JP3114958B2 - High efficiency fillet welding method for thick steel plate - Google Patents

High efficiency fillet welding method for thick steel plate

Info

Publication number
JP3114958B2
JP3114958B2 JP05324699A JP32469993A JP3114958B2 JP 3114958 B2 JP3114958 B2 JP 3114958B2 JP 05324699 A JP05324699 A JP 05324699A JP 32469993 A JP32469993 A JP 32469993A JP 3114958 B2 JP3114958 B2 JP 3114958B2
Authority
JP
Japan
Prior art keywords
amount
flux
welding
wire
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05324699A
Other languages
Japanese (ja)
Other versions
JPH0768380A (en
Inventor
忠政 山口
喜三 目黒
龍二 岡部
三郎 林
松重 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP05324699A priority Critical patent/JP3114958B2/en
Publication of JPH0768380A publication Critical patent/JPH0768380A/en
Application granted granted Critical
Publication of JP3114958B2 publication Critical patent/JP3114958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は厚鋼板の高能率すみ肉溶
接方法に関し、詳しくは、簡単な開先加工を行い、厚板
のT型すみ肉サブマージドアーク溶接を両側1パスで行
う厚鋼板の高能率すみ肉溶接方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high efficiency fillet welding method for a thick steel plate, and more particularly, to a method for performing a simple groove process and performing a T-type fillet submerged arc welding of a thick steel plate in one pass on both sides. The present invention relates to a high efficiency fillet welding method for a steel sheet.

【0002】[0002]

【従来の技術】近年、高層ビルが各地で建設されるよう
になったが、それにつれて使用される鋼材の厚さも次第
に厚くなり、例えば柱として使用されるいわゆるボック
ス柱では板厚100mmのものもあり、また、梁として
使用されるH形鋼の厚さも同様に増加しており、このた
め高層ビルに使用される部材の組立加工の能率向上が大
きな問題となっている。
2. Description of the Related Art In recent years, high-rise buildings have been constructed in various places, and accordingly, the thickness of steel materials used has gradually increased. For example, a so-called box pillar used as a pillar has a plate thickness of 100 mm. In addition, the thickness of the H-shaped steel used as a beam is also increasing, and therefore, improving the efficiency of assembling members used for a high-rise building is a major problem.

【0003】一般に、ビルトHと言われる溶接H形鋼の
すみ肉溶接部は、部分溶込溶接若しくは完全溶込溶接に
より、また、クレーンガーダ重構造物などに用いられる
溶接H形鋼は通常完全溶込溶接で施工されている。この
完全溶込溶接方法はウェブが比較的薄い場合のものにつ
いては既に知られており、例えば特公昭56−3702
9号公報がある。これは細径ワイヤを用いプライマ鋼板
を溶接する場合にピットやブローホールを防止しようと
するものであり、本発明者らが目的としているところと
その主旨がやや異なるものである。
[0003] In general, the fillet weld of a welded H-section steel called a built-in H is formed by partial penetration welding or full penetration welding, and the welded H-section steel used for a heavy structure of a crane girder is usually completely welded. It is constructed by penetration welding. This perfect penetration welding method is already known for a case where the web is relatively thin, for example, Japanese Patent Publication No. 56-3702.
No. 9 publication. This is intended to prevent pits and blow holes when a primer steel plate is welded using a small-diameter wire, and the purpose thereof is slightly different from the purpose of the present inventors.

【0004】[0004]

【発明が解決しようとする課題】従来、ウェブ厚が厚く
なると一般にウェブ側に開先加工を施し、多層の表溶
接、裏ガウジング、グラインダ仕上後、多層の裏溶接を
行い、完全溶込を得る方法がとられてきたが、開先加
工、ガウジング、グラインダ仕上などの各工程が不可欠
であり、省力化はもとよりアークタイム率を向上させる
ことが困難であった。
Conventionally, when the thickness of a web is increased, a groove is generally formed on the web side, and after a multi-layer front welding, a back gouging, and a grinder finish, a multi-layer back welding is performed to obtain a complete penetration. Although a method has been adopted, each step such as beveling, gouging, and grinder finishing is indispensable, and it has been difficult to improve the arc time rate as well as to save labor.

【0005】ところで厚鋼板のすみ肉溶接完全溶込を簡
単な開先加工、ガウジングなしの両側1パス溶接を達成
しようとすると種々の問題があり、その解決が要望され
ている。一般に、薄肉H形鋼のすみ肉溶接では溶融型フ
ラックスが使用されるケースが多い。これは溶融型フラ
ックスの方が融点が低く、高速溶接に適しているためで
あるが、高速になるほどビード幅の狭い凸状ビードにな
り易いという欠点がある。これを防止するため、フラッ
クスを発泡させ軽質化してビード幅を広げる工夫がなさ
れているが、融点が低いため厚肉の大入熱溶接ではスラ
グが増えすぎて良好な外観を有するビードを得ることが
むずかしいという問題がある。
[0005] By the way, there are various problems when trying to achieve simple beveling and one-side welding on both sides without gouging for complete penetration of fillet welding of a thick steel plate. Generally, in the case of fillet welding of a thin H-section steel, a molten flux is often used. This is because the molten flux has a lower melting point and is more suitable for high-speed welding, but has a drawback that the higher the speed is, the more likely it is to form a convex bead with a narrow bead width. In order to prevent this, it has been devised to expand the bead width by foaming the flux and making it lighter.However, since the melting point is low, the slag increases too much in thick large heat input welding to obtain a bead with a good appearance. There is a problem that is difficult.

【0006】一方、焼成型フラックスは製法上単体酸化
物あるいは炭酸塩の混合結合体であるため一般に融点が
高く大入熱溶接に適している。また、完全溶込溶接では
溶込みを確保しなければならないため、必然的に母材希
釈が多くなり、C量の多い鋼板では高温割れが発生し易
いという問題もある。高温割れは溶接金属の化学組成の
みならず、ビード断面形状にも大きく影響され、ビード
幅(W)に対し溶込み深さ(P)が大きいとき、すなわ
ち、W/Pが小さいとき発生し易い。従って、高温割れ
を防止するためにはビード幅をできるだけ広くしなけれ
ばならない、という問題があった。
On the other hand, the sintering type flux is generally a high melting point and suitable for large heat input welding since it is a mixed binder of a simple oxide or a carbonate in the manufacturing method. In addition, since penetration must be ensured in full penetration welding, the base material dilution is inevitably increased, and there is also a problem that a steel sheet having a large amount of C tends to cause high-temperature cracking. Hot cracking is greatly affected not only by the chemical composition of the weld metal but also by the cross-sectional shape of the bead, and tends to occur when the penetration depth (P) is large relative to the bead width (W), that is, when W / P is small. . Therefore, there is a problem that the bead width must be made as large as possible in order to prevent hot cracking.

【0007】本発明は上記問題の解決を目的とし、具体
的には、簡単な開先加工を行い、厚板鋼板の高能率すみ
肉溶接方法を提案することを目的とする。
An object of the present invention is to solve the above problems, and more specifically, to propose a highly efficient fillet welding method for a thick steel plate by performing simple beveling.

【0008】[0008]

【課題を解決するための手段】本発明は、C量0.18
wt%以下を含有する板厚60mm超え100mm以下
のウェブ鋼板とフランジ鋼板をT字状に突合わせ、2
極法で両側1パスサブマージドアーク溶接するに当り、
該ウェブ鋼板の両側に板厚の0.30〜0.40倍の深
さの開先を設け、下記焼成型フラックス(A)とワイヤ
(B)とを用い、先行極(L極)に対する後行極(T
極)の電流比(IT /IL )を0.65〜1.00の条
件下で先行極に3°〜15°の後退角を、後行極に3°
〜20°の前進角を設けて完全溶込法により溶接するこ
とを特徴とする厚鋼板の高能率すみ肉溶接方法である。 (A)焼成型フラックス: SiO2 ,MgO,CaOの各成分の合計量が45〜6
5wt%、TiO ,Al3 ,CaF2 の各成分
の合計量が5〜20wt%、各種金属粉が25〜38w
t%、溶接時に添加原料が熱分解して発生するガス量が
5〜15wt%、残部が不可避的不純物であるフラック
スからなり、累積粒度分布50wt%の粒子のメジアン
径が500〜800μmであり、粒子径295μm以下
の粒子が前記フラックス全体の15wt%以下である焼
成型フラックス (B)ワイヤ ワイヤC量(wt%)をC1 、ウェブ鋼板のC量(wt
%)をC (≦0. 18wt%)、フランジ鋼板
のC量(wt%)をC (≦0.18wt%) と
し、 0.50C1 +0.28C2 +0.22C3 ≦0.120 を満足するワイヤC量およびMn:1.20〜2.50
wt%を含む、直径4.8〜6.4mmφのワイヤ ここで、さらに、先行極のみをフランジ側に5°〜15
°傾け、ウェブ面とフランジ面とが交差する位置からフ
ランジ面の上方に向かって先行極は5〜15mm、後行
極は2〜12mm離れた位置を狙って溶接することが好
ましい。
According to the present invention, a C content is 0.18.
butt the following web steel plate and flange steel sheet thickness 60mm beyond 100mm in a T-shape containing the following wt%, per To both sides one pass submerged arc welding with two electrode method,
On both sides of the web steel sheet, a depth of 0.30 to 0.40 times the sheet thickness
The following pole (T pole) with respect to the leading pole (L pole) is provided using the following sintering flux (A) and wire (B).
The receding angle 3 ° to 15 ° current ratio (I T / I L) to the leading electrode under the conditions of 0.65 to 1.00 of the pole), the trailing electrode 3 °
A highly efficient fillet welding method for thick steel plates, characterized in that welding is performed by a complete penetration method with an advancing angle of up to 20 °. (A) Firing type flux: The total amount of each component of SiO 2 , MgO and CaO is 45 to 6
5 wt%, total amount of each component of TiO 2 , Al 2 O 3 , CaF 2 is 5 to 20 wt%, and various metal powders are 25 to 38 w
t%, the amount of gas generated by thermal decomposition of the added material during welding is 5 to 15 wt%, and the balance is flux which is an unavoidable impurity, and the median diameter of particles having a cumulative particle size distribution of 50 wt% is 500 to 800 μm, Fired flux in which particles having a particle size of 295 μm or less are 15 wt% or less of the entire flux. (B) Wire The wire C content (wt%) is C 1 , and the web steel sheet C content (wt)
%) As C 2 (≦ 0.18 wt%) and the C content (wt%) of the flanged steel sheet as C 3 (≦ 0.18 wt%), and 0.50C 1 + 0.28C 2 + 0.22C 3 ≦ 0.120 C amount and Mn: 1.20 to 2.50 satisfying
4.8 to 6.4 mmφ wire including wt% Here, only the leading electrode is 5 ° to 15 ° on the flange side.
It is preferable that the welding be performed at a position inclined from the intersection of the web surface and the flange surface by a distance of 5 to 15 mm from the intersection of the web surface and the flange surface with the leading electrode and 2 to 12 mm apart from the trailing electrode.

【0009】[0009]

【作用】以下、本発明の手段たる構成ならびにその作用
について詳しく説明すると、次の通りである。本発明者
等は簡単な開先加工を行い厚板鋼板を効率よくすみ肉サ
ブマージドアーク溶接する方法について検討を行ったと
ころ、特定の各種成分を含有する焼成型フラックスと、
特定の成分、ワイヤ径を有するワイヤを用い2電極サブ
マージドアーク溶接すればよいという知見を得、既に特
開平5−57448号公報で開示している。ところが適
用板厚が更に大きくなると、より厳しい制限なしでは良
好な溶接部が得られないことが判った。そこで更に進ん
で研究開発を行い、この研究に基づいて本発明は成立し
たものである。
The following is a detailed description of the constitution as the means of the present invention and its operation. The present inventors have studied a method of performing a simple groove processing and efficiently filling a thick steel plate with a fillet submerged arc welding, and a firing type flux containing specific various components,
It has been found that two-electrode submerged arc welding may be performed using a wire having a specific component and a wire diameter, and has already been disclosed in JP-A-5-57448. However, it has been found that when the applied plate thickness is further increased, a good weld cannot be obtained without stricter restrictions. Therefore, further research and development have been carried out, and the present invention has been established based on this research.

【0010】本発明者等の研究結果によれば、次のこと
が明らかになった。 (1)厚鋼板の高温割れを防止しビード幅を広くするた
めには、焼成型フラックスの化学組成とワイヤ径を一定
の範囲にコントロールすることが必要である (2)板厚が大きくなると溶接入熱量も大となり、高温
割れ防止のための限界C量が低くなってくる (3)スラグ巻込みを防止するためには、太径ワイヤを
用い、溶込み底部をラウンドタイプ(曲率半径大)にす
ることが必要であり、溶込み底部がシャープ(曲率半径
小)になると、スラグ巻込みが発生しやすくなるととも
に高温割れも起り易く、また、太径ワイヤはビード幅を
広げる上でも有利である (4)2電極サブマージドアーク溶接においては、先行
極(L極)、後行極(T極)の電流比(IT /IL )も
スラグ巻込みに影響し、一定の比であればスラグ巻込み
が発生しにくい (5)さらに、先行極、後行極トーチに一定の角度を設
けることにより溶込みが深く外観の良好なビードが得ら
れる (6)板厚が大きくなると自己拘束が大きくなり、水素
割れも発生し易くなるためフラックスの水素量を低くす
る必要がある (7)(5)の条件にさらにワイヤ狙い位置を限定する
と、一層少ない電流でも溶込みが深く外観の良好なビー
ドが得られるそこで、上記の様々な検討を総合的に行っ
た結果、簡単な開先加工のみを行い、ガウジング、グラ
インダなどの工程なしで、完全溶込み肉溶接を両側1パ
スで行う方法を完成した。
According to the research results of the present inventors, the following has become clear. (1) To prevent hot cracking of thick steel plates and increase the bead width, it is necessary to control the chemical composition of the sintering flux and the wire diameter within a certain range. The heat input becomes large, and the limit C amount for preventing hot cracking becomes low. (3) To prevent slag entrainment, use a large diameter wire and round the penetration bottom (large radius of curvature) If the penetration bottom is sharp (small radius of curvature), slag entrapment is likely to occur and high temperature cracking is also likely to occur. In addition, large diameter wire is advantageous in increasing the bead width. there (4) in the second electrode submerged arc welding, the leading electrode (L pole), current ratio of the trailing electrode (T poles) (I T / I L) also affects the slag inclusion, there a constant ratio Slag entrapment is less likely to occur (5) Further, by providing a fixed angle to the leading and trailing pole torches, a bead with good penetration and good appearance can be obtained. (6) As the plate thickness increases, self-restraint increases and hydrogen cracking occurs. (7) If the target position of the wire is further limited to the condition of (5), a bead having a good appearance can be obtained with a deeper penetration even with a smaller current. as a result of the overall the various studies of, perform only simple beveling, gouging, without processes such as grinder, it was completed a method of performing a full penetration fillet weld on both sides one pass.

【0011】以下、本発明法について詳しく説明する。
まず、本発明法に用いられるフラックスについて説明す
る。フラックスはビード外観を良好に保つ必要がある
が、造滓剤としてベースとなるSiO2 はビード幅を広
くし、ビード表面を平滑に保つ効果がある。MgOは生
成スラグの融点を上げ大入熱溶接時の作業性を改善する
とともにフラックスの塩基度を上げ、溶接金属の酸素量
を低減して靭性を向上させるのに重要な成分である。C
aOはMgOと同様、生成スラグの耐火性を向上させ、
フラックスの塩基度を上げる成分として重要であり、C
aCO3 として添加すれば拡散性水素量を低減するCO
2 発生源としても有効である。重要なこれらの各成分は
フラックス構成上一定以上必要であり、ビード外観、フ
ラックス耐火性の面からこれら各成分を合計量として4
5wt%以上含む必要がある。一方、これら各成分を合
計量として65wt%を超えるとフラックス融点が高く
なりすぎてビード幅が細くなり、外観も劣化するため、
SiO2 ,MgO,CaOの各成分の合計量の値を45
〜65wt%とした。
Hereinafter, the method of the present invention will be described in detail.
First, the flux used in the method of the present invention will be described. The flux needs to keep the bead appearance good, but SiO 2 serving as a base as a slag-making agent has the effect of widening the bead width and keeping the bead surface smooth. MgO is an important component for increasing the melting point of the generated slag, improving the workability during large heat input welding, increasing the basicity of the flux, reducing the oxygen content of the weld metal, and improving the toughness. C
aO improves the fire resistance of the generated slag like MgO,
Important as a component to increase the basicity of the flux,
CO that reduces the amount of diffusible hydrogen if added as aCO 3
2 It is also effective as a source. Each of these important components is required to have a certain amount or more in terms of the flux composition. From the viewpoint of bead appearance and flux fire resistance, these components are added in a total amount of 4%.
It is necessary to contain 5 wt% or more. On the other hand, if the total amount of these components exceeds 65 wt%, the flux melting point becomes too high, the bead width becomes narrow, and the appearance deteriorates.
The value of the total amount of each component of SiO 2 , MgO and CaO is 45
6565 wt%.

【0012】TiO2 はスラグ剥離性を改善すると共
に、アーク安定作用のある成分であり、Al23 はス
ラグ粘性を調整する重要な成分である。また、CaF2
もスラグの流動性をコントロールする上で重要な成分で
あり、これらの合計が5wt%未満ではスラグ剥離性が
劣化したり、スラグの粘性が大きすぎて良好な外観のビ
ードが得られない。これら各成分の合計量が20wt%
を超えると逆にスラグ粘性が小さくなりすぎたり、アー
クが不安定になるため、TiO2 ,Al23 ,CaF
2 の合計量の値は5〜20wt%とした。
TiO 2 is a component that improves slag removability and has an arc stabilizing effect, and Al 2 O 3 is an important component that adjusts slag viscosity. In addition, CaF 2
Is also an important component in controlling the fluidity of the slag. If the total of these components is less than 5% by weight, the slag removability deteriorates, or the viscosity of the slag is too large to obtain a bead having a good appearance. The total amount of these components is 20 wt%
On the contrary, if the viscosity exceeds slag, the slag viscosity becomes too small or the arc becomes unstable, so that TiO 2 , Al 2 O 3 , CaF
The value of the total amount of 2 was 5 to 20 wt%.

【0013】これらのスラグ構成成分に加え、脱酸剤、
合金元素および溶着量を増加させるための金属粉を25
wt%以上添加する必要がある。この添加量が25wt
%未満では溶接金属の靭性を確保することが難しいだけ
でなく、通常の溶接条件範囲内で開先を十分に埋めるだ
けの溶着量が確保できない。一方、38wt%を超える
と融点が高くなりすぎ良好なビードを得ることができな
い。従って、金属粉は25〜38wt%とした。金属粉
としては鉄粉、フェロマンガン、フェロシリコン、フェ
ロチタン等の粉末が使用される。
In addition to these slag components, a deoxidizer,
25 metal powders to increase alloying elements and deposition amount
It is necessary to add more than wt%. This addition amount is 25wt
%, It is not only difficult to secure the toughness of the weld metal, but also it is not possible to secure a sufficient welding amount to fill the groove within the normal range of welding conditions. On the other hand, if it exceeds 38% by weight, the melting point becomes too high and a good bead cannot be obtained. Therefore, the content of the metal powder is 25 to 38 wt%. Powders such as iron powder, ferromanganese, ferrosilicon, and ferrotitanium are used as the metal powder.

【0014】また、炭酸塩の形で含まれるガスは溶接金
属中の水素量を低減させるために必要であるが、ガス量
が5wt%未満ではその効果は乏しく、15wt%を超
えるとガスの吹上げによるビード形状の劣化が生じる。
従って、ガス発生量は5〜15wt%とした。この値は
板厚が小さい場合はもっと少なくて済むが板厚が厚い場
合にはより低水素化が必要である。
The gas contained in the form of carbonate is necessary to reduce the amount of hydrogen in the weld metal. However, if the gas amount is less than 5 wt%, the effect is poor. Raising of the bead causes deterioration of the bead shape.
Therefore, the gas generation amount was set to 5 to 15 wt%. This value is smaller when the plate thickness is small, but lower hydrogenation is required when the plate thickness is large.

【0015】ところで上記組成で良好な溶接作業性を示
すことは認められたが、アークを安定させかつ、欠陥の
無い、幅の広いビードを安定して得るために粉体特性を
更に検討したところ、粒度構成も限定することが重要で
あることがわかった。すなわち、フラックスの粒度構成
は溶接作業性に顕著に影響し、メジアン径が500μm
より小さい場合はフラックス溶融量が増加し、しかも、
フラックスの流動性が悪化するため、アーク空洞からの
ガスの逸出が困難となりアークが不安定化する。一方、
800μmを超えると粗くなりすぎ、溶融が不均一とな
るため、この場合にもアークは不安定となる。従って、
フラックス累積粒度分布において50wt%を占める粒
子のメジアン径は500〜800μmの範囲とした。
Although the above composition was found to exhibit good welding workability, the powder properties were further examined in order to stabilize the arc and obtain a wide bead free from defects. It was also found that it was important to limit the particle size configuration. That is, the particle size composition of the flux significantly affects the welding workability, and the median diameter is 500 μm.
If it is smaller, the flux melting amount increases, and moreover,
Since the flux fluidity deteriorates, escape of gas from the arc cavity becomes difficult and the arc becomes unstable. on the other hand,
If it exceeds 800 μm, the arc becomes too coarse and the melting becomes non-uniform, so that the arc becomes unstable also in this case. Therefore,
The median diameter of particles occupying 50 wt% in the flux cumulative particle size distribution was in the range of 500 to 800 μm.

【0016】また、製造上不可避な微粒子において29
5μm径以下のものは15wt%以下にしなければなら
ず、これを超えるとアンダーカットの発生が著しくな
る。開先加工なしで溶接する場合、最も問題となるのは
母材希釈量が多いため、溶接金属中のC量が多い場合に
は高温割れが発生し易いことである。従って、本発明の
技術のキーポイントは如何にして高温割れの発生を防止
するかにある。
In the fine particles unavoidable in production, 29
If the diameter is 5 μm or less, it must be 15% by weight or less. In the case of welding without beveling, the most problematic problem is that a large amount of C is contained in the weld metal because of the large amount of dilution of the base metal, and high-temperature cracking is likely to occur when the amount of C in the weld metal is large. Therefore, the key point of the technique of the present invention is how to prevent the occurrence of hot cracking.

【0017】割れに最も影響する成分はC量であること
から溶接金属中のC量を低減しなければならない。本技
術のような溶接入熱の大きいT型すみ肉両側1パスサブ
マージドアーク溶接では母材の希釈が大きいため溶接金
属のC量は母材のC量によって大きく影響され、母材C
量によってワイヤC量を調整しなければ割れを防止する
ことがむずかしい。後記する条件を全て設定した上で本
技術を適用するに当り種々の板厚について母材の希釈量
を測定したところ、ウェブ側の希釈率は最大で28%、
また、フランジ側の希釈率は最大で22%であった。拘
束割れ試験により割れの発生する計算上のC量を求めた
ところ、計算値で0.120wt%以下であれば割れを
防止できることが明らかになった。このときの溶接金属
中C量の分析値は0.110wt%以下となるが、実際
の溶接では溶融池内においてCとOの反応によりCOガ
スやCO2 ガスとして逸出すため、計算値よりもC量は
低値となる。
Since the component that most affects the cracking is the C content, the C content in the weld metal must be reduced. In one-pass submerged arc welding on both sides of a T-shaped fillet with a large welding heat input as in the present technology, the C content of the weld metal is greatly affected by the C content of the base material because the dilution of the base material is large.
Unless the amount of wire C is adjusted according to the amount, it is difficult to prevent cracking. After setting all the conditions described below, when applying the present technology, the dilution amount of the base material was measured for various plate thicknesses, and the dilution ratio on the web side was 28% at the maximum,
Further, the dilution ratio on the flange side was 22% at the maximum. When the calculated C amount at which cracking occurs was determined by a restrained cracking test, it was found that cracking could be prevented if the calculated C amount was 0.120 wt% or less. At this time, the analysis value of the C content in the weld metal is 0.110 wt% or less. However, in actual welding, C and O are released as CO gas or CO 2 gas due to the reaction between C and O in the molten pool. The amount will be low.

【0018】すなわち、ワイヤC量(C1 (wt%))
は 0.50C1 +0.28C2 +0.22C3 ≦0.120 (1) を満足する必要がある。ここで、 C1 :ワイヤC量(wt%) C2 :ウェブ鋼板のC量(wt%) C3 :フランジ鋼板のC量(wt%) である。ウェブ鋼板やフランジ鋼板のC量が多い場合は
ワイヤのC量低減の限界を超えるため、母材C量はウェ
ブ、フランジ側とも0.18wt%以下とする必要があ
る。
That is, the amount of wire C (C 1 (wt%))
It must satisfy 0.50C 1 + 0.28C 2 + 0.22C 3 ≦ 0.120 (1). Here, C 1 : wire C amount (wt%) C 2 : C amount of web steel plate (wt%) C 3 : C amount of flange steel plate (wt%) When the C content of the web steel plate or the flange steel plate is large, the limit of reduction of the C content of the wire is exceeded, so that the base material C content needs to be 0.18 wt% or less on both the web and flange sides.

【0019】なお、ワイヤ中のMn量については母材M
n量によらず、脱酸効果と強度確保のため1.20〜
2.50wt%とする必要がある。1.20wt%未満
では脱酸不足になり易く、低C溶接金属での強度が出に
くい。一方、2.50wt%を超えると強度が出すぎ
て、今度は硬さ上昇に伴う低温割れが起り易くなる。従
って、ワイヤ中のMn量は1.20〜2.50wt%と
した。ワイヤ径については4.8mmφ未満のワイヤで
はアークが細く、ビード幅が出にくいという問題があ
る。また、溶込み底部の形状が鋭くなってスラグ巻込み
等の欠陥も発生し易い。従って、ワイヤ径としては4.
8mmφ以上とする必要がある。一方、6.4mmφを
超えると剛性が大きすぎて溶接機に負荷がかかりすぎる
ので、ワイヤ径は4.8〜6.4mmφとした。
The amount of Mn in the wire is determined based on the base material M
Regardless of the amount of n, it is 1.20 to ensure the deoxidizing effect and strength.
It must be 2.50 wt%. If the content is less than 1.20 wt%, deoxidation tends to be insufficient, and the strength of a low C weld metal is hardly obtained. On the other hand, if the content exceeds 2.50 wt%, the strength becomes too high, and low-temperature cracking accompanying the increase in hardness is likely to occur. Therefore, the amount of Mn in the wire was set to 1.20 to 2.50 wt%. With respect to a wire diameter of less than 4.8 mmφ, there is a problem that an arc is thin and a bead width is hardly obtained. Further, the shape of the penetration bottom becomes sharp, and defects such as slag entrainment are likely to occur. Therefore, the wire diameter is 4.
It is necessary to be 8 mmφ or more. On the other hand, if it exceeds 6.4 mmφ, the rigidity is too large and a load is excessively applied to the welding machine, so the wire diameter was set to 4.8 to 6.4 mmφ.

【0020】次にサブマージドアーク溶接方法について
説明する。2電極法で先行極(L極)、後行極(T極)
の電流比(IT /IL )を0.65〜1.00としたの
は以下の理由による。すなわち、IT /IL が0.65
より小さい場合は先行極によって生じたスラグ巻込みを
後行極で浮上させることができなくなり、結果的にスラ
グ巻込みが発生し易くなる。一方、IT /IL が1.0
0より大きくなるとT極自身の電流が大きいため、T極
によりスラグ巻込みが発生する。従って、電流比IT
L を0.65〜1.00とした。また、先行極に3°
〜15°の後退角を、後行極に3°〜20°の前進角を
設けることにより溶込みが深く、ビード断面形状及び外
観の良好なビードが得られるため、電極角度は上記の通
りとした。
Next, the submerged arc welding method will be described. Leading pole (L pole), trailing pole (T pole) by two-electrode method
Current ratio was set to (I T / I L) of 0.65 to 1.00 for the following reasons. That is, I T / I L is 0.65
If it is smaller, slag entrainment caused by the leading pole cannot be floated at the subsequent pole, and as a result, slag entrainment is likely to occur. On the other hand, I T / I L is 1.0
If it is larger than 0, the current of the T pole itself is large, so that the T pole causes slag entrainment. Therefore, the current ratio I T /
The I L was 0.65 to 1.00. Also, the leading pole is 3 °
By providing a receding angle of 1515 ° and an advancing angle of 3 ° to 20 ° on the trailing electrode, penetration is deep, and a bead having a good bead cross-sectional shape and appearance can be obtained. did.

【0021】ここで、さらに、先行極のみをフランジ側
に5°〜15°傾け、ウェブ面とフランジ面とが交差す
る位置からフランジ面の上方に向かって先行極は5〜1
5mm、後行極は2〜12mm離れた位置を狙って溶接
することにより、先行極をフランジ側に傾けない溶接方
法に比べ一層少ない電流で溶込みが深く、ビード断面形
状及び外観の良好なビードが得られる。
Further, only the leading pole is inclined by 5 ° to 15 ° toward the flange side, and the leading pole is 5-1 from the position where the web surface and the flange surface intersect to above the flange surface.
Welding with 5 mm and trailing electrode 2 to 12 mm away from each other provides deeper penetration with less current compared to the welding method in which the leading electrode is not inclined to the flange side, and a bead with good bead cross-sectional shape and appearance. Is obtained.

【0022】上記のような条件を設定しても、ウェブ厚
60mmを超える鋼板に完全溶込法を適用するために
は、ウェブに若干の開先加工が必要である。すなわち、
ウェブ板厚の0.3〜0.4倍の深さの開先加工を両側
にしない場合は、極めて深溶込みの溶接にしなければな
らず、現実的には無理である。ウェブ側にウェブ板厚の
0.3〜0.4倍の深さの開先加工を施すことにより両
側からのビードを完全にラップさせることが可能とな
る。開先加工の深さがウェブ厚の0.3倍より小さい場
合には溶込みを深くしなければならず、幅の狭いビード
となり、また、母材希釈量も多くなるため高温割れが起
りやすい。一方、開先深さがウェブ厚の0.4倍を越え
ると完全溶込みは得られるものの開先を埋めてかつすみ
肉ビードの形状を良好にするためには大量のメタルが必
要となり、能率的でなくなり、かつ得られる継手特性も
十分でないことから、完全溶込みではウェブの開先加工
はウェブ厚の0.3〜0.4倍深さとした。ウェブ厚が
100mmを超える場合にはウェブ厚の0.3〜0.4
倍深さの開先加工を施しても完全溶込みを指向すると、
(a)溶込みが深くなりすぎ、幅の狭いビードとなって
高温割れが起り易く、また、(b)母材希釈量が大きく
なって高温割れが起り易いという問題点がある。更にフ
ラックス中に鉄粉等の合金粉を添加しても開先を十分に
埋めてかつ良好なビードを得ることが困難となってく
る。
Even if the above conditions are set, the web must be slightly grooved in order to apply the complete penetration method to a steel plate having a web thickness of more than 60 mm. That is,
In the case where a groove with a depth of 0.3 to 0.4 times the web thickness is not formed on both sides, welding must be performed with extremely deep penetration, which is practically impossible. The bead from both sides can be completely wrapped by subjecting the web side to beveling with a depth of 0.3 to 0.4 times the web thickness. If the depth of the groove processing is smaller than 0.3 times the web thickness, the penetration must be deepened, resulting in a narrow bead and a large amount of base material dilution, which tends to cause hot cracking. . On the other hand, if the groove depth exceeds 0.4 times the web thickness, complete penetration can be obtained, but a large amount of metal is required to fill the groove and improve the shape of the fillet bead. In the case of complete penetration, the beveling of the web was made to be 0.3 to 0.4 times the thickness of the web because of the lack of accuracy and insufficient joint characteristics. When the web thickness exceeds 100 mm, the web thickness is 0.3 to 0.4.
Even if a double-depth beveling is performed, directing full penetration
(A) There is a problem that hot penetration is apt to occur due to too deep penetration and a narrow bead to be formed, and (b) hot dilution is apt to occur due to a large dilution of the base material. Further, even if an alloy powder such as iron powder is added to the flux, it becomes difficult to sufficiently fill the groove and obtain a good bead.

【0023】従って、ウェブ厚が60mmを超え100
mm以下の鋼板では、ウェブ厚の0.3〜0.4倍の深
さの開先をウェブの両側に加工することにより両側1パ
スの完全溶込みT型すみ肉高能率溶接が可能である。図
1はこのようなT型すみ肉溶接を示す説明図であり、板
厚80mmのフランジ2に板厚80mmのウエブ1を溶
接する場合の開先寸法として、深さ26mm、開先角4
5度の溶接部寸法を示している。図2はこのウエブ1と
フランジ2に完全溶込みT型すみ肉溶接部3を施した溶
接部を示す説明図である。また、図3は電極角度とワイ
ヤ狙い位置を示し、先行極4のみをフランジ側に5°〜
15°傾け、ウェブ面を延長した面とフランジ面とが交
差する位置5からフランジ面の上方に向かって先行極4
は5〜15mm(図ではaで示す)、後行極6は2〜1
2mm(図ではbで示す)離れた位置を狙って溶接する
様子を示す図であり、(a)はフランジ側を水平となす
角度で55°転回した溶接施工状態を溶接方向7から見
た図、(b)は電極の上方から見た図、(c)は溶接方
向に直交する方向から見た図である。
Therefore, when the web thickness exceeds 60 mm and exceeds 100 mm,
For a steel plate having a thickness of 0.3 mm or less, a groove having a depth of 0.3 to 0.4 times the thickness of the web is machined on both sides of the web, thereby enabling a one-pass complete penetration T-type fillet high-efficiency welding on both sides. . FIG. 1 is an explanatory view showing such a T-shaped fillet welding, and includes a groove 26 mm in depth and a groove angle 4 when a web 1 having a thickness of 80 mm is welded to a flange 2 having a thickness of 80 mm.
The dimensions of the weld at 5 degrees are shown. FIG. 2 is an explanatory view showing a welded portion in which a completely penetrated T-shaped fillet welded portion 3 is applied to the web 1 and the flange 2. FIG. 3 shows the electrode angle and the target position of the wire.
The leading pole 4 is inclined from the position 5 where the surface extending from the web surface and the flange surface intersect with each other at an angle of 15 ° and upward from the flange surface.
Is 5 to 15 mm (shown by a in the figure), and the trailing electrode 6 is 2 to 1 mm.
It is a figure which shows a mode that welding is aimed aiming at the position away by 2 mm (indicated by b in the figure), (a) is a figure which looked at the welding execution state which turned 55 degrees by the angle which makes a flange side horizontal, and was seen from welding direction 7. (B) is a view seen from above the electrode, and (c) is a view seen from a direction orthogonal to the welding direction.

【0024】このように厚物T型すみ肉溶接は下向き溶
接するために通常フランジと水平のなす角度で45°〜
70°転回した状態で施工される。
As described above, in the case of the thick T-shaped fillet welding, an angle formed by a horizontal angle with the flange is generally 45 ° to 45 °.
It is installed in a state of turning 70 °.

【0025】[0025]

【実施例】次に、本発明法の実施例について説明する。 実施例1.表1に示す化学組成および粉体特性を有する
焼成型フラックスを調整し、このフラックスを用いて表
2に示すウェブ板厚80mm、フランジ板厚80mmの
JIS規格SM−490A鋼板を、図1に示すように、
ウェブの両側に深さ26mm、角度45°の開先加工を
施してT型に組み、すみ肉溶接を行った。なお、用いた
ワイヤの化学組成を表3に、また、溶接条件を表4に示
す。
Next, examples of the method of the present invention will be described. Embodiment 1 FIG. A calcination type flux having the chemical composition and powder characteristics shown in Table 1 was adjusted, and a JIS standard SM-490A steel sheet having a web plate thickness of 80 mm and a flange plate thickness of 80 mm shown in Table 2 was shown in FIG. like,
A groove was formed on both sides of the web at a depth of 26 mm and an angle of 45 ° to form a T-shape, and fillet welding was performed. Table 3 shows the chemical composition of the wires used, and Table 4 shows the welding conditions.

【0026】溶接時のアークの安定性、ビード外観観
察、ビード断面形状観察、溶接金属の酸素量と靭性の関
係などについて調べた結果を表5に示す。
Table 5 shows the results obtained by examining the stability of the arc during welding, the appearance of the bead, the observation of the cross-sectional shape of the bead, the relationship between the oxygen content of the weld metal and the toughness, and the like.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【表5】 [Table 5]

【0032】表5から明らかなように本発明フラックス
によれば、いずれの場合も良好なすみ肉溶接作業性を示
し、得られた溶接金属の靭性も良好であるのに対し、フ
ラックスの化学組成や粉体特性が本発明フラックスの適
正条件からはずれている比較フラックスB−1〜B−7
によれば、溶接作業性、溶接金属の靭性の全てにわたっ
て同時に満足することはできなかった。
As is clear from Table 5, according to the flux of the present invention, good fillet welding workability was obtained in each case and the toughness of the obtained weld metal was good, while the chemical composition of the flux was high. Fluxes B-1 to B-7 whose powder characteristics deviate from the proper conditions of the flux of the present invention
According to this, it was not possible to simultaneously satisfy all of the welding workability and the toughness of the weld metal.

【0033】すなわち、比較フラックスB−1はTiO
2 ,Al23 ,CaF2 の各成分の合計量の値が4.
3%と低く、スラグ剥離性が悪いのと同時にガス発生量
が少ないため、拡散性水素量が多くなり、溶接金属中に
水素による微小割れが認められた。比較フラックスB−
2ではSiO2 ,MgO,CaOの各成分の合計量が適
正域からはずれており、耐火性に欠けるためビード表面
の凹凸が激しかった。また、細粒フラックスの割合が多
く、ビード幅も狭く、溶込み先端形状が鋭くなってスラ
グ巻込みが認められた。
That is, the comparative flux B-1 is made of TiO
2 , the total amount of each component of Al 2 O 3 and CaF 2 is 4.
Since the amount of generated hydrogen was small at the same time as the slag removability was low at 3%, the amount of diffusible hydrogen increased, and microcracks due to hydrogen were observed in the weld metal. Comparative flux B-
In No. 2 , the total amount of each component of SiO 2 , MgO, and CaO was out of the proper range, and the bead surface was severely uneven due to lack of fire resistance. In addition, the ratio of the fine-grained flux was large, the bead width was narrow, and the shape of the penetration tip was sharp, and slag entrainment was observed.

【0034】比較フラックスB−3では粒度構成上29
5μmより細かい粒子が16.8%と多いため、溶接
時、ガスが逸出しにくくアークが不安定であった。また
スラグ巻込みも認められた。比較フラックスB−4では
合金元素および脱酸剤としての金属粉添加量が少なく、
完全に開先を埋めきれないばかりでなくビード表面にポ
ックマークが発生するとともに、溶接金属中酸素量が多
いため靭性が低かった。
In the comparative flux B-3, 29
Since the number of particles finer than 5 μm was as large as 16.8%, gas did not easily escape during welding, and the arc was unstable. Slag entrainment was also observed. In the comparative flux B-4, the addition amount of metal powder as an alloying element and a deoxidizing agent was small,
Not only could not completely fill the groove, but also a pock mark was generated on the bead surface, and the toughness was low due to the large amount of oxygen in the weld metal.

【0035】比較フラックスB−5ではガス発生量が多
すぎるため、溶接時の吹上げが激しくアークが安定しな
かった。また、粒度構成上粗粒のものが多く、フラック
スの溶融も不均一であった。比較フラックスB−6では
化学組成が本発明フラックスの適正域からはずれてお
り、融点が高く粘性が小さすぎるためビードが細く割れ
る危険性が大きく、また、ガス発生量が少なく拡散性水
素量が多いため溶接金属に水素による微小割れが認めら
れた。
With the comparative flux B-5, the amount of gas generated was too large, so that the blow-up during welding was severe and the arc was not stable. In addition, there were many coarse particles in terms of particle size composition, and the melting of the flux was not uniform. In the comparative flux B-6, the chemical composition is out of the proper range of the flux of the present invention, and the melting point is too high and the viscosity is too small, so that there is a large risk of breaking the beads, and the amount of gas generated is small and the amount of diffusible hydrogen is large. Therefore, micro cracks due to hydrogen were observed in the weld metal.

【0036】比較フラックスB−7では合金元素および
脱酸剤としての金属粉添加量が多すぎるため、脱酸がす
すみすぎて逆に焼きが入りすぎ溶接金属靭性が劣化し
た。 実施例2.実施例1で用いた本発明フラックスA−2と
比較フラックスB−1を用い、母材、ワイヤ,溶接条件
の影響について調べた。
In the comparative flux B-7, since the amount of the alloying element and the amount of the metal powder added as the deoxidizing agent were too large, the deoxidation was excessive, and consequently, the quenching was excessive and the weld metal toughness was deteriorated. Embodiment 2. FIG. Using the flux A-2 of the present invention and the comparative flux B-1 used in Example 1, the effects of the base material, wire, and welding conditions were examined.

【0037】表6に用いた鋼板の化学組成、表7にワイ
ヤの化学組成、表8に溶接条件を示す。これらのフラッ
クス、鋼板、ワイヤ、溶接条件を適宜組合せて完全溶込
みT型すみ肉溶接を行った。その結果を表9に一括して
示した。
Table 6 shows the chemical composition of the steel sheet used, Table 7 shows the chemical composition of the wire, and Table 8 shows the welding conditions. Complete penetration T-type fillet welding was performed by appropriately combining these fluxes, steel plates, wires, and welding conditions. The results are collectively shown in Table 9.

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】[0041]

【表9】 [Table 9]

【0042】本発明例では欠陥の無い良好な完全溶込み
すみ肉溶接が可能であるが、比較例ではいずれも何らか
の問題があった。すなわち、比較例G1では溶接条件の
うち電流比が0.63と小さいため、スラグ巻込みが発
生した。比較例G2ではワイヤ径が細く、ビード幅が出
ず、溶込み先端のとがったビードとなってスラグ巻込み
が発生し、割れの危険性も大であった。比較例G3では
ワイヤMn量が少なく一部ブローホールが発生するとと
もに、強度が不足していた。比較例G4〜G6では母材
あるいはワイヤのC量が多いため、高温割れが発生し
た。比較例G7では本発明フラックスA−2を比較フラ
ックスB−1に変え、母材、ワイヤ、溶接条件は最適に
設定したが、すでに表5で説明した通り、ビード外観、
内部欠陥に問題が生じた。比較例G8では、T極の電流
がL極の電流よりも大きいため、スラグ巻込みが発生し
た。比較例G9では電極角度が先行極で+0°、後行極
で−25°と本発明例からはずれているため溶込不足と
ビード外観不良を起した。
In the present invention example, satisfactory complete penetration fillet welding without defects is possible, but in the comparative examples, there were some problems. That is, in Comparative Example G1, slag entrainment occurred because the current ratio among the welding conditions was as small as 0.63. In Comparative Example G2, the wire diameter was small, the bead width did not come out, the bead became a sharp bead, and slag was involved, and the risk of cracking was great. In Comparative Example G3, the amount of wire Mn was small, some blow holes were generated, and the strength was insufficient. In Comparative Examples G4 to G6, since the C content of the base material or the wire was large, hot cracking occurred. In Comparative Example G7, the flux A-2 of the present invention was changed to the comparative flux B-1, and the base material, wire, and welding conditions were optimally set.
A problem occurred with an internal defect. In Comparative Example G8, slag entrainment occurred because the current of the T pole was larger than the current of the L pole. In Comparative Example G9, the electrode angle was + 0 ° at the leading electrode and -25 ° at the trailing electrode, which was different from the example of the present invention, so that insufficient penetration and poor bead appearance occurred.

【0043】以上のように満足な結果が得られるのは本
発明フラックスの範囲のみの場合であった。この方法を
ウェブ厚100mm超の場合完全溶込み溶接に適用する
と、図2の如く溶込みが深くなりすぎビード幅の狭いビ
ードとなって高温割れが起り易いのと同時に母材希釈量
が大きく、やはり高温割れが起り易くなった。
As described above, satisfactory results were obtained only in the range of the flux of the present invention. When this method is applied to full penetration welding when the web thickness is more than 100 mm, the penetration becomes too deep as shown in FIG. After all, hot cracking became easy to occur.

【0044】表6のC−1と同様の化学組成を有するウ
ェブ厚105mmのT型すみ肉溶接を表7のワイヤ記号
D−1を用いて種々溶接条件の選定を行ったが、いずれ
の場合も完全溶込みでは割れが生じたが板厚100mm
までの場合は割れなかった。従って本発明法では板厚6
0mmを超え100mmまでは完全溶込み法が適用対象
となる。 実施例3.表2に示す鋼板と、表3に示すワイヤを用
い、ワイヤ配置、ワイヤ狙い位置と溶接条件の影響につ
いて調べた。
Various welding conditions were selected for the T-shaped fillet weld of 105 mm in web thickness having the same chemical composition as C-1 in Table 6 using the wire symbol D-1 in Table 7. Cracking occurred at full penetration, but plate thickness was 100mm
Until it did not crack. Therefore, according to the method of the present invention,
From 0 mm to 100 mm, the complete penetration method is applicable. Embodiment 3 FIG. Using the steel plates shown in Table 2 and the wires shown in Table 3, the effects of the wire arrangement, wire target position, and welding conditions were examined.

【0045】溶接条件は表10に示したものを用いた。The welding conditions shown in Table 10 were used.

【0046】[0046]

【表10】 [Table 10]

【0047】L、T極のフランジ側への傾斜角度を変化
させた場合の結果を表11に示した。
Table 11 shows the results when the inclination angles of the L and T poles to the flange side were changed.

【0048】[0048]

【表11】 [Table 11]

【0049】第2発明例では少ない電流で両側ビードラ
ップも十分で、図4のように凝固会合部8も直線状でな
く上向きとなり、形状良好であるのに対し、第1発明例
1,2では、第2発明例1と同じ効果を得ようとすれば
先行極および後行極とも大きな電流が必要であることが
わかる。
In the second invention example, the bead wrap on both sides is sufficient with a small current, and the solidification association portion 8 is not straight but upward as shown in FIG. It can be seen that a large current is required for both the leading and trailing poles in order to obtain the same effect as the second invention example 1.

【0050】[0050]

【発明の効果】本発明によれば簡単な開先加工により厚
肉T型すみ肉サブマージドアーク溶接を両側1パスで行
うことができ、コスト削減、短納期など工業的に極めて
有効な技術である。
According to the present invention, the thick T-shaped fillet submerged arc welding can be performed in one pass on both sides by simple groove processing, and it is an industrially effective technology such as cost reduction and short delivery time. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】T型すみ肉溶接寸法を示す説明図である。FIG. 1 is an explanatory view showing T-shaped fillet welding dimensions.

【図2】完全溶込みT型すみ肉溶接部を示す説明図であ
る。
FIG. 2 is an explanatory view showing a completely penetration T-shaped fillet welded portion.

【図3】ワイヤ狙い位置及び電極配置を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a wire aiming position and an electrode arrangement.

【図4】ウエブとフランジの合わせ面の溶残しを示す図
である。
FIG. 4 is a view showing a residue of a mating surface between a web and a flange.

【符号の説明】[Explanation of symbols]

1 ウェブ 2 フランジ 3 溶接部 4 先行極 5 ウェブ面とフランジ面とが交差する位置 6 後行極 DESCRIPTION OF SYMBOLS 1 Web 2 Flange 3 Weld 4 Lead electrode 5 Position where web surface and flange surface intersect 6 Trailing electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B23K 35/362 310 B23K 35/362 310B (72)発明者 岡部 龍二 東京都千代田区内幸町2丁目2番3号 川崎製鉄株式会社 東京本社内 (72)発明者 林 三郎 東京都千代田区内幸町2丁目2番3号 川崎製鉄株式会社 東京本社内 (72)発明者 中島 松重 香川県丸亀市昭和町18番地 川鉄メタル ファブリカ株式会社内 (56)参考文献 特開 平5−57448(JP,A) 特開 平3−27891(JP,A) 特開 昭63−16870(JP,A) 特開 昭61−23597(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 9/18 B23K 9/00 B23K 9/02 B23K 33/00 B23K 35/30 B23K 35/362 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI B23K 35/362 310 B23K 35/362 310B (72) Inventor Ryuji Okabe 2-3-2 Uchisaiwaicho, Chiyoda-ku, Tokyo Kawasaki Steel Corporation Tokyo headquarters (72) Inventor Saburo Hayashi 2-3-2 Uchisaiwaicho, Chiyoda-ku, Tokyo Kawasaki Steel Corporation Tokyo headquarters (72) Inventor Matsushima Nakashige 18 Showa-cho, Marugame-shi, Kagawa Prefecture 56) References JP-A-5-57448 (JP, A) JP-A-3-27891 (JP, A) JP-A-63-16870 (JP, A) JP-A-61-23597 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) B23K 9/18 B23K 9/00 B23K 9/02 B23K 33/00 B23K 35/30 B23K 35/362

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C量0.18wt%以下を含有する板厚
60mm超え100mm以下のウェブ鋼板とフランジ鋼
板をT字状に突合わせ、2電極法で両側1パスサブマー
ジドアーク溶接するに当り、該ウェブ鋼板の両側に板厚
の0.30〜0.40倍の深さの開先を設け、下記焼成
型フラックス(A)とワイヤ(B)とを用い、先行極
(L極)に対する後行極(T極)の電流比(IT/IL
を0.65〜1.00の条件下で先行極に3°〜15°
の後退角を、後行極に3°〜20°の前進角を設けて完
全溶込法により溶接することを特徴とする厚鋼板の高能
率すみ肉溶接方法。 (A)焼成型フラックス:SiO2,MgO,CaOの
各成分の合計量が45〜65wt%、TiO2,Al2
3,CaF2の各成分の合計量が5〜20wt%、これら
のスラグ構成成分に加え、脱酸剤、合金元素及び溶着量
を増加させるための金属粉が25〜38wt%、溶接時
に添加原料が熱分解して発生するガス量が5〜15wt
%、残部が不可避的不純物であるフラックスからなり、
累積粒度分布50wt%の粒子のメジアン径が500〜
800μmであり、粒子径295μm以下の粒子が前記
フラックス全体の15wt%以下である焼成型フラック
ス (B)ワイヤ ワイヤC量(wt%)をC1、ウェブ鋼板のC量(wt
%)をC2(≦0.18wt%)、フランジ鋼板のC量
(wt%)をC3(≦0.18wt%)とし、0.50
1+0.28C2+0.22C3≦0,120を満足す
るワイヤC量およびMn:1.20〜2.50wt%を
含む、直径4.8〜6.4mmφのワイヤ
1. When a web steel sheet having a C content of 0.18 wt% or less and a steel sheet having a thickness of more than 60 mm and 100 mm or less and a flange steel sheet are butt-jointed in a T-shape, two-pass one-side submerged arc welding is performed. A groove having a depth of 0.30 to 0.40 times the thickness of the web steel plate is provided on both sides of the web steel plate, and the following sintering type flux (A) and wire (B) are used. current ratio of trailing electrode (T poles) (I T / I L)
At a leading pole of 3 ° to 15 ° under conditions of 0.65 to 1.00.
The method for filling a thick steel plate with high efficiency, wherein the receding angle is set to a forward angle of 3 ° to 20 ° at a trailing electrode and welding is performed by a full penetration method. (A) Firing type flux: total amount of each component of SiO 2 , MgO, CaO is 45 to 65 wt%, TiO 2 , Al 2 O
3, the total amount of the components of CaF 2 is 5 to 20 wt%, these
Deoxidizer, alloying elements and deposition amount
25-38 wt% of metal powder to increase the amount of gas, and the amount of gas generated by thermal decomposition of the added material during welding is 5-15 wt%
%, The balance consists of flux which is an unavoidable impurity,
The median diameter of particles having a cumulative particle size distribution of 50 wt% is 500 to
A fired flux in which particles having a particle size of 800 μm and having a particle size of 295 μm or less are 15 wt% or less of the entire flux. (B) Wire The wire C amount (wt%) is C 1 , and the web steel sheet C amount (wt)
%) As C 2 (≦ 0.18 wt%) and the C content (wt%) of the flanged steel sheet as C 3 (≦ 0.18 wt%), and 0.50
C 1 + 0.28C 2 + 0.22C 3 ≦ 0,120 wire C amount and satisfying the Mn: containing 1.20~2.50wt%, of the diameter 4.8~6.4mmφ wire
JP05324699A 1993-06-30 1993-12-22 High efficiency fillet welding method for thick steel plate Expired - Fee Related JP3114958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05324699A JP3114958B2 (en) 1993-06-30 1993-12-22 High efficiency fillet welding method for thick steel plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-162353 1993-06-30
JP16235393 1993-06-30
JP05324699A JP3114958B2 (en) 1993-06-30 1993-12-22 High efficiency fillet welding method for thick steel plate

Publications (2)

Publication Number Publication Date
JPH0768380A JPH0768380A (en) 1995-03-14
JP3114958B2 true JP3114958B2 (en) 2000-12-04

Family

ID=26488172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05324699A Expired - Fee Related JP3114958B2 (en) 1993-06-30 1993-12-22 High efficiency fillet welding method for thick steel plate

Country Status (1)

Country Link
JP (1) JP3114958B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060793A (en) * 1999-12-28 2001-07-07 이구택 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels
JP4537683B2 (en) * 2003-10-06 2010-09-01 新日本製鐵株式会社 Welded structure with excellent brittle fracture resistance
FI122218B (en) * 2009-05-04 2011-10-14 Pemamek Oy Manufacturing method for a door frame, welding process and construction for a door frame
CN101885099A (en) * 2010-07-16 2010-11-17 潍坊五洲风电设备有限公司 Welding process applying submerged automatic arc welding to wind power generation tower foundation seat
CN105149740A (en) * 2015-07-27 2015-12-16 上海航天精密机械研究所 InFocus electric arc synchronous welding method for two sides of T-shaped connector
CN108746948B (en) * 2018-06-20 2020-06-19 台山平安五金制品有限公司 Full penetration back chipping-free submerged automatic arc horizontal welding process for T-shaped joint
JP7288196B2 (en) * 2019-12-16 2023-06-07 日本製鉄株式会社 Welded structure
CN113843592B (en) * 2021-10-15 2024-01-12 中建钢构工程有限公司 Double-gun bottoming welding method

Also Published As

Publication number Publication date
JPH0768380A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
EP1046454B1 (en) Gas shielded arc-welding flux cored wire
US4125758A (en) Vertical welding method
US6784402B2 (en) Steel wire for MAG welding and MAG welding method using the same
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP2000167670A (en) Fillet welding method of high strength thick plate steel
JP3114958B2 (en) High efficiency fillet welding method for thick steel plate
JP2003220481A (en) Method and welding wire for arc-laser composite welding
JP2538815B2 (en) Highly efficient fillet welding method for thick steel plate
KR100343750B1 (en) Pit and blow hole resistant flux-cored wire electrode for gas-shielded arc-welding of galvanized steel sheet
JP4297880B2 (en) Bond flux for submerged arc welding
JP2008161899A (en) Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint
US3924091A (en) Welding method and materials
JP4125688B2 (en) Two-electrode large heat input submerged arc welding method
KR960002111B1 (en) High-efficiency fillet welding method for steel plate
JP2016068097A (en) Gas shielded arc welding method
JP3765761B2 (en) Bond flux for submerged arc welding
JP2857329B2 (en) Gas shielded arc welding method
JPH07328795A (en) Flux cored wire for gas shield arc welding
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JP2978744B2 (en) Downward fillet submerged arc welding method for steel plate
JP2003001423A (en) Method for producing welded joint
JPH089099B2 (en) Highly efficient fillet welding method for thick steel plate
JP7485250B1 (en) One-sided submerged arc welding method and method for manufacturing welded joint
JP2892575B2 (en) Non-consumable nozzle type electroslag welding wire and welding method
CN110315168B (en) Flux-cored wire for high-speed welding and high-speed arc welding method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000914

LAPS Cancellation because of no payment of annual fees