JP2000167670A - Fillet welding method of high strength thick plate steel - Google Patents

Fillet welding method of high strength thick plate steel

Info

Publication number
JP2000167670A
JP2000167670A JP34868698A JP34868698A JP2000167670A JP 2000167670 A JP2000167670 A JP 2000167670A JP 34868698 A JP34868698 A JP 34868698A JP 34868698 A JP34868698 A JP 34868698A JP 2000167670 A JP2000167670 A JP 2000167670A
Authority
JP
Japan
Prior art keywords
welding
electrode
voltage
fillet
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34868698A
Other languages
Japanese (ja)
Inventor
Naoya Hayakawa
直哉 早川
Koichi Yasuda
功一 安田
Tadamasa Yamaguchi
忠政 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34868698A priority Critical patent/JP2000167670A/en
Publication of JP2000167670A publication Critical patent/JP2000167670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fillet welding method of a high strength thick steel capable of obtaining a sufficient throat depth without generating a welding defect under a heat input of <=200 KJ/cm. SOLUTION: A T joint is formed of a web material subjected to groove preparation under tensile strength of >=590 MPa, a plate thickness of >=45 mm, and a flange material by two electrode flat position submerged arc welding. In the welding method, the sintered type flux containing iron powder of 20-40 wt.% and the welding wire satisfying the formula of 0.36×Cpl+0.34×Cw<=0.10 (Cpl is C quantity (wt.%) of steel, Cw is C quantity (wt.%) of wire) are used as welding materials. A preceding electrodes has a electric current of <=400 A and a voltage of (0.005 × preceding electrode electric current (A) +23) to (0.005 × preceding electrode electric current (A) +25) V, a succeeding electrodes has a voltage (0.005 ×preceding electrode electric current (A) +25) to (0.005 ×preceding electrode electric current (A) +40) V, particle joint penetration welding is done under a condition of a welding speed of >=21 cm/min and an input heat quantity of 200 KJ/cm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、建築用の高強度
厚肉鋼材のすみ肉溶接方法に関し、特に小入熱量で高能
率にウェブ厚100 mm程度までのT継手を形成するに好
適な、部分溶込みによる高強度厚肉鋼材のサブマージア
ークすみ肉溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fillet welding method for a high-strength thick steel material for construction, and more particularly to a method for forming a T-joint with a small heat input and high efficiency up to a web thickness of about 100 mm. The present invention relates to a submerged arc fillet welding method for a high-strength thick steel material by partial penetration.

【0002】[0002]

【従来の技術】近年、建築物の高層化や柱なしの大空間
をそなえるビルの増加に伴い、柱として用いられる部材
の板厚が増大してきている。また、建築用に降伏比80%
以下を達成した高性能590(MPa)級高張力鋼 (HT) も開発
され、その建築物への適用例も次第に増えつつある。さ
らに、これら高層ビル建設にあたっては、近年ボックス
柱のかわりに厚肉の組立H形鋼を柱として使用すること
が試みられている。これら組立H形鋼のウェブに用いら
れる鋼板板厚は、概ね45〜100 mmの範囲のものである。
また、溶接方法としては、一般に、2電極サブマージア
ーク溶接が採用されている。高性能HT 590級鋼をH形
鋼に組立てる場合のすみ肉溶接に当たっては、鋼材倶楽
部より溶接施工指針が示されており、これによれば、す
み肉溶接は溶接入熱200 kJ/cm 以下で行うことが定めら
れている。このため、HT 590級鋼を素材とした組立H
形鋼を製造するためには、200 kJ/cm 以下という入熱制
限の中で如何にして健全な溶接金属で必要な強度が得ら
れる溶接を行うかが大きな問題となる。
2. Description of the Related Art In recent years, the thickness of members used as pillars has been increasing with the rise of buildings and the increase in buildings having large spaces without pillars. Also 80% yield ratio for construction
High-performance 590 (MPa) grade high-strength steel (HT), which achieves the following, has also been developed, and its application to buildings is gradually increasing. Further, in the construction of these high-rise buildings, in recent years, attempts have been made to use thick assembled H-section steel as the columns instead of box columns. The thickness of the steel sheet used for the web of these assembled H-section steels is generally in the range of 45 to 100 mm.
Further, as a welding method, generally, two-electrode submerged arc welding is adopted. In the case of fillet welding when assembling high-performance HT 590 grade steel into H-section steel, the Steel Materials Club has indicated welding construction guidelines. According to this, fillet welding requires welding heat input of 200 kJ / cm or less. It is prescribed to do. For this reason, assembly H made of HT590 grade steel
In order to manufacture a section steel, it is a major problem how to perform welding to obtain a necessary strength with a sound weld metal within a heat input limit of 200 kJ / cm or less.

【0003】さて、開先加工を施した厚肉の組立H形鋼
の溶接方法については、例えば特開平5−57448 号公報
にウェブ厚60〜120 mmまでの部分溶込み溶接法が開示
されている。しかし、この技術は溶接入熱200 kJ/cm 以
下での溶接には対応できる方法ではない。また、特開平
7−68380 号公報、特開平9−99371 号公報にはいずれ
もウェブ厚100 mmまでの完全溶込み溶接を可能にする
方法が開示されている。しかし、これらの技術も、適用
される溶接入熱量が200 kJ/cm を大幅に超えるものであ
る。
[0003] As for a method of welding a thick-walled assembled H-section steel having a groove, for example, Japanese Patent Application Laid-Open No. 5-57448 discloses a partial penetration welding method for a web thickness of 60 to 120 mm. I have. However, this technique is not a method that can be used for welding with welding heat input of 200 kJ / cm or less. Further, Japanese Patent Application Laid-Open Nos. 7-68380 and 9-99371 both disclose methods for enabling full penetration welding up to a web thickness of 100 mm. However, these techniques also have applied welding heat inputs well in excess of 200 kJ / cm2.

【0004】[0004]

【発明が解決しようとする課題】上述したように、従来
の厚肉鋼材のすみ肉溶接方法は、溶接入熱量が200 kJ/c
m を超えるものであり、最近増加しつつあるHT 590級
鋼を用いた組立H形鋼の溶接へは適用できない。
As described above, the conventional fillet welding method for a thick steel material has a welding heat input of 200 kJ / c.
m and cannot be applied to welding of assembled H-section steel using HT 590 grade steel, which is increasing recently.

【0005】ところで一般に、組立H形鋼が柱として用
いられる場合は、梁がつく仕口部付近以外は部分溶込み
溶接となり、また、梁として用いられる場合は、溶接長
全長が部分溶込み溶接となる。よって、建築に用いられ
るH形鋼は、部分溶込み溶接の占める割合が完全溶けこ
み溶接に比べてはるかに多い。すみ肉溶接継手の強度は
のど厚をもとに計算され、こののど厚は本来(継手強度
計算上)は実際のど厚で評価されるものである。実際の
ど厚を知るには、すみ肉溶接金属の溶込み深さを知るこ
とが必要となり、超音波探傷の技術を用いれば測定可能
である。しかし、この測定をすべての組立H形鋼の溶接
部に採用することは、鉄骨を製造する上で、生産性を低
下させる。
In general, when an assembling H-section steel is used as a column, partial penetration welding is performed except in the vicinity of a joint portion where a beam is attached. Becomes Therefore, in the H-section steel used for construction, the ratio of partial penetration welding is much larger than that of full penetration welding. The strength of a fillet welded joint is calculated based on the throat thickness, and this throat thickness is originally evaluated (for joint strength calculation) by the actual throat thickness. In order to know the actual throat thickness, it is necessary to know the penetration depth of the fillet weld metal, which can be measured by using an ultrasonic flaw detection technique. However, employing this measurement for all welded H-section welds reduces productivity in producing steel frames.

【0006】一方、すみ肉溶接部ののど厚を評価するに
当たり、このような超音波探傷の負荷を軽減する一つの
手段として、開先底部を起点としてのど厚を算出する
「理論のど厚」を採用する方法がある。この場合には、
開先探さが確認できていれば、溶接後の脚長の測定によ
りのど厚を比較的容易に算出することが可能となり、溶
接継手の強度保証が可能となる。こうした考えによれ
ば、強度設計上から開先加工が必須になる。開先深さ
は、部分溶け込み溶接の場合、ウェブ板厚をtとしたと
き、2t1/2 としたり、t/3とするのが一般的であ
る。
On the other hand, in evaluating the throat thickness of a fillet weld, as one means for reducing the load of such ultrasonic flaw detection, a "theoretical throat thickness" for calculating the throat thickness starting from the groove bottom is used. There is a method to adopt. In this case,
If the groove search can be confirmed, the throat thickness can be calculated relatively easily by measuring the leg length after welding, and the strength of the welded joint can be assured. According to this idea, beveling is essential from the viewpoint of strength design. In the case of partial penetration welding, the groove depth is generally 2t 1/2 or t / 3 when the web thickness is t.

【0007】したがって、このような開先形状のもと
で、200 kJ/cm 以下の小入熱で、信頼できる継手強度を
得るためには、開先内を効率的に溶着金属で満たし、し
かも必要なのど厚(脚長)が得られるような溶着量を溶
接欠陥なく確保することが必要となる。
Therefore, in order to obtain a reliable joint strength with a small heat input of 200 kJ / cm or less under such a groove shape, the inside of the groove is efficiently filled with the weld metal, and It is necessary to secure a welding amount such that a necessary throat thickness (leg length) can be obtained without welding defects.

【0008】そこで本発明の目的は、従来技術における
上記問題点に鑑み、引張強さが590MPa 級以上、板厚45
mm 以上で開先加工したウェブ材と、フランジ材とのす
み肉溶接において、200 kJ/cm 以下の溶接入熱でも、割
れ、アンダーカットなどの溶接欠陥を生じることなく、
十分なのど厚が得られるようにした、高強度厚肉鋼材の
すみ肉溶接方法を提案することにある。
In view of the above problems in the prior art, an object of the present invention is to provide a sheet having a tensile strength of at least 590 MPa and a sheet thickness of 45 mm.
In fillet welding between a web material that has been grooved to a thickness of at least 200 mm and a flange material, even with a welding heat input of 200 kJ / cm or less, welding defects such as cracks and undercuts do not occur.
An object of the present invention is to propose a fillet welding method for a high-strength thick steel material which can obtain a sufficient throat thickness.

【0009】[0009]

【課題を解決するための手段】本発明は、引張強さが59
0 MPa 級以上、板厚45 mm 以上で開先加工したウェブ材
と、フランジ材とを2電極下向きサブマージアーク溶接
によりT継手を形成する、高強度厚肉鋼材のすみ肉溶接
方法において、溶接材料として、鉄粉:20〜40wt%を含
む焼成型フラックスと、C含有量が下記 (1)式を満足す
る溶接ワイヤを用い、先行電極は電流が1400A以下かつ
電圧が(0.005×先行電極電流(A) +23)〜(0.005×先行
電極電流(A) +32)V、後行電極は電圧が(0.005×後行
電極電流(A) +25)〜(0.005×先行電極電流(A) +40)
Vであり、溶接速度が21cm/min以上、入熱量が200 kJ/c
m 以下である条件で部分溶込み溶接することを特徴とす
る高強度厚肉鋼材のすみ肉溶接方法である。 記 0.36×Cpl+0.34×Cw ≦0.10……(1) ただし、Cplは鋼材のC量(wt%)、Cw はワイヤのC
量(wt%)
According to the present invention, a tensile strength of 59% is provided.
In the method of fillet welding of high-strength thick steel material, a T-joint is formed by two-electrode downward submerged arc welding of a web material that has been grooved with a thickness of 45 MPa or more and a flange material with a thickness of 0 MPa or more. As an example, a sintering flux containing iron powder: 20 to 40 wt% and a welding wire having a C content satisfying the following equation (1) are used. The leading electrode has a current of 1400 A or less and a voltage of (0.005 × leading electrode current ( A) +23) to (0.005 × leading electrode current (A) +32) V, and the voltage of the succeeding electrode is (0.005 × leading electrode current (A) +25) to (0.005 × leading electrode current (A) +40)
V, welding speed 21cm / min or more, heat input 200 kJ / c
This is a fillet welding method for a high-strength thick steel material, characterized in that partial penetration welding is performed under a condition of not more than m. 0.36 × C pl + 0.34 × C w ≦ 0.10 (1) where C pl is the C content (wt%) of the steel material, and C w is the C of the wire.
Amount (wt%)

【0010】また、上記発明において、フランジ材が水
平面となす角度を50〜70°とした被溶接材姿勢にて溶接
することが好ましい。さらに、上記各発明において、開
先内における先行電極の狙い位置をウェブ面において開
先中心±3mm以内、後行電極の狙い位置をウェブ面にお
けるフランジからの距離にして2〜6mmとして溶接する
ことが好適である。なお、上記各発明において、ウェブ
の開先角度は、板厚が45〜80mmのとき35〜60°、板厚80
超〜100 mmのとき35〜50°とすることが望ましい。
Further, in the above invention, it is preferable that the welding is performed in a posture of the material to be welded in which the angle between the flange material and the horizontal plane is 50 to 70 °. Further, in each of the above inventions, welding is performed such that the target position of the leading electrode in the groove is within ± 3 mm of the groove center on the web surface, and the target position of the following electrode is 2 to 6 mm as the distance from the flange on the web surface. Is preferred. In the above inventions, the groove angle of the web is 35 to 60 ° when the thickness is 45 to 80 mm, and the thickness of the web is 80.
It is desirable to set the angle to 35 to 50 ° when the thickness is more than 100 mm.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳しく説明する。前述した特開平5−57448 号公報、
特開平7−68380 号公報おおよび特開平9−99371 号公
報に開示されている従来の厚肉組立H形鋼の溶接では、
いずれも490 MPa 級の低強度鋼を対象とし、しかも完全
溶込み溶接を行うものであって、その入熱量は200 kJ/c
m を大きく超えている。このため、これらの従来技術
は、厳しい入熱制限が求められる590 MPa 級以上の組立
H形鋼の溶接に通用することは不可能である。そこで、
発明者らは溶接入熱200 kJ/cm 以下で厚肉の引張強さ 5
90級以上の高張力鋼を効率よく部分溶込みすみ肉溶接す
る方法について検討を行い、特定のフラックス、ワイヤ
を用い、溶接条件を規制した2電極サブマージアーク溶
接を行えば、所期の目的が達成できるとの知見を得た。
Embodiments of the present invention will be described below in detail. JP-A-5-57448 described above,
In the conventional welding of a thick assembled H-section steel disclosed in JP-A-7-68380 and JP-A-9-99371,
All of them are intended for low-strength steel of 490 MPa class, and are also fully penetration welded, with a heat input of 200 kJ / c
m is greatly exceeded. For this reason, these conventional techniques cannot be applied to welding of an assembling H-section steel of 590 MPa class or more, which requires strict heat input restriction. Therefore,
The inventors found that the welding strength of the thick wall was less than 200 kJ / cm.
The purpose of this study is to investigate the method of efficiently performing the partial penetration fillet welding of high-strength steel of 90 grade or more, and to perform two-electrode submerged arc welding using specific fluxes and wires and regulating welding conditions. The knowledge that it can be achieved was obtained.

【0012】その要点を以下に列挙する。 (1)限られた溶接入熱の中で多くの溶着量を得るには、
焼成型フラックス中に多量の鉄粉を含有させ、かつその
効果を有効に活用するためには、溶接条件、特に溶接電
圧の調整が必要である。 (2)少ない溶着量で効率よく理論のど厚を確保するに
は、ワークの保持角度と開先角度を調整し、効率よく脚
長を得る必要がある。 (3)板厚が厚く、部分溶込みで、しかも高強度鋼である
ために、溶接金属に割れが発生しやすく、この割れ発生
を回避するためには溶接金属中のC量を十分低くする必
要がある。 (4)限られた溶接入熱の中では、電流を高くすると溶接
速度も速くする必要があるが、先行電極電流や溶接速度
は高温割れやアンダーカットといった欠陥に大きな影響
を及ぼすので、溶接条件の設定は極めて狭い範囲に限定
される。 (5)アンダーカット、融合不良およびスラグ巻き込みな
どの欠陥の発生を防止するには、開先角度とワークの傾
斜角度の調整、とりわけ電極の狙い位置の設定が重要で
ある。発明者らは、上記の知見に基づいて、溶接入熱20
0 kJ/cm 以下で、溶接欠陥を招くことなしに、部分溶込
みによるすみ肉溶接を1パスで行う方法を完成したので
ある。
The main points are listed below. (1) To obtain a large amount of deposition with limited welding heat input,
In order to contain a large amount of iron powder in the sintering flux and to effectively utilize the effect, it is necessary to adjust welding conditions, particularly welding voltage. (2) In order to efficiently secure the theoretical throat thickness with a small amount of welding, it is necessary to adjust the holding angle and groove angle of the work to obtain the leg length efficiently. (3) Since the steel plate is thick, partially penetrated, and is a high-strength steel, cracks easily occur in the weld metal. To avoid the occurrence of such cracks, the amount of C in the weld metal is sufficiently reduced. There is a need. (4) Under limited welding heat input, it is necessary to increase the welding speed by increasing the current.However, the leading electrode current and welding speed have a large effect on defects such as hot cracking and undercut. Is limited to a very narrow range. (5) In order to prevent the occurrence of defects such as undercut, poor fusion and slag entrapment, it is important to adjust the groove angle and the inclination angle of the work, and particularly to set the target position of the electrode. Based on the above findings, the inventors set the welding heat input 20
At 0 kJ / cm or less, a method for performing fillet welding by partial penetration in one pass without causing welding defects was completed.

【0013】以下、各構成要件について、限定理由を含
めてさらに説明する。 ・フラックス中の鉄粉:20〜40wt% 溶接入熱200 kJ/cm 以下で必要な溶着量を効果的に得る
ためには、フラックス中に20〜40wt%の鉄粉を含むこと
が必要である。鉄粉の量が20wt%に満たない少量では、
入熱200 kJ/cm 以下の小入熱量で必要な溶着量を得るこ
とが難しい。一方、40wt%を超えるとビードとフランジ
およびウェブの濡れが悪くなり、ビードの形状がオーバ
ーラップ状になったり、フランジ側の脚長が不安定にな
るほか、ビード表面がざらついて外観不良をきたす。な
お,本発明に使用するフラックスは、ビード外観や溶接
金属の強度、靱性の確保の観点から以下の組成の焼成型
フラックスであることが望ましい。 SiO2 :15〜35wt%、Al2O3 :3〜20wt%、TiO2 :2
〜10wt%、MgO:15〜35wt%、CaO:3〜8wt%、炭酸
ガス成分(CO2 換算):4〜15wt%、Si、Mn、Ti、A
l、Zrの金属粉の合計:2〜8wt%
Hereinafter, each component will be further described, including the reasons for limitation. -Iron powder in the flux: 20 to 40 wt% In order to effectively obtain the required amount of welding at a welding heat input of 200 kJ / cm or less, it is necessary to include 20 to 40 wt% iron powder in the flux. . If the amount of iron powder is less than 20wt%,
It is difficult to obtain the required welding amount with a small heat input of 200 kJ / cm or less. On the other hand, if it exceeds 40% by weight, the wetness of the bead, the flange and the web becomes poor, the bead shape becomes overlapped, the leg length on the flange side becomes unstable, and the bead surface becomes rough, resulting in poor appearance. The flux used in the present invention is desirably a fired flux having the following composition from the viewpoint of securing the appearance of the bead and the strength and toughness of the weld metal. SiO 2 : 15 to 35 wt%, Al 2 O 3 : 3 to 20 wt%, TiO 2 : 2
~10wt%, MgO: 15~35wt%, CaO: 3~8wt%, carbon dioxide component (CO 2 terms): 4~15wt%, Si, Mn , Ti, A
l, total of Zr metal powder: 2-8 wt%

【0014】・ワイヤ中のC含有量 ワイヤ中のC含有量は、0.36×Cpl+0.34×Cw ≦0.10
(ここで、Cplは鋼材のC量(wt%)、Cw はワイヤの
C量(wt%)を表す)を満足する必要がある。上式の範
囲を外れると、溶接金属中のC量が0.12wt%を超えて、
溶接金属中に高温割れが発生するからである。溶接金属
中のCは、鋼材、ワイヤ、フラックス中の鉄粉と炭酸塩
から供給されるが、鋼材とワイヤの寄与がとくに大きい
ので上式に定めた。ワイヤ中にはこの他の成分として、
溶接金属の強度と靱性を改善するため、Si:0.35wt%以
下、Mn:1.0 〜2.2 wt%を含むことが望ましい。またさ
らに、Mo、Niなどを含んでもよい。ワイヤ径については
4.8 〜6.4 mmの範囲が好ましい。次に溶接条件につい
て説明する
C content in the wire C content in the wire is 0.36 × C pl + 0.34 × C w ≦ 0.10
(Wherein, C pl is C of the steel product (wt%), C w represents the C content of the wire (wt%)) must satisfy the. Outside the range of the above formula, the C content in the weld metal exceeds 0.12 wt%,
This is because hot cracking occurs in the weld metal. C in the weld metal is supplied from the iron powder and the carbonate in the steel material, the wire, and the flux. As other components in the wire,
In order to improve the strength and toughness of the weld metal, it is desirable to include Si: 0.35 wt% or less and Mn: 1.0 to 2.2 wt%. Further, it may further contain Mo, Ni, or the like. About wire diameter
A range from 4.8 to 6.4 mm is preferred. Next, the welding conditions will be described.

【0015】・開先角度:35〜60°(50°) 開先角度が35°より小さいと、溶接ビードの断面形状が
幅に対して溶け込みが大きい細長い形状となり、高温割
れ感受性が高まり、高温割れが発生しやすくなる。一
方、60°より大きいと、開先断面積が大きくなりすぎ、
溶接入熱200 kJ/cm 以下の制限範囲内で必要な溶着量を
確保するのが難しくなり、ビード内部の開先が未溶融と
なる融合不良の欠陥を発生しやすくなる。この開先角度
は、板厚が80mmを超える場合には、より狭くしなけれ
ば、必要な溶着量が確保して十分なのど厚を確保するこ
とが困難になる。よって、このような板厚では開先角度
の上限は50°とする必要がある。
Groove angle: 35 to 60 ° (50 °) If the groove angle is smaller than 35 °, the cross-sectional shape of the weld bead becomes an elongated shape with a large penetration into the width, and the hot cracking susceptibility increases, Cracks are likely to occur. On the other hand, if it is larger than 60 °, the groove cross-section becomes too large,
It becomes difficult to secure the required amount of welding within the limit of welding heat input of 200 kJ / cm or less, and it becomes easy to generate defects of poor fusion, in which the groove inside the bead becomes unmelted. If the thickness of the groove exceeds 80 mm, it is difficult to secure a necessary welding amount and a sufficient throat thickness unless the thickness is more narrowed. Therefore, at such a plate thickness, the upper limit of the groove angle needs to be 50 °.

【0016】・被溶接体のフランジが水平面となす角:
50〜70° 溶接する際のフランジ材の傾き角度(ワーク角度、図1
のθ)は下向き大入熱ですみ肉溶接を行うにあたって、
フランジ側脚長およびウェブ側脚長を決定するのに非常
に重要な因子となる。上記傾き角度が50°より小さくな
ると、ウェブ側脚長を小さくでき、フランジ側脚長が効
率よく得られるという利点あるが、その反面ビード幅が
狭くなり、高温割れ感受性が高まり、割れが発生しやす
くなる。また、開先角度によっては電極が開先内に入り
にくくなるため、電極を傾けるなどの工夫が必要にな
り、融合不良やアンダーカットが発生しやすくなる。一
方、傾き角度が70°を超えると、ウェブ側の脚長が長
く、フランジ側の脚長が短くなってのど厚が小さくな
る。
The angle formed by the flange of the workpiece and the horizontal plane:
50 to 70 ° Angle of inclination of flange material during welding (work angle, Fig. 1
Θ) is a large downward heat input when performing fillet welding.
It is a very important factor in determining the flange leg length and the web leg length. When the inclination angle is smaller than 50 °, the web-side leg length can be reduced and the flange-side leg length can be obtained efficiently, but on the other hand, the bead width is reduced, the hot cracking susceptibility is increased, and cracks are easily generated. . In addition, depending on the groove angle, the electrode is difficult to enter the groove, so that it is necessary to take measures such as tilting the electrode, and poor fusion or undercut is likely to occur. On the other hand, when the inclination angle exceeds 70 °, the leg length on the web side is long, the leg length on the flange side is short, and the throat thickness is small.

【0017】・先行電極の電流:1400A以下 先行電極の電流が1400Aを超えると溶込みが深くなり、
高温割れ感受性が高くなる。また、溶接入熱を200 kJ/c
m 以下にすると、溶接ビードの幅はほとんど変わらない
ため、ビード幅に対して溶込みが深くなって、割れが極
めて発生しやすくなる。よって、先行電極の電流は1400
A以下に制限する必要がある。なお、600 Aを下回ると
溶接入熱、溶接速度、溶接電圧の要件を満たして、必要
な溶着量を確保することが困難となるので、600 A以上
とすることが好ましい。なお、先行電極の電流IL と後
行電極の電流IT の比IL /IT は、溶接欠陥防止の観
点から、0.8 〜1.1 の範囲とすることが好ましい。
· Current of the leading electrode: 1400 A or less If the current of the leading electrode exceeds 1400 A, the penetration deepens,
Hot cracking sensitivity increases. In addition, welding heat input is 200 kJ / c
If it is less than m, the width of the weld bead hardly changes, so that the penetration becomes deeper with respect to the bead width, and cracks are extremely likely to occur. Therefore, the current of the leading electrode is 1400
It is necessary to limit to A or less. If it is less than 600 A, it is difficult to secure the required amount of welding because it satisfies the requirements of welding heat input, welding speed, and welding voltage. The ratio I L / I T of the current I L of the leading electrode and the current I T of the following electrode is preferably in the range of 0.8 to 1.1 from the viewpoint of preventing welding defects.

【0018】・溶接速度:21 cm/min 以上 溶接速度が21 cm/min よりも小さくなると、おもにフラ
ンジ側にアンダーカットの欠陥が発生しやすくなるの
で、21 cm/min 以上とする。ただし、50 cm/minを超え
ると電流の要件を満たしながら必要な溶着量を満足する
ことが困難になるため、50 cm/min 以下に制限するのが
望ましい。
Welding speed: 21 cm / min or more When the welding speed is lower than 21 cm / min, undercutting defects are likely to occur mainly on the flange side. However, if it exceeds 50 cm / min, it is difficult to satisfy the required welding amount while satisfying the current requirement. Therefore, it is desirable to limit the welding amount to 50 cm / min or less.

【0019】・先行電極電圧:(0.005×先行電極電流
(A) +23)〜(0.005×先行電極電流(A)+32)V 先行電極の電圧が上式の下限より小さくなると、フラッ
クスの消費量が少なくなり、溶着する鉄粉の量が減少
し、溶着量が不足しやすくなる。そのほか、短絡現象が
頻繁におこって、アークが不安定になったり、溶込み部
の先端が細くなり、割れやスラグ巻き込みが発生しやす
くなる。一方、電圧が上式の上限より大きくなると、電
流×電圧÷溶接速度で計算される溶接入熱が高くなる
が、ワイヤの突き出し長さが短くなり、抵抗発熱で溶融
するワイヤの量が減少する。このため、入熱量増大の割
には溶着量が増大しないので、200 kJ/cm 以下のもとで
は溶着量が不足し、適正なのど厚が確保できなくなった
り、アーク長が長くなって、開先底部が溶け残ったり、
アンダーカットが発生しやすくなる。さらに、炭酸塩が
分解して発生するガス量が多くなることから、ガスの吹
き上げが激しくなり、溶接作業性やビード外観が損なわ
れる。
Lead electrode voltage: (0.005 × lead electrode current)
(A) +23) to (0.005 x leading electrode current (A) +32) V If the voltage of the leading electrode is smaller than the lower limit of the above equation, the consumption of flux is reduced, the amount of iron powder to be deposited is reduced, and welding is performed. It is easy to run out of quantity. In addition, a short-circuit phenomenon frequently occurs, and the arc becomes unstable, the tip of the penetration portion becomes thin, and cracks and slag entrapment are likely to occur. On the other hand, when the voltage is larger than the upper limit of the above equation, the welding heat input calculated by current × voltage ÷ welding speed is increased, but the protruding length of the wire is shortened, and the amount of the wire melted by the resistance heating is reduced. . For this reason, the amount of welding does not increase in spite of the increase in heat input, and the amount of welding is insufficient at 200 kJ / cm or less, making it impossible to secure an appropriate throat thickness or increasing the arc length. The bottom of the tip remains melting,
Undercuts are likely to occur. Furthermore, since the amount of gas generated by decomposition of the carbonate increases, the blow-up of the gas becomes intense, and welding workability and bead appearance are impaired.

【0020】・後行電極電圧:(0.005×後行電極電流
(A) +25)〜(0.005×先行電極電流(A)+40)V 後行電極は電圧が(0.005×後行電極電流(A) +25)〜
(0.005×先行電極電流(A) +40)Vの範囲とする。この
式の下限よりも低くなると、消費するフラックス量が減
少し、フラックスから溶着金属に移行する鉄粉量が減少
し、溶着量が不足する。また、ビードが凸になり、ビー
ド止端部がオーバーラップ状になりやすい。電圧を極端
に下げれば、短絡現象が頻繁になって、アークが不安定
になり、融合不良やビード外観不良が起こりやすくな
る。一方、電圧が上式の上限より高いと、電流×電圧÷
溶接速度で計算される溶接入熱が高くなるが、ワイヤの
突き出し長さが短くなり、抵抗発熱で溶融するワイヤの
量が減少する。このため、入熱量増大の割には溶着量が
増大しないので、200 kJ/cm 以下のもとでは溶着量が不
足し、適正なのど厚が確保できなくなる。また、アンダ
ーカットが発生しやすくなったり、ガスの吹き上げが激
しくなり、溶接作業性やビード外観を損なう。
-Trailing electrode voltage: (0.005 x trailing electrode current)
(A) +25)-(0.005 x leading electrode current (A) + 40) V The voltage of the trailing electrode is (0.005 x trailing electrode current (A) + 25)-
(0.005 × leading electrode current (A) +40) V. When the value is lower than the lower limit of this formula, the amount of the consumed flux decreases, the amount of the iron powder transferred from the flux to the deposited metal decreases, and the deposited amount becomes insufficient. In addition, the bead becomes convex, and the bead toe tends to overlap. If the voltage is extremely reduced, the short circuit phenomenon becomes frequent, the arc becomes unstable, and poor fusion and poor bead appearance tend to occur. On the other hand, if the voltage is higher than the upper limit of the above equation, current × voltage ÷
Although the welding heat input calculated by the welding speed is higher, the protruding length of the wire is shorter, and the amount of the wire that is melted by the resistance heating is reduced. For this reason, the amount of welding does not increase in spite of the increase in heat input, and the amount of welding is insufficient under 200 kJ / cm, and an appropriate throat thickness cannot be secured. In addition, undercuts are likely to occur and gas blow-up becomes severe, which impairs welding workability and bead appearance.

【0021】・先行電極の狙い位置:ウェブ面におい
て、開先中心±3mm以内 先行電極の狙い位置は、ウェブ面において開先中心±3
mm以内 (ウェブおよびフランジの合わせ目と、ワイヤ
の中心とが一致した位置を0として、ワイヤの中心の位
置と0とのウェブ面上での偏差 (図2(a) のa)が±3
mm以内)である必要がある。フランジ側にずれた場合
をマイナス、ウェブ側にずれた場合をプラスとする。狙
い位置が上記範囲を外れると、開先底部が溶解されずに
残りやすくなる。また、アンダーカットや融合不良の原
因ともなる。先行電極の傾きは、開先角の2等分線 (図
2の点線) と垂線の間の範囲内であることが好ましい。
Aiming position of leading electrode: within ± 3 mm of groove center on web surface Aiming position of leading electrode is ± 3 mm at groove center on web surface
mm (The position where the seam of the web and flange coincides with the center of the wire is defined as 0, and the deviation of the center of the wire from 0 on the web surface (a in FIG. 2 (a)) is ± 3.
mm or less). The case where it is shifted to the flange side is minus, and the case where it is shifted to the web side is plus. When the target position is out of the above range, the groove bottom is likely to remain without being dissolved. It also causes undercut and poor fusion. The inclination of the leading electrode is preferably within a range between the bisector of the included angle (dotted line in FIG. 2) and the perpendicular.

【0022】・後行電極の狙い位置 後行電極の狙い位置は、溶接欠陥やビード外観に非常に
大きな影響を与える。しかも、溶接後のビード幅の中心
よりもフランジ側を狙わないと適正な溶接ビードが得ら
れない。図2 (b)におけるbの距離が2mmより小さ
いと、フランジ側にアンダーカットが発生しやすく、一
方、6mmより大きくなると、ウェブ側ビード止端部が
オーバーラップ状になり、ビード外観を損なう。よっ
て、後行電極の狙い位置は2mm≦b≦6mmとする。
後行電極の傾きは、先行電極と同様に、開先角の2等分
線と垂線の間の範囲内であることが好ましい。
The target position of the trailing electrode The target position of the trailing electrode has a very large effect on welding defects and bead appearance. Moreover, if the flange side is not aimed at than the center of the bead width after welding, an appropriate weld bead cannot be obtained. If the distance b in FIG. 2B is smaller than 2 mm, undercuts are likely to occur on the flange side, while if it is larger than 6 mm, the beaded toe portion on the web side has an overlapping shape, which impairs the bead appearance. Therefore, the target position of the succeeding electrode is set to 2 mm ≦ b ≦ 6 mm.
Like the preceding electrode, the inclination of the following electrode is preferably within a range between the bisector of the included angle and the perpendicular.

【0023】[0023]

