JP2892575B2 - Non-consumable nozzle type electroslag welding wire and welding method - Google Patents

Non-consumable nozzle type electroslag welding wire and welding method

Info

Publication number
JP2892575B2
JP2892575B2 JP18354593A JP18354593A JP2892575B2 JP 2892575 B2 JP2892575 B2 JP 2892575B2 JP 18354593 A JP18354593 A JP 18354593A JP 18354593 A JP18354593 A JP 18354593A JP 2892575 B2 JP2892575 B2 JP 2892575B2
Authority
JP
Japan
Prior art keywords
welding
wire
weld metal
consumable nozzle
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18354593A
Other languages
Japanese (ja)
Other versions
JPH0716786A (en
Inventor
和男 長友
雄二 鈴木
盈昭 乙黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18354593A priority Critical patent/JP2892575B2/en
Publication of JPH0716786A publication Critical patent/JPH0716786A/en
Application granted granted Critical
Publication of JP2892575B2 publication Critical patent/JP2892575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は溶着速度を高め高能率で
厚板の非消耗ノズル式エレクトロスラグ溶接を行なう場
合に、安定して高靭性な溶接金属が得られる細径の非消
耗ノズル式エレクトロスラグ溶接用ワイヤ及びそれを用
いた溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-consumable nozzle type having a small diameter and capable of stably obtaining a high toughness weld metal when performing electroslag welding of a thick plate at a high efficiency with a high welding speed. The present invention relates to a wire for electroslag welding and a welding method using the same.

【0002】[0002]

【従来の技術】溶着速度を高め、高能率で厚板の非消耗
ノズル式エレクトロスラグ溶接を行なう方法としては、
例えば特開昭57−156884号公報がある。同公報
では高能率のエレクトロスラグ溶接を目的としてワイヤ
径2.0mm以下、溶融スラグ浴表面と溶接チップ間の
ワイヤ突出し長さ(以下、ドライエクステンションとい
う)を30mm以上として自動上昇する非消耗ノズルを
用いるエレクトロスラグ溶接方法が開示されている。こ
の方法によれば、ワイヤが細径のため溶接時ドライエク
ステンション部分が高温に発熱し、これによってワイヤ
の溶融速度が高まり高能率で溶接できる。しかし、大入
熱溶接のため溶接金属の靭性が時々低値になる場合があ
り、溶接構造物の安全性向上の面から改善が望まれてい
る。
2. Description of the Related Art As a method of increasing the welding speed and performing non-consumable nozzle type electroslag welding of a thick plate with high efficiency, there are the following methods.
For example, there is JP-A-57-156884. In this publication, a non-consumable nozzle that automatically rises with a wire diameter of 2.0 mm or less and a wire protrusion length (hereinafter, referred to as dry extension) between a molten slag bath surface and a welding tip of 30 mm or more for the purpose of highly efficient electroslag welding is disclosed. The electroslag welding method used is disclosed. According to this method, since the wire has a small diameter, the dry extension portion generates heat at a high temperature during welding, thereby increasing the melting speed of the wire and performing welding with high efficiency. However, the toughness of the weld metal sometimes becomes low due to large heat input welding, and improvement is desired in terms of improving the safety of the welded structure.

【0003】また、特開昭50−7737号公報では消
耗式エレクトロスラグ溶接において消耗ノズルを通して
溶融スラグ面にガスを噴出し、溶接金属中のガス成分の
調節を行わしめ、機械的性質の向上を図ることが提案さ
れている。しかし、ArガスやCO2 ガスを開先内に溶
接中長時間にわたって常時放流する方法は、ガスに係わ
る費用やガスを放流する諸機能の追加が必要となり、ま
た溶接作業の煩雑化をもたらす等の問題がある。
In Japanese Patent Application Laid-Open No. Sho 50-7737, in consumable electroslag welding, gas is blown out through a consumable nozzle onto a molten slag surface to adjust a gas component in a weld metal to improve mechanical properties. It has been proposed to do so. However, the method of constantly discharging Ar gas or CO 2 gas into a groove for a long time during welding requires additional cost related to gas and various functions of discharging gas, and also complicates welding work. There is a problem.

【0004】また、成分についての従来からの技術は以
下の通りである。すなわち、Cは溶接金属の強度を調整
するため0.1%程度添加するが、エレクトロスラグ溶
接では母材の希釈が大きいため、母材のC量が多い場合
は割れることがある。また、Siは一般的には脱酸剤と
して0.4%以上添加するが、エレクトロスラグ溶接で
は脱酸剤としての効果は必要ではなく、むしろ靭性を低
下させる。Mnは溶接金属の脱酸を行ないまた焼入性を
向上させ、強度と低温靭性の確保に有効であり、一般的
には1.5%程度添加される。しかし、この程度ではそ
の効果があまり得られない。Moは溶接金属の焼入性を
高め、強度、靭性を高めるために添加するが、1%を超
えるとMo炭化物を生成し溶接金属を硬化させ、著しく
靭性を損なう。Tiは溶接金属の酸化を妨げ、かつTi
酸化物の生成により溶接金属のミクロ組織を微細化し、
靭性改善に効果がある。しかし、添加量が少ないとミク
ロ組織微細化による靭性改善効果が得られず、多いと炭
化物を形成し著しく靭性を損なう。
[0004] Conventional techniques for the components are as follows. That is, C is added in an amount of about 0.1% in order to adjust the strength of the weld metal. However, in electroslag welding, since the base material is greatly diluted, the C may be cracked when the base material has a large C content. In addition, Si is generally added as a deoxidizing agent in an amount of 0.4% or more, but the effect as a deoxidizing agent is not required in electroslag welding, but rather lowers toughness. Mn is effective in deoxidizing the weld metal and improving the hardenability, and is effective in ensuring strength and low-temperature toughness. Generally, Mn is added at about 1.5%. However, the effect is not so obtained at this level. Mo is added in order to enhance the hardenability of the weld metal and to increase the strength and toughness. However, if it exceeds 1%, Mo carbides are formed and the weld metal is hardened, and the toughness is significantly impaired. Ti prevents oxidation of the weld metal and
Oxide formation refines the microstructure of the weld metal,
Effective for improving toughness. However, if the amount is small, the effect of improving the toughness by microstructural refinement cannot be obtained, and if the amount is large, carbides are formed and the toughness is significantly impaired.

【0005】[0005]

【発明が解決しようとする課題】本発明は溶接構造物の
安全性向上の面から、ドライエクステンション部分でワ
イヤを積極的に発熱させながら高能率で非消耗ノズル式
エレクトロスラグ溶接を行なっても、安定して高靭性な
溶接金属を得ることができるワイヤ及び溶接方法を提供
することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, from the viewpoint of improving the safety of a welded structure, even if a non-consumable nozzle type electroslag welding is performed with high efficiency while actively generating heat in a wire at a dry extension part, An object of the present invention is to provide a wire and a welding method capable of stably obtaining a high toughness weld metal.

【0006】[0006]

【課題を解決するための手段】本発明はかかる課題を解
決するため高Mn−Ti系成分により、溶接金属の焼入
性向上及びTi酸化物の生成によるミクロ組織の微細化
という作用を利用し、溶接金属を高靭化することを特徴
とする。すなわち本発明の要旨とするところは、重量%
で、C:0.07%以下、Si:0.15%以下、M
n:1.80〜3.50%、P:0.020%以下、
S:0.020%以下、Ti:0.005〜0.100
%を含み、Mn≧3(C+Si+MofTi)を満足
し、残部が鉄および不可避不純物からなり、ワイヤ径が
1.2〜2.0mmであることを特徴とする非消耗ノズ
ル式エレクトロスラグ溶接用ワイヤである。ここにおい
て、Mnが1.80〜2.50%の場合にMoを0.1
5〜0.55%添加することも特徴とする。また、上記
のワイヤを用い、溶融スラグ浴表面と溶接チップ間のワ
イヤ突出し長さを20mm以上50mm以下に保持して
溶接することを特徴とする非消耗ノズル式エレクトロス
ラグ溶接方法である。
In order to solve the above-mentioned problems, the present invention utilizes the effect of improving the hardenability of the weld metal and making the microstructure fine by the formation of Ti oxide by using a high Mn-Ti component. , Characterized in that the weld metal is toughened. That is, the gist of the present invention is
C: 0.07% or less, Si: 0.15% or less, M
n: 1.80 to 3.50%, P: 0.020% or less,
S: 0.020% or less, Ti: 0.005 to 0.100
%, Mn ≧ 3 (C + Si + MofTi), the balance being iron and unavoidable impurities, and a wire diameter of 1.2 to 2.0 mm. is there. Here, Mo is 0.1 when Mn is 1.80 to 2.50%.
It is also characterized by adding 5 to 0.55%. Also, there is provided a non-consumable nozzle type electro slag welding method, characterized in that the above-mentioned wire is used for welding while maintaining a wire projection length between a molten slag bath surface and a welding tip at 20 mm or more and 50 mm or less.

【0007】[0007]

【作用】図1は非消耗ノズル式エレクトロスラグ溶接の
状況を示す図で、6は開先、7は溶接の進行に伴って自
動上昇する非消耗ノズル、4はソリッドワイヤ、2は溶
融スラグ浴、3は溶接金属である。本発明者らは、直径
1.6mmのワイヤを用いて、非消耗ノズル式エレクト
ロスラグ溶接法における溶接中のドライエクステンショ
ン部分を詳細に観察したところ、図1に示すようにドラ
イエクステンション1が長い場合、ワイヤ先端部近傍5
の部分が光輝色と化して、時折火花を発し、高温度状態
で溶融スラグ浴2へ送給されている現象を確認した。
FIG. 1 is a view showing the state of non-consumable nozzle type electroslag welding, in which 6 is a groove, 7 is a non-consumable nozzle which automatically rises as welding progresses, 4 is a solid wire, 2 is a molten slag bath. Reference numeral 3 denotes a weld metal. The present inventors have observed in detail the dry extension portion during welding in the non-consumable nozzle type electroslag welding method using a wire having a diameter of 1.6 mm, and found that the dry extension 1 was long as shown in FIG. Near the wire tip 5
The part turned into a brilliant color, sparks were occasionally emitted, and the phenomenon of being sent to the molten slag bath 2 at a high temperature was confirmed.

【0008】この現象を考察するに、図1において溶融
スラグ浴2の上方は大気であることからワイヤ先端部近
傍5は高温状態のため窒化し溶融スラグ浴中に送給され
ていることとなり、溶接金属3も窒化していることにな
る。溶接中、ワイヤ先端部近傍5が光輝色化する度合は
ドライエクステンション1が長いほど顕著であるが、溶
接電流が一定ならばドライエクステンション1が長いほ
ど溶接速度が速く高能率であった。なお、ワイヤ先端部
近傍5が光輝色化する度合は、ワイヤ径を1.2mmに
細くして溶接すると更に顕著となり、細径ワイヤほどド
ライエクステンション部分での発熱が著しくワイヤが溶
けやすいことを確認した。ワイヤ径が2.0mmを超え
た場合には光輝色化現象は認められなかったが、溶接入
熱が多くなったわりには溶接速度が遅く、能率がよくな
かった。
Considering this phenomenon, in FIG. 1, since the upper part of the molten slag bath 2 is the atmosphere, the vicinity 5 of the tip of the wire is nitrided due to the high temperature state and is fed into the molten slag bath. The weld metal 3 is also nitrided. During welding, the degree of bright coloration near the wire tip 5 becomes more remarkable as the dry extension 1 is longer, but if the welding current is constant, the longer the dry extension 1, the higher the welding speed and the higher the efficiency. The degree to which the vicinity 5 of the wire tip becomes brilliant becomes more remarkable when the wire diameter is reduced to 1.2 mm and welding is performed, and it is confirmed that the smaller the diameter of the wire, the more heat is generated in the dry extension portion and the easier the wire is to melt. did. When the wire diameter exceeded 2.0 mm, no bright coloring phenomenon was observed, but the welding speed was slow and the efficiency was not good despite the increase in welding heat input.

【0009】すなわち、かかる溶接法においては高能率
な溶接性を追求した場合、溶接金属はNの固溶量が多く
なり、靭性の劣化の要因になり得ることを示していると
いえる。従って、高能率な溶接性を追求する限り、溶接
金属中のNを増えないようにするか、増えても靭性に害
を与えない対策が必要である。溶接金属中のNが増えて
も靭性に害を与えない対策として、Nと親和力の強いT
iをワイヤに添加すれば窒化したワイヤが溶けてNの多
い溶接金属となってもNはTiNなどの高融点物質とな
ってマトリックスに分散するようになって固溶する分が
少なくなる筈である。従ってワイヤ組成を高Mn−Ti
系とすることが有効と判断し検討した結果、後記実施例
で例示するように本発明を得るに至った。
In other words, it can be said that, in the case of pursuing high-efficiency weldability in such a welding method, the amount of N dissolved in the weld metal increases, which may be a factor of toughness degradation. Therefore, as long as high weldability is pursued, it is necessary to prevent N in the weld metal from increasing, or to take measures to prevent harm to the toughness even if it increases. As a countermeasure that does not harm the toughness even if the N in the weld metal increases, T which has a strong affinity with N
If i is added to the wire, even if the nitrided wire melts and becomes a N-rich weld metal, N becomes a high melting point material such as TiN and is dispersed in the matrix, so that the amount of solid solution should be reduced. is there. Therefore, if the wire composition is high Mn-Ti
As a result of considering and considering that it is effective to use a system, the present invention has been obtained as exemplified in Examples described later.

【0010】ところで、特開昭48−4346号公報に
よればエレクトロスラグ溶接では溶接金属にNがある場
合Tiをワイヤ中に単独に添加したのみではTiNとは
ならずTiO2 となり、TiとAlが共存した場合には
じめて両元素の酸素との親和力との違いからAlがAl
23 となってTiがTiNになると指摘し、本発明の
如くTiの単独添加は溶接金属の結晶を針状化させ衝撃
値を低下させるとしている。しかし、これはワイヤ径が
3.2mmという太径のワイヤを用いた場合であり、ワ
イヤ径が太い場合はワイヤ先端が溶融スラグ浴中に浸漬
して溶けるのに対し、ワイヤ径が2.0mm以下の本発
明の場合ではワイヤの溶融速度が速くワイヤ先端が溶融
スラグ表面で溶けるため特開昭48−4346号公報と
は溶接現象が変っていると考えられ、本発明の特徴とい
える。
By the way, TiO 2 becomes not become only by the TiN was added alone in the wire of Ti when there is N in the weld metal in the electro-slag welding according to the JP-A-48-4346, Ti and Al Only when Al coexists does Al become Al due to the difference in affinity between both elements with oxygen.
It is pointed out that Ti becomes TiN in the form of 2 O 3, and it is stated that adding Ti alone as in the present invention makes the crystal of the weld metal acicular and lowers the impact value. However, this is the case where a wire having a large diameter of 3.2 mm is used. When the wire diameter is large, the tip of the wire is immersed and melted in a molten slag bath, whereas the wire diameter is 2.0 mm. In the case of the present invention described below, since the melting speed of the wire is high and the tip of the wire is melted on the surface of the molten slag, it is considered that the welding phenomenon is different from that of JP-A-48-4346, which is a feature of the present invention.

【0011】以下に、本発明の構成限定理由について述
べる。先ず、ワイヤの成分限定理由を述べる。
Hereinafter, the reasons for limiting the configuration of the present invention will be described. First, the reasons for limiting the components of the wire will be described.

【0012】Cはフェライト系鋼を対象とする他の溶接
法では溶接金属の強度を調整するため適量添加するが、
本溶接法では母材希釈率が大きく、そのため母材からC
が溶接金属へ移行するのでワイヤにはCは故意に添加し
ないので0.07%以下とした。0.07%超では過多
となり高強度、また割れという問題を生じる。
C is added in an appropriate amount to adjust the strength of the weld metal in other welding methods for ferritic steels.
In this welding method, the base metal dilution ratio is large,
Is transferred to the weld metal, so C is not intentionally added to the wire. If it exceeds 0.07%, the content becomes excessive, resulting in problems of high strength and cracking.

【0013】Siは通常ガスシールドアーク溶接などで
は主要かつ必須の脱酸剤として使用し、ブローホールの
発生を防止し健全な溶接部を得るため一般的には0.4
0%以上添加する。しかし、エレクトロスラグ溶接では
ワイヤが溶けるワイヤ先端部雰囲気の温度はアーク溶接
の場合より低いので酸化反応が緩慢となり、従ってアー
ク溶接の場合と異なって添加を必須としない。また、S
iが0.15%超になるとエレクトロスラグ溶接時溶融
スラグ浴部でMnシリケートを生成しこれがTi等の酸
化物と結合して大形の複合介在物を形成し溶接金属ミク
ロ組織微細化に有効な核生成サイトを減少させ粗大なミ
クロ組織となったり、またマトリックスに固溶して硬化
したりして、結果的に靭性を低下させる。従って、Si
は上限を0.15%とした。
[0013] Si is generally used as a main and essential deoxidizing agent in gas shielded arc welding and the like.
Add 0% or more. However, in the electroslag welding, the temperature of the atmosphere at the wire tip where the wire melts is lower than in the case of arc welding, so that the oxidation reaction becomes slower, and therefore, unlike in the case of arc welding, the addition is not essential. Also, S
When i exceeds 0.15%, Mn silicate is generated in the molten slag bath during electroslag welding, and this combines with oxides such as Ti to form large-scale composite inclusions, which is effective for refining the microstructure of the weld metal. The number of nucleation sites is reduced to form a coarse microstructure, or the solid solution is dissolved in the matrix and hardened, resulting in a decrease in toughness. Therefore, Si
Has an upper limit of 0.15%.

【0014】Mnは溶接金属の脱酸を行ないまた焼入性
を向上させ、強度と低温靭性の確保に有効であるが、こ
の効果を発揮するMn量は1.80%以上である。しか
し3.50%を超えて添加するとワイヤの素材である鋼
を溶製するのに特別な処理が必要となり高価になること
から添加量は1.80〜3.50%とした。
Mn is effective for deoxidizing the weld metal and improving the hardenability and ensuring the strength and low-temperature toughness. However, the amount of Mn that exerts this effect is 1.80% or more. However, if it is added in excess of 3.50%, a special treatment is required to melt the steel, which is the material of the wire, and it becomes expensive.

【0015】MoはMn量との兼ね合いで添加するもの
であり、Mnが2.50%以下の場合溶接金属の強度が
低下するのでその対策として0.15〜0.55%添加
し、粗大初析フェライト析出の抑制をも図った。Moが
0.15%未満では上記効果が不足し、0.55%超で
はMo炭化物を析出し、溶接金属を硬化させ靭性を低下
させるという問題が生じる。
Mo is added in consideration of the amount of Mn. When Mn is 2.50% or less, the strength of the weld metal is reduced. Therefore, 0.15 to 0.55% is added as a countermeasure. Precipitation of ferrite was also suppressed. If the Mo content is less than 0.15%, the above effect is insufficient, and if the Mo content is more than 0.55%, a problem arises in that Mo carbide is precipitated, the weld metal is hardened, and the toughness is reduced.

【0016】Tiは既述の通りドライエクステンション
が長く窒化したワイヤが溶けるが、この固溶したNを溶
接金属中に固定して溶接金属の靭性が劣化するのを防止
するために0.005%以上添加する。一方、Tiは
0.100%超添加してもその効果は大きくなく、むし
ろ過剰添加すると大きな析出物を作って靭性を阻害する
のでワイヤ中で0.005〜0.100%とした。
As described above, Ti is used to dissolve a wire whose dry extension is long and nitrided. However, in order to prevent the solid solution N from being fixed in the weld metal and to prevent the toughness of the weld metal from deteriorating, 0.005% is used. Add above. On the other hand, even if Ti is added in excess of 0.100%, the effect is not so great, but if excessively added, a large precipitate is formed and the toughness is impaired.

【0017】P及びSは前記したSiと同じように溶接
金属凝固時に粒界に低融点化合物を作り、溶接金属の割
れ感受性を高めるからできる限り少ない方が好ましく、
ワイヤ中でP,Sともに0.020%以下とした。
P and S are preferably as small as possible, since a low-melting point compound is formed at the grain boundary during solidification of the weld metal and the crack sensitivity of the weld metal is increased as in the case of Si described above.
Both P and S in the wire are set to 0.020% or less.

【0018】ワイヤ全体の合金構成としては、冷速が遅
い大入熱溶接金属の靭性を確保するためにはオーステナ
イト形成元素とそれ以外の元素の比を高くすることが有
効である。即ち、オーステナイト形成元素を多くして、
強度を損なわない程度にC、Si、Mo、Tiを少なく
することが有効である。そのことから、種々検討した結
果Mn≧3(C+Si+Mo+Ti)を満足するように
構成する。これを満足しない場合、合金バランスが悪く
なり溶接金属の靭性は低下する。
As the alloy composition of the entire wire, it is effective to increase the ratio between the austenite forming element and the other elements in order to secure the toughness of the large heat input weld metal having a low cooling rate. That is, by increasing the austenite forming element,
It is effective to reduce C, Si, Mo, and Ti to such an extent that the strength is not impaired. Therefore, the configuration is made so as to satisfy Mn ≧ 3 (C + Si + Mo + Ti) as a result of various studies. If this is not satisfied, the alloy balance will be poor and the toughness of the weld metal will decrease.

【0019】本発明のワイヤは、通常のワイヤと同様に
鋼塊を圧延、伸線し、必要に応じて銅めっきを施して製
造することができる。
The wire of the present invention can be manufactured by rolling and drawing a steel ingot in the same manner as a normal wire, and applying copper plating if necessary.

【0020】本発明では、ワイヤ成分は上記のように限
定するとともに、ワイヤ径を1.2〜2.0mmとす
る。これはワイヤ径が2.0mm超だと溶接中ドライエ
クステンション部分で大きな発熱が生ぜず、したがって
ワイヤの溶融速度が遅くなり溶接速度が遅く非能率とな
るためである。また、1.2mm未満では極端にワイヤ
の溶融速度が速くなり、ワイヤがスラグ浴から離れアー
クが発生し安定した溶接ができない。
In the present invention, the wire component is limited as described above, and the wire diameter is set to 1.2 to 2.0 mm. This is because if the wire diameter exceeds 2.0 mm, a large amount of heat is not generated in the dry extension portion during welding, so that the melting speed of the wire becomes slow and the welding speed becomes slow, resulting in inefficiency. On the other hand, if it is less than 1.2 mm, the melting speed of the wire becomes extremely high, the wire separates from the slag bath and an arc is generated, and stable welding cannot be performed.

【0021】さらに本発明では、ドライエクステンショ
ンを20mm〜50mmに保持して溶接するが、これは
20mm未満にすると溶接中に何か異常が発生し溶融ス
ラグ浴が突沸してスラグが跳ねた時溶接チップにこれが
付着し、溶接中断をもたらすことがあるので20mm以
上とする。また、50mm超だとワイヤの直進性が悪く
なり、片溶けが発生して安定した溶込みが得られない。
Further, in the present invention, welding is performed while keeping the dry extension at 20 mm to 50 mm. If the dry extension is less than 20 mm, some abnormality occurs during welding, and the molten slag bath is bumped and slag is spun. The thickness is set to 20 mm or more because this may adhere to the chip and cause welding interruption. On the other hand, if it exceeds 50 mm, the straightness of the wire is deteriorated, so that one-sided melting occurs and stable penetration cannot be obtained.

【0022】また、本発明における諸条件として、溶融
スラグ浴を形成するためのフラックス主組成はSiO
2 :20〜40%、MnO:5〜15%、MgO:10
〜20%、CaO:5〜15%、TiO2 :2〜6%、
Al23 :5〜13%であり、フラックスの添加量は
板厚に応じて25〜240g投入すれば、溶融スラグ浴
の深さはほぼ30〜40mmとなる。また、ワイヤの供
給速度は7〜9m/minとし、溶接電流は340〜4
50A、溶接電圧は40〜53V、溶接速度は5〜50
mm/min、入熱量は160〜2700kJ/cmで
ある。
As the various conditions in the present invention, the main composition of the flux for forming the molten slag bath is SiO.
2 : 20 to 40%, MnO: 5 to 15%, MgO: 10
~20%, CaO: 5~15%, TiO 2: 2~6%,
Al 2 O 3 : 5 to 13%, and if the addition amount of the flux is 25 to 240 g depending on the plate thickness, the depth of the molten slag bath becomes approximately 30 to 40 mm. The wire feed speed was 7 to 9 m / min, and the welding current was 340 to 4 m / min.
50A, welding voltage 40-53V, welding speed 5-50
mm / min, the heat input is 160-2700 kJ / cm.

【0023】[0023]

【実施例】C:0.17%、Si:0.36%、Mn:
1.44%、P:0.013%、S:0.004%残部
が鉄からなる厚さ30mmのSM490B鋼板を図2の
通り組み上げ、鋼製当金8と鋼板10、11で4面を包
囲された開先部6を直径1.6mmのワイヤで非消耗ノ
ズル式エレクトロスラグ溶接した。この開先部の寸法は
図3の通りである。
EXAMPLES C: 0.17%, Si: 0.36%, Mn:
1.44%, P: 0.013%, S: 0.004% A SM490B steel plate having a thickness of 30 mm made of iron and having a balance of iron is assembled as shown in FIG. The enclosed groove 6 was subjected to non-consumable nozzle electroslag welding with a wire having a diameter of 1.6 mm. The dimensions of the groove are as shown in FIG.

