JP4297880B2 - Bond flux for submerged arc welding - Google Patents
Bond flux for submerged arc welding Download PDFInfo
- Publication number
- JP4297880B2 JP4297880B2 JP2005090737A JP2005090737A JP4297880B2 JP 4297880 B2 JP4297880 B2 JP 4297880B2 JP 2005090737 A JP2005090737 A JP 2005090737A JP 2005090737 A JP2005090737 A JP 2005090737A JP 4297880 B2 JP4297880 B2 JP 4297880B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- flux
- welding
- present
- deteriorated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Nonmetallic Welding Materials (AREA)
Description
本発明は、1電極又は2電極以上のサブマージアーク溶接又は2電極以上の多電極片面サブマージアーク溶接に使用されるサブマージアーク溶接用ボンドフラックスに関する。 The present invention relates to a bond flux for submerged arc welding used for submerged arc welding of one electrode or two or more electrodes or multi-electrode single-sided submerged arc welding of two or more electrodes.
サブマージアーク溶接は、被覆アーク溶接及びガスシールドアーク溶接等の溶接法と比べて、高電流及び高速度で溶接施工できるという特徴を有しており、造船、鉄骨及び橋梁分野等の大型鋼構造物の製作において、能率の観点から欠かすことのできない溶接法である。特に、近年では、鋼板の高強度化が進んでいるものの、被溶接部の板厚は厚肉化の方向であり、適用される溶接工程の能率向上が強く求められている。また、当然ながら高能率化と併せて、溶接金属の機械的性能及びビード形状・外観に対する要求も厳しくなる傾向にある。これらの分野では、大入熱を用いた片面溶接に1パス施工が多用されており、代表的な例として、フラックスを裏当材とするフラックスバッキング法(RF法)、フラックスと銅板を裏当材とするフラックス銅バッキング法(FCB法)、ガラステープ、固形フラックス、耐火物等で構成された裏当材を押し当てる方法(FAB法)などが挙げられる。 Submerged arc welding has the feature that it can be welded at a higher current and higher speed than welding methods such as covered arc welding and gas shielded arc welding, and is used for large steel structures such as shipbuilding, steel frame and bridge fields. This is an indispensable welding method from the viewpoint of efficiency. In particular, in recent years, although the strength of steel plates has been increasing, the thickness of the welded portion is in the direction of increasing the thickness, and there is a strong demand for improving the efficiency of the applied welding process. In addition, as a matter of course, along with higher efficiency, demands on the mechanical performance and bead shape / appearance of the weld metal tend to be stricter. In these fields, one-pass construction is frequently used for single-sided welding using large heat input. Typical examples are flux backing method (RF method) using flux as backing material, and backing flux and copper plate. Examples thereof include a flux copper backing method (FCB method), a method of pressing a backing material composed of glass tape, solid flux, refractory, etc. (FAB method).
これらの片面サブマージアーク溶接について、溶接速度の高速化に関する技術は多々提案されており、また高溶着・高速度溶接が可能な片面溶接用ボンドフラックスについても、種々提案されている(特許文献1、特許文献2)。 For these single-sided submerged arc welding, many techniques for increasing the welding speed have been proposed, and various types of bond fluxes for single-side welding capable of high welding and high-speed welding have been proposed (Patent Document 1, Patent Document 2).
しかし、上述の従来技術においては、特に溶接速度が1000乃至2000mm/分といった高速溶接においても充分な溶着金属量を確保するため、フラックス中にFe成分が10乃至30質量%と多く含有されている。このため、形成されるビードの表面にはFeを主成分とする突起が必ず発生する。その鉄粒突起はビードの外観を損ない、場合によってはグラインダーなどによる除去作業といった余分な工程を要するという問題点がある。この鉄粒突起の主要因は、溶接金属の凝固過程の終了間際において、スラグ内の比較的質量の大きいFe成分がビード表面に付着するためであり、その発生量はフラックスに含有する鉄粉量に依存する。 However, in the above-described conventional technology, in order to ensure a sufficient amount of deposited metal even in high-speed welding such as a welding speed of 1000 to 2000 mm / min, the Fe component is contained in a large amount of 10 to 30% by mass in the flux. . For this reason, protrusions containing Fe as a main component are always generated on the surface of the formed bead. The iron grain protrusions impair the appearance of the bead, and in some cases, there is a problem that an extra process such as a removal work by a grinder or the like is required. The main cause of this iron grain protrusion is that the Fe component with a relatively large mass in the slag adheres to the bead surface just before the end of the solidification process of the weld metal, and the generated amount is the amount of iron powder contained in the flux. Depends on.
一方、溶接速度が高速になると、溶融プールも溶接線方向に長くなり、従って冷却速度が速くなるために、溶融金属の凝固速度も速くなるという難点がある。このため、特に表ビード端部と母材とのなじみ性が低下し、ビード形状が不安定になり、またアンダカットが発生しやすくなる。更に、Fe成分の含有量が多いと、凝固点が下がり、高速溶接と重畳して、ビード端のなじみ性が悪くなるため、耐アンダカット性が著しく劣化するという問題点がある。 On the other hand, when the welding speed is increased, the molten pool also becomes longer in the direction of the weld line, and thus the cooling rate is increased, so that the solidification rate of the molten metal is increased. For this reason, in particular, the conformability between the front bead end and the base material is lowered, the bead shape becomes unstable, and undercut is likely to occur. Furthermore, if the content of the Fe component is large, the freezing point is lowered and overlapped with the high-speed welding, and the conformability of the bead end is deteriorated, so that the undercut resistance is remarkably deteriorated.
本発明はかかる問題点に鑑みてなされたものであって、主に高速度及び高溶着の片面溶接に使用されるサブマージアーク溶接に使用され、ビード表面に鉄粒突起が発生せず、耐アンダカット性が良好な健全な表ビードを得ることができるサブマージアーク溶接用ボンドフラックスを提供することを目的とする。 The present invention has been made in view of such problems, and is mainly used for submerged arc welding used for single-sided welding at high speed and high welding, and no iron grain protrusions are generated on the bead surface. It is an object of the present invention to provide a bond flux for submerged arc welding that can obtain a sound front bead with good cutting properties.
本発明に係るサブマージアーク溶接用ボンドフラックスは、MgO:25乃至35質量%、TiO2:12乃至22質量%、SiO2:12乃至22質量%、Al2O3:6乃至12質量%、CaO:6乃至12質量%、CO2:3.5乃至9.5質量%、Na2O:1乃至5質量%、CaF2:1乃至10質量%、B2O3:0.3乃至3.0質量%、Si:0.5乃至2.5質量%、Mo:0.1乃至1.0質量%を含有し、TotalFe:5.0質量%以下であり、CaF2/CO2比が0.2乃至2.0である組成を有し、2電極以上の多電極片面サブマージアーク溶接に使用することを特徴とする。 The bond flux for submerged arc welding according to the present invention is MgO: 25 to 35% by mass, TiO 2 : 12 to 22% by mass, SiO 2 : 12 to 22% by mass, Al 2 O 3 : 6 to 12% by mass, CaO. : 6 to 12% by mass, CO 2 : 3.5 to 9.5% by mass, Na 2 O: 1 to 5% by mass, CaF 2 : 1 to 10% by mass, B 2 O 3 : 0.3 to 3. 0% by mass, Si: 0.5 to 2.5% by mass, Mo: 0.1 to 1.0% by mass, TotalFe: 5.0% by mass or less, and CaF 2 / CO 2 ratio is 0 It has a composition which is .2 to 2.0, characterized by the use in the multi-electrode sided submerged arc welding of two or more electrodes.
本発明者等が、表面ビードに鉄粒突起が発生せず、主として高速の片面溶接に使用されるサブマージアーク溶接においても耐アンダカット性が良好なフラックスを開発すべく種々研究を行った結果、以下の事実を見いだした。 As a result of conducting various studies to develop a flux having good undercut resistance even in submerged arc welding, which is mainly used for high-speed single-side welding, the present inventors do not generate iron grain protrusions on the surface beads, I found the following facts.
(1)鉄粒突起の発生を抑制するためには、フラックスに含まれるFe成分の含有量が5質量%以下であることが必要である。 (1) In order to suppress generation | occurrence | production of an iron grain protrusion, it is required that content of Fe component contained in a flux is 5 mass% or less.
(2)高速溶接においても耐アンダカットを確保するためには、CaF2/CO2比が0.2乃至2.0であることが必要である。 (2) In order to ensure undercut resistance even in high-speed welding, the CaF 2 / CO 2 ratio needs to be 0.2 to 2.0.
(3)Fe成分の含有量が5質量%以下のフラックスを使用した高速溶接においては、必要な溶着金属量を得るために、溶接電流を上げ、溶接ワイヤの溶融量を増加させて補うこととし、その高電流及び高入熱の条件においても良好なビード外観と靭性を得るために、スラグ形成剤と合金元素量を適正化することが必要である。 (3) In high-speed welding using a flux with an Fe component content of 5% by mass or less, in order to obtain the required amount of deposited metal, the welding current is increased and the amount of welding wire melted is compensated for. In order to obtain a good bead appearance and toughness even under such high current and high heat input conditions, it is necessary to optimize the slag forming agent and the amount of alloying elements.
即ち、鉄粒突起の発生を防止するために、フラックス中のFeは極力排除する。その結果、溶着金属量が不足するが、これは溶着金属量を高電流側にして溶着金属量を確保する。従来のフラックスでは、そのような高電流にすると、アンダカットが生じてビードが荒れたりするという不都合が生じるが、これは、成分全体の構成比率を適正化すると共に、CaF2/CO2比を0.2乃至2.0とすることにより解消する。 That is, in order to prevent the occurrence of iron grain protrusions, Fe in the flux is eliminated as much as possible. As a result, the amount of weld metal is insufficient, but this ensures the amount of weld metal by setting the amount of weld metal to the high current side. In the conventional flux, when such a high current is used, there is a disadvantage that the undercut occurs and the bead becomes rough. However, this optimizes the composition ratio of the entire component and increases the CaF 2 / CO 2 ratio. It is solved by setting it to 0.2 to 2.0.
本発明はこのような観点に基づいて完成されたものであり、本発明の特許請求の範囲の構成により、本発明の目的が達成される。 The present invention has been completed based on such a viewpoint, and the object of the present invention is achieved by the structure of the claims of the present invention.
本発明に係るサブマージアーク溶接用ボンドフラックスによれば、高速片面サブマージアーク溶接において、ビード表面に鉄粒突起が発生することを防止でき、耐アンダカット性が優れた健全な表ビードを形成することができ、優れた溶接作業性が得られる。 According to the bond flux for submerged arc welding according to the present invention, in high-speed single-sided submerged arc welding, it is possible to prevent the formation of iron grain protrusions on the bead surface and to form a healthy surface bead with excellent undercut resistance. And excellent welding workability can be obtained.
以下、本発明の実施形態について説明する。本発明のサブマージアーク溶接用ボンドフラックスの組成は、MgO:25乃至35質量%、TiO2:12乃至22質量%、SiO2:12乃至22質量%、Al2O3:6乃至12質量%、CaO:6乃至12質量%、CO2:3.5乃至9.5質量%、Na2O:1乃至5質量%、CaF2:1乃至10質量%、B2O3:0.3乃至3.0質量%、Si:0.5乃至2.5質量%、Mo:0.1乃至1.0質量%、TotalFe:5.0質量%以下であり、CaF2/CO2比が0.2乃至2.0である。以下、各成分の組成限定理由について説明する。 Hereinafter, embodiments of the present invention will be described. The composition of the submerged arc welding bonded flux of the present invention, MgO: 25 to 35 wt%, TiO 2: 12 to 22 wt%, SiO 2: 12 to 22 wt%, Al 2 O 3: 6 to 12 wt%, CaO: 6 to 12 wt%, CO 2: 3.5 to 9.5 wt%, Na 2 O: 1 to 5 wt%, CaF 2: 1 to 10 wt%, B 2 O 3: 0.3 to 3 .0 wt%, Si: 0.5 to 2.5 mass%, Mo: 0.1 to 1.0 wt%, TotalFe: it is 5.0% by mass or less, CaF 2 / CO 2 ratio is 0.2 Thru 2.0. Hereinafter, the reasons for limiting the composition of each component will be described.
「MgO:25乃至35質量%」
MgOは塩基性成分であり、溶接金属中の酸素量を低減して靭性を確保するために有効な成分である。また、MgOはスラグの粘性を低下させる作用を有している。MgO含有量が25質量%未満では、酸素量の低減効果が少なく、靭性が劣化し、表ビードにアンダカットが発生する。MgOが35質量%を超えると、スラグが焼付き、スラグ剥離性が劣化すると共に、ポックマークが発生しやすい。
“MgO: 25 to 35 mass%”
MgO is a basic component, and is an effective component for reducing the amount of oxygen in the weld metal and ensuring toughness. Moreover, MgO has the effect | action which reduces the viscosity of slag. When the MgO content is less than 25% by mass, the effect of reducing the oxygen content is small, the toughness is deteriorated, and undercut occurs in the front bead. When MgO exceeds 35 mass%, slag is seized, slag peelability is deteriorated, and a pock mark is likely to be generated.
「TiO2:12乃至22質量%」
TiO2は酸性成分であり、スラグの流動性を調整し、更に溶接金属中でTi酸化物及びTi窒化物として存在し、靭性向上に有効な成分である。TiO2が12質量%未満では溶接金属中のTi量が不足し、靭性が劣化する。一方、TiO2が22質量%を超えると、スラグが焼付き、スラグ剥離性が劣化する。
“TiO 2 : 12 to 22% by mass”
TiO 2 is an acidic component, adjusts the fluidity of the slag, and further exists as a Ti oxide and a Ti nitride in the weld metal, and is an effective component for improving toughness. When TiO 2 is less than 12% by mass, the amount of Ti in the weld metal is insufficient, and the toughness deteriorates. On the other hand, when the TiO 2 is more than 22 wt%, per slag baked, slag removability is deteriorated.
「SiO2:12乃至22質量%」
SiO2は酸性成分であり、スラグの粘性を調整するのに有効な成分である。SiO2が12質量%未満ではスラグの粘性が低下し、ビード幅の揃いが劣化する。一方、SiO2が22質量%を超えると、スラグ粘性が過剰となり、ビードの広がりが悪くなると共に、塩基度が低下するため、溶接金属の酸素量が増加し、靭性が劣化する。
“SiO 2 : 12 to 22% by mass”
SiO 2 is an acidic component, and is an effective component for adjusting the viscosity of slag. When SiO 2 is less than 12% by mass, the viscosity of the slag is lowered and the uniformity of the bead width is deteriorated. On the other hand, if SiO 2 exceeds 22% by mass, the slag viscosity becomes excessive, the bead spread worsens, and the basicity decreases, so that the oxygen content of the weld metal increases and the toughness deteriorates.
「Al2O3:6乃至12質量%」
Al2O3は中性成分であり、スラグの粘性及び凝固温度を調整するのに有効な成分である。Al2O3が6質量%未満では、スラグの粘性及び凝固温度が低くなり、ビード幅の揃いが劣化する。一方、Al2O3が12質量%を超えると、スラグの凝固温度が高くなり過ぎるため、ビードの広がりが悪くなり、ビード形状が凸型となる。
“Al 2 O 3 : 6 to 12% by mass”
Al 2 O 3 is a neutral component and is an effective component for adjusting the viscosity and solidification temperature of slag. When Al 2 O 3 is less than 6% by mass, the viscosity and solidification temperature of the slag are lowered, and the alignment of the bead width is deteriorated. On the other hand, when Al 2 O 3 exceeds 12% by mass, the solidification temperature of the slag becomes too high, so that the bead spread becomes worse and the bead shape becomes convex.
「CaO:6乃至12質量%」
CaOは塩基性成分であり、フラックスの塩基度を高め、溶接金属中の酸素低減に極めて効果的な成分である。CaOが6質量%未満では、シールド性の低下により、溶接金属の酸素量が高くなり、靭性が劣化する。一方、CaOが12質量%を超えると、スラグが焼付き、スラグ剥離性が劣化する。
“CaO: 6 to 12% by mass”
CaO is a basic component, and is an extremely effective component for increasing the basicity of the flux and reducing oxygen in the weld metal. When CaO is less than 6% by mass, the amount of oxygen in the weld metal increases due to a decrease in shielding properties, and the toughness deteriorates. On the other hand, when CaO exceeds 12 mass%, the slag is seized and the slag peelability is deteriorated.
「CO2:3.5乃至9.5質量%」
CO2は溶接金属への窒素の侵入と、拡散性水素量の低減に有効な成分である。CO2が3.5質量%未満では溶接金属中の拡散性水素量が高くなり、低温割れ性が劣化する。一方、CO2が9.5質量%を超えると、ガス発生量が過大となり、ポックマークが発生する。なお、CO2成分は、金属炭酸塩としてフラックス中に添加される。
“CO 2 : 3.5 to 9.5% by mass”
CO 2 is an effective component for the penetration of nitrogen into the weld metal and the reduction of the amount of diffusible hydrogen. When CO 2 is less than 3.5% by mass, the amount of diffusible hydrogen in the weld metal increases, and the low temperature cracking property deteriorates. On the other hand, when CO 2 exceeds 9.5 mass%, the amount of gas generated becomes excessive and a pock mark is generated. The CO 2 component is added to the flux as a metal carbonate.
「Na2O:1乃至5質量%」
Na2Oはアーク安定性の確保のための重要な成分である。Na2Oが1質量%未満では、アークの安定性が極端に不安定となり、アーク切れが発生し、ビード形状及び溶込み不均一となる。一方、Na2Oが5質量%を超えると、耐吸湿性が劣化し、耐低温割れ性が劣化する。
“Na 2 O: 1 to 5% by mass”
Na 2 O is an important component for ensuring arc stability. When Na 2 O is less than 1% by mass, the stability of the arc becomes extremely unstable, arc breakage occurs, and the bead shape and the penetration become uneven. On the other hand, when Na 2 O exceeds 5% by mass, the hygroscopic resistance deteriorates and the low temperature cracking resistance deteriorates.
「CaF2:1乃至10質量%」
CaF2は塩基性成分であり、溶接金属中の酸素量を低下させると共に、スラグの流動性を調整し、スラグ−メタル反応を促進させるために有効な成分である。CaF2が1質量%未満では溶接金属中の酸素量が高くなり靭性が劣化し、さらに溶接スラグを形成するスラグ量が不足するためビードが蛇行し、揃いが劣化する。一方、CaF2が10質量%を超えると、アーク安定性が劣化し、アーク切れを発生しやすくなる。
“CaF 2 : 1 to 10% by mass”
CaF 2 is a basic component, and is an effective component for reducing the amount of oxygen in the weld metal, adjusting the fluidity of the slag, and promoting the slag-metal reaction. If CaF 2 is less than 1% by mass, the amount of oxygen in the weld metal is increased and the toughness is deteriorated. Further, the amount of slag forming the weld slag is insufficient, so that the beads meander and the alignment deteriorates. On the other hand, when CaF 2 exceeds 10% by mass, the arc stability is degraded and arc breakage is likely to occur.
「B2O3:0.3乃至3.0質量%」
B2O3は溶接熱で還元され、Bとして溶接金属中に存在し、靱性を確保する効果を有する。B2O3が0.3質量%未満では、その効果が発揮されず、靱性が劣化する。B2O3が3.0質量%を超えると、強度が過大となり、高温割れが発生する。
“B 2 O 3 : 0.3 to 3.0% by mass”
B 2 O 3 is reduced by welding heat and is present in the weld metal as B and has the effect of ensuring toughness. If B 2 O 3 is less than 0.3% by mass, the effect is not exhibited, and the toughness deteriorates. If B 2 O 3 exceeds 3.0% by mass, the strength becomes excessive and high temperature cracking occurs.
「Si:0.5乃至2.5質量%」
Siは溶接金属中の脱酸作用により酸素量を低減するのに有効な成分である。Siが0.5質量%未満では、溶接金属中の酸素が高くなり、靭性が劣化する。一方、Siが2.5質量%を超えると、スラグが焼付き、スラグ剥離性が劣化すると共に、溶接金属の強度が過大となり、靱性が劣化する。なお、Siは単体の他、Fe−Si等で添加することができる。
“Si: 0.5 to 2.5 mass%”
Si is a component effective for reducing the amount of oxygen by deoxidation in the weld metal. When Si is less than 0.5% by mass, oxygen in the weld metal becomes high and toughness deteriorates. On the other hand, when Si exceeds 2.5 mass%, the slag is seized and the slag peelability is deteriorated, and the strength of the weld metal is excessively increased and the toughness is deteriorated. In addition to Si, Si can be added as Fe-Si or the like.
「Mo:0.1乃至1.0質量%」
Moは焼き入れ性を向上させるのに有効な成分である。Moが0.1質量%未満では、溶接金属の組織が粗大化し、靭性が劣化する。一方、Moが1.0質量%を超えると、溶接金属の強度が過大になり、また高温割れが発生する。なお、Moは単体の他、Fe−Mo等で添加できる。
“Mo: 0.1 to 1.0 mass%”
Mo is an effective component for improving the hardenability. If Mo is less than 0.1% by mass, the structure of the weld metal becomes coarse and the toughness deteriorates. On the other hand, when Mo exceeds 1.0 mass%, the strength of the weld metal becomes excessive and high temperature cracking occurs. In addition to Mo alone, Mo can be added as Fe—Mo or the like.
「TotalFe:5.0質量%以下」
Feは溶着金属量を補うために有効な成分であるが、TotalFeが5質量%以上であると、表面ビードに鉄粒突起が発生し、外観及び表面状態が劣化する。このため、TotalFeは5質量%以下に規制する必要がある。Feは、Fe−Si、Fe−Mo等の合金成分などに不可避的に含まれるが、このFeはビード外観及び表面形状を良好にするためには、極力少ないことが望ましい。なお、本発明におけるTotalFeとは、鉄粉、Fe合金、Fe酸化物及びFe化合物中のFeの総量である。
"TotalFe: 5.0 mass% or less"
Fe is an effective component for supplementing the amount of deposited metal, but if the total Fe is 5% by mass or more, iron grain protrusions are generated on the surface bead and the appearance and surface state are deteriorated. For this reason, TotalFe must be regulated to 5% by mass or less. Fe is inevitably contained in alloy components such as Fe-Si and Fe-Mo, but it is desirable that this Fe be as small as possible in order to improve the bead appearance and surface shape. The total Fe in the present invention is the total amount of Fe in iron powder, Fe alloy, Fe oxide and Fe compound.
「CaF2/CO2比:0.2乃至2.0」
CaF2/CO2比は健全なビード形状と良好な靭性を得るために、所定の範囲に規制する必要がある。CaF2/CO2比が0.2%未満であると、スラグの流動性が低下するため、ビードが蛇行しやすく、特にビード幅の揃いが劣化し、アンダカットが発生する。また、CaF2/CO2比が0.2%未満であると、溶接金属中の酸素量が増加し、靱性も劣化する。一方、CaF2/CO2比が2.0%を超えると、アーク安定性が劣化し、アーク切れが発生しやすくなると共に、アンダカットが発生する。
“CaF 2 / CO 2 ratio: 0.2 to 2.0”
The CaF 2 / CO 2 ratio needs to be regulated within a predetermined range in order to obtain a sound bead shape and good toughness. When the CaF 2 / CO 2 ratio is less than 0.2%, the fluidity of the slag is lowered, so that the beads are likely to meander, and particularly the uniformity of the bead width is deteriorated, and undercut occurs. In addition, when the CaF 2 / CO 2 ratio is less than 0.2%, the amount of oxygen in the weld metal increases and the toughness deteriorates. On the other hand, when the CaF 2 / CO 2 ratio exceeds 2.0%, the arc stability is deteriorated, arc breakage is likely to occur, and undercut occurs.
また、上記成分の他に、フラックスにはK2O、BaO、FeO、ZrO2などの酸化物を添加することができる。また、溶接金属の機械的性能の面から、Mn及びTi等の金属成分を単体又は合金成分等で添加することができる。しかし、それらの含有量は総量で5質量%以下とする。 In addition to the above components, oxides such as K 2 O, BaO, FeO, and ZrO 2 can be added to the flux. Further, from the viewpoint of the mechanical performance of the weld metal, metal components such as Mn and Ti can be added alone or as an alloy component. However, the total content thereof is 5% by mass or less.
次に、本発明の効果を説明するために、本発明の実施例についてその比較例と比較して説明する。下記表1に示す鋼板及び下記表2に示す溶接ワイヤを使用し、下記表3、表4、表5、及び図1に示す溶接条件により、前述のFCB法により、2電極、3電極、及び4電極で、片面サブマージアーク溶接を行った。溶接後に、目視によるアンダカット数の測定、ポックマークの有無、ビード幅の揃い等を官能評価した。その後、超音波探傷試験(UT試験)により割れの有無を確認し、溶接金属の酸素量の測定、−20℃でのシャルピー衝撃試験を実施した。下記表6は供試フラックスの成分組成を示す。実施例1乃至10は組成及びCaF2/CO2比が本発明の範囲に入るものであり、比較例11乃至38が夫々いずれかの成分組成又はCaF2/CO2比が本発明の範囲から外れるものである。下記表7に4電極FCB溶接による試験結果、表8に3電極FCBによる試験結果、表9に2電極FCBによる試験結果を示す。また、図2乃至図4は、夫々4電極、3電極、2電極のFCB溶接におけるアンダカット発生数をCaF2/CO2比との関係で示したグラフ図である。この図2乃至図4は、表6のCaF2/CO2比と、表7乃至9のアンダカットの発生の有無との関係を抽出してまとめたものである。 Next, in order to explain the effects of the present invention, examples of the present invention will be described in comparison with comparative examples. Using the steel plate shown in the following Table 1 and the welding wire shown in the following Table 2, the welding conditions shown in the following Table 3, Table 4, Table 5, and FIG. Single-sided submerged arc welding was performed with four electrodes. After welding, sensory evaluation was performed for visual measurement of the number of undercuts, presence or absence of pock marks, alignment of bead widths, and the like. Thereafter, the presence or absence of cracks was confirmed by an ultrasonic flaw detection test (UT test), the oxygen content of the weld metal was measured, and a Charpy impact test at −20 ° C. was performed. Table 6 below shows the component composition of the test flux. Examples 1 to 10 have compositions and CaF 2 / CO 2 ratios falling within the scope of the present invention, and Comparative Examples 11 to 38 each have any component composition or CaF 2 / CO 2 ratio within the scope of the present invention. It is something that comes off. Table 7 below shows the test results by 4-electrode FCB welding, Table 8 shows the test results by 3-electrode FCB, and Table 9 shows the test results by 2-electrode FCB. FIGS. 2 to 4 are graphs showing the number of undercut occurrences in the 4-electrode, 3-electrode, and 2-electrode FCB welding in relation to the CaF 2 / CO 2 ratio. FIGS. 2 to 4 summarize the relationship between the CaF 2 / CO 2 ratio in Table 6 and the presence or absence of occurrence of undercut in Tables 7 to 9.
本発明の実施例1乃至10は、溶接作業性(アンダカット、ビード外観評価)、非破壊検査(割れ)及び靭性(―20℃のシャルピ衝撃エネルギ)の全てが良好であった。 In Examples 1 to 10 of the present invention, welding workability (undercut and bead appearance evaluation), nondestructive inspection (cracking), and toughness (-20 ° C Charpy impact energy) were all good.
一方、比較例11はフラックス中のMgOの含有量が本発明範囲の下限未満であるので、アンダカットが発生すると共に、溶接金属中の酸素量が増加し、靭性が劣化した。比較例12はフラックス中のMgOの含有量が本発明範囲の上限を超えているので、スラグ剥離性が劣化し、ポックマークが発生した。比較例13はフラックス中のTiO2の含有量が本発明範囲の下限未満であるので、靭性が劣化した。比較例14はフラックス中のTiO2の含有量が本発明範囲の上限を超えているので、スラグが焼付き、スラグ剥離性が劣化した。比較例15はフラックス中のSiO2の含有量が本発明範囲の下限未満であるので、ビード幅の揃いが劣化した。比較例16はフラックス中のSiO2の含有量が本発明範囲の上限を超えているので、溶接金属中の酸素量が増加し、靭性が劣化した。比較例17はフラックス中のAl2O3の含有量が本発明範囲の下限未満であるので、ビード幅の揃いが劣化した。比較例18はフラックス中のAl2O3の含有量が本発明範囲の上限を超えているので、ビード幅が過小となり、凸型ビードとなった。比較例19はフラックス中のCaOの含有量が本発明範囲の下限未満であるので、溶接金属中の酸素量が増加し、靭性が劣化した。比較例20はフラックス中のCaOの含有量が本発明範囲の上限を超えているので、スラグが焼付き、剥離性が劣化した。比較例21はフラックス中のCO2の含有量が本発明範囲の下限未満であるので、溶接金属中の拡散性水素量が増加し、低温割れが発生した。比較例22はフラックス中のCO2の含有量が本発明範囲の上限を超えているので、ポックマークが発生した。比較例23はフラックス中のNa2Oの含有量が本発明範囲の下限未満であるので、溶接中にアーク切れが発生した。比較例24はフラックス中のNa2Oの含有量が本発明範囲の上限を超えているので、耐吸湿性が劣化し、低温割れが発生した。比較例25はフラックス中のCaF2の含有量が本発明範囲の下限未満であるので、ビードの揃いが劣化し、更に溶接金属中の酸素量が増加し、靭性が劣化した。比較例26はフラックス中のCaF2の含有量が本発明範囲の上限を超えているので、溶接中にアーク切れが発生した。比較例27はB2O3の含有量が本発明範囲の下限未満であるので、靱性が劣化した。比較例28はフラックス中のB2O3の含有量が本発明範囲の上限を超えているので、高温割れが発生した。比較例29はフラックス中のSiの含有量が本発明範囲の下限未満であるので、溶接金属中の酸素量が増加し、靭性が劣化した。比較例30はフラックス中のSiの含有量が本発明範囲の上限を超えているので、スラグが焼付き、剥離性が劣化すると共に、靱性が劣化した。比較例31はフラックス中のMoの含有量が本発明範囲の下限未満であるので、溶接金属の焼き入れ不足により靭性が劣化した。比較例32はフラックス中のMoの含有量が本発明範囲の上限を超えているので、高温割れが発生した。比較例33はフラックス中のFeの含有量が本発明範囲の上限を超えているので、ビード表面に鉄粒突起が発生し外観が損なわれた。比較例34、35はフラックス中のCaF2/CO2比が本発明範囲の下限未満であるので、ビードの揃いが劣化し、アンダカットが発生した。また、溶接金属の酸素量も増加し、靱性も劣化した。比較例36、37、38はフラックス中のCaF2/CO2比が本発明範囲の上限を超えているので、アーク安定性が劣化し、アンダカットが多発した。 