JP5334725B2 - Sintered flux for 9% Ni steel submerged arc welding - Google Patents

Sintered flux for 9% Ni steel submerged arc welding Download PDF

Info

Publication number
JP5334725B2
JP5334725B2 JP2009174004A JP2009174004A JP5334725B2 JP 5334725 B2 JP5334725 B2 JP 5334725B2 JP 2009174004 A JP2009174004 A JP 2009174004A JP 2009174004 A JP2009174004 A JP 2009174004A JP 5334725 B2 JP5334725 B2 JP 5334725B2
Authority
JP
Japan
Prior art keywords
mass
welding
flux
slag
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009174004A
Other languages
Japanese (ja)
Other versions
JP2011025285A (en
Inventor
和博 福田
正道 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009174004A priority Critical patent/JP5334725B2/en
Priority to CN2010102340809A priority patent/CN101966630B/en
Priority to KR1020100071768A priority patent/KR101156279B1/en
Publication of JP2011025285A publication Critical patent/JP2011025285A/en
Application granted granted Critical
Publication of JP5334725B2 publication Critical patent/JP5334725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

本発明は、液化天然ガスのように極低温液体用貯蔵タンクの建造材料に使用される9%Ni鋼のサブマージアーク溶接に用いる焼結型フラックスに関し、特に立向溶接姿勢で溶接ができ、且つ下向及び横向姿勢にも適用可能であり、良好なスラグ剥離性を有するとともに、優れた耐欠陥性及びビードの平滑性を得ることができる9%Ni鋼サブマージアーク溶接用焼結型フラックスに関する。   The present invention relates to a sintered flux used for submerged arc welding of 9% Ni steel used as a construction material for cryogenic liquid storage tanks such as liquefied natural gas, and in particular can be welded in a vertical welding position, and The present invention relates to a sintered flux for 9% Ni steel submerged arc welding that can be applied to downward and lateral postures, has good slag peelability, and has excellent defect resistance and bead smoothness.

従来、極低温液体用貯蔵タンクの建造材料として使用される9%Ni鋼の溶接においては、高温割れ防止のため、入熱が比較的低い被覆アーク溶接法が適用されていた。その後、耐高温割れ性が優れたワイヤが開発され、溶接建造物の施工能率向上を目的に下向又は横向姿勢溶接を適用する箇所へのサブマージアーク溶接法適用が増加している。   Conventionally, in welding of 9% Ni steel used as a construction material for a cryogenic liquid storage tank, a coated arc welding method having a relatively low heat input has been applied to prevent hot cracking. Since then, wires with excellent hot cracking resistance have been developed, and the application of submerged arc welding methods to places where downward or lateral posture welding is applied for the purpose of improving the construction efficiency of welded buildings is increasing.

一方、立向姿勢の溶接においては施工能率向上のため、自動TIG溶接が適用され、一部自動MAG溶接化が進められてきている。しかしながら、現地施工において、溶接ガスの入手が困難な地域では、未だに被覆アーク溶接法に頼らざるを得ない状況である。   On the other hand, in the vertical position welding, automatic TIG welding is applied to improve construction efficiency, and partial automatic MAG welding has been promoted. However, in areas where it is difficult to obtain welding gas in field construction, it is still necessary to rely on the coated arc welding method.

そこで、溶接ガスを入手できない現地での施工能率向上のため、サブマージアーク溶接方法を立向上進溶接に適用できる溶接材料の開発が要望されている。   Therefore, in order to improve the construction efficiency in the field where welding gas is not available, there is a demand for the development of a welding material that can apply the submerged arc welding method to vertical welding.

従来、低温用鋼のサブマージアーク溶接材料については立向姿勢で溶接を行った場合、溶融金属が凝固過程で重力により流動するため、ビード形状は不安定になりやすく、凸状となり、溶接ビードをグラインダで平滑にする必要がある等の問題点があった。   Conventionally, for submerged arc welding materials of low-temperature steel, when welding is performed in an upright position, the molten metal flows due to gravity during the solidification process, so the bead shape tends to be unstable and convex, and the weld bead There were problems such as the need for smoothing with a grinder.

そのため、例えば、特許文献1には、フラックス全質量に対し、Al:31乃至60質量%、CaF:10乃至40質量%、SiO:1乃至10質量%、NaO:0.1乃至5質量%、金属Al:1乃至10質量%を含有し、その他はCaCO、CaO、MgO、金属Mn及び不可避不純物である低温用鋼のサブマージアーク溶接用フラックスが開示されている。 Therefore, for example, in Patent Document 1, Al 2 O 3 : 31 to 60% by mass, CaF 2 : 10 to 40% by mass, SiO 2 : 1 to 10% by mass, and Na 2 O: 0 with respect to the total mass of the flux. 0.1-5% by mass, metal Al: 1-10% by mass, and others are CaCO 3 , CaO, MgO, metal Mn and a flux for submerged arc welding of low temperature steel which is an inevitable impurity.

特許文献1の技術は、フラックス組成を上記範囲に規制することにより、下向及び横向姿勢に加えて立向姿勢溶接においても、アーク安定性、スラグ剥離性、耐溶接欠陥性及びビード形状の向上を図ったものである。   The technology of Patent Document 1 improves arc stability, slag peelability, weld defect resistance, and bead shape in vertical posture welding in addition to downward and horizontal postures by regulating the flux composition within the above range. Is intended.

特開2009−039761号公報JP 2009-039761 A

しかしながら、上記特許文献1の技術は、立向姿勢溶接におけるアーク安定性、スラグ剥離性及び耐溶接欠陥性は向上するものの、溶接ビードの平滑性については不十分である。特に、特許文献1のサブマージアーク溶接用フラックスは、ビード長手方向の形状が不連続になり易いという問題点がある。このため、立向姿勢の溶接において、スラグ剥離性、耐溶接欠陥性及びビード形状の安定性(平滑性)の全てを十分に満足することができるようなサブマージアーク溶接用のフラックスの開発が望まれている。   However, although the technique of the above-mentioned patent document 1 improves the arc stability, slag peelability and weld defect resistance in the vertical posture welding, the smoothness of the weld bead is insufficient. In particular, the submerged arc welding flux of Patent Document 1 has a problem that the shape in the bead longitudinal direction tends to be discontinuous. Therefore, it is hoped to develop a flux for submerged arc welding that can sufficiently satisfy all of the slag peelability, weld defect resistance and bead shape stability (smoothness) in the vertical position welding. It is rare.

本発明はかかる問題に鑑みてなされたものであり、下向及び横向姿勢に加えて、立向姿勢溶接においても、良好なスラグ剥離性及び耐溶接欠陥性を有し、更に優れたビード形状の平滑性を得ることができる9%Ni鋼サブマージアーク溶接用焼結型フラックスを提供することを目的とする。   The present invention has been made in view of such a problem, and in addition to the downward and lateral postures, the vertical posture welding also has good slag peelability and weld defect resistance, and has an excellent bead shape. An object of the present invention is to provide a sintered flux for 9% Ni steel submerged arc welding capable of obtaining smoothness.

本発明に係る9%Ni鋼サブマージアーク溶接用焼結型フラックスは、ワイヤ全質量あたりNi:60質量%以上を含有するワイヤとの組合せで使用する9%Ni鋼サブマージアーク溶接用焼結型フラックスであって、フラックス組成が、フラックス全質量あたり、Al:15乃至40質量%、SiO:5乃至35質量%、ZrO:5乃至25質量%、MgO:5乃至25質量%、CaCO:5乃至25質量%、及び金属Al:1乃至7質量%を含有する共に、CaFを5質量%以下に抑制し、残部が、金属Fe、NaO及び不可避不純物であることを特徴とする。 The sintered flux for 9% Ni steel submerged arc welding according to the present invention is a sintered flux for 9% Ni steel submerged arc welding used in combination with a wire containing Ni: 60% by mass or more per total mass of the wire. The flux composition is Al 2 O 3 : 15 to 40% by mass, SiO 2 : 5 to 35% by mass, ZrO 2 : 5 to 25% by mass, MgO: 5 to 25% by mass, based on the total mass of the flux. It contains CaCO 3 : 5 to 25% by mass and metal Al: 1 to 7% by mass, suppresses CaF 2 to 5% by mass or less, and the balance is metal Fe, Na 2 O and inevitable impurities. Features.

更に、金属Ti:0.1乃至5質量%を含有することが好ましい。   Furthermore, it is preferable to contain 0.1 to 5 mass% of metal Ti.

また、本発明の9%Ni鋼サブマージアーク溶接用焼結型フラックスは、立向溶接姿勢のサブマージアーク溶接に使用することができる。   Moreover, the sintered flux for 9% Ni steel submerged arc welding of the present invention can be used for submerged arc welding in a vertical welding position.

本発明によれば、良好なスラグ剥離性及び耐溶接欠陥性を有し、更に優れたビード形状の平滑性を有する9%Ni鋼サブマージアーク溶接用焼結型フラックスが得られる。   According to the present invention, it is possible to obtain a sintered flux for 9% Ni steel submerged arc welding having good slag peelability and weld defect resistance and further having excellent bead-shaped smoothness.

溶接姿勢が下向の場合における溶接母材の形状及びサイズを示す図であり、そのうち(a)は正面図であり、(b)は開先形状を示す断面図であり、(c)は積層要領を示す模式図である。It is a figure which shows the shape and size of a welding base material in case a welding attitude | position is downward, Among them, (a) is a front view, (b) is sectional drawing which shows a groove shape, (c) is lamination | stacking It is a schematic diagram which shows the point. 溶接姿勢が横向の場合における溶接母材の形状及びサイズを示す図であり、そのうち(a)は正面図であり、(b)は開先形状を示す断面図であり、(c)は積層要領を示す模式図である。It is a figure which shows the shape and size of a welding preform | base_material in the case where a welding attitude is horizontal, among which (a) is a front view, (b) is sectional drawing which shows a groove shape, (c) is a lamination | stacking procedure It is a schematic diagram which shows. 溶接姿勢が立向上進の場合における溶接母材の形状及びサイズを示す図であり、そのうち(a)は正面図であり、(b)は開先形状を示す断面図であり、(c)は積層要領を示す模式図である。It is a figure which shows the shape and size of a welding preform | base_material in the case where a welding attitude | position is a vertical improvement, (a) is a front view, (b) is sectional drawing which shows a groove shape, (c) is It is a schematic diagram which shows the lamination | stacking point. ビード形状評価基準のうち最大凹凸変動の判定基準を示す図であり、そのうち(a)は正面図であり、(b)は断面図である。It is a figure which shows the criteria of the largest uneven | corrugated fluctuation | variation among bead shape evaluation criteria, among which (a) is a front view, (b) is sectional drawing. ビード形状評価基準のうち最大幅変動の判定基準を示す図である。It is a figure which shows the criterion of the largest width fluctuation | variation among bead shape evaluation criteria.

本発明者らは、フラックス成分を種々調整し、Alの他、MgO、CaCO、ZrO等の高融点酸化物を主成分とすることにより、下向及び横向姿勢でのビード形状の平滑化に有効であることはもちろん、立向溶接姿勢においてもビード形状の平滑化に有効であることを見出した。更に、本発明者らは、CaFについてはビードの波目を細かくする効果があるものの、所定量を超えて含有されるとビード形状が不連続となりやすく、またブローホールも増加する傾向を見出した。本発明者らはこれらの知見に基づいて本発明を完成させた。以下、本発明に係る9%Ni鋼サブマージアーク溶接用焼結型フラックスの成分添加理由及び組成限定理由について説明する。 The inventors have adjusted the flux components in various ways, and by using refractory oxides such as MgO, CaCO 3 , and ZrO 2 as main components in addition to Al 2 O 3 , the bead shape in the downward and lateral orientations. In addition to being effective for smoothing, it has been found that it is effective for smoothing the bead shape even in the vertical welding position. Furthermore, the present inventors found that CaF 2 has an effect of making the bead wave finer, but when it is contained in excess of a predetermined amount, the bead shape tends to be discontinuous, and the number of blow holes tends to increase. It was. The present inventors have completed the present invention based on these findings. Hereinafter, the reason for component addition and composition limitation of the sintered flux for 9% Ni steel submerged arc welding according to the present invention will be described.

Al :15乃至40質量%
フラックス中のAlはスラグ形成剤として作用し、溶融スラグの凝固温度及び粘性を上げるのに有効な成分である。フラックス中のAlが15質量%未満では立向姿勢溶接において溶融スラグのビード保持力不足となり、ビードが凸状となったり、溶け落ちが発生する。一方、Alが40質量%を超える場合は、スラグの粘性が高くなりすぎて流動性が悪くなるため、スラグ巻き込みが発生する。更に、Alが40質量%を超えると、下向及び横向姿勢においてはビードの波目が粗くなる他、ポックマークが発生する。
Al 2 O 3 : 15 to 40% by mass
Al 2 O 3 in the flux acts as a slag forming agent and is an effective component for increasing the solidification temperature and viscosity of the molten slag. If the Al 2 O 3 content in the flux is less than 15% by mass, the bead holding power of the molten slag becomes insufficient in the vertical position welding, and the bead becomes convex or melts off. On the other hand, when Al 2 O 3 exceeds 40 mass%, the viscosity of the slag becomes too high and the fluidity becomes poor, so that slag entrainment occurs. Further, when Al 2 O 3 exceeds 40% by mass, the bead wave becomes rough and a pock mark is generated in the downward and horizontal postures.

より好ましい範囲は、Al:20乃至35質量%である。この範囲においては、特に立向溶接において溶融スラグのビード保持力が更に一層適切となり、ビード形状が安定して平滑化するため、より一層、良好なビード外観を得ることができる。 A more preferable range is Al 2 O 3 : 20 to 35% by mass. In this range, the bead holding force of the molten slag becomes more appropriate particularly in vertical welding, and the bead shape is stably smoothed, so that a better bead appearance can be obtained.

SiO :5乃至35質量%
フラックス中のSiOは5乃至35質量%とする必要がある。フラックス中のSiOは溶融スラグの凝固温度を高くする。また立向姿勢においてビードの保持力を高め、ビード形状を安定させる効果がある。SiOが5質量%未満では、溶融スラグのビード保持力不足のためビード形状が不安定となる。一方、SiOが35質量%を超えると溶融スラグの粘性が高くなり過ぎ、スラグの剥離性が悪化し、スラグ巻き込みが発生する。
SiO 2 : 5 to 35% by mass
SiO 2 in the flux needs to be 5 to 35% by mass. SiO 2 in the flux increases the solidification temperature of the molten slag. In addition, the bead holding force is increased in the standing posture, and the bead shape is stabilized. If SiO 2 is less than 5% by mass, the bead shape becomes unstable due to insufficient bead holding power of the molten slag. On the other hand, when SiO 2 exceeds 35 mass%, the viscosity of the molten slag becomes too high, the slag peelability is deteriorated, and slag entrainment occurs.

より好ましい範囲は、SiO:10乃至25質量%である。この範囲においては、スラグ剥離性が向上し、特に立向姿勢において、更に一層、良好なスラグ剥離性が得られると共に、ビード形状が安定して平滑化するため、良好なビード外観を得ることができる。この範囲においては下向及び横向姿勢溶接時のビード形状も安定する。SiOについては、珪砂、水ガラスの他、珪石灰等の複合酸化物からも添加することができる。 A more preferable range is SiO 2 : 10 to 25% by mass. In this range, the slag peelability is improved, and particularly in a standing posture, even better slag peelability is obtained, and the bead shape is stably smoothed, so that a good bead appearance can be obtained. it can. In this range, the bead shape at the time of welding in the downward and lateral postures is also stable. The SiO 2, silica sand, other water glass, may also be added a composite oxide such as wollastonite.

ZrO :5乃至25質量%
フラックス中のZrOは、スラグ剥離性を良好にするのに有効な成分である。ZrOが5質量%未満ではこの効果が得られず、スラグがビードに焼付く等、スラグ剥離性が悪い。一方、ZrOが25質量%を超えると溶融スラグの流動性が低下し、スラグ巻き込みが発生しやすくなる。
ZrO 2 : 5 to 25% by mass
ZrO 2 in the flux is an effective component for improving the slag peelability. If ZrO 2 is less than 5% by mass, this effect cannot be obtained, and the slag removability is poor, for example, the slag is baked on the bead. On the other hand, when ZrO 2 exceeds 25% by mass, the fluidity of the molten slag is lowered and slag entrainment is likely to occur.

より好ましい範囲は、ZrO:10乃至20質量%である。この範囲においては、スラグ剥離性が向上し、特に立向姿勢において、更に一層、良好なスラグ剥離性が得られると共に、ビード形状が安定して平滑化するため、良好なビード外観を得ることができる。 A more preferable range is ZrO 2 : 10 to 20% by mass. In this range, the slag peelability is improved, and particularly in a standing posture, even better slag peelability is obtained, and the bead shape is stably smoothed, so that a good bead appearance can be obtained. it can.

MgO:5乃至25質量%
フラックス中のMgOは、スラグの凝固温度を上昇させる効果があり、長手方向のビード形状安定性に有効な成分である。この効果は5質量%未満では得られず、立向姿勢においてはビード溶け落ちが多発する。一方、MgOが25質量%を超えるとスラグの凝固が早期に完了するためビード形状が凸状となり、スラグ巻き込みが発生し易くなる他、スラグ剥離性が悪化する。
MgO: 5 to 25% by mass
MgO in the flux has an effect of increasing the solidification temperature of the slag, and is an effective component for bead shape stability in the longitudinal direction. This effect cannot be obtained if the amount is less than 5% by mass, and the bead melts off frequently in the standing posture. On the other hand, when MgO exceeds 25 mass%, solidification of slag is completed early, so that the bead shape becomes convex and slag entrainment is likely to occur, and slag releasability is deteriorated.

より好ましい範囲は、MgO:10乃至20質量%である。この範囲においては、スラグ剥離性が向上し、特に立向姿勢において更に一層、良好なスラグ剥離性が得られると共に、ビード形状が安定して平滑化するため、良好なビード外観を得ることができる。   A more preferable range is MgO: 10 to 20% by mass. In this range, the slag peelability is improved, and even more excellent slag peelability is obtained particularly in the standing posture, and the bead shape is stably smoothed, so that a good bead appearance can be obtained. .

CaCO :5乃至25質量%
フラックス中のCaCOは、5乃至25質量%とする必要がある。CaCOは溶融分解し、CaO及びCOガスになるが、COガスが溶接アーク雰囲気中の水蒸気分圧を低減し、溶接金属中の水素量を低減すると共にブローホールを低減する効果がある。またCaOが溶融スラグの凝固温度を上げる効果があり、ビード形状が安定する。CaCOが5質量%未満の領域では、上記効果が得られない他、ビード形状は凸状となる。一方、CaCOが25質量%を超える領域ではスラグ剥離性が低下する。
CaCO 3 : 5 to 25% by mass
CaCO 3 in the flux needs to be 5 to 25% by mass. CaCO 3 is melted decomposition, becomes the CaO and CO 2 gas, CO 2 gas is reduced partial pressure of water vapor in the welding arc atmosphere, the effect of reducing the blow hole while reducing the amount of hydrogen in the weld metal . Further, CaO has an effect of increasing the solidification temperature of the molten slag, and the bead shape is stabilized. In a region where CaCO 3 is less than 5% by mass, the above effect cannot be obtained, and the bead shape is convex. On the other hand, in a region where CaCO 3 exceeds 25% by mass, the slag peelability is lowered.

より好ましい範囲は、CaCO:10乃至20質量%である。この範囲においては、スラグの凝固温度が更に上昇し、一層、ビード形状が安定して平滑化するため、良好なビード外観を得ることができる。 A more preferable range is CaCO 3 : 10 to 20% by mass. In this range, the solidification temperature of the slag further rises and the bead shape is further smoothed and smoothed, so that a good bead appearance can be obtained.

金属Al:1乃至7質量%
金属Alは、脱酸剤としてフラックス中に添加することにより、溶接金属中の酸素量を著しく低下させ、ブローホールの発生を抑制する効果を有する成分である。金属Alは、フラックス全重量あたり1質量%未満であると、その効果を十分に得ることができない。一方、フラックス全重量あたり7質量%を超えると、スラグ剥離性が悪化する。金属Alは、単体又はFe‐Al合金等により、フラックス中に添加することができる。
Metal Al: 1 to 7% by mass
Metal Al is a component having the effect of significantly reducing the amount of oxygen in the weld metal and suppressing the generation of blowholes by adding it to the flux as a deoxidizer. When the metal Al is less than 1% by mass with respect to the total weight of the flux, the effect cannot be sufficiently obtained. On the other hand, when it exceeds 7 mass% per flux total weight, slag peelability will deteriorate. Metal Al can be added to the flux by a simple substance or an Fe—Al alloy.

より好ましい範囲は、金属Al:2乃至5質量%である。この範囲においては、更に一層、良好なスラグ剥離性及び更なる耐ブローホール性能を両立できる。   A more preferable range is metal Al: 2 to 5% by mass. In this range, it is possible to achieve both better slag peelability and further blow hole resistance.

CaF :5質量%以下
従来のサブマージアーク溶接用フラックスには必須成分としてCaFが添加されていたが、本発明においてはCaFを5質量%以下に抑制する。CaFはアークを安定させ、ビードの波目を細かくする効果があるものの、スラグの凝固温度及び粘性を下げる効果があるため、特に立向姿勢の溶接においては長手方向のビード形状が不安定になり、ビードが溶け落ちしやすくなる。この傾向はフラックス中のCaFが5質量%を超えると顕著に現れることから、CaFは5質量%以下に抑制する必要がある。
CaF 2 : 5 mass% or less CaF 2 is added as an essential component to the conventional flux for submerged arc welding, but in the present invention, CaF 2 is suppressed to 5 mass% or less. Although CaF 2 has the effect of stabilizing the arc and making the bead wave finer, it has the effect of lowering the solidification temperature and viscosity of the slag, so the bead shape in the longitudinal direction is unstable, particularly in a vertical position welding. And the beads are easily melted down. Since this tendency appears remarkably when CaF 2 in the flux exceeds 5 mass%, CaF 2 needs to be suppressed to 5 mass% or less.

金属Ti:0.1乃至5質量%
Tiはスラグの凝固温度を上昇させ、横向及び立向溶接時にビードの溶け落ちを抑制する効果をもつ。金属Tiは、フラックス全重量あたり0.1質量%未満であるとその効果を十分に得ることができない。一方、フラックス全重量あたり金属Tiが5質量%を超えるとスラグ剥離性が悪化する。よって、金属Tiを含有する場合は、0.1乃至5質量%とする。金属Tiは単体あるいはFe−Ti等で添加される。
Metal Ti: 0.1 to 5% by mass
Ti raises the solidification temperature of the slag and has the effect of suppressing bead burnout during lateral and vertical welding. If the metal Ti is less than 0.1 mass% with respect to the total weight of the flux, the effect cannot be sufficiently obtained. On the other hand, when metal Ti exceeds 5 mass% per flux total weight, slag peelability will deteriorate. Therefore, when it contains metal Ti, it is 0.1 to 5 mass%. Metal Ti is added as a simple substance or Fe—Ti.

以下、実施例により、本発明の効果を具体的に説明する。まず、フラックス原料を調整し、これに固着剤として水ガラスを添加して造粒した後、焼結することにより、下記表1に示す種々の化学組成を有するサブマージアーク溶接用焼結型フラックスを作製した。   Hereinafter, the effects of the present invention will be described specifically by way of examples. First, a flux raw material is prepared, water glass is added as a fixing agent to this, granulated, and then sintered to obtain sintered fluxes for submerged arc welding having various chemical compositions shown in Table 1 below. Produced.

Figure 0005334725
Figure 0005334725

母材及びワイヤは、夫々、下記表2及び表3に示す化学組成を有するものを使用した。   As the base material and the wire, those having chemical compositions shown in Tables 2 and 3 below were used.

Figure 0005334725
Figure 0005334725

Figure 0005334725
Figure 0005334725

下向溶接は、下記表4に示す溶接条件にて行った。下向溶接における溶接母材の形状及びサイズは図1に示す。図1(a)は、溶接姿勢が下向の場合における溶接母材の形状及びサイズを示す正面図であり、図1(b)は開先形状を示す断面図であり、図1(c)は積層要領を示す模式図である。   Downward welding was performed under the welding conditions shown in Table 4 below. The shape and size of the weld base material in downward welding are shown in FIG. Fig.1 (a) is a front view which shows the shape and size of a welding base material in case a welding attitude is downward, FIG.1 (b) is sectional drawing which shows a groove shape, FIG.1 (c). FIG. 3 is a schematic diagram showing a lamination procedure.

Figure 0005334725
Figure 0005334725

横向溶接は、下記表5に示す溶接条件にて行った。横向溶接における溶接母材の形状及びサイズは図2に示す。図2(a)は、溶接姿勢が横向の場合における溶接母材の形状及びサイズを示す正面図であり、図2(b)は開先形状を示す断面図であり、図2(c)は積層要領を示す模式図である。   Lateral welding was performed under the welding conditions shown in Table 5 below. The shape and size of the weld base material in the transverse welding are shown in FIG. FIG. 2A is a front view showing the shape and size of the weld base material when the welding posture is horizontal, FIG. 2B is a sectional view showing the groove shape, and FIG. It is a schematic diagram which shows the lamination | stacking point.

Figure 0005334725
Figure 0005334725

立向溶接は、下記表6に示す溶接条件にて行った。立向溶接における溶接母材の形状及びサイズは図3に示す。図3(a)は、溶接姿勢が立向上進の場合における溶接母材の形状及びサイズを示す正面図であり、図3(b)は開先形状を示す断面図であり、図3(c)は積層要領を示す模式図である。   Vertical welding was performed under the welding conditions shown in Table 6 below. The shape and size of the weld base material in vertical welding are shown in FIG. FIG. 3A is a front view showing the shape and size of the weld base material when the welding posture is standing up, and FIG. 3B is a cross-sectional view showing the groove shape, and FIG. ) Is a schematic diagram showing a lamination procedure.

Figure 0005334725
Figure 0005334725

以上の評価結果を表7に示す。下向、横向、立向の各溶接姿勢によりサブマージアーク溶接を実施し、ビード形状及びスラグ剥離性(溶接作業性)を求め、更に、溶接部の放射性透過試験を実施した。   The above evaluation results are shown in Table 7. Submerged arc welding was performed in each of the downward, lateral, and vertical welding postures to determine the bead shape and slag detachability (welding workability), and further, a radioactive transmission test of the welded portion was performed.

Figure 0005334725
Figure 0005334725

ビード形状の評価は図4及び図5に示すように溶接長500mmにおいて判定視野を30×30mmとし、クレータ部及びスタート部から50mmまでを除くビード中央部の高さの凹凸変動及び横方向のビード幅変動が最大となる位置で判定を行った。図4は、最大凹凸変動の判定基準を示す図であり、そのうち(a)は正面図であり、(b)は断面図である。図5は、最大幅変動の判定基準である。凹凸と横幅の判定視野の位置は夫々独立とし、表8の判定基準を用い、凹凸変動差、横幅変動差の判定結果のうち低位の判定レベルのものを判定結果に採用した。   As shown in FIGS. 4 and 5, the bead shape is evaluated by setting the field of view to be 30 × 30 mm at a welding length of 500 mm, changing the height unevenness of the center of the bead except for 50 mm from the crater part and the start part, and the lateral bead. Judgment was made at the position where the width fluctuation was maximum. 4A and 4B are diagrams showing determination criteria for the maximum unevenness, in which (a) is a front view and (b) is a cross-sectional view. FIG. 5 is a criterion for determining the maximum width variation. The positions of the projections and depressions for the unevenness and the lateral width are independent, and the judgment criteria shown in Table 8 are used, and the judgment results of the lower judgment level among the judgment results of the unevenness variation difference and the lateral width variation difference are adopted as the judgment results.

Figure 0005334725
Figure 0005334725

スラグ剥離性は、スラグハンマーによる11回未満の打突によりビード全長に渡ってスラグが完全に剥離したものを◎とし、スラグハンマーによる10回の打突を行った後、開先部分等にスラグが若干残るものの、11乃至20回未満のスラグハンマーによる打突で全て除去可能であったものを○とし、スラグハンマーでは全てのスラグ除去が困難であったものの、チッパー等のスラグ剥離専用の道具によりスラグが容易に剥離できたものを△とし、上記道具を使用しても完全にスラグ除去できなかったものを×とした。   The slag peelability is ◎ when the slag is completely peeled over the entire length of the bead due to less than 11 hits by the slag hammer. After 10 hits by the slag hammer, the slag is slag Although it remains a little, it was marked with ○ if it could be removed by impact with a slag hammer less than 11 to 20 times, and it was difficult to remove all slag with a slag hammer. The case where the slag could be easily peeled by △ was evaluated as Δ, and the case where the slag could not be completely removed even when the above tool was used was evaluated as ×.

また溶接部については放射性透過試験を実施し、JIS Z 3106を判定基準に用いて耐欠陥性を評価した。即ち、放射性透過試験では、溶接継手の透過試験におけるきずの像の分類方法について、丸いブローホール及びこれに類するきずを第1種、細長いスラグ巻込み、パイプ、溶込み不良、融合不良及びこれに類するきずを第2種、割れ及びこれに類するきずを第3種とした。なお、第1種のきずか第2種のきずかの区別が困難なきずについては、それらを第1種のきず又は第2種のきずとしてそれぞれ独立に分類し、そのうち分類番号の大きい方をそのきずの種別と分類番号とした。第1種のきず点数は下記の手法に従って求めた。即ち、第1種のきず点数の測定では、板厚が20mmであるので、試験視野の大きさは10mm×10mmとした。きずが試験視野の境界線上にかかる場合は、視野外の部分も含めて測定した。第1種のきずが1個の場合のきず点数は、きずの長径の寸法に応じて下記表9の値を用いた。きずが2個以上の場合のきず点数は、試験視野内に存在する各きずのきず点数の総和とした。   Moreover, the radioactive penetration test was implemented about the welding part and defect resistance was evaluated using JISZ3106 for the criteria. That is, in the radioactive transmission test, the classification method of the image of the flaw in the transmission test of the welded joint is the first type of round blowhole and similar flaws, entrainment of elongated slug, pipe, poor penetration, poor fusion and this. Similar scratches were classified as type 2, cracks and similar scratches were classified as type 3. For flaws that are difficult to distinguish between type 1 flaws and type 2 flaws, they are categorized independently as type 1 flaws or type 2 flaws, of which the larger classification number is the flaw. And the classification number. The first type of flaw score was determined according to the following method. That is, in the measurement of the number of scratch points of the first type, the plate thickness was 20 mm, so the size of the test visual field was 10 mm × 10 mm. When scratches were found on the boundary line of the test field, measurements were made including the part outside the field of view. The value in Table 9 below was used as the number of flaws in the case of one flaw of the first type depending on the major diameter of the flaw. The number of flaws in the case of two or more flaws was the sum of the number of flaws in each flaw existing in the test visual field.

Figure 0005334725
Figure 0005334725

第1種のきずの像の分類は、下記表10に従った。表10中の数値は、試験視野内でのきず点数の許容値を示した。但し、きずの長径が母材の厚さの1/2を超えるときは4類とした。   The classification of the first type of flaw image was in accordance with Table 10 below. The numerical values in Table 10 indicate the allowable values for the number of flaws within the test field. However, when the major axis of the flaw exceeds 1/2 of the thickness of the base material, it was classified into 4 types.

Figure 0005334725
Figure 0005334725

第2種のきずの像の分類は、下記表11に従った。試験視野の大きさは第1種と同じである。なお、1類と分類された場合でも、溶込み不良又は融合不良があれば2類とした。   The classification of the image of the second type of flaws was according to Table 11 below. The size of the test field is the same as the first type. In addition, even if classified as Class 1, if there was poor penetration or poor fusion, it was classified as Class 2.

Figure 0005334725
Figure 0005334725

きずの総合分類については下記のように行った。即ち、きずの種別が1種類の場合は、その分類を総合分類とした。きずの種別が2種類以上の場合は、そのうちの分類番号の大きい方を総合分類とした。但し、第1種のきずの試験視野に分類の対象とした第2種のきずが混在する場合で、きず点数による分類ときず長さによる分類がともに同じ分類であれば、混在する部分の分類は分類番号を一つ大きくした。このとき、1類については、第1種と第2種のきずの許容長さの1/2を超えた場合に2類に分類した。   The general classification of flaws was as follows. That is, when there is only one type of flaw, the classification is set as a general classification. When there were two or more types of flaws, the one with the larger classification number was taken as the general classification. However, if the second type of flaws to be classified are mixed in the test field of the first type of flaws, and if the classification by the number of flaws and the classification by the length are both the same, the classification of the mixed part Increased the classification number by one. At this time, the first type was classified into the second type when it exceeded 1/2 of the allowable length of the first type and second type flaws.

上記表1及び表7に示すように、実施例1乃至6はフラックス中の化学組成が適切に規制されているため、溶接時のビード形状平滑性及びスラグ剥離性が良好であり、放射性透過試験評価においても全て1種1類判定となった。   As shown in Table 1 and Table 7 above, since the chemical composition in the flux is appropriately regulated in Examples 1 to 6, the bead shape smoothness and slag peelability during welding are good, and the radiation transmission test In the evaluation, all were judged as 1 type and 1 type.

実施例7については、フラックス中のTiの含有量が本発明範囲の下限未満であるため、実施例1乃至6に比して、ビード形状が若干不安定であった。   In Example 7, the bead shape was slightly unstable as compared with Examples 1 to 6 because the Ti content in the flux was less than the lower limit of the range of the present invention.

実施例8については、フラックス中のTiの含有量が本発明範囲の上限を超えているため、スラグ剥離性がやや劣った。   About Example 8, since content of Ti in a flux exceeded the upper limit of the range of the present invention, slag peelability was somewhat inferior.

(比較例9及び10)
一方、比較例9は、フラックス中のAlの含有量が本発明範囲の上限を超え、SiOの含有量が本発明範囲の下限未満であるので、下向及び横向溶接ビードの波目が粗くなる他、立向溶接において、ビード形状が不安定且つスラグ巻き込みが発生した。
(Comparative Examples 9 and 10)
On the other hand, in Comparative Example 9, the content of Al 2 O 3 in the flux exceeds the upper limit of the range of the present invention, and the content of SiO 2 is less than the lower limit of the range of the present invention. In addition to coarsening of the eyes, the bead shape was unstable and slag entrainment occurred in vertical welding.

比較例10は、フラックス中のAlの含有量が本発明範囲の下限未満であり、SiOの含有量が本発明の上限を超えているため、ビード形状平滑性及びスラグ剥離性が低下した他、スラグ巻き込みが発生した。 In Comparative Example 10, since the content of Al 2 O 3 in the flux is less than the lower limit of the range of the present invention and the content of SiO 2 exceeds the upper limit of the present invention, the bead shape smoothness and slag peelability are In addition to the decrease, slag entrainment occurred.

(比較例11及び12)
比較例11は、フラックス中のZrOの含有量が本発明範囲の上限を超え、CaCOの含有量が本発明範囲の下限未満であるため、ビード形状平滑性が低下し、スラグ巻き込みが発生した。
(Comparative Examples 11 and 12)
In Comparative Example 11, since the content of ZrO 2 in the flux exceeds the upper limit of the range of the present invention and the content of CaCO 3 is less than the lower limit of the range of the present invention, the bead shape smoothness is lowered and slag entrainment occurs. did.

比較例12は、フラックス中のZrOの含有量が本発明範囲の下限未満であり、CaCOの含有量が本発明範囲の上限を超えているため、スラグ焼き付きが発生し、スラグ剥離性が低下した。 In Comparative Example 12, the content of ZrO 2 in the flux is less than the lower limit of the range of the present invention, and the content of CaCO 3 exceeds the upper limit of the range of the present invention. Declined.

(比較例13及び14)
比較例13は、フラックス中のMgOの含有量が本発明範囲の上限を超え、Alの含有量が本発明範囲の下限未満であるため、ビード形状が凸状となり、ビード形状平滑性が低下し、立向溶接ではスラグ巻きが発生した。また、耐ブローホール性が低下した。
(Comparative Examples 13 and 14)
In Comparative Example 13, the content of MgO in the flux exceeds the upper limit of the range of the present invention, and the content of Al is less than the lower limit of the range of the present invention, so that the bead shape becomes convex and the bead shape smoothness decreases. In vertical welding, slag winding occurred. Moreover, the blowhole resistance decreased.

比較例14は、フラックス中のMgOの含有量が本発明範囲の下限未満であり、Alの含有量が本発明範囲の上限を超えているため、スラグ剥離性が低下した他、溶融金属の保持力が低下したことで横向及び立向溶接でのビード形状平滑性が低下した。   In Comparative Example 14, the content of MgO in the flux is less than the lower limit of the range of the present invention, and the Al content exceeds the upper limit of the range of the present invention. As the force decreased, the bead shape smoothness in lateral and vertical welding decreased.

(比較例15)
比較例15は、フラックス中のTiの含有量が本発明範囲の下限未満であり、CaFの含有量が本発明範囲の上限を超えているため、ビード形状平滑性が低下し、立向溶接では溶け落ちが発生した。
(Comparative Example 15)
In Comparative Example 15, since the Ti content in the flux is less than the lower limit of the present invention range and the CaF 2 content exceeds the upper limit of the present invention range, the bead shape smoothness is reduced, and vertical welding is performed. Then melted down occurred.

(比較例16及び17)
比較例16及び比較例17は、フラックス中のMgOの含有量が本発明範囲のより好ましい範囲の下限未満であり、CaFの含有量が本発明範囲の上限を超えているため、横向及び立向溶接でのビード形状平滑性が低下し、立向溶接において溶け落ちが発生した。
(Comparative Examples 16 and 17)
In Comparative Example 16 and Comparative Example 17, the content of MgO in the flux is less than the lower limit of the more preferable range of the present invention, and the content of CaF 2 exceeds the upper limit of the present invention range. The bead shape smoothness in the direction welding decreased, and the burnout occurred in the vertical welding.

以上詳述したように、本発明によれば、9Ni鋼サブマージアーク溶接用焼結型フラックス中の化学組成を適切に規制することで、下向、横向及び立向姿勢の溶接において優れたビードの平滑性、スラグ剥離性及び耐溶接欠陥性を得ることができる。   As described above in detail, according to the present invention, by appropriately regulating the chemical composition in the sintered flux for 9Ni steel submerged arc welding, it is possible to produce an excellent bead in welding in the downward, lateral and vertical postures. Smoothness, slag peelability and weld defect resistance can be obtained.

Claims (3)

ワイヤ全質量あたりNi:60質量%以上を含有するワイヤとの組合せで使用する9%Ni鋼サブマージアーク溶接用焼結型フラックスであって、フラックス組成が、フラックス全質量あたり、
Al:15乃至40質量%、
SiO:5乃至35質量%、
ZrO:5乃至25質量%、
MgO:5乃至25質量%、
CaCO:5乃至25質量%、
及び金属Al:1乃至7質量%を含有する共に、CaFを5質量%以下に抑制し、残部が、金属Fe、NaO及び不可避不純物であることを特徴とする9%Ni鋼サブマージアーク溶接用焼結型フラックス。
A sintered flux for 9% Ni steel submerged arc welding used in combination with a wire containing Ni: 60% by mass or more per wire total mass, wherein the flux composition is
Al 2 O 3 : 15 to 40% by mass,
SiO 2 : 5 to 35% by mass,
ZrO 2 : 5 to 25% by mass,
MgO: 5 to 25% by mass,
CaCO 3 : 5 to 25% by mass,
And 9% Ni steel submerged arc, characterized in that it contains 1 to 7% by mass of metal Al, suppresses CaF 2 to 5% by mass or less, and the balance is metal Fe, Na 2 O and inevitable impurities. Sintered flux for welding.
金属Ti:0.1乃至5質量%を含有することを特徴とする請求項1に記載の9%Ni鋼サブマージアーク溶接用焼結型フラックス。   2. The sintered type flux for 9% Ni steel submerged arc welding according to claim 1, comprising metal Ti: 0.1 to 5% by mass. 立向溶接姿勢のサブマージアーク溶接に使用されることを特徴とする請求項1又は2に記載の9%Ni鋼サブマージアーク溶接用焼結型フラックス。   The sintered type flux for 9% Ni steel submerged arc welding according to claim 1 or 2, which is used for submerged arc welding in a vertical welding posture.
JP2009174004A 2009-07-27 2009-07-27 Sintered flux for 9% Ni steel submerged arc welding Expired - Fee Related JP5334725B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009174004A JP5334725B2 (en) 2009-07-27 2009-07-27 Sintered flux for 9% Ni steel submerged arc welding
CN2010102340809A CN101966630B (en) 2009-07-27 2010-07-20 Material and method for submerged arc welding of 9% Ni steel
KR1020100071768A KR101156279B1 (en) 2009-07-27 2010-07-26 Material and method for submerged arc welding of 9% ni steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174004A JP5334725B2 (en) 2009-07-27 2009-07-27 Sintered flux for 9% Ni steel submerged arc welding

Publications (2)

Publication Number Publication Date
JP2011025285A JP2011025285A (en) 2011-02-10
JP5334725B2 true JP5334725B2 (en) 2013-11-06

Family

ID=43545885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174004A Expired - Fee Related JP5334725B2 (en) 2009-07-27 2009-07-27 Sintered flux for 9% Ni steel submerged arc welding

Country Status (3)

Country Link
JP (1) JP5334725B2 (en)
KR (1) KR101156279B1 (en)
CN (1) CN101966630B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416533B (en) * 2011-04-27 2013-06-26 杜荣臻 Sintered flux for filament swinging submerged arc surfacing of continuous casting roller and preparation method for sintered flux
JP2013154363A (en) * 2012-01-27 2013-08-15 Kobe Steel Ltd Flux for one side submerged arc welding
CN102672369B (en) * 2012-04-12 2014-07-02 西安理工大学 High-toughness sintered flux for high-welding-speed submerged arc welding of X100-grade pipeline steel
CN102699575A (en) * 2012-06-27 2012-10-03 天津大学 Active agent for laser welding of ferrite stainless steel and using method for active agent
US20150027993A1 (en) * 2013-07-29 2015-01-29 Siemens Energy, Inc. Flux for laser welding
JP6152316B2 (en) * 2013-08-07 2017-06-21 株式会社神戸製鋼所 Flux for single-sided submerged arc welding
JP6071797B2 (en) * 2013-08-07 2017-02-01 株式会社神戸製鋼所 Flux for single-sided submerged arc welding
CN103464930B (en) * 2013-09-18 2016-05-18 海宁瑞奥金属科技有限公司 Welding wire and solder flux and the application thereof for submerged arc welding of a kind of 9Ni low-temperature steel
CN105081520B (en) * 2015-06-11 2017-09-26 上海船舶工艺研究所 The vertical docking FCAW single face welding and double face shaping processes of thin plate in full-automatic 9%Ni steel
CN108057964B (en) * 2017-12-12 2020-05-26 北京金威焊材有限公司 Sintered flux for submerged arc welding of nickel-based filament
US11161195B2 (en) 2018-03-27 2021-11-02 Nippon Steel Corporation Ni-based alloy wire for submerged arc welding and method of manufacturing welding joint
CN114769942B (en) * 2022-06-17 2022-09-30 东北大学 Multi-element environment-friendly smelting flux for welding low-alloy steel and preparation and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877811B2 (en) * 1996-09-20 2007-02-07 株式会社神戸製鋼所 Sintered flux for 9% Ni steel submerged arc welding
JP2001239394A (en) * 2000-02-28 2001-09-04 Kobe Steel Ltd Raw material for sub-merged arc welding material
CN1699009A (en) * 2004-12-29 2005-11-23 燕山大学 High toughness sintered flux for multi-wire, high-speed unionmelt welding
US7678203B2 (en) * 2005-03-04 2010-03-16 Lincoln Global, Inc. Welding flux
KR100706026B1 (en) 2005-11-17 2007-04-12 고려용접봉 주식회사 High speed submerged arc welding flux
JP4884797B2 (en) * 2006-02-27 2012-02-29 三菱重工業株式会社 Firing-type flux for submerged arc welding, overlay welding method, and turbine rotor
JP4836262B2 (en) * 2006-12-27 2011-12-14 株式会社神戸製鋼所 Bond flux for submerged arc welding
CN100542732C (en) * 2007-01-05 2009-09-23 西安理工大学 Submerged arc welding flux material used for high grade pipe line steel
JP5179114B2 (en) * 2007-08-09 2013-04-10 日鐵住金溶接工業株式会社 Flux for submerged arc welding of steel for low temperature and its welding method

Also Published As

Publication number Publication date
CN101966630A (en) 2011-02-09
JP2011025285A (en) 2011-02-10
KR101156279B1 (en) 2012-06-13
KR20110011563A (en) 2011-02-08
CN101966630B (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5334725B2 (en) Sintered flux for 9% Ni steel submerged arc welding
JP2007160314A (en) Flux cored wire for welding high-strength stainless steel
JP2001300764A (en) Metal-cored wire for gas shielded arc welding
JP5179114B2 (en) Flux for submerged arc welding of steel for low temperature and its welding method
JP5367312B2 (en) High cellulosic coated arc welding rod
JP2016147273A (en) FLUX-CORED WIRE FOR 9% Ni STEEL WELDING
JP2020075276A (en) Melting-type flux for submerged arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP4849910B2 (en) Flux cored wire
CN109967918B (en) Ceramic welding flux for submerged arc welding of duplex stainless steel
CN113613829A (en) Ni-based alloy flux-cored wire
JP2005279768A (en) Flux cored wire for welding and weld joint for steel structure
US5854463A (en) Flux cored wire for stainless steel
JP3589917B2 (en) Flux-cored wire for duplex stainless steel welding
KR20110031119A (en) Flux-cored wire for welding
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP5448497B2 (en) Flux-cored wire for 2-electrode horizontal fillet gas shielded arc welding
JP3549412B2 (en) Low hydrogen coated arc welding rod
KR100466205B1 (en) A flux composition for submerged arc welding
JP2544479B2 (en) Bond flux for submerged arc welding
JP5339870B2 (en) Bond flux for downward fillet submerged arc welding
JPS5915757B2 (en) Flux-cored wire for vertical and horizontal arc welding of stainless steel
JP6318704B2 (en) Fused flux for submerged arc welding
JP7239437B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees