JP2007160314A - Flux cored wire for welding high-strength stainless steel - Google Patents

Flux cored wire for welding high-strength stainless steel Download PDF

Info

Publication number
JP2007160314A
JP2007160314A JP2005356221A JP2005356221A JP2007160314A JP 2007160314 A JP2007160314 A JP 2007160314A JP 2005356221 A JP2005356221 A JP 2005356221A JP 2005356221 A JP2005356221 A JP 2005356221A JP 2007160314 A JP2007160314 A JP 2007160314A
Authority
JP
Japan
Prior art keywords
stainless steel
flux
amount
weld metal
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005356221A
Other languages
Japanese (ja)
Other versions
JP4566899B2 (en
Inventor
Manabu Mizumoto
学 水本
Hajime Nagasaki
肇 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2005356221A priority Critical patent/JP4566899B2/en
Publication of JP2007160314A publication Critical patent/JP2007160314A/en
Application granted granted Critical
Publication of JP4566899B2 publication Critical patent/JP4566899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux-cored wire for welding high-strength stainless steel which ensures the high-strength weld joint performance as high as that of austenitic stainless steel SUS304, and has excellent bending performance, high low-temperature toughness and excellent welding workability. <P>SOLUTION: In the flux-cored wire for welding high-strength stainless steel with flux filled inside a shell consisting of austenitic stainless steel, the total components contained in the shell and the flux are, by mass, based on the total wire weight, 8.0-10.0% Ni, 17.0-22.0% Cr, 0.5-2.0% Ti, ≤ 0.10% Bi, 0.05-0.70% fluoride, and 5-10% the total slag agent, and the balance including deoxidizing agent, Fe and inevitable impurities. The amount of O in the weld metal is 0.07-0.20% by adjusting the amount of the component of the deoxidizing agent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ステンレス鋼フラックス入りワイヤに係わり、特にオーステナイト系ステンレス鋼SUS304に適用し、母材と同程度の高強度な溶接継手性能が得られ、曲げ性能が良好で、低温靱性が高く、且つ溶接作業性が良好な高強度ステンレス鋼溶接用フラックス入りワイヤに関するものである。   The present invention relates to a stainless steel flux cored wire, and particularly applied to austenitic stainless steel SUS304, which can provide high strength welded joint performance similar to that of the base material, good bending performance, high low temperature toughness, and The present invention relates to a flux cored wire for welding high-strength stainless steel having good welding workability.

オーステナイト系ステンレス鋼SUS304は、耐食性に優れ、強度および低温靱性等の機械的性能も良好であることから、LNG貯蔵タンクや建築構造部材に適用されている。しかし、オーステナイト系ステンレス鋼SUS304の引張強さは高いものの、共金であるJIS Z3323 YF308系溶接材料は引張強さが低く、溶接継手の曲げ試験を行うと、強度の低い溶接金属が選択的に変形するため、溶接金属部に割れを生じるという課題があった。さらにフラックス入りワイヤは、他の溶接方法に比べると低温靱性が低く、極低温用鋼への用途には、品質要求に対して十分な性能が得られない場合があった。   Austenitic stainless steel SUS304 is applied to LNG storage tanks and building structural members because of its excellent corrosion resistance and good mechanical performance such as strength and low temperature toughness. However, although the tensile strength of the austenitic stainless steel SUS304 is high, the JIS Z3323 YF308 welding material, which is a co-metal, has low tensile strength. When a bending test is performed on a welded joint, a weld metal with low strength is selectively used. Due to the deformation, there was a problem that the weld metal part was cracked. Furthermore, the flux-cored wire has low low temperature toughness compared to other welding methods, and there are cases where sufficient performance for quality requirements cannot be obtained for applications to cryogenic steels.

この問題を解決する技術として例えば、特開平8−267282号公報(特許文献1)に、合金成分の特にC+Nの合計量を適正化することで、高強度かつ高い靱性が得られるオーステナイト系ステンレス鋼用フラックス入りワイヤが提案されている。しかし、ガスのシールド性が不十分な現場溶接の場合、大気中のNおよびOが溶接金属に混入されて高くなり、十分な靱性が得られないことがしばしばあった。   As a technique for solving this problem, for example, in Japanese Patent Laid-Open No. 8-267282 (Patent Document 1), austenitic stainless steel that can obtain high strength and high toughness by optimizing the total amount of alloy components, particularly C + N. Flux-cored wires have been proposed. However, in the case of in-situ welding with insufficient gas shielding, N and O in the atmosphere are mixed into the weld metal and become high, and sufficient toughness is often not obtained.

また、特開2003−136280号公報(特許文献2)には、MgおよびTiを適正添加することで、オーステナイト組織を微細化させ、靱性および延性に優れたオーステナイト系ステンレス鋼溶接用フラックス入りワイヤが提案されている。しかし、引張強さが低いため、溶接継手の曲げ試験において、強度の低い溶接金属が選択的に変形して、溶接部に割れが生じやすく、また溶接作業性が悪いという課題があった。   In addition, JP 2003-136280 A (Patent Document 2) discloses a flux-cored wire for welding austenitic stainless steel that is refined in austenite structure and has excellent toughness and ductility by appropriately adding Mg and Ti. Proposed. However, since the tensile strength is low, a weld metal having low strength is selectively deformed in a bending test of a welded joint, so that there is a problem that a weld is easily cracked and welding workability is poor.

特開平8−267282号公報JP-A-8-267282 特開2003−136280号公報JP 2003-136280 A

本発明は、オーステナイト系ステンレス鋼SUS304と同程度の高強度な溶接継手性能が得られ、曲げ性能が良好で、低温靱性が高く、且つ溶接作業性が良好な高強度ステンレス鋼溶接用フラックス入りワイヤを提供することを目的とする。   The present invention provides a high-strength stainless steel welding flux-cored wire that provides weld joint performance as high as austenitic stainless steel SUS304, has good bending performance, high low-temperature toughness, and good workability. The purpose is to provide.

本発明者らは、前記課題を解決するために合金成分について種々検討を行った。その結果、特に溶接金属中のTiおよびOが溶接金属の機械的性質に大きな影響を及ぼすことを見出した。図1にTiと機械的性質の関係を示すようにTiは、増加に従い引張強さおよび靱性が大幅に向上する傾向が認められた。しかし一方で、O量が少ない場合、Tiの効果が十分に得られず、機械的性質の向上が図れないことが明らかとなった。   In order to solve the above problems, the present inventors have made various studies on alloy components. As a result, it has been found that Ti and O in the weld metal have a great influence on the mechanical properties of the weld metal. As shown in FIG. 1 showing the relationship between Ti and mechanical properties, Ti has a tendency to greatly improve the tensile strength and toughness as it increases. However, on the other hand, when the amount of O is small, it has become clear that the effect of Ti cannot be sufficiently obtained and the mechanical properties cannot be improved.

そこで本発明者らはTiとOの関係について詳細調査を行った。その結果、溶接金属中の介在物として、TiO2が多く分散することで、オーステナイト凝固組織の粗大な成長を抑制することが分かった。また、Tiの添加により微細なフェライトが得られ、ミクロ組織の微細化され、引張強さが高く、且つ靱性の高い溶接金属が得られることを見出した。引張強さが高くなるので溶接継手の曲げ試験において割れも無く、良好な性能が得られることが確認できた。 Therefore, the present inventors conducted a detailed investigation on the relationship between Ti and O. As a result, it was found that a large amount of TiO 2 was dispersed as inclusions in the weld metal, thereby suppressing coarse growth of the austenite solidified structure. Further, it has been found that by adding Ti, fine ferrite can be obtained, the microstructure can be refined, a weld metal having high tensile strength and high toughness can be obtained. Since the tensile strength is increased, it was confirmed that there was no crack in the bending test of the welded joint and that good performance was obtained.

本発明は以上の知見によりなされたもので、その要旨とするところは次の通りである。オーステナイト系ステンレス鋼外皮の内部にフラックスが充填された高強度ステンレス鋼溶接用フラックス入りワイヤにおいて、外皮およびフラックスに含有される成分の合計として、ワイヤ全質量に対する質量%で、Ni:8.0〜10.0%、Cr:17.0〜22.0%、Ti:0.5〜2.0%、Bi:0.10%以下、弗化物:0.05〜0.70%、スラグ剤の合計:5〜10%を含有し、その他は脱酸剤、Feおよび不可避不純物であり、脱酸剤成分の調整により溶接金属中のO量が0.07〜0.20質量%であることを特徴とする。   This invention is made | formed by the above knowledge, The place made into the summary is as follows. In a high-strength stainless steel welding flux-cored wire in which a flux is filled inside the austenitic stainless steel outer sheath, the total amount of components contained in the outer sheath and the flux is expressed by mass% with respect to the total mass of the Ni: 8.0 to 8.0 10.0%, Cr: 17.0 to 22.0%, Ti: 0.5 to 2.0%, Bi: 0.10% or less, Fluoride: 0.05 to 0.70%, of slag agent Total: 5 to 10% is contained, the other is a deoxidizer, Fe and inevitable impurities, and the amount of O in the weld metal is 0.07 to 0.20 mass% by adjusting the deoxidizer component. Features.

また、脱酸剤成分は、ワイヤ全質量に対する質量%で、Si:0.2〜0.7%、Mn:0.5〜2.5%、AlおよびMgの1種または2種で0.01〜0.40%の範囲で調整することも特徴とする高強度ステンレス鋼溶接用フラックス入りワイヤにある。   Moreover, a deoxidizer component is the mass% with respect to the total mass of a wire, Si: 0.2-0.7%, Mn: 0.5-2.5%, 1 type or 2 types of Al and Mg is 0.00. It exists in the flux cored wire for high-strength stainless steel welding characterized by adjusting in the range of 01 to 0.40%.

本発明のオーステナイト系高強度ステンレス鋼溶接用フラックス入りワイヤによれば、高強度・高靱性の溶接金属が得られ、曲げ性能が良好で、且つ溶接作業性が良好であるなど、高品質の溶接部が得られる。   According to the austenitic high strength stainless steel welding flux cored wire of the present invention, a high strength, high toughness weld metal is obtained, bending performance is good, welding workability is good, and so on. Part is obtained.

本発明は、外皮および充填フラックスの各成分組成それぞれの共存による単独および相乗効果によりなし得たものであるが、以下にそれぞれの各成分組成の添加理由および限定理由を述べる。
Niは、オーステナイト組織を安定化させ、優れた靱性を得る目的で8.0質量%(以下、%という。)以上必要である。一方、10.0%を超えて添加するとオーステナイトが粗大に成長し、引張強さが低くなる。従って、Niは8.0〜10.0%にする必要がある。
The present invention can be achieved by a single effect and a synergistic effect due to the coexistence of each component composition of the outer skin and the filling flux. The reasons for addition and limitation of each component composition will be described below.
Ni is required to be 8.0% by mass (hereinafter referred to as%) or more for the purpose of stabilizing the austenite structure and obtaining excellent toughness. On the other hand, if added over 10.0%, austenite grows coarsely, and the tensile strength decreases. Therefore, Ni needs to be 8.0 to 10.0%.

Crは、フェライトを晶出させる主元素であり、適切なオーステナイト/フェライト量のバランスを得て、耐高温割れ性確保に必要とされるフェライトを得るために、17.0%以上必要である。一方、22.0%を超えて添加するとフェライトが過多となり、靱性が低くなる。従って、Crは17.0〜22.0%にする必要がある。   Cr is a main element that causes ferrite to crystallize, and is required to be 17.0% or more in order to obtain an appropriate austenite / ferrite amount balance and to obtain ferrite required for securing high-temperature crack resistance. On the other hand, if added over 22.0%, the ferrite becomes excessive and the toughness is lowered. Therefore, Cr needs to be 17.0 to 22.0%.

Tiは、溶接金属中にTiO2の介在物として分散し、オーステナイト組織の成長を抑制すると共に、一部は固溶して微細なフェライトを晶出させ、高強度・高靱性の溶接金属を得る目的で0.5%以上必要である。一方、2.0%を超えて添加すると、スパッタ発生量が多くなって溶接作業性が劣化する。従って、Tiは0.5〜2.0%にする必要がある。 Ti is dispersed as an inclusion of TiO 2 in the weld metal, and suppresses the growth of the austenite structure, and part of the solution dissolves to crystallize fine ferrite, thereby obtaining a weld metal having high strength and high toughness. For the purpose, 0.5% or more is necessary. On the other hand, if it is added over 2.0%, the amount of spatter generated increases and welding workability deteriorates. Therefore, Ti needs to be 0.5 to 2.0%.

Biは、スラグ剥離性を向上させる目的で添加するが、0.10%を超えて添加すると、オーステナイト粒界に偏析し、粒界結合力を弱めて靱性を劣化させる。従って、0.10%以下にする必要がある。一方、Biをフリーにすると良好な靱性が得られるが、スラグの剥離性が劣化するため、好ましくは0.01%以上とする。なお、Biは金属ビスマスおよび酸化ビスマスを用いることができるが、酸化ビスマスの場合はBi換算値とする。   Bi is added for the purpose of improving slag releasability, but if added over 0.10%, it segregates at austenite grain boundaries, weakens the grain boundary bonding force, and deteriorates toughness. Therefore, it is necessary to make it 0.10% or less. On the other hand, when Bi is made free, good toughness can be obtained, but since the slag peelability deteriorates, it is preferably made 0.01% or more. Bi can use metal bismuth and bismuth oxide. In the case of bismuth oxide, the Bi conversion value is used.

弗化物は、溶滴の離脱性を良好とし、スパッタの発生量を低減させる目的で0.05%以上必要である。一方、0.70%を超えて添加すると、溶滴が大きく成長し、かえってスパッタ発生量の増加を招くため、弗化物は0.05〜0.70%にする必要がある。弗化物の種類として、AlF3、NaF、K2ZrF6、LiF等を用いることができる。 Fluoride needs to be 0.05% or more for the purpose of improving the detachability of droplets and reducing the amount of spatter generated. On the other hand, if added over 0.70%, the droplets grow greatly, which causes an increase in the amount of spatter generated. Therefore, the fluoride must be 0.05 to 0.70%. As the type of fluoride, AlF 3 , NaF, K 2 ZrF 6 , LiF, or the like can be used.

スラグ剤の合計は、ワイヤ先端のアーク発生点近傍の外皮と突き出しフラックスの溶融速度差を適正とし、スパッタの発生量を低減する目的で5%以上添加する。一方、10%を超えて添加すると、外皮の溶融が早く、突き出しフラックスが長いため、溶滴の離脱が高い位置で行われ、スパッタ発生量が多くなる。これは、外皮と突き出しフラックスの溶融タイミングが離れすぎ、外皮の溶融した溶滴が、アーク上方から離脱し、かえって、スパッタ発生量の増加を招くことを示す。従って、スラグ剤の合計は、5〜10%にする必要がある。なお、スラグ剤には前記弗化物も含み、TiO2、SiO2、ZrO2、Al23、FeO、Fe23、K2O、Na2O、CaO、MgO等の酸化物の合計をいう。 The total amount of the slag agent is added in an amount of 5% or more for the purpose of reducing the amount of spatter generated by making the difference in melting rate between the outer sheath of the wire tip near the arc generation point and the protruding flux appropriate. On the other hand, when the content exceeds 10%, the outer shell melts quickly and the protruding flux is long, so that the detachment of the droplets is performed at a high position and the amount of spatter generated increases. This indicates that the melting timing of the outer shell and the protruding flux is too far apart, and the molten droplet of the outer shell is detached from the upper part of the arc, which causes an increase in the amount of spatter. Therefore, the total amount of the slag agent needs to be 5 to 10%. The slag agent includes the above-mentioned fluorides, and is a total of oxides such as TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 , FeO, Fe 2 O 3 , K 2 O, Na 2 O, CaO and MgO. Say.

溶接金属中のO量は、上記添加Tiのうち、一部をTiO2介在物として溶接金属中に生じ、オーステナイト粒の成長を阻害し、組織を微細化させ、良好な靱性を得る目的で0.07%以上に調整する。しかし、O量が0.20%を超えると、ブローホール等の溶接欠陥を生じることから、溶接金属のO量は、0.07〜0.20%に調整する。この際、適正なO量となるよう、脱酸剤のSi、Mn、AlおよびMgでスラグ剤成分に合わせて適宜調整する。 The amount of O in the weld metal is 0 for the purpose of obtaining good toughness by generating a part of the added Ti in the weld metal as TiO 2 inclusions, inhibiting the growth of austenite grains, refining the structure. Adjust to 07% or more. However, if the amount of O exceeds 0.20%, weld defects such as blow holes are generated, so the amount of O of the weld metal is adjusted to 0.07 to 0.20%. At this time, the deoxidizers Si, Mn, Al, and Mg are appropriately adjusted according to the slag agent component so as to obtain an appropriate amount of O.

脱酸剤の内Siは、アークを安定させてスパッタ発生量の減少および溶接金属中の酸素量の調整をするために0.2%以上必要である。一方、0.7%を超えると、溶接金属中の酸素量が低くなり過ぎて靭性が低くなる。従って、Siは0.2〜0.7%とする。
Mnは、オーステナイト地に固溶して引張強さの向上と溶接金属中の酸素量の調整をするために0.5%以上必要である。一方、2.5%を超えるとスパッタの発生量が多くなるとともに溶接金属中の酸素量が低くなり過ぎて靭性が低くなる。
Of the deoxidizer, Si is required to be 0.2% or more in order to stabilize the arc, reduce the amount of spatter generated, and adjust the amount of oxygen in the weld metal. On the other hand, if it exceeds 0.7%, the amount of oxygen in the weld metal becomes too low and the toughness becomes low. Therefore, Si is 0.2 to 0.7%.
Mn is required to be 0.5% or more in order to dissolve in austenite and improve the tensile strength and adjust the amount of oxygen in the weld metal. On the other hand, if it exceeds 2.5%, the amount of spatter generated increases and the amount of oxygen in the weld metal becomes too low, resulting in low toughness.

AlおよびMgは、強脱酸剤であり、溶接金属中の酸素量を調整する、AlおよびMgの1種または2種の合計が0.01%未満であると、溶接金属中の酸素量が高くなりすぎて、ブローホールが発生しやすくなる。一方、AlおよびMgの1種または2種の合計が0.40%を超えると、溶接金属中の酸素量が低くなって溶接金属に必要なTiO2量が少なくなり、強度および靭性も低くなる。さらに、スパッタ発生量も多くなる。
以上、本発明のステンレス鋼溶接用フラックス入りワイヤ構成要件の限定理由を述べたが、他の成分として、Cは0.01〜0.05%が強度および靭性の確保から好ましく、さらに、Mo、V、Nb等の合金剤を機械性能の調整として組合せて添加することもできる。
Al and Mg are strong deoxidizers, and adjust the amount of oxygen in the weld metal. If the total of one or two of Al and Mg is less than 0.01%, the amount of oxygen in the weld metal is less than 0.01%. It becomes too high and blow holes are likely to occur. On the other hand, if the total of one or two of Al and Mg exceeds 0.40%, the amount of oxygen in the weld metal decreases, the amount of TiO 2 required for the weld metal decreases, and the strength and toughness also decrease. . Further, the amount of spatter generated increases.
As mentioned above, although the reason for limitation of the flux cored wire constituent requirements for stainless steel welding of the present invention was described, as another component, C is preferably 0.01 to 0.05% from the viewpoint of ensuring strength and toughness, and further Mo, Alloying agents such as V and Nb can be added in combination for adjusting the mechanical performance.

フラックス入りワイヤの製造方法について言及すると、例えば外皮を帯鋼より管状に成形する場合には、配合、撹拌、乾燥した充填フラックスをU形に成形した溝に満たした後丸形に成形し、所定のワイヤ径まで伸線する。この際、整形した外皮シームを溶接することで、シームレスタイプのフラックス入りワイヤとすることもできる。また外皮がパイプの場合には、パイプを振動させてフラックスを充填し、所定のワイヤ径まで伸線する。
充填フラックスは、供給、充填が円滑に行えるように、固着剤(珪酸カリおよび珪酸ソーダの水溶液)を添加してボンドフラックス状にして用いることもできる。
Referring to the method for manufacturing the flux-cored wire, for example, when the outer skin is formed into a tubular shape from a steel strip, the filled flux that has been blended, stirred, and dried is filled into a U-shaped groove and then formed into a round shape. The wire diameter is drawn. At this time, a seamless type flux-cored wire can be obtained by welding the shaped outer seam. When the outer skin is a pipe, the pipe is vibrated to be filled with a flux and drawn to a predetermined wire diameter.
The filling flux can be used in the form of a bond flux by adding a fixing agent (an aqueous solution of potassium silicate and sodium silicate) so that supply and filling can be performed smoothly.

以下、実施例により本発明を詳細に説明する。
表1に示す化学成分のオーステナイト系ステンレス鋼外皮を用いて表2に示す組成のオーステナイト系ステンレス鋼溶接用フラックス入りワイヤを試作した。ワイヤ径は1.2mmとした。なお、フラックス充填率は20〜23%とした。
Hereinafter, the present invention will be described in detail by way of examples.
An austenitic stainless steel welding flux-cored wire having the composition shown in Table 2 was manufactured using the austenitic stainless steel outer skin having chemical components shown in Table 1. The wire diameter was 1.2 mm. The flux filling rate was 20-23%.

Figure 2007160314
Figure 2007160314

Figure 2007160314
Figure 2007160314

表3に示す成分のオーステナイトステンレス鋼SUS304を母材として各試験に用いた。溶着金属性能は、JIS Z 3323に従い引張試験を行った。また衝撃試験は、JIS Z 3111に準拠した。溶接継手性能は、JIS Z 3323の腐食試験用試験材に準拠した溶接継手(板厚12mm、開先角度45°、ギャップ12mmの裏当て金有)を作成した。その後JIS Z 3106に従い、X線透過試験を実施し、溶接継手部の割れおよびブローホール発生状況の確認を行った。溶接継手の機械的性質は、JIS Z 3121の1A号試験片による突合せ溶接継手の引張試験、JIS Z 3122の表曲げ試験片による突合せ継手の曲げ試験(20R、180°曲げ)、JIS Z 3128のVノッチ試験片による溶接継手の衝撃試験(鋼材の厚さ中心、切欠き位置:溶接金属中央にて採取)を行った。   Austenitic stainless steel SUS304 having the components shown in Table 3 was used for each test as a base material. The weld metal performance was a tensile test according to JIS Z 3323. The impact test conformed to JIS Z 3111. As for the weld joint performance, a weld joint (sheet thickness 12 mm, groove angle 45 °, gap 12 mm with backing metal) conforming to the test material for corrosion test of JIS Z 3323 was prepared. Thereafter, in accordance with JIS Z 3106, an X-ray transmission test was carried out to confirm cracks in the welded joint and occurrence of blowholes. The mechanical properties of the welded joint include tensile test of butt welded joint using JIS Z 3121 No. 1A test piece, bending test of butt joint using JIS Z 3122 surface bending test piece (20R, 180 ° bending), JIS Z 3128 An impact test of a welded joint using a V-notch test piece (steel thickness center, notch position: sampled at the weld metal center) was performed.

評価は、溶着金属および溶接継手共に、引張強さ:600MPa以上、曲げ性能:無欠陥、−196℃における吸収エネルギー(vE−196℃):30J以上を良好とした。X線透過試験では、ブローホール(第1種きず)および割れ(第3種きず)なしの1類を良好とした。溶接作業性は、溶接継手作成時の官能評価により判定を行った。なお、溶着金属試験、溶接継手試験および溶接作業性の調査の溶接電流は180〜250A、下向溶接、シールドガス:CO2にて実施した。それらの結果を表4にまとめて示す。 In the evaluation, both the weld metal and the welded joint had good tensile strength: 600 MPa or more, bending performance: no defect, absorbed energy at −196 ° C. (vE-196 ° C.): 30 J or more. In the X-ray transmission test, type 1 without blowholes (type 1 flaws) and cracks (type 3 flaws) was considered good. Welding workability was determined by sensory evaluation when creating a welded joint. In addition, the welding current of the weld metal test, the welded joint test, and the investigation of the welding workability was 180 to 250 A, downward welding, and shielding gas: CO 2 . The results are summarized in Table 4.

Figure 2007160314
Figure 2007160314

Figure 2007160314
Figure 2007160314

表4中ワイヤNo.1〜8が本発明例、ワイヤNo.9〜16は比較例である。
本発明例であるワイヤNo.1〜8は、Ni、Cr、Ti、Bi、弗化物、スラグ剤の合計、Si、Mn、Al、Mgおよび溶接金属中のO量が適正であるので、引張強さが高く、曲げ性能が良好で、吸収エネルギーが高く、耐割れ性、耐ブローホール性に優れ、溶接作業性も良好であり極めて満足な結果であった。
In Table 4, wire No. 1 to 8 are examples of the present invention, wire Nos. 9 to 16 are comparative examples.
Wire No. which is an example of the present invention. 1-8, Ni, Cr, Ti, Bi, fluoride, slag agent total, Si, Mn, Al, Mg and the amount of O in the weld metal are appropriate, so the tensile strength is high and the bending performance is high The results were very satisfactory, with good absorption energy, excellent crack resistance and blowhole resistance, and good welding workability.

比較例中ワイヤNo.9は、Niが低いので、吸収エネルギーが低かった。また、弗化物が高いので、スパッタ発生量が多かった。
ワイヤNo.10は、Niが高いので、引張強さが低く、継手の曲げ性能が悪かった。また、Siが高いので、溶接金属のOが低く吸収エネルギーが低くなった。さらに、弗化物が低いので、スパッタ発生量が多かった。
ワイヤNo.11は、スラグ剤の合計が低いため、スパッタ発生量が多かった。
In the comparative example, the wire No. No. 9 had low absorption energy because Ni was low. Moreover, since the fluoride was high, the amount of spatter generated was large.
Wire No. No. 10 had high Ni, so the tensile strength was low and the bending performance of the joint was poor. Moreover, since Si is high, O of the weld metal is low and the absorbed energy is low. Further, since the fluoride was low, the amount of spatter generated was large.
Wire No. No. 11 had a large amount of spatter because the total amount of slag agent was low.

ワイヤNo.12は、Crが高いので、吸収エネルギーが低かった。また、スラグ剤の合計が高いため、スパッタ発生量が多かった。
ワイヤNo.13は、Biが高いので、吸収エネルギーが低かった。また、AlおよびMgを含有しないので、溶接金属中のOが高くなり、ブローホールが発生した。
ワイヤNo.14は、Crが低いので、割れが生じた。また、AlとMgの合計量が高いので、溶接金属のOが低くなり、吸収エネルギーが低かった。また、スパッタ発生量も多かった。本ワイヤは、溶着金属試験で割れが生じたため、継手性能調査は行わなかった。
Wire No. No. 12 had low absorption energy because Cr was high. Moreover, since the sum total of the slag agent was high, there was much spatter generation amount.
Wire No. No. 13 had low Bi because of its high Bi. Moreover, since Al and Mg were not contained, O in the weld metal was increased and blow holes were generated.
Wire No. No. 14 was cracked because Cr was low. Moreover, since the total amount of Al and Mg was high, O of the weld metal was low, and the absorbed energy was low. Also, the amount of spatter generated was large. Since this wire was cracked in the weld metal test, the joint performance was not investigated.

ワイヤNo.15は、Tiが低いので、引張強さが低く、継手の曲げ性能が悪かった。また、吸収エネルギーも低かった。
ワイヤNo.16は、Tiが高いので、スパッタ発生量が多かった。また、Mnが高いので、溶接金属のOが低くなり吸収エネルギーが低くなった。
Wire No. Since No. 15 had low Ti, its tensile strength was low and the bending performance of the joint was poor. Also, the absorbed energy was low.
Wire No. No. 16 had a large amount of spatter because Ti was high. Moreover, since Mn was high, O of the weld metal was low and the absorbed energy was low.

溶接金属のTi量と機械的性質の関係を示す図である。It is a figure which shows the relationship between Ti amount of a weld metal, and a mechanical property.

Claims (2)

オーステナイト系ステンレス鋼外皮の内部にフラックスが充填された高強度ステンレス鋼溶接用フラックス入りワイヤにおいて、外皮およびフラックスに含有される成分の合計として、ワイヤ全質量に対する質量%で、
Ni:8.0〜10.0%、
Cr:17.0〜22.0%、
Ti:0.5〜2.0%、
Bi:0.10%以下、
弗化物:0.05〜0.70%、
スラグ剤の合計:5〜10%を含有し、
その他は脱酸剤、Feおよび不可避不純物であり、脱酸剤成分により溶接金属中の酸素量が0.07〜0.20質量%であることを特徴とする高強度ステンレス鋼溶接用フラックス入りワイヤ。
In the high-strength stainless steel welding flux cored wire filled with flux inside the austenitic stainless steel outer sheath, as a total of the components contained in the outer sheath and the flux, in mass% with respect to the total mass of the wire,
Ni: 8.0 to 10.0%,
Cr: 17.0 to 22.0%,
Ti: 0.5 to 2.0%,
Bi: 0.10% or less,
Fluoride: 0.05-0.70%
Total of slag agent: contains 5-10%,
The other is a deoxidizer, Fe, and inevitable impurities, and the amount of oxygen in the weld metal is 0.07 to 0.20 mass% due to the deoxidizer component, and a high-strength stainless steel welding flux cored wire .
脱酸剤成分は、ワイヤ全質量に対する質量%で、Si:0.2〜0.7%、Mn:0.5〜2.5%、AlおよびMgの1種または2種で0.01〜0.40%の範囲で調整することを特徴とする請求項1記載の高強度ステンレス鋼用フラックス入りワイヤ。 The deoxidizer component is in mass% with respect to the total mass of the wire, Si: 0.2 to 0.7%, Mn: 0.5 to 2.5%, and one or two of Al and Mg are 0.01 to The flux-cored wire for high-strength stainless steel according to claim 1, which is adjusted within a range of 0.40%.
JP2005356221A 2005-12-09 2005-12-09 High strength stainless steel welding flux cored wire Active JP4566899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356221A JP4566899B2 (en) 2005-12-09 2005-12-09 High strength stainless steel welding flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356221A JP4566899B2 (en) 2005-12-09 2005-12-09 High strength stainless steel welding flux cored wire

Publications (2)

Publication Number Publication Date
JP2007160314A true JP2007160314A (en) 2007-06-28
JP4566899B2 JP4566899B2 (en) 2010-10-20

Family

ID=38243805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356221A Active JP4566899B2 (en) 2005-12-09 2005-12-09 High strength stainless steel welding flux cored wire

Country Status (1)

Country Link
JP (1) JP4566899B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179626A (en) * 2011-03-01 2012-09-20 Kobe Steel Ltd Stainless steel flux-cored wire
JP2013000784A (en) * 2011-06-20 2013-01-07 Nippon Steel & Sumikin Welding Co Ltd Submerge arc welding method of low alloy steel
KR20160001517A (en) 2014-06-27 2016-01-06 주식회사 엘지씨엔에스 Media feeding apparatus
JP2017013118A (en) * 2015-07-06 2017-01-19 新日鐵住金ステンレス株式会社 Flux-cored wire for stainless steel welding, stainless steel welded joint, and method for manufacturing the same
JP2017024055A (en) * 2015-07-24 2017-02-02 日鐵住金溶接工業株式会社 Flux cored wire for welding stainless steel
CN106994570A (en) * 2016-01-25 2017-08-01 株式会社神户制钢所 Stainless flux-cored wire
JP2018089678A (en) * 2016-12-07 2018-06-14 日鐵住金溶接工業株式会社 Flux-cored wire for stainless steel welding
CN113146097A (en) * 2021-03-03 2021-07-23 北京金威焊材有限公司 Nickel-saving high-nitrogen austenitic stainless steel gas-shielded flux-cored wire and preparation method thereof
WO2022130905A1 (en) * 2020-12-18 2022-06-23 株式会社神戸製鋼所 Flux cored wire
US20220281037A1 (en) * 2019-11-26 2022-09-08 Esab Seah Corp. Stainless steel flux cored wire for manufacturing lng tank

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358049B (en) * 2012-04-09 2016-01-20 天津三英焊业股份有限公司 A kind of take high titanium slag as flux-cored wire prepared by medicinal powder primary raw material
CN102935562B (en) * 2012-12-10 2015-03-04 郑州机械研究所 Metal granular reinforced aluminum flux cored wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220996A (en) * 1987-03-11 1988-09-14 Nippon Steel Corp Filler metal for tig welding
JPH0966391A (en) * 1995-08-31 1997-03-11 Chiyoda Corp Stainless steel flux cored wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220996A (en) * 1987-03-11 1988-09-14 Nippon Steel Corp Filler metal for tig welding
JPH0966391A (en) * 1995-08-31 1997-03-11 Chiyoda Corp Stainless steel flux cored wire

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179626A (en) * 2011-03-01 2012-09-20 Kobe Steel Ltd Stainless steel flux-cored wire
JP2013000784A (en) * 2011-06-20 2013-01-07 Nippon Steel & Sumikin Welding Co Ltd Submerge arc welding method of low alloy steel
KR20160001517A (en) 2014-06-27 2016-01-06 주식회사 엘지씨엔에스 Media feeding apparatus
JP2017013118A (en) * 2015-07-06 2017-01-19 新日鐵住金ステンレス株式会社 Flux-cored wire for stainless steel welding, stainless steel welded joint, and method for manufacturing the same
JP2017024055A (en) * 2015-07-24 2017-02-02 日鐵住金溶接工業株式会社 Flux cored wire for welding stainless steel
CN106994570B (en) * 2016-01-25 2019-06-11 株式会社神户制钢所 Stainless flux-cored wire
CN106994570A (en) * 2016-01-25 2017-08-01 株式会社神户制钢所 Stainless flux-cored wire
KR101923806B1 (en) * 2016-01-25 2018-11-29 가부시키가이샤 고베 세이코쇼 Stainless steel flux cored wire
JP2018089678A (en) * 2016-12-07 2018-06-14 日鐵住金溶接工業株式会社 Flux-cored wire for stainless steel welding
US20220281037A1 (en) * 2019-11-26 2022-09-08 Esab Seah Corp. Stainless steel flux cored wire for manufacturing lng tank
JP2023503639A (en) * 2019-11-26 2023-01-31 エサブ セア コーポレーション Stainless steel flux cored wire for LNG tank manufacturing
WO2022130905A1 (en) * 2020-12-18 2022-06-23 株式会社神戸製鋼所 Flux cored wire
CN113146097A (en) * 2021-03-03 2021-07-23 北京金威焊材有限公司 Nickel-saving high-nitrogen austenitic stainless steel gas-shielded flux-cored wire and preparation method thereof
CN113146097B (en) * 2021-03-03 2022-06-17 北京金威焊材有限公司 Nickel-saving high-nitrogen austenitic stainless steel gas-shielded flux-cored wire and preparation method thereof

Also Published As

Publication number Publication date
JP4566899B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4566899B2 (en) High strength stainless steel welding flux cored wire
US10286499B2 (en) Ni based alloy flux cored wire
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP4970802B2 (en) Ni-based alloy flux cored wire
JP4558780B2 (en) Flux-cored wire for submerged arc welding of low-temperature steel
JP5138242B2 (en) Flux-cored wire for duplex stainless steel welding
CN107921590B (en) Flux-cored wire for gas-shielded arc welding
KR101708997B1 (en) Ni BASED ALLOY FLUX CORED WIRE
JP5885618B2 (en) Stainless steel flux cored wire
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2011189349A (en) Flux cored wire for gas shielding arc welding
JP2008221231A (en) Flux cored wire for gas-shielded arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP6418365B1 (en) Ni-base alloy wire for submerged arc welding, and method for manufacturing welded joint
JP6453178B2 (en) Flux-cored wire for gas shielded arc welding
JP2011025298A (en) Gas shielded arc welding method
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
KR20190037286A (en) Flux cored wire and weld metal for gas shield arc welding
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP5417098B2 (en) Submerged arc welding method for low temperature steel
CN113613829A (en) Ni-based alloy flux-cored wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Ref document number: 4566899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250