【0024】溶融スラグ浴を形成するためのフラックス
は主組成がSiO2 −MnO−MgOからなる溶融型の
もので、溶接開始時に54g添加し溶融スラグ浴深さが
約30mmになるようにした。溶接時のワイヤ送給速度
は8.5m/minで溶接電流380A、溶接電圧46
V、溶接速度22.5mm/min、ドライエクステン
ション38mm、入熱466kJ/cmである。
The flux for forming the molten slag bath was of a molten type having a main composition of SiO 2 -MnO-MgO. 54 g was added at the start of welding so that the molten slag bath depth was about 30 mm. The wire feed speed during welding was 8.5 m / min, the welding current was 380 A, and the welding voltage was 46.
V, welding speed 22.5 mm / min, dry extension 38 mm, and heat input 466 kJ / cm.

【0025】溶接終了後、開先中央部の溶接金属からJ
IS・Al号丸棒引張試験片とJIS・4号2mmVノ
ッチシャルピー衝撃試験片を採取し、引張試験と衝撃試
験を行った。ワイヤ成分及び試験結果を表1及び表2に
示す。番号1から8の本発明のワイヤによる溶接の場合
はいずれも良好な結果になっている。一方、比較例の番
号8は適正値よりSiが高くMnが低く、Mn/(C+
Si+Mo+Ti)も3に満たない。また番号9はCが
高く、Mn/(C+Si+Mo+Ti)もやはり低い。
このためいずれも衝撃値が低くなっている。
After welding is completed, J
An IS Al round bar tensile test piece and a JIS No. 4 2 mm V notch Charpy impact test piece were sampled and subjected to a tensile test and an impact test. Tables 1 and 2 show the wire components and test results. In the case of welding with the wires of the present invention of Nos. 1 to 8, good results were obtained. On the other hand, in Comparative Example No. 8, Si was higher than the appropriate value and Mn was lower, and Mn / (C +
Si + Mo + Ti) is also less than 3. In the case of No. 9, C is high, and Mn / (C + Si + Mo + Ti) is also low.
Therefore, the impact value is low in each case.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】SM490Bの機械的性能として引張強
さ490N/mm2 以上、降伏点315N/mm2
上、シャルピー衝撃試験値は0℃で27J以上要求され
ているのに対し、本発明ワイヤ及び溶接方法によれば表
1及び表2で示した通りいずれも溶接金属はこれを満足
していることがわかる。
[Effect of the Invention] Tensile as a mechanical performance of SM490B strength 490 N / mm 2 or more, a yield point 315N / mm 2 or more, whereas the Charpy impact test value is required or 27J at 0 ° C., the present invention wire and According to the welding method, as shown in Tables 1 and 2, it can be seen that the weld metal satisfies these conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非消耗ノズル式エレクトロスラグ溶接の状況を
示す図
FIG. 1 is a view showing a state of non-consumable nozzle type electroslag welding.

【図2】実施例における試験板形状と溶接実施状況を示
す概略図
FIG. 2 is a schematic diagram showing a test plate shape and a welding state in an embodiment.

【図3】実施例における開先部の寸法を示す図FIG. 3 is a view showing dimensions of a groove portion in the embodiment.

【符号の説明】[Explanation of symbols]

1 ドライエクステンション 2 溶融スラグ浴 3 溶接金属 4 ソリッドワイヤ 5 ワイヤ先端部近傍 6 開先 7 非消耗ノズル 8 鋼製当金 10、11 鋼板 DESCRIPTION OF SYMBOLS 1 Dry extension 2 Molten slag bath 3 Weld metal 4 Solid wire 5 Near wire tip 6 Groove 7 Non-consumable nozzle 8 Steel equivalent 10, 11 Steel plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−138885(JP,A) 特開 昭53−73444(JP,A) 特公 昭49−24778(JP,B1) 特公 昭42−17419(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B23K 35/30 320 B23K 25/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-138885 (JP, A) JP-A-53-73444 (JP, A) JP-B-49-24778 (JP, B1) JP-B-42 17419 (JP, B1) (58) Field surveyed (Int. Cl. 6 , DB name) B23K 35/30 320 B23K 25/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.07%以下 Si:0.15%以下 Mn:1.80〜3.50% P :0.020%以下 S :0.020%以下 Ti:0.005〜0.100% を含み、Mn≧3(C+Si+Mo+Ti)を満足し、
残部が鉄および不可避不純物からなり、ワイヤ径が1.
2〜2.0mmであることを特徴とする非消耗ノズル式
エレクトロスラグ溶接用ワイヤ。
1. In weight%, C: 0.07% or less Si: 0.15% or less Mn: 1.80 to 3.50% P: 0.020% or less S: 0.020% or less Ti: 0 0.005 to 0.100%, satisfying Mn ≧ 3 (C + Si + Mo + Ti),
The balance consists of iron and unavoidable impurities, and the wire diameter is 1.
A non-consumable nozzle type electroslag welding wire having a thickness of 2 to 2.0 mm.
【請求項2】 Mnが1.80〜2.50%の場合にM
oを0.15〜0.55%添加することを特徴とする請
求項1記載の非消耗ノズル式エレクトロスラグ溶接用ワ
イヤ。
2. When Mn is 1.80 to 2.50%, M
The non-consumable nozzle type electroslag welding wire according to claim 1, wherein 0.15 to 0.55% of o is added.
【請求項3】 請求項1又は2記載のワイヤを用い、溶
融スラグ浴表面と溶接チップ間のワイヤ突出し長さを2
0mm以上50mm以下に保持して溶接することを特徴
とする非消耗ノズル式エレクトロスラグ溶接方法。
3. The wire according to claim 1 or 2, wherein the wire protrusion length between the molten slag bath surface and the welding tip is 2
A non-consumable nozzle-type electroslag welding method, characterized in that welding is performed while the welding is performed while being held at 0 mm or more and 50 mm or less.
JP18354593A 1993-06-30 1993-06-30 Non-consumable nozzle type electroslag welding wire and welding method Expired - Lifetime JP2892575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18354593A JP2892575B2 (en) 1993-06-30 1993-06-30 Non-consumable nozzle type electroslag welding wire and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18354593A JP2892575B2 (en) 1993-06-30 1993-06-30 Non-consumable nozzle type electroslag welding wire and welding method

Publications (2)

Publication Number Publication Date
JPH0716786A JPH0716786A (en) 1995-01-20
JP2892575B2 true JP2892575B2 (en) 1999-05-17

Family

ID=16137691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18354593A Expired - Lifetime JP2892575B2 (en) 1993-06-30 1993-06-30 Non-consumable nozzle type electroslag welding wire and welding method

Country Status (1)

Country Link
JP (1) JP2892575B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887276B2 (en) * 2007-12-27 2012-02-29 株式会社神戸製鋼所 Solid wire for electroslag welding
CN112779456B (en) * 2020-12-01 2021-12-10 广西柳钢华创科技研发有限公司 Method for manufacturing steel plate SM490B for welded structure

Also Published As

Publication number Publication date
JPH0716786A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
JP5001595B2 (en) Solid wire
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JP2538815B2 (en) Highly efficient fillet welding method for thick steel plate
JPH06285683A (en) Low hydrogen coated electrode
JP2892575B2 (en) Non-consumable nozzle type electroslag welding wire and welding method
KR100502571B1 (en) Flux cored wire for co2 gas shielded arc welding
JP2711130B2 (en) Gas shielded arc welding wire
EP3974097A2 (en) Covered electrode for arc welding high strength steel background
KR102150974B1 (en) Tandem gas shielded arc welding wire having good low temperature toughness
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JP4529482B2 (en) Fillet welding method
JP3523777B2 (en) Two-electrode electrogas arc welding method
KR100581027B1 (en) Flux cored wire for martensitic stainless steel
JPH0825060B2 (en) Low-hydrogen coated arc welding rod
JPH06210490A (en) Welding wire of zinc galvanized steel sheet and welding method
JPH08174267A (en) Flux cored wire for arc welding
JPH05269593A (en) Flux cored wire for gas shielded metal-arc welding
JP5051966B2 (en) Sideways carbon dioxide shielded arc welding method
JPH0796391A (en) Wire for gas shielded arc welding
JPH0542390A (en) Low hydrogen type coated electrode for welding 9cr steel
JPH06238483A (en) Flux cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990209