
As a result of ultrasonic flaw detection, no internal defects such as cracks, pores, or slag entrainment were found in the weld. Also, the penetration depth is 29mm on the back side and 30mm on the front side.
It was sufficiently large compared to the designed 25mm. Note that the bead surface shape was good, and no surface defects such as undercuts were observed. In a tensile test using a No. A1 round bar tensile test piece taken from the surface side of the welded joint, the tensile strength was 44 Kg/mm 2 and the elongation was 35%.
The joint fractured in the heat-affected zone, indicating that the joint had sufficient strength and ductility. In the 2mm V notch impact test taken from the surface side weld metal part, it was measured at 0℃.
Good toughness was shown at 6.2 kg-m (average value of 3 pieces). The chemical composition of the weld metal part is C0.08%, Si0.21
%, Mn 1.15%, P 0.017%, S 0.012%, and the amount of C decreased due to the effect of the insert.

実施例 3 ASTM規格A516−Gr70(C:0.23%、Si:0.31
%、Mn:1.42%、P:0.019%、S:0.014%)板
厚36mmの突合せ両側溶接にガスシールドアークを
利用してこの発明の方法を適用した。
Example 3 ASTM standard A516-Gr70 (C: 0.23%, Si: 0.31
%, Mn: 1.42%, P: 0.019%, S: 0.014%) The method of this invention was applied to butt welding on both sides of a 36 mm thick plate using a gas shielded arc.

開先としてルート面の高さ10mm、両側の溝深さ
を各13mm、角度40゜のX型に母材端面を加工し、
ルート面に板厚3mm高さ10mmのインサートをはさ
みこんで開先を形成した。
Machining the end face of the base metal into an X-shape with a root surface height of 10 mm, a groove depth of 13 mm on both sides, and an angle of 40° as a bevel.
An insert with a thickness of 3 mm and a height of 10 mm was inserted into the root surface to form a groove.

インサートの組成はC0.01%、Si0.08%、
Mn0.45%、P0.006%、S0.008%である。
The composition of the insert is C0.01%, Si0.08%,
Mn0.45%, P0.006%, S0.008%.

溶接ワイヤとしてC0.06%、Si0.30%、Mn1.52
%、P0.010%、S0.010の径4.0mmのものを、シー
ルドガスとしてAr80%、CO220%の混合ガスを
用いた。
C0.06%, Si0.30%, Mn1.52 as welding wire
%, P0.010%, and S0.010 with a diameter of 4.0 mm, and a mixed gas of 80% Ar and 20% CO 2 was used as the shielding gas.

溶接は裏面側、表面側ともに2層盛として以下
の条件で行つた。
Welding was carried out in two layers on both the back side and the front side under the following conditions.

まず、裏面側では第1層目を2電極で先行電極
950A、30V、後行電極850A、30V、速度50cm/
min、極間距離200mmにて、第2層目を単電極で
700A、31V、30cm/minにて溶接した。次に、表
面側を裏面側と同一条件で2層盛溶接を施した。
First, on the back side, the first layer is made of two electrodes, and the leading electrode is
950A, 30V, trailing electrode 850A, 30V, speed 50cm/
min, the distance between the electrodes is 200mm, and the second layer is made of a single electrode.
Welding was performed at 700A, 31V, and 30cm/min. Next, two-layer welding was performed on the front side under the same conditions as the back side.

ビード表面にはアンダカツト、オーバラツプは
なく良好なビードが得られた。X線透過検査では
割れ、気孔、スラグ巻込みなどの内部欠陥は見ら
れなかつた。継手引張試験では54Kg/mm2にて熱影
響部から破断し、強度として十分なものであつ
た。側曲げ試験でも曲げ角度180゜で欠陥は発生
せず、高延性な継手であつた。溶接金属の2mmV
ノツチ衝撃試験では−20℃において表面から2〜
12mmの位置が9.6Kg−m(3個の平均値)板厚中
央位置が14.3Kg−m(3個の平均値)と極めて高
靭性なものであつた。
A good bead was obtained with no undercuts or overlaps on the bead surface. X-ray inspection revealed no internal defects such as cracks, pores, or slag entrainment. In the joint tensile test, the joint broke from the heat affected zone at 54 kg/mm 2 , indicating sufficient strength. Even in the side bending test, no defects occurred at a bending angle of 180°, and the joint was highly ductile. 2mmV of weld metal
In the notch impact test, 2~
The toughness was 9.6 kg-m (average value of 3 pieces) at the 12 mm position and 14.3 kg-m (average value of 3 pieces) at the center of the plate thickness.

溶接金属の化学成分はインサートを溶融した部
分に相当する板厚中央でC0.07%、Si0.28%、
Mn1.25%、P0.012%、S0.007%であつた。
The chemical composition of the weld metal is 0.07% C, 0.28% Si at the center of the plate thickness, which corresponds to the melted part of the insert.
Mn was 1.25%, P was 0.012%, and S was 0.007%.

以上のようにこの発明の方法によつて耐割れ
性、靭性にすぐれた溶接継手を能率よく形成する
ことが可能となつた。
As described above, the method of the present invention makes it possible to efficiently form a welded joint with excellent crack resistance and toughness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の深溶込み溶接法の開先形状を示
す断面図、第2図は従来の深溶込み溶接のビード
横断面図、第3図は従来の深溶込み溶接における
母材の炭素量と微小割れの関係を示すグラフ、第
4図はこの発明の開先形状と溶接の態様を示す断
面図、第5図はこの発明の溶接のビード横断面
図、第6図、第7図は、従来の鋼粒添加溶接法お
よび棒鋼添加溶接法を示す断面図である。 1,1′……鋼板、2……開先ルート面、3…
…溶接ビード、4……微小割れ、5……インサー
ト、6……溶接フラツクス、7……溶接ワイヤ、
8……鋼粒、9……棒鋼。
Figure 1 is a cross-sectional view showing the groove shape in conventional deep penetration welding, Figure 2 is a cross-sectional view of the bead in conventional deep penetration welding, and Figure 3 is a cross-sectional view of the bead in conventional deep penetration welding. A graph showing the relationship between carbon content and microcracks, FIG. 4 is a sectional view showing the groove shape and welding mode of the present invention, FIG. 5 is a cross-sectional view of the welding bead of the present invention, FIGS. The figure is a cross-sectional view showing a conventional steel grain addition welding method and a steel bar addition welding method. 1, 1'... Steel plate, 2... Groove root surface, 3...
...welding bead, 4...micro crack, 5...insert, 6...welding flux, 7...welding wire,
8...Steel grain, 9...Steel bar.

Claims (1)

【特許請求の範囲】 1 多電極のサブマージアークまたはガスシール
ドアーク溶接における先行電極につき、溶接継手
の開先ルート面内に母材よりも低炭素当量成分と
した鋼片ブロツクよりなるインサートを挟み込ん
で固定した上で、うもれアークとなる溶接条件で
の深溶込みによりインサートを溶融し、溶接金属
中に占める母材溶融金属の稀釈を低率に制御する
ことを特徴とする厚肉鋼材の多電極深溶込みアー
ク溶接法。 2 インサートの溶融が、厚肉鋼材両面のうち最
初に溶接する片面側では小部分とし、その後の他
面側で残りの全部にわたらせる特許請求の範囲1
記載の溶接法。
[Claims] 1. For the leading electrode in multi-electrode submerged arc or gas-shielded arc welding, an insert made of a steel billet block with a lower carbon equivalent content than the base metal is inserted in the groove root plane of the weld joint. A multi-electrode made of thick-walled steel material that is fixed and then melted by deep penetration under welding conditions that create a leaking arc, controlling the dilution of the base molten metal in the weld metal to a low rate. Deep penetration arc welding method. 2. Claim 1: The melting of the insert is performed in a small portion on one side of the thick steel material to be welded first, and then melts on the entire remaining side on the other side.
Welding method described.
JP9661581A 1981-06-24 1981-06-24 Deep penetration arc welding method for thick walled steel materials by multiple electrodes Granted JPS58377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9661581A JPS58377A (en) 1981-06-24 1981-06-24 Deep penetration arc welding method for thick walled steel materials by multiple electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9661581A JPS58377A (en) 1981-06-24 1981-06-24 Deep penetration arc welding method for thick walled steel materials by multiple electrodes

Publications (2)

Publication Number Publication Date
JPS58377A JPS58377A (en) 1983-01-05
JPS6247111B2 true JPS6247111B2 (en) 1987-10-06

Family

ID=14169755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9661581A Granted JPS58377A (en) 1981-06-24 1981-06-24 Deep penetration arc welding method for thick walled steel materials by multiple electrodes

Country Status (1)

Country Link
JP (1) JPS58377A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048067A (en) * 2001-08-06 2003-02-18 Masakatsu Uchida Single side welding method of conduit and pipe
JP5205015B2 (en) * 2007-09-03 2013-06-05 株式会社小松製作所 Welded structure
CN104002029B (en) * 2014-06-06 2016-10-05 东北大学 A kind of improved flat board butt joint submerged-arc welding
AT517683B1 (en) * 2014-09-05 2017-04-15 Stiwa Holding Gmbh Method for producing an assembly by means of a material connection
CN110153634B (en) * 2019-05-17 2021-06-29 中国石油天然气集团公司管材研究所 Pipeline girth weld re-welding repair method
CN113600971B (en) * 2021-08-09 2022-09-30 哈尔滨红光锅炉总厂有限责任公司 Girth welding process for header and pipeline with thick wall on power station boiler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136219A (en) * 1974-09-24 1976-03-27 Mitsubishi Heavy Ind Ltd SEMENTOGENRYOKASHOSOCHI
JPS5668591A (en) * 1979-11-09 1981-06-09 Mitsubishi Heavy Ind Ltd Thick-walled material welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136219A (en) * 1974-09-24 1976-03-27 Mitsubishi Heavy Ind Ltd SEMENTOGENRYOKASHOSOCHI
JPS5668591A (en) * 1979-11-09 1981-06-09 Mitsubishi Heavy Ind Ltd Thick-walled material welding method

Also Published As

Publication number Publication date
JPS58377A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
US4010309A (en) Welding electrode
JP4256879B2 (en) Method of joining iron-based material and aluminum-based material and joint
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
CN106488825A (en) Vertical narrow groove gas-shielded arc welding method
JP2000167670A (en) Fillet welding method of high strength thick plate steel
KR100343750B1 (en) Pit and blow hole resistant flux-cored wire electrode for gas-shielded arc-welding of galvanized steel sheet
JPS6247111B2 (en)
US6730876B2 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
JP3442187B2 (en) Flux-cored wire for gas shielded arc welding
JP3182672B2 (en) Internal welding method of clad steel pipe
CN118574694A (en) Single-sided submerged arc welding method, welded joint and manufacturing method thereof
JP2001198674A (en) Multilayered build-up carbon dioxide shielded arc welding method for ni-hard cast iron base metal
JP7244283B2 (en) 3-electrode single-sided gas-shielded arc welding method
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
KR100513214B1 (en) A bond flux for submerged arc welding
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
CN115279528A (en) Multi-electrode gas shielded arc single-side welding method and multi-electrode gas shielded arc single-side welding device
JP4707949B2 (en) Multi-electrode single-sided submerged arc welding method
JPH08276273A (en) Butt welding method for clad steel
JPS61222683A (en) Narrow gap submerged arc welding method
JP7327667B2 (en) Gas-shielded arc welding method, welded joint, and method for manufacturing the welded joint
JP7560002B1 (en) Narrow gap gas shielded arc welding method
JPH05337651A (en) Multiple electrode one-side submerged arc welding method
JP2530899B2 (en) Self shielded arc welding flux cored wire
JPH03230880A (en) Welding method utilizing laser beam