【実施例】以下、実施例により具体的に説明する。表1
に、溶接に用いたフラックスの組成を示す。これらは、
すべて焼成型のフラックスである。表2に、用いた溶接
ワイヤの化学組成を示す。これらワイヤの線径はそれぞ
れ4.5 、4.8 、6.4 、6.8mmφのものを用いた。表3
に、用いた鋼板の板厚と化学組成を示す。これらはすべ
て引張強さが590 MPa 以上、降伏比が80%以下の高性能
高張力鋼である。上記鋼板に、開先深さ2√t〜t/3
mm (t:ウェブ厚さ) のK開先 (図2参照) を加工し、
上記溶接材料を用いて、両側1パスの下向きすみ肉2電
極サブマージアーク溶接を行った。
The present invention will be specifically described below with reference to examples. Table 1
The composition of the flux used for welding is shown below. They are,
All are firing type fluxes. Table 2 shows the chemical composition of the welding wire used. The diameters of these wires were 4.5, 4.8, 6.4, and 6.8 mm, respectively. Table 3
Table 1 shows the thickness and chemical composition of the steel sheet used. These are all high-performance, high-strength steels with a tensile strength of 590 MPa or more and a yield ratio of 80% or less. The steel plate has a groove depth of 2 / t to t / 3
mm (t: web thickness) K-groove (see Fig. 2)
Using the above welding material, a downward fillet two-electrode submerged arc welding was performed in one pass on both sides.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】実施例1 溶接条件は先行電極電流一電圧:1200A−32V、後行電
極電流一電圧:1000A−36V、溶接速度:23 cm/min
(溶接入熱:194 kJ/cm )とし、先行電極狙い位置aは
0mm、後行電極狙い位置bは5mmとして溶接を行っ
た。なお、先行電極と後行電極との電極間距離はウェブ
表面上で40mm、突き出し長さは先行電極がウェブ表面
から40mm、後行電極がウェブ表面から60mmとし、溶
接進行方向の電極角度は先行電極が後退角5°、後行電
極が前進角5°とした。以上の条件で溶接した結果を表
4に示す。
Example 1 The welding conditions were a leading electrode current-voltage: 1200 A-32 V, a trailing electrode current-voltage: 1000 A-36 V, welding speed: 23 cm / min.
(Welding heat input: 194 kJ / cm 2), welding was performed with the target position a of the leading electrode being 0 mm and the target position b of the succeeding electrode being 5 mm. The distance between the leading electrode and the trailing electrode is 40 mm on the web surface, the protrusion length is 40 mm for the leading electrode from the web surface, and 60 mm for the trailing electrode from the web surface. The electrode had a receding angle of 5 °, and the trailing electrode had an advancing angle of 5 °. Table 4 shows the results of welding under the above conditions.

【0028】表4において、No. 1〜8の発明例ではい
ずれも十分なのど厚、脚長を有する良好な溶接ビードが
得られた。これに対し、No. 9ではワイヤのC量が0.13
wt%と高いため、溶接金属中のC量が高くなり、高温割
れを生じた。No. 10ではフラックス中の鉄粉量が15wt%
と低いために、溶着量が不足し、目標とする理論のど厚
27mmに1mm小さい26mmであった。No. 11ではフラ
ックス中の鉄粉量が45%と多いため、ビード外観が不良
であった。
In Table 4, in all of the inventive examples Nos. 1 to 8, good weld beads having a sufficient throat thickness and leg length were obtained. On the other hand, in No. 9, the C amount of the wire was 0.13.
Since the content was as high as wt%, the C content in the weld metal was increased, and hot cracking occurred. In No. 10, the amount of iron powder in the flux was 15wt%
Low, the amount of welding is insufficient and the target theoretical throat thickness
It was 26 mm, 1 mm smaller than 27 mm. In No. 11, the bead appearance was poor because the amount of iron powder in the flux was as large as 45%.

【0029】[0029]

【表4】 [Table 4]

【0030】実施例2 使用した溶接ワイヤはB−1に示す化学組成で、先行電
極のワイヤ径が4.8 mm、後行電極のワイヤ径は6.4 m
mである。表5にその結果を示す。No. 1〜13は発明例
であり、いずれも溶接欠陥がなく、十分なのど厚、脚長
を有する良好な溶接ビードが得られた。これに対し、N
o. 14では先行電極電流が1400Aを超えたため、溶込み
がビード幅に対して深くなりすぎ、高温割れが発生し
た。No. 15では先行電極電圧が低すぎ、溶込みの先端が
細くなり、スラグ巻き込みを生じた。No. 16では逆に先
行電極電圧が高すぎ、溶接入熱が高くなる割に溶着量が
十分に得られず、目標とする理論のど厚27mmに1mm
不足した。No. 17では後行電極電圧が低すぎてビード外
観が不良となった。No. 18では後行電極の電圧が高す
ぎ、溶着量の不足とともにアンダーカットを生じた。N
o. 19では溶接速度が21cm/minより遅いため、アンダー
カットが生じた。
Example 2 The welding wire used had the chemical composition shown in B-1. The wire diameter of the leading electrode was 4.8 mm, and the wire diameter of the trailing electrode was 6.4 m.
m. Table 5 shows the results. Nos. 1 to 13 are invention examples, in which no weld defects were found, and good weld beads having a sufficient throat thickness and leg length were obtained. In contrast, N
In o. 14, since the leading electrode current exceeded 1400 A, the penetration became too deep with respect to the bead width, and hot cracking occurred. In No. 15, the leading electrode voltage was too low, the tip of the penetration became thin, and slag was involved. In No. 16, conversely, the lead electrode voltage was too high, and the welding input was high, but a sufficient amount of welding was not obtained.
Shortage. In No. 17, the trailing electrode voltage was too low, resulting in poor bead appearance. In No. 18, the voltage of the trailing electrode was too high, resulting in an insufficient amount of welding and undercut. N
In o. 19, an undercut occurred because the welding speed was lower than 21 cm / min.

【0031】No. 20では後行電極電圧が高すぎ、アンダ
ーカットを生じ、溶着量も不足し、目標とする理論のど
厚29mmに1mm不足した。No. 21では先行電極電圧が
高すぎ、溶着量が不足し、理論のど厚が29mmより1m
m不足し、開先の底部も溶け残る欠陥が生じた。No. 22
では後行電極電圧が高すぎアンダーカットとのど厚不足
を生じた。
In No. 20, the trailing electrode voltage was too high, undercut occurred, the amount of welding was insufficient, and the target theoretical throat thickness of 29 mm was 1 mm short. In No. 21, the leading electrode voltage was too high, the amount of welding was insufficient, and the theoretical throat thickness was 1 m from 29 mm.
m was insufficient, and a defect occurred in which the bottom of the groove was still melted. No. 22
In this case, the trailing electrode voltage was too high, resulting in undercut and insufficient throat thickness.

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
引張強さ590 MPa 級以上の高張力鋼の厚肉組立H形鋼の
部分溶込み溶接を、溶接入熱200 kJ/cm 以下で1パス
(両側1パス)で行うことができ、H形鋼製造コストの
削減およびその納期短縮などが可能になるので、工業的
に貢献するところが大きい。
As described above, according to the present invention,
Partial penetration welding of high-strength H-section steel with high tensile strength of 590 MPa class or higher can be performed in one pass (one pass on both sides) with welding heat input of 200 kJ / cm or less. Since the manufacturing cost can be reduced and the delivery time can be shortened, it greatly contributes industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】組立H形鋼のすみ肉溶接の状況を示す図であ
る。
FIG. 1 is a diagram showing a state of fillet welding of an assembled H-section steel.

【図2】開先内のすみ肉溶接における各電極の狙い位置
を示す説明図である。
FIG. 2 is an explanatory diagram showing target positions of respective electrodes in fillet welding in a groove.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 35/30 320 B23K 35/30 320F 35/362 310 35/362 310B // C22C 38/00 301 C22C 38/00 301Y (72)発明者 山口 忠政 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 Fターム(参考) 4E001 AA03 BB05 CA02 CA07 CC04 DA01 DA05 DB01 DC01 DC05 DC07 DF05 EA01 EA02 EA03 EA05 EA06 EA07 EA09 QA04 4E081 AA12 BA05 BA34 BA37 BA40 BB03 BB07 BB13 BB15 CA05 DA01 DA10 DA11 DA12 DA18 DA35 DA48 DA55 DA57 EA05 YR03 4E084 BA02 DA18 DA28 FA09 FA11 FA15 HA04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 35/30 320 B23K 35/30 320F 35/362 310 35/362 310B // C22C 38/00 301 C22C 38 / 00 301Y (72) Inventor Tadamasa Yamaguchi 2-3-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo F-term in Kawasaki Steel Corporation (reference) 4E001 AA03 BB05 CA02 CA07 CC04 DA01 DA05 DB01 DC01 DC05 DC07 DF05 EA01 EA02 EA03 EA05 EA05 EA06 EA07 EA09 QA04 4E081 AA12 BA05 BA34 BA37 BA40 BB03 BB07 BB13 BB15 CA05 DA01 DA10 DA11 DA12 DA18 DA35 DA48 DA55 DA57 EA05 YR03 4E084 BA02 DA18 DA28 FA09 FA11 FA15 HA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 引張強さが590 MPa 級以上、板厚45 mm
以上で開先加工したウェブ材と、フランジ材とを2電極
下向きサブマージアーク溶接によりT継手を形成する、
高強度厚肉鋼材のすみ肉溶接方法において、 溶接材料として、鉄粉:20〜40wt%を含む焼成型フラッ
クスと、C含有量が下記 (1)式を満足する溶接ワイヤを
用い、先行電極は電流が1400A以下かつ電圧が(0.005×
先行電極電流(A) +23)〜(0.005×先行電極電流(A) +
32)V、後行電極は電圧が(0.005×後行電極電流(A) +
25)〜(0.005×先行電極電流(A) +40)Vであり、溶接
速度が21cm/min以上、入熱量が200 kJ/cm 以下である条
件で部分溶込み溶接することを特徴とする高強度厚肉鋼
材のすみ肉溶接方法。 記 0.36×Cpl+0.34×Cw ≦0.10 ……(1) ただし、Cplは鋼材のC量(wt%)、Cw はワイヤのC
量(wt%)
1. The tensile strength is 590 MPa class or more, and the thickness is 45 mm
A T-joint is formed by two-electrode downward submerged arc welding of the grooved web material and the flange material,
In the fillet welding method for high-strength thick steel, the welding electrode uses a sintering flux containing iron powder: 20 to 40 wt% and a welding wire whose C content satisfies the following formula (1). When the current is 1400A or less and the voltage is (0.005 ×
Lead electrode current (A) +23)-(0.005 x Lead electrode current (A) +
32) V, the voltage of the trailing electrode is (0.005 x trailing electrode current (A) +
25) to (0.005 × leading electrode current (A) +40) V, high strength characterized by partial penetration welding under conditions that the welding speed is 21 cm / min or more and the heat input is 200 kJ / cm or less Fillet welding method for thick steel. 0.36 × C pl + 0.34 × C w ≦ 0.10 (1) where C pl is the C content of steel (wt%) and C w is the C of the wire.
Amount (wt%)
【請求項2】 フランジ材が水平面となす角度を50〜70
°とした被溶接材姿勢にて溶接することを特徴とする請
求項1に記載の高強度厚肉鋼材のすみ肉溶接方法。
2. The angle between the flange material and the horizontal plane is 50 to 70.
2. The method for welding a fillet of a high-strength thick-walled steel material according to claim 1, wherein the welding is performed in a position of the material to be welded at an angle of °.
【請求項3】 開先内における先行電極の狙い位置をウ
ェブ面において開先中心±3mm以内、後行電極の狙い位
置をウェブ面におけるフランジからの距離にして2〜6
mmとして溶接することを特徴とする請求項1または2に
記載の高強度厚肉鋼材のすみ肉溶接方法。
3. The target position of the leading electrode within the groove is within ± 3 mm of the center of the groove on the web surface, and the target position of the following electrode is 2-6 mm from the flange on the web surface.
The fillet welding method for a high-strength thick steel material according to claim 1 or 2, wherein the welding is performed with a thickness of mm.
JP34868698A 1998-12-08 1998-12-08 Fillet welding method of high strength thick plate steel Pending JP2000167670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34868698A JP2000167670A (en) 1998-12-08 1998-12-08 Fillet welding method of high strength thick plate steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34868698A JP2000167670A (en) 1998-12-08 1998-12-08 Fillet welding method of high strength thick plate steel

Publications (1)

Publication Number Publication Date
JP2000167670A true JP2000167670A (en) 2000-06-20

Family

ID=18398685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34868698A Pending JP2000167670A (en) 1998-12-08 1998-12-08 Fillet welding method of high strength thick plate steel

Country Status (1)

Country Link
JP (1) JP2000167670A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060793A (en) * 1999-12-28 2001-07-07 이구택 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels
FR2874849A1 (en) * 2004-09-03 2006-03-10 Air Liquide Fabrication of a metal beam from several elongated elements assembled by hybrid arc-laser welding
JP2007083292A (en) * 2005-09-22 2007-04-05 Nippon Steel Corp Two-electrode one-side one-pass high heat input submerged-arc welding method for obtaining weld metal with excellent toughness
CN102107312A (en) * 2011-01-13 2011-06-29 安徽跨宇钢结构网架工程有限公司 Butt welding and T-shaped welding construction method for thick steel plate in normal temperature state
CN102189316A (en) * 2010-03-11 2011-09-21 上海一钢机电有限公司 Submerged-arc welding overlaying repairing method for stainless steel hot rolled delivery roll
CN103157916A (en) * 2012-09-17 2013-06-19 中国二十二冶集团有限公司 H-shaped steel back-gouging-free welding method
CN103658924A (en) * 2013-12-05 2014-03-26 江苏新时代造船有限公司 Groove-shaped bulkhead lower pier corner weld joint welding process
CN103785934A (en) * 2014-03-03 2014-05-14 山东电力建设第二工程公司 Thin-plate H-type steel and main angular welding joint full penetration welding method in full penetration welding process
CN104526135A (en) * 2014-11-20 2015-04-22 上海沪临重工有限公司 Non-back gouging submerged-arc welding method of H-shaped steel
CN104625357A (en) * 2013-11-15 2015-05-20 上海中远川崎重工钢结构有限公司 H-steel or T-steel full-penetration back-gouging-free welding method
CN105081595A (en) * 2015-02-04 2015-11-25 上海船舶工艺研究所 Fillet weld welding structure for K-type grooves of moderately-thick plate without back chipping and welding technology of fillet weld welding structure
CN105665896A (en) * 2016-03-15 2016-06-15 广船国际有限公司 Welding method of transverse position angle joint
CN106001868A (en) * 2016-05-18 2016-10-12 南京合信智能装备有限公司 Full penetration welding method for simultaneously welding H-shaped steel with two guns
CN106583892A (en) * 2016-12-07 2017-04-26 武汉冶钢结构有限责任公司 Steel box girder unit part stiffening rib welding method
CN108465917A (en) * 2018-03-02 2018-08-31 武汉钢铁有限公司 A kind of mariages two pass buried arc welding method suitable for multi-level steel
CN110091031A (en) * 2019-05-30 2019-08-06 宝鸡石油机械有限责任公司 A kind of H profile steel angular deformation control device and method based on full penetration submerged-arc welding
CN110666312A (en) * 2019-10-22 2020-01-10 中国一冶集团有限公司 Full penetration back-gouging-free welding process for H-shaped steel
CN110695618A (en) * 2018-07-10 2020-01-17 北京京盛泰华金属结构有限公司 H-shaped steel welding process
CN111761180A (en) * 2020-06-30 2020-10-13 南通振华重型装备制造有限公司 Combined welding process for 690-grade high-strength steel of cylindrical pile leg
CN113145999A (en) * 2021-05-31 2021-07-23 二十二冶集团装备制造有限公司 Method for welding T-shaped joint of H-shaped steel with 20 mmweb
CN113843592A (en) * 2021-10-15 2021-12-28 中建钢构工程有限公司 Double-gun backing welding method
CN114192944A (en) * 2021-12-28 2022-03-18 江苏新蓝天钢结构有限公司 Full penetration back-gouging-free I-shaped steel welding method introducing welding predeformation

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060793A (en) * 1999-12-28 2001-07-07 이구택 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels
FR2874849A1 (en) * 2004-09-03 2006-03-10 Air Liquide Fabrication of a metal beam from several elongated elements assembled by hybrid arc-laser welding
JP2007083292A (en) * 2005-09-22 2007-04-05 Nippon Steel Corp Two-electrode one-side one-pass high heat input submerged-arc welding method for obtaining weld metal with excellent toughness
JP4673710B2 (en) * 2005-09-22 2011-04-20 新日本製鐵株式会社 Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
CN102189316B (en) * 2010-03-11 2013-08-14 上海一钢机电有限公司 Submerged-arc welding overlaying repairing method for stainless steel hot rolled delivery roll
CN102189316A (en) * 2010-03-11 2011-09-21 上海一钢机电有限公司 Submerged-arc welding overlaying repairing method for stainless steel hot rolled delivery roll
CN102107312A (en) * 2011-01-13 2011-06-29 安徽跨宇钢结构网架工程有限公司 Butt welding and T-shaped welding construction method for thick steel plate in normal temperature state
CN103157916A (en) * 2012-09-17 2013-06-19 中国二十二冶集团有限公司 H-shaped steel back-gouging-free welding method
CN104625357A (en) * 2013-11-15 2015-05-20 上海中远川崎重工钢结构有限公司 H-steel or T-steel full-penetration back-gouging-free welding method
CN103658924A (en) * 2013-12-05 2014-03-26 江苏新时代造船有限公司 Groove-shaped bulkhead lower pier corner weld joint welding process
CN103785934A (en) * 2014-03-03 2014-05-14 山东电力建设第二工程公司 Thin-plate H-type steel and main angular welding joint full penetration welding method in full penetration welding process
CN104526135A (en) * 2014-11-20 2015-04-22 上海沪临重工有限公司 Non-back gouging submerged-arc welding method of H-shaped steel
CN105081595A (en) * 2015-02-04 2015-11-25 上海船舶工艺研究所 Fillet weld welding structure for K-type grooves of moderately-thick plate without back chipping and welding technology of fillet weld welding structure
CN105665896A (en) * 2016-03-15 2016-06-15 广船国际有限公司 Welding method of transverse position angle joint
CN106001868A (en) * 2016-05-18 2016-10-12 南京合信智能装备有限公司 Full penetration welding method for simultaneously welding H-shaped steel with two guns
CN106001868B (en) * 2016-05-18 2018-06-22 南京合信智能装备有限公司 A kind of rush-harvesting and rush-planting while welded H section steel complete penetration welding method
CN106583892A (en) * 2016-12-07 2017-04-26 武汉冶钢结构有限责任公司 Steel box girder unit part stiffening rib welding method
CN108465917A (en) * 2018-03-02 2018-08-31 武汉钢铁有限公司 A kind of mariages two pass buried arc welding method suitable for multi-level steel
CN108465917B (en) * 2018-03-02 2020-06-19 武汉钢铁有限公司 Double-wire double-channel submerged arc welding method suitable for multi-grade steel
CN110695618A (en) * 2018-07-10 2020-01-17 北京京盛泰华金属结构有限公司 H-shaped steel welding process
CN110091031A (en) * 2019-05-30 2019-08-06 宝鸡石油机械有限责任公司 A kind of H profile steel angular deformation control device and method based on full penetration submerged-arc welding
CN110666312A (en) * 2019-10-22 2020-01-10 中国一冶集团有限公司 Full penetration back-gouging-free welding process for H-shaped steel
CN111761180A (en) * 2020-06-30 2020-10-13 南通振华重型装备制造有限公司 Combined welding process for 690-grade high-strength steel of cylindrical pile leg
CN113145999A (en) * 2021-05-31 2021-07-23 二十二冶集团装备制造有限公司 Method for welding T-shaped joint of H-shaped steel with 20 mmweb
CN113843592A (en) * 2021-10-15 2021-12-28 中建钢构工程有限公司 Double-gun backing welding method
CN113843592B (en) * 2021-10-15 2024-01-12 中建钢构工程有限公司 Double-gun bottoming welding method
CN114192944A (en) * 2021-12-28 2022-03-18 江苏新蓝天钢结构有限公司 Full penetration back-gouging-free I-shaped steel welding method introducing welding predeformation
CN114192944B (en) * 2021-12-28 2023-09-22 江苏新蓝天钢结构有限公司 Full penetration back-gouging-free I-steel welding method introducing welding pre-deformation

Similar Documents

Publication Publication Date Title
JP2000167670A (en) Fillet welding method of high strength thick plate steel
KR101177217B1 (en) Hardfacing mig-arc welding wire and hardfacing mig-arc welding process
EP2402106B1 (en) Method of and machine for arc welding combining gas-shield arc welding with submerged arc welding
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
JP4256879B2 (en) Method of joining iron-based material and aluminum-based material and joint
CN104191110B (en) The welding wire of applying argon gas protection is exempted from the single face welding and double face shaping back side
US6784402B2 (en) Steel wire for MAG welding and MAG welding method using the same
JP6119940B1 (en) Vertical narrow groove gas shielded arc welding method
CN106488825A (en) Vertical narrow groove gas-shielded arc welding method
JP5826137B2 (en) Tandem submerged arc welding method
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
JP5869066B2 (en) Bond flux for multi-electrode single-sided submerged arc welding
CN104772580B (en) Multi-electrode single-side submerged-arc welding bond flux
WO2018159038A1 (en) Arc welding method for hot-dip galvanized steel sheet, and method for manufacturing welded member
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP3114958B2 (en) High efficiency fillet welding method for thick steel plate
CN108290239A (en) Vertical narrow groove gas-shielded arc welding method
JPH0557448A (en) Fillet welding method with high efficiency for thick steel plates
CN104070305A (en) Flux cored wire for gas shielded arc welding
JPH06234075A (en) High-speed gas shielded arc welding method
JPS6247111B2 (en)
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JP2003001423A (en) Method for producing welded joint
JP6487877B2 (en) Arc welding method of hot-dip Zn-based plated steel sheet, method of manufacturing welded member, and welded member
JPH0521677B2 (en)