On the other hand, in Comparative Example 11, since the content of MgO in the flux was less than the lower limit of the range of the present invention, undercut occurred, the amount of oxygen in the weld metal increased, and toughness deteriorated. In Comparative Example 12, the content of MgO in the flux exceeded the upper limit of the range of the present invention, so the slag peelability deteriorated and a pock mark was generated. In Comparative Example 13, the toughness deteriorated because the content of TiO 2 in the flux was less than the lower limit of the range of the present invention. In Comparative Example 14, the content of TiO 2 in the flux exceeded the upper limit of the range of the present invention, so the slag was seized and the slag peelability deteriorated. In Comparative Example 15, since the content of SiO 2 in the flux was less than the lower limit of the range of the present invention, the uniformity of the bead width was deteriorated. In Comparative Example 16, the content of SiO 2 in the flux exceeded the upper limit of the range of the present invention, so the amount of oxygen in the weld metal increased and the toughness deteriorated. In Comparative Example 17, since the content of Al 2 O 3 in the flux was less than the lower limit of the range of the present invention, the alignment of the bead width was deteriorated. In Comparative Example 18, since the content of Al 2 O 3 in the flux exceeded the upper limit of the range of the present invention, the bead width was too small and a convex bead was formed. In Comparative Example 19, since the content of CaO in the flux was less than the lower limit of the range of the present invention, the amount of oxygen in the weld metal increased and the toughness deteriorated. In Comparative Example 20, since the content of CaO in the flux exceeded the upper limit of the range of the present invention, the slag was seized and the peelability deteriorated. In Comparative Example 21, since the content of CO 2 in the flux was less than the lower limit of the range of the present invention, the amount of diffusible hydrogen in the weld metal increased and low temperature cracking occurred. In Comparative Example 22, since the content of CO 2 in the flux exceeded the upper limit of the range of the present invention, a pock mark was generated. In Comparative Example 23, since the content of Na 2 O in the flux was less than the lower limit of the range of the present invention, arc breakage occurred during welding. In Comparative Example 24, the Na 2 O content in the flux exceeded the upper limit of the range of the present invention, so the hygroscopic resistance deteriorated and low temperature cracking occurred. In Comparative Example 25, since the content of CaF 2 in the flux was less than the lower limit of the range of the present invention, the bead alignment was deteriorated, the oxygen amount in the weld metal was further increased, and the toughness was deteriorated. In Comparative Example 26, since the content of CaF 2 in the flux exceeded the upper limit of the range of the present invention, arc breakage occurred during welding. In Comparative Example 27, the toughness deteriorated because the content of B 2 O 3 was less than the lower limit of the range of the present invention. In Comparative Example 28, since the content of B 2 O 3 in the flux exceeded the upper limit of the range of the present invention, hot cracking occurred. In Comparative Example 29, the content of Si in the flux was less than the lower limit of the range of the present invention, so the amount of oxygen in the weld metal increased and the toughness deteriorated. In Comparative Example 30, the Si content in the flux exceeded the upper limit of the range of the present invention, so the slag was seized and the peelability deteriorated, and the toughness deteriorated. In Comparative Example 31, the content of Mo in the flux was less than the lower limit of the range of the present invention, so the toughness deteriorated due to insufficient quenching of the weld metal. In Comparative Example 32, the content of Mo in the flux exceeded the upper limit of the range of the present invention, and thus hot cracking occurred. In Comparative Example 33, since the Fe content in the flux exceeded the upper limit of the range of the present invention, iron grain protrusions were generated on the bead surface and the appearance was impaired. In Comparative Examples 34 and 35, since the CaF 2 / CO 2 ratio in the flux was less than the lower limit of the range of the present invention, the bead alignment deteriorated and undercut occurred. In addition, the oxygen content of the weld metal increased and the toughness deteriorated. In Comparative Examples 36, 37, and 38, the CaF 2 / CO 2 ratio in the flux exceeded the upper limit of the range of the present invention, so that the arc stability deteriorated and undercuts occurred frequently.
以上詳述したように、本発明によれば、サブマージアーク溶接用のボンドフラックスにおける成分系を適切に規制しているので良好な溶接作業性と靭性を得ることができる。なお、本実施例では、FCB法で試験を行っているが、RF法においても同様の結果が得られた。 As described above in detail, according to the present invention, since the component system in the bond flux for submerged arc welding is appropriately regulated, good welding workability and toughness can be obtained. In this example, the test was performed by the FCB method, but the same result was obtained by the RF method.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005090737A JP4297880B2 (en) | 2005-03-28 | 2005-03-28 | Bond flux for submerged arc welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005090737A JP4297880B2 (en) | 2005-03-28 | 2005-03-28 | Bond flux for submerged arc welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006272348A JP2006272348A (en) | 2006-10-12 |
JP4297880B2 true JP4297880B2 (en) | 2009-07-15 |
Family
ID=37207584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005090737A Active JP4297880B2 (en) | 2005-03-28 | 2005-03-28 | Bond flux for submerged arc welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4297880B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4489009B2 (en) * | 2005-11-18 | 2010-06-23 | 株式会社神戸製鋼所 | Bond flux for submerged arc welding |
JP4601596B2 (en) | 2006-10-03 | 2010-12-22 | 株式会社エヌ・ティ・ティ・ドコモ | Base station apparatus and method |
KR101168161B1 (en) | 2010-12-27 | 2012-07-24 | 현대종합금속 주식회사 | Flux for one side submerged arc welding |
KR101286501B1 (en) * | 2011-12-26 | 2013-07-16 | 현대종합금속 주식회사 | Flux for submerged arc welding |
JP5874068B2 (en) * | 2012-01-27 | 2016-03-01 | 株式会社神戸製鋼所 | Flux for single-sided submerged arc welding |
JP2013154363A (en) * | 2012-01-27 | 2013-08-15 | Kobe Steel Ltd | Flux for one side submerged arc welding |
CN104831163A (en) * | 2015-05-09 | 2015-08-12 | 芜湖鼎瀚再制造技术有限公司 | Fe-Mo-B-Al welding layer material and preparation method thereof |
-
2005
- 2005-03-28 JP JP2005090737A patent/JP4297880B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006272348A (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4531617B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP4297880B2 (en) | Bond flux for submerged arc welding | |
JP5874068B2 (en) | Flux for single-sided submerged arc welding | |
JP2013154363A (en) | Flux for one side submerged arc welding | |
JP5766500B2 (en) | Submerged arc welding material and submerged arc welding method | |
JP4489009B2 (en) | Bond flux for submerged arc welding | |
JP5869066B2 (en) | Bond flux for multi-electrode single-sided submerged arc welding | |
JP2020131221A (en) | Baked flux for submerged arc welding for high-strength steel | |
JP6037781B2 (en) | Bond flux for multi-electrode single-sided submerged arc welding | |
KR100513214B1 (en) | A bond flux for submerged arc welding | |
JP6071798B2 (en) | Flux for single-sided submerged arc welding | |
JP6071797B2 (en) | Flux for single-sided submerged arc welding | |
JP4581842B2 (en) | Fused flux for submerged arc welding | |
JP2012192422A (en) | Flux-cored wire for gas shield arc welding | |
JP5339870B2 (en) | Bond flux for downward fillet submerged arc welding | |
JP2007144429A (en) | Bond flux for downward fillet submerged arc welding | |
JP5037369B2 (en) | Solid wire for pulse MAG welding | |
JP4836262B2 (en) | Bond flux for submerged arc welding | |
JP3157060B2 (en) | Highly basic molten flux | |
JPS6357154B2 (en) | ||
JP6152316B2 (en) | Flux for single-sided submerged arc welding | |
JP6908547B2 (en) | Bond flux for multi-electrode single-sided submerged arc welding | |
KR100462037B1 (en) | Flux for using butt submerged arc welding | |
JP3718464B2 (en) | Flux-cored wire for gas shielded arc welding | |
KR100364873B1 (en) | Agglomerated flux for submerged arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090414 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090414 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4297880 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |