JP5339870B2 - Bond flux for downward fillet submerged arc welding - Google Patents

Bond flux for downward fillet submerged arc welding Download PDF

Info

Publication number
JP5339870B2
JP5339870B2 JP2008305267A JP2008305267A JP5339870B2 JP 5339870 B2 JP5339870 B2 JP 5339870B2 JP 2008305267 A JP2008305267 A JP 2008305267A JP 2008305267 A JP2008305267 A JP 2008305267A JP 5339870 B2 JP5339870 B2 JP 5339870B2
Authority
JP
Japan
Prior art keywords
weld metal
bead
welding
submerged arc
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008305267A
Other languages
Japanese (ja)
Other versions
JP2010125508A (en
Inventor
典親 辻
繁男 大山
博志 中澤
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2008305267A priority Critical patent/JP5339870B2/en
Publication of JP2010125508A publication Critical patent/JP2010125508A/en
Application granted granted Critical
Publication of JP5339870B2 publication Critical patent/JP5339870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide bond flux for the downward fillet submerged arc welding capable of obtaining the excellent welding workability and mechanical performance of a weld metal even in a high-heat input submerged arc welding. <P>SOLUTION: The bond flux for the downward fillet submerged arc welding contains, by mass, 12-30% SiO<SB>2</SB>, 10-25% MgO, 8-21% Al<SB>2</SB>O<SB>3</SB>, 1-7% CaF<SB>2</SB>, 2-13% CaO, 10-30% TiO<SB>2</SB>, 0.1-1% B<SB>2</SB>O<SB>3</SB>, 1-8% FeO, 1-5% Na<SB>2</SB>O, 0.1-1% Li<SB>2</SB>O, 2-8% CO<SB>2</SB>portion of metal carbonate, 0.1-1% Mn and 0.1-5% Si, and the balance inevitable impurities. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、下向きサブマージアーク溶接用ボンドフラックスに係り、特に建築および橋梁等に多く使用されるビルドH材(3枚の鋼板を断面形状がH型となるように組み合わせてすみ肉溶接により接合した骨材)からなる柱、梁の下向きすみ肉溶接に使用した場合に優れた溶接作業性、ビード形状、溶込み深さおよび機械的性能の溶接金属を得ることができる下向きすみ肉サブマージアーク溶接用ボンドフラックスに関するものである。   The present invention relates to a bond flux for downward submerged arc welding, and in particular, a build H material often used for construction and bridges (joined by fillet welding by combining three steel plates so that the cross-sectional shape is H-shaped) For down-filled submerged arc welding that can provide weld metal with excellent welding workability, bead shape, penetration depth and mechanical performance when used for downward fillet welding of columns and beams made of aggregates) It relates to bond flux.

近年、建築や橋梁等の鋼構造物に用いられる鋼板は厚肉化の傾向にあり、能率良く溶接するため、大入熱のサブマージアーク溶接が用いられている。また地震等の破壊事例等を教訓として鋼構造物全般の安全性に対する関心が高まっており、大入熱で溶接しても安定した溶接金属特性を得ることが求められている。   In recent years, steel plates used in steel structures such as buildings and bridges have a tendency to become thicker, and in order to weld efficiently, submerged arc welding with large heat input is used. In addition, lessons learned from examples of destruction such as earthquakes have raised interest in the safety of steel structures in general, and there is a need to obtain stable weld metal characteristics even when welding with high heat input.

下向きすみ肉サブマージアーク溶接によって形成される溶接継手は、溶込み深さ、必要脚長の確保、並びにビード形状の平滑性および溶接金属と母材とのなじみ性が良好であることが要求されている。また、近年では構造物の大型化により耐震性等を考慮し、溶接金属の良好な機械的性能が要求される傾向にある。   Welded joints formed by downward fillet submerged arc welding are required to have good penetration depth, ensure sufficient leg length, bead shape smoothness, and good compatibility between weld metal and base metal. . In recent years, due to the increase in size of structures, in consideration of earthquake resistance and the like, there is a tendency that good mechanical performance of the weld metal is required.

従来、下向きすみ肉サブマージアーク溶接用フラックスは、ボンドフラックスよりも高速溶接が可能な溶融型フラックスが多く使用されている。しかし溶融型フラックスでは合金類の添加はワイヤからのみになってしまうので溶接金属の所定の機械的性能を得にくく、またフラックス自体の融点が低いために大入熱による溶接ができないので能率を上げることができない。   Conventionally, as the flux for downward fillet submerged arc welding, a melting type flux that can be welded at a higher speed than a bond flux is often used. However, in the case of a melt-type flux, the alloy is added only from the wire, so it is difficult to obtain the prescribed mechanical performance of the weld metal, and the flux itself has a low melting point, so welding with high heat input cannot be performed, thus increasing efficiency I can't.

そこで、これらの点を考慮し溶接作業性および溶接金属の機械的性能が良好なボンドフラックスが検討されている。例えば、特許文献1、特許文献2では、下向きすみ肉サブマージ溶接の溶接作業性および良好な溶接金属性能を得られるボンドフラックスが開示されているが、SiO2含有量が多いので溶接金属の酸素量が高くなり靭性が低下するという問題がある。 Accordingly, in consideration of these points, bond fluxes with favorable welding workability and mechanical performance of the weld metal have been studied. For example, Patent Document 1 and Patent Document 2 disclose bond flux that can provide welding workability and good weld metal performance of downward fillet submerged welding. However, since the SiO 2 content is large, the oxygen content of the weld metal is disclosed. There is a problem that the toughness is lowered and the toughness decreases.

また、特許文献3には、大入熱の単層および多層の下向きすみ肉サブマージアーク溶接における溶接作業能率の向上および優れた溶接金属が得られる技術の開示があるが、Mn含有量が多く溶接金属の強度が高くなりすぎて低温割れが発生する場合がある。   Further, Patent Document 3 discloses a technique for improving welding work efficiency and obtaining an excellent weld metal in single-layer and multi-layer downward fillet submerged arc welding with high heat input. The strength of the metal becomes too high, and cold cracking may occur.

さらに、溶接作業性が良好で優れたビード形状およびビード外観を得ることができ、高靭性の溶接金属を得ることができるボンドフラックスが特許文献4に開示されているが、TiO2含有量が少ないのでビードの揃いが不連続になると共に、靭性向上の効果が得られないという問題があった。 Furthermore, Patent Document 4 discloses a bond flux capable of obtaining a bead shape and bead appearance excellent in welding workability and capable of obtaining a high toughness weld metal, but has a low TiO 2 content. As a result, the bead alignment becomes discontinuous and the effect of improving toughness cannot be obtained.

特開2002−331390号公報JP 2002-331390 A 特開平8−99191号公報JP-A-8-99191 特開2003−230983号公報JP 2003-230983 A 特開2008−161902号公報Japanese Patent Laid-Open No. 2008-161902

本発明は、大入熱のサブマージアーク溶接においても良好な溶接作業性、ビード形状および溶接金属の機械的性能を得ることができる下向きすみ肉サブマージアーク溶接用ボンドフラックスを提供することを目的とする。   An object of the present invention is to provide a downward fillet submerged arc welding bond flux capable of obtaining good welding workability, bead shape and weld metal mechanical performance even in submerged arc welding with high heat input. .

本発明の要旨は、質量%で、SiO:12〜30%、MgO:10〜25%、Al:8〜21%、CaF:1〜7%、CaO:2〜13%、TiO:10〜30%、B:0.1〜1%、酸化鉄:1〜8%、NaO:1〜5%、LiO:0.1〜1%、CO:2〜8%、Mn:0.1〜1%、Si:0.1〜5%を含有し、その他は3.7%以下の不可避不純物であることを特徴とする下向きすみ肉サブマージアーク溶接用ボンドフラックスにある。
Aspect of the present invention, in mass%, SiO 2: 12~30%, MgO: 10~25%, Al 2 O 3: 8~21%, CaF 2: 1~7%, CaO: 2~13%, TiO 2: 10~30%, B 2 O 3: 0.1~1%, iron oxide: 1~8%, Na 2 O: 1~5%, Li 2 O: 0.1~1%, CO 2 : 2-8%, Mn: 0.1 to 1%, Si: 0.1 to 5%, the other is 3.7% or less inevitable impurities, down fillet submerged arc welding For bond flux.

本発明の下向きすみ肉サブマージアーク溶接用ボンドフラックスによれば、特にビルトH材などの開先加工有りおよび開先加工無しの大入熱の下向きすみ肉溶接においても深溶込みが得られ、良好な溶接作業性、ビード形状および優れた溶接金属の機械的性能を得ることができ、溶接能率の向上および高品質の溶接部を得ることができる。   According to the downward fillet submerged arc welding bond flux of the present invention, it is possible to obtain deep penetration even in downward fillet welding with large heat input with and without groove processing, such as a built-in H material. Welding workability, bead shape and excellent mechanical performance of the weld metal can be obtained, and the welding efficiency can be improved and a high-quality weld can be obtained.

本発明者らは、まず下向きすみ肉サブマージアーク溶接に使用される従来の種々のフラックスについて検討したが、優れた溶接作業性、ビード形状および溶接金属の機械的性能のいずれをも満足できるフラックスを得ることはできなかった。例えば、溶融型フラックスを用いた場合、溶接金属に添加される合金元素の量が少なく、所定の機械的性能を得ることができなかった。また、ボンドフラックスを使用した場合においても、酸素量が高くなり、所定の靭性を得ることができなかったり、スラグの粘度が高く、ビード形状が凸ビードとなり、アンダカットが発生するなど溶接作業性、ビード形状および溶接金属の機械的性能の全てを満足することはできなかった。   The present inventors first examined various conventional fluxes used for downward fillet submerged arc welding. However, the fluxes satisfy all of excellent welding workability, bead shape, and mechanical performance of weld metal. Couldn't get. For example, when a melt-type flux is used, the amount of alloy elements added to the weld metal is small, and a predetermined mechanical performance cannot be obtained. Even when bond flux is used, welding workability such as high oxygen content and failure to obtain the required toughness, high slag viscosity, bead shape becomes convex bead, and undercut occurs. The bead shape and the weld metal mechanical performance could not all be satisfied.

そこでボンドフラックスの成分組成について種々検討を行った結果、ボンドフラックスにFeOを添加することによって、溶融スラグの粘性および融点を調整し、ビード止端部のなじみを良好にし、ビード形状を平滑で良好な状態を得ることを見出した。また同時にスラグ剥離性も良好にするのに有効であることを見出した。   Therefore, as a result of various studies on the composition of the bond flux, FeO was added to the bond flux to adjust the viscosity and melting point of the molten slag, improve the familiarity of the bead toe, and make the bead shape smooth and good. Found to get a good state. At the same time, the present inventors have found that it is effective for improving the slag peelability.

また、ボンドフラックスにLi2Oを添加することによって、ボンドフラックスの吸湿性を抑制し、溶接金属中の水素量を低減することで、耐割れ性向上に有効であることを確認した。 It was also confirmed that by adding Li 2 O to the bond flux, the hygroscopicity of the bond flux was suppressed and the amount of hydrogen in the weld metal was reduced, which was effective in improving crack resistance.

以下、本発明における下向きすみ肉サブマージアーク溶接用ボンドフラックスの成分組成の限定理由について説明する。   Hereinafter, the reason for limitation of the component composition of the bond flux for downward fillet submerged arc welding in the present invention will be described.

SiO2は溶融スラグが高粘性の性質を有し、溶接作業性、ビード形状および溶接金属の機械的性能に影響を与える。SiO2が12質量%(以下、%という。)未満であると溶融スラグの粘性が不足してビード形状が不良となりビードの蛇行やアンダカットが発生する。一方、30%を超えると溶融スラグの粘性が高くなりすぎてビード趾端部がオーバラップとなりスラグ剥離性も劣化する。さらに、溶接金属の酸素量が高くなり靭性が劣化する。 SiO 2 has a property that the molten slag is highly viscous and affects welding workability, bead shape, and mechanical performance of the weld metal. If the SiO 2 content is less than 12% by mass (hereinafter referred to as “%”), the viscosity of the molten slag is insufficient, the bead shape becomes poor, and bead meandering or undercut occurs. On the other hand, if it exceeds 30%, the viscosity of the molten slag becomes too high, the bead heel ends overlap, and the slag peelability deteriorates. Furthermore, the oxygen content of the weld metal increases and the toughness deteriorates.

MgOは、溶接金属の酸素量を低減するのに有効な成分で、溶融スラグの融点および粘性を高くする性質も有している。MgOが10%未満であると溶接金属の酸素量が高くなり靭性が低下する。また、溶融スラグの粘性が不足してビードの蛇行やアンダカットが発生する。一方、MgOが25%を超えるとフラックスの融点が高くなり十分なビード幅が得られず、また溶融スラグの粘性も高くなるのでビード趾端部がオーバラップとなる。   MgO is an effective component for reducing the oxygen content of the weld metal and has the property of increasing the melting point and viscosity of the molten slag. If MgO is less than 10%, the oxygen content of the weld metal increases and the toughness decreases. Further, the viscosity of the molten slag is insufficient, and bead meandering and undercutting occur. On the other hand, if MgO exceeds 25%, the melting point of the flux becomes high and a sufficient bead width cannot be obtained, and the viscosity of the molten slag also becomes high, so that the bead collar ends overlap.

Al23は、溶融スラグの粘性を調整するのに有効な成分である。Al23が8%未満であると溶融スラグの粘性が不足するのでアンダカットが発生しやすくなる。一方、21%を超えると溶融スラグの粘性が過剰となりビード形状が凸型となる。 Al 2 O 3 is an effective component for adjusting the viscosity of the molten slag. If Al 2 O 3 is less than 8%, the viscosity of the molten slag is insufficient, and undercut is likely to occur. On the other hand, if it exceeds 21%, the viscosity of the molten slag becomes excessive and the bead shape becomes convex.

CaF2は、溶融スラグの融点および粘性を低くする性質を有しており、大入熱の溶接条件でビードを平滑に保つのに有効な成分である。また、溶接時に弗素ガスが発生して溶接金属のシールド効果で酸素を低減して靭性を向上させる。CaF2が1%未満ではビード形状および靭性の向上に効果がなく、7%を超えると溶融スラグの流動性が過剰となりアンダカットが発生しやすく、スラグ剥離性も劣化する。 CaF 2 has a property of lowering the melting point and viscosity of the molten slag, and is an effective component for keeping the bead smooth under high heat input welding conditions. Also, fluorine gas is generated during welding, and oxygen is reduced by the shielding effect of the weld metal to improve toughness. If CaF 2 is less than 1%, there is no effect in improving the bead shape and toughness. If it exceeds 7%, the fluidity of the molten slag becomes excessive and undercut is likely to occur, and the slag peelability also deteriorates.

CaOは、溶融スラグの融点および流動性を調整するために重要な成分である。CaOが2%未満ではビード止端部のなじみが悪くアンダカットが生じる。一方、13%を超えるとビード高さが不均一でスラグ剥離性が劣化する。   CaO is an important component for adjusting the melting point and fluidity of the molten slag. If CaO is less than 2%, the fit of the bead toe is poor and undercut occurs. On the other hand, if it exceeds 13%, the bead height is non-uniform and the slag peelability deteriorates.

TiO2は、ビード表面の平滑性を得るのに効果がある。また、溶接金属中にTiを含む酸化物として歩留まりアシキュラーフェライトの核となって靭性の向上に非常に有効な成分である。TiO2が10%未満であるとビードの揃いが不連続となり、溶接金属の靭性の向上にも効果がない。一方、30%を超えるとスラグが焼付いてスラグ剥離性が劣化する。 TiO 2 is effective in obtaining the smoothness of the bead surface. Further, it is an effective component for improving the toughness as a core of yielded acicular ferrite as an oxide containing Ti in the weld metal. If TiO 2 is less than 10%, the bead alignment becomes discontinuous, and there is no effect in improving the toughness of the weld metal. On the other hand, if it exceeds 30%, the slag is seized and the slag removability deteriorates.

23は、還元されてBとして溶接金属中に歩留まり、粗大な粒界フェライトの生成を抑制して溶接金属の靭性の向上に非常に有効な成分である。B23が0.1%未満では溶接金属の靭性向上の効果が得られず、1%を超えると高温割れが発生しやすくなる。 B 2 O 3 is a component that is reduced and yields in the weld metal as B, and is very effective in improving the toughness of the weld metal by suppressing the formation of coarse grain boundary ferrite. If B 2 O 3 is less than 0.1%, the effect of improving the toughness of the weld metal cannot be obtained, and if it exceeds 1%, hot cracking tends to occur.

酸化鉄は、溶融スラグの粘性および融点を調整するに最も有効な成分で、主としてFeOが挙げられる。また、スラグ剥離性を良好にする。酸化鉄が1%未満ではビード止端部のなじみが悪く、ビード形状が凹凸となる。一方、8%を超えると溶融スラグの流動性が過剰になりアンダカットが発生しやすくなる。また、ビード形状が不揃で、スラグが焼き付いてスラグの剥離性を劣化させ、ビード表面が鱗状になる。   Iron oxide is the most effective component for adjusting the viscosity and melting point of molten slag, and mainly includes FeO. Moreover, slag peelability is made favorable. If the iron oxide content is less than 1%, the fit of the bead toes is poor, and the bead shape becomes uneven. On the other hand, if it exceeds 8%, the fluidity of the molten slag becomes excessive and undercut is likely to occur. In addition, the bead shape is uneven, and the slag is seized to deteriorate the peelability of the slag, and the bead surface becomes scaly.

Na2Oは、アークの安定性を良好にしビードの波目を細かくしてビード外観を良好にするのに有効な成分である。Na2Oが1%未満ではアークが不安定でアーク切れが発生し、ビードが蛇行して溶込みが不均一となる、一方、5%を超えると耐吸湿性が劣化してピットおよびポックマークが発生する。 Na 2 O is an effective component for improving the stability of the arc and making the bead appearance fine by making the wave of the bead fine. If Na 2 O is less than 1%, the arc becomes unstable and arc breakage occurs, and the beads meander and the penetration becomes uneven. On the other hand, if it exceeds 5%, the moisture absorption resistance deteriorates and pits and pock marks are generated. Will occur.

Li2Oは、ボンドフラックスの吸湿を防ぎ、溶接金属中の拡散性水素量を低くすることができる有効な成分である。また、溶融スラグの溶融温度と粘性を低くして溶融ビードの湯流れを安定させるので溶接ビード幅を均一にして溶接ビード形状を良好にする。Li2Oが0.1%未満では十分な効果は得られず、1%を超えて添加しても効果の増進は無くコスト高となる。 Li 2 O is an effective component capable of preventing moisture absorption of the bond flux and reducing the amount of diffusible hydrogen in the weld metal. In addition, the melting temperature and viscosity of the molten slag are lowered to stabilize the molten metal flow of the molten bead, so that the weld bead width is made uniform and the weld bead shape is improved. If Li 2 O is less than 0.1%, a sufficient effect cannot be obtained, and even if it is added in excess of 1%, the effect is not enhanced and the cost is increased.

CO2は、溶接金属のシールド効果があり、拡散性水素量の低減に有効である。金属炭酸塩のCO2分が、2%未満であるとシールドが不足して拡散性水素量が高くなるので低温割れが生じる場合がある。一方、8%を超えるとガス量が過剰となりポックマークが発生する。なお、CO2源は金属炭酸塩であるCaCO3、MgCO3、Na2CO3およびLi2CO3の1種以上を使用する。 CO 2 has a shielding effect on the weld metal and is effective in reducing the amount of diffusible hydrogen. If the CO 2 content of the metal carbonate is less than 2%, the shield is insufficient and the amount of diffusible hydrogen increases, so that cold cracking may occur. On the other hand, if it exceeds 8%, the gas amount becomes excessive and a pock mark is generated. The CO 2 source is one or more of metal carbonates CaCO 3 , MgCO 3 , Na 2 CO 3 and Li 2 CO 3 .

Mnは、溶接金属の焼入れ性を向上させて強度および靭性を高めるのに有効な成分である。Mnが0.1%未満であると溶接金属の焼入れ性が不足して靭性が低下する。一方、1%を超えると溶接金属の焼入れ性が過剰となり強度が高くなり低温割れが発生する場合がある。なお、Mn源としては金属Mn、Fe−Mn、Si−Mnの1種以上を使用することができる。   Mn is an effective component for improving the hardenability of the weld metal and increasing the strength and toughness. If Mn is less than 0.1%, the hardenability of the weld metal is insufficient and the toughness is lowered. On the other hand, if it exceeds 1%, the hardenability of the weld metal becomes excessive, the strength increases, and cold cracking may occur. As the Mn source, one or more of metal Mn, Fe—Mn, and Si—Mn can be used.

Siは、溶接金属の焼入れ性を向上させると共に脱酸成分として有効な成分であり、溶接金属の強度および靭性を高める。Siが0.1%未満であると溶接金属の脱酸効果が得られず靭性が低下する。一方、5%を超えると溶接金属の硬さが過剰となり靭性が劣化する。なお、Si源としては、金属Si、Fe−Si、Si−Mnの1種以上を使用することができる。
また、上記成分以外のその他は不可避不純物であり、実施例の表3に本発明例では3.7%以下のその他が含有されていることを示している。
Si is an effective component as a deoxidizing component while improving the hardenability of the weld metal, and increases the strength and toughness of the weld metal. If Si is less than 0.1%, the deoxidation effect of the weld metal cannot be obtained and the toughness is lowered. On the other hand, if it exceeds 5%, the hardness of the weld metal becomes excessive and the toughness deteriorates. As the Si source, one or more of metal Si, Fe—Si, and Si—Mn can be used.
Other than the above components are inevitable impurities, and Table 3 of Examples shows that 3.7% or less of others are contained in the present invention example.

以下、実施例により本発明の効果を詳細に説明する。
表1に示す化学成分の板厚32mmおよび25mmのウェブ鋼板S1と板厚32mmのフランジ鋼板S2とを、開先ありの場合は板厚32mmのウェブ鋼板S1を図1に示す開先角度45°、ルートフェイス8mmの両面対称開先(開先あり)とし、また、図2に開先加工を行わなかった(開先なし)の場合は板厚25mmのウェブ鋼板S1を用いた。フランジ鋼板S2を水平に対して55°傾斜させて、フランジ鋼板S2の表面中央部に対して垂直となるように、ウェブ鋼板S1の端面を当接させて組み立てた開先とした。試験板長さは1000mmとした。なお、この溶接試験では、図1に示す開先ありの場合の先行電極の狙い位置をL1、後行電極の狙い位置をT1とし、図2に示す開先なしの場合の先行電極の狙い位置をL2、後行電極の狙い位置をT2として示している。
表2に示すワイヤと表3に示す種々の成分組成のボンドフラックスを組み合わせて、表4に示す溶接条件で2電極による1パス盛りの下向きすみ肉サブマージアーク溶接を実施した。なお、先行電極のみフランジ鋼板側に9°電極を傾斜した。
Hereinafter, the effects of the present invention will be described in detail by way of examples.
A web steel plate S1 having a thickness of 32 mm and 25 mm and a flange steel plate S2 having a thickness of 32 mm shown in Table 1 and a web steel plate S1 having a thickness of 32 mm in the case of a groove have a groove angle of 45 ° shown in FIG. When the root face is 8 mm, both sides are symmetrical (with a groove), and when the groove processing is not performed (without the groove) in FIG. 2, a web steel sheet S1 having a thickness of 25 mm is used. The flange steel plate S2 was inclined 55 ° with respect to the horizontal, and the groove was assembled by bringing the end surface of the web steel plate S1 into contact with each other so as to be perpendicular to the center of the surface of the flange steel plate S2. The test plate length was 1000 mm. In this welding test, the aiming position of the leading electrode when there is a groove shown in FIG. 1 is L1, the aiming position of the following electrode is T1, and the aiming position of the leading electrode when there is no groove shown in FIG. Is indicated by L2, and the target position of the trailing electrode is indicated by T2.
Combining the wires shown in Table 2 and bond fluxes with various component compositions shown in Table 3, downward fillet submerged arc welding with one electrode on two passes was performed under the welding conditions shown in Table 4. Note that the 9 ° electrode was inclined toward the flange steel plate only for the preceding electrode.

Figure 0005339870
Figure 0005339870

Figure 0005339870
Figure 0005339870

Figure 0005339870
Figure 0005339870

Figure 0005339870
Figure 0005339870

開先あり、なし共に溶接後、スラグ剥離性、ビード形状、ビード趾端部のなじみ、溶接欠陥、溶込み深さ、溶接金属の靭性および拡散性水素量を調査した。   After welding with and without a groove, slag peelability, bead shape, conformity of the bead edge, weld defects, penetration depth, weld metal toughness and diffusible hydrogen content were investigated.

スラグ剥離の評価は、ハンマーまたはタガネを用いてスラグを軽打して簡単にスラグが剥離すれば良好とし○、軽打でスラグが剥離しなければ劣るとし×とした。ビード形状は、ビード幅および高さが均一で美しいビード形状であれば良好とし○、1つでも劣るものについては×とした。   The slag peeling was evaluated as good if the slag was easily peeled off by using a hammer or a chisel to make it good. The bead shape was good if the bead width and height were uniform and beautiful, and it was rated as “good”, and if it was inferior, it was marked as “poor”.

ビード趾端部のなじみは、母材と溶接金属の端部の形状が平滑でなじみが良ければ良好とし○、そうでなければ劣るとし×とした。溶接欠陥の有無は、外観検査および超音波探傷試験によりアンダカット、ブローホール、ピット、スラグ巻き込み、融合不良、割れの有無を調査した。溶込み深さは図3に示すように最初に溶接した溶接金属M1と後から溶接した溶接金属M2の溶接金属溶込み部が接触する完全溶込みの場合は良好とし○、溶込み部が接触しない場合は劣るとし×とした。   The conformity of the end of the bead saddle was determined to be good if the shape of the end of the base metal and the weld metal was smooth and fit well, and x if not. The presence or absence of welding defects was investigated by visual inspection and ultrasonic flaw detection for undercuts, blowholes, pits, slag entrainment, poor fusion, and cracks. As shown in FIG. 3, the penetration depth is good in the case of complete penetration where the weld metal M1 welded first and the weld metal M2 welded later are in contact with each other. When not doing, it was considered as inferior.

溶接金属の靭性は、図3に示す後から溶接した溶接金属M2のビード表面下7mmを中心としてシャルピー衝撃試験片a(JIS Z 2202 4号)を採取し、靭性の評価は0℃におけるシャルピー衝撃試験により評価した。なお、シャルピー衝撃試験の吸収エネルギーは、繰り返し3本の平均値が100J以上であれば良好とした。
溶接金属の拡散性水素量は、JIS Z 3118に準拠して測定し、6ml/100g以下を良好とした。それらの結果を表5にまとめて示す。
As for the toughness of the weld metal, a Charpy impact test piece a (JIS Z 2204 No. 4) was sampled around 7 mm below the bead surface of the weld metal M2, which was welded later, as shown in FIG. It was evaluated by testing. The absorbed energy in the Charpy impact test was good if the average value of three repetitions was 100 J or more.
The amount of diffusible hydrogen in the weld metal was measured according to JIS Z 3118, and 6 ml / 100 g or less was considered good. The results are summarized in Table 5.

Figure 0005339870
Figure 0005339870

表5中溶接記号1〜10が本発明例、溶接記号11〜21は比較例である。本発明例である溶接記号1〜10は、組み合せたフラックス記号A1〜A10の各成分の量が適量であるので、スラグ剥離性が良く、ビード形状は平滑で滑らかであり、ビード止端部のなじみもよく、アンダカット、オーバラップ等の溶接欠陥もなく、溶込み深さは両側の溶接金属が接触する良好な完全溶込みが得られ良好な溶接作業性とビード外観が得られた。また、溶接金属の吸収エネルギーが100J以上の良好な値が得られた。さらに、拡散性水素量も低く極めて満足な結果であった。   In Table 5, welding symbols 1 to 10 are examples of the present invention, and welding symbols 11 to 21 are comparative examples. Since the welding symbols 1 to 10 which are examples of the present invention have appropriate amounts of each component of the combined flux symbols A1 to A10, the slag peelability is good, the bead shape is smooth and smooth, Familiarity was observed, there were no weld defects such as undercut and overlap, and the penetration depth was good and good weld penetration and good bead appearance were obtained. Moreover, the favorable value whose absorbed energy of a weld metal is 100 J or more was obtained. Furthermore, the amount of diffusible hydrogen was low, which was a very satisfactory result.

比較例中溶接記号11は、フラックス記号B1のSiO2が低いので溶融スラグの粘性が不足してビードが蛇行してビード趾端部にアンダカットも発生した。また、Mnが低いので溶接金属の焼入れ性が不足して吸収エネルギーが低値となった。 In the comparative example, the weld symbol 11 was low in SiO 2 of the flux symbol B1, so that the viscosity of the molten slag was insufficient, the bead meandered, and an undercut occurred at the end of the bead. Moreover, since Mn was low, the hardenability of the weld metal was insufficient and the absorbed energy was low.

溶接記号12は、フラックス記号B2のSiO2が高いので溶融スラグの粘性が高くビード趾端部にオーバラップが発生してスラグ剥離性も劣化し、溶接金属の酸素量が高くなり吸収エネルギーが低値であった。また、Al23が低いので溶融スラグの粘性が不足してアンダカットが発生した。さらに、CO2が高いのでガス量が過剰となりポックマークが発生した。 Since the weld symbol 12 has high SiO 2 flux code B2, the viscosity of the molten slag is high, overlap occurs at the end of the bead collar, the slag peelability is deteriorated, the oxygen content of the weld metal is high, and the absorbed energy is low. Value. Moreover, since Al 2 O 3 was low, the viscosity of the molten slag was insufficient and undercut occurred. Further, since CO 2 was high, the amount of gas was excessive and a pock mark was generated.

溶接記号13は、フラックス記号B3のMgOが低いので溶融スラグの粘性が低下しビードが蛇行してビード趾端部にアンダカットも発生した。また、溶接金属の酸素量が高くなり吸収エネルギーが低値であった。さらに、TiO2が高いのでスラグの焼付きが発生してスラグ剥離性が劣化した。 In the welding symbol 13, the MgO of the flux symbol B3 was low, so the viscosity of the molten slag decreased, the beads meandered, and an undercut occurred at the end of the bead. In addition, the oxygen content of the weld metal was high and the absorbed energy was low. Furthermore, the slag removability is deteriorated because TiO 2 is high with slag burn occurred.

溶接記号14は、フラックス記号B4のMgOが高いので溶融スラグの粘性が高くなりビード趾端部にオーバラップが発生した。また、Na2Oが高いので耐吸湿性が劣化してピットおよびポックマークが発生し、拡散性水素量も多かった。さらに、Siが低いので溶接金属の十分な脱酸効果が得られず吸収エネルギーが低値であった。 As for the welding symbol 14, since the MgO of the flux symbol B4 is high, the viscosity of the molten slag becomes high, and an overlap occurs at the end of the bead collar. Further, since Na 2 O was high, the moisture absorption resistance was deteriorated, pits and pock marks were generated, and the amount of diffusible hydrogen was large. Further, since Si is low, a sufficient deoxidation effect of the weld metal cannot be obtained, and the absorbed energy is low.

溶接記号15は、フラックス記号B5のCaOが低いので溶融スラグの流動性が不足してビード外観が不良となり、アンダカットも発生した。また、Al23が高いので溶融スラグの粘性が過剰となりビード形状が凸型となった。さらに、Mnが高いので溶接金属の焼入れ性が過剰になり吸収エネルギーが低値であった。 Since the weld symbol 15 is low in CaO of the flux symbol B5, the fluidity of the molten slag is insufficient, the bead appearance is poor, and undercutting occurs. Further, since Al 2 O 3 is high, the viscosity of the molten slag becomes excessive and the bead shape becomes convex. Furthermore, since Mn is high, the hardenability of the weld metal becomes excessive and the absorbed energy is low.

溶接記号16は、フラックス記号B6のCaOが高いので溶融スラグの粘性が過剰になりビード高さが不均一で、スラグ剥離性も劣化した。また、Siが高いので溶接金属の吸収エネルギーが低値であった。さらに、CO2が低いので拡散性水素量が多かった。 In welding symbol 16, since the CaO of flux symbol B6 is high, the viscosity of the molten slag becomes excessive, the bead height is uneven, and the slag peelability is also deteriorated. Further, since Si is high, the absorbed energy of the weld metal was low. Furthermore, since CO 2 was low, the amount of diffusible hydrogen was large.

溶接記号17は、フラックス記号B7のCaF2が低いので溶融スラグの融点および粘性が高くなりビード形状が乱れ、溶接金属の吸収エネルギーも低値であった。また、FeOが高いので溶融スラグの流動性が過剰になりアンダカットが発生し、スラグが焼付いてスラグ剥離性も劣化した。 Since the welding symbol 17 had a low CaF 2 of the flux symbol B7, the melting point and viscosity of the molten slag increased, the bead shape was disturbed, and the absorbed energy of the weld metal was also low. Moreover, since FeO was high, the fluidity of the molten slag was excessive, undercut was generated, the slag was baked, and the slag peelability deteriorated.

溶接記号18は、フラックス記号B8のCaF2が高いので溶融スラグの流動性が過剰となりアンダカットが発生しスラグ剥離も劣化した。 Since the weld symbol 18 is high in the CaF 2 of the flux symbol B8, the fluidity of the molten slag becomes excessive, undercut occurs, and slag peeling also deteriorates.

溶接記号19は、フラックス記号B9のTiO2が低いのでビード形状が劣化し、溶接金属中のTiを含んだ酸化物が不足して吸収エネルギーが低値であった。また、B23が高いので高温割れが発生した。 The weld symbol 19 had a low bead shape due to the low TiO 2 of the flux symbol B9, and the absorbed energy was low due to insufficient oxide containing Ti in the weld metal. Further, since the hot cracking has occurred B 2 O 3 higher.

溶接記号20は、フラックス記号B10のFeOが低いのでビード止端部のなじみが悪くなりビード形状が凹凸となった。また、Li2Oが低いので拡散性水素量が多かった。 As for the welding symbol 20, since the FeO of the flux symbol B10 was low, the familiarity of the bead toe portion became worse and the bead shape became uneven. Further, since Li 2 O was low, the amount of diffusible hydrogen was large.

溶接記号21は、フラックス記号B11のB23が低いので溶接金属の吸収エネルギーが低値であった。また、Na2Oが低いのでアークが不安定でビードが蛇行して溶込みが不均一であった。 Since the welding symbol 21 has a low B 2 O 3 of the flux symbol B11, the absorbed energy of the weld metal was low. Further, since Na 2 O was low, the arc was unstable, the beads meandered, and the penetration was uneven.

本発明の実施例に用いた開先加工有りの溶接試験板の開先形状を示す断面図である。It is sectional drawing which shows the groove shape of the welding test board with a groove process used for the Example of this invention. 本発明の実施例に用いた開先加工無しの溶接試験板の開先形状を示す断面図である。It is sectional drawing which shows the groove shape of the welding test board without the groove process used for the Example of this invention. 溶接金属の溶込み状態およびシャルピー衝撃試験片の採取位置を示す断面図である。It is sectional drawing which shows the penetration | invasion state of a weld metal, and the extraction position of a Charpy impact test piece.

符号の説明Explanation of symbols

S1 ウェブ鋼板
S2 フランジ鋼板
M1 最初に溶接した溶接金属
M2 後から溶接した溶接金属
a シャルピー衝撃試験片
L1 先行電極狙い位置
T1 後行電極狙い位置
L2 先行電極狙い位置
T2 後行電極狙い位置
S1 Web steel plate S2 Flange steel plate M1 Weld metal welded first M2 Weld metal welded later a Charpy impact test piece L1 Leading electrode aim position T1 Trailing electrode aiming position L2 Leading electrode aiming position T2 Trailing electrode aiming position

Claims (1)

質量%で、SiO:12〜30%、MgO:10〜25%、Al:8〜21%、CaF:1〜7%、CaO:2〜13%、TiO:10〜30%、B:0.1〜1%、酸化鉄:1〜8%、NaO:1〜5%、LiO:0.1〜1%、金属炭酸塩のCO分:2〜8%、Mn:0.1〜1%、Si:0.1〜5%を含有し、その他は3.7%以下の不可避不純物であることを特徴とする下向きすみ肉サブマージアーク溶接用ボンドフラックス。 By mass%, SiO 2: 12~30%, MgO: 10~25%, Al 2 O 3: 8~21%, CaF 2: 1~7%, CaO: 2~13%, TiO 2: 10~30 %, B 2 O 3: 0.1~1 %, iron oxide: 1~8%, Na 2 O: 1~5%, Li 2 O: 0.1~1%, CO 2 minutes of metal carbonate: 2% to 8%, Mn: 0.1% to 1%, Si: 0.1% to 5%, the other is 3.7% or less inevitable impurities, for downward fillet submerged arc welding Bond flux.
JP2008305267A 2008-11-28 2008-11-28 Bond flux for downward fillet submerged arc welding Expired - Fee Related JP5339870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305267A JP5339870B2 (en) 2008-11-28 2008-11-28 Bond flux for downward fillet submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305267A JP5339870B2 (en) 2008-11-28 2008-11-28 Bond flux for downward fillet submerged arc welding

Publications (2)

Publication Number Publication Date
JP2010125508A JP2010125508A (en) 2010-06-10
JP5339870B2 true JP5339870B2 (en) 2013-11-13

Family

ID=42326251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305267A Expired - Fee Related JP5339870B2 (en) 2008-11-28 2008-11-28 Bond flux for downward fillet submerged arc welding

Country Status (1)

Country Link
JP (1) JP5339870B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830278B2 (en) * 2011-06-20 2015-12-09 日鐵住金溶接工業株式会社 Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance
JP6441099B2 (en) * 2015-02-02 2018-12-19 株式会社神戸製鋼所 Flux for submerged arc welding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765761B2 (en) * 2002-02-08 2006-04-12 株式会社神戸製鋼所 Bond flux for submerged arc welding
JP2007144429A (en) * 2005-11-24 2007-06-14 Nippon Steel & Sumikin Welding Co Ltd Bond flux for downward fillet submerged arc welding
JP4537310B2 (en) * 2005-12-01 2010-09-01 日鐵住金溶接工業株式会社 Low temperature steel single-sided submerged arc welding method and weld metal

Also Published As

Publication number Publication date
JP2010125508A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4903912B2 (en) Molten high basic flux for submerged arc welding
JP5792050B2 (en) Submerged arc welding method for low temperature steel
JP5334725B2 (en) Sintered flux for 9% Ni steel submerged arc welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP5179114B2 (en) Flux for submerged arc welding of steel for low temperature and its welding method
JP5367312B2 (en) High cellulosic coated arc welding rod
JP4297880B2 (en) Bond flux for submerged arc welding
JP4489009B2 (en) Bond flux for submerged arc welding
JP5339870B2 (en) Bond flux for downward fillet submerged arc welding
JP5830278B2 (en) Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance
JP2007144429A (en) Bond flux for downward fillet submerged arc welding
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP3552375B2 (en) Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JP3765761B2 (en) Bond flux for submerged arc welding
KR102150974B1 (en) Tandem gas shielded arc welding wire having good low temperature toughness
JP6434386B2 (en) Bond flux for downward fillet submerged arc welding
JP2018065152A (en) Multilayer submerged arc welding method
JP4836262B2 (en) Bond flux for submerged arc welding
JP3157060B2 (en) Highly basic molten flux
JP3620383B2 (en) Firing-type flux for submerged arc welding, manufacturing method thereof, and submerged arc fillet welding method
JP2020131221A (en) Baked flux for submerged arc welding for high-strength steel
JP2005144539A (en) Flux-cored wire for gas shielded arc welding for reducing welding deformation, and method of reducing welding deformation with flux-cored wire
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP6832836B2 (en) Shielded metal arc welding rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5339870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees