JP2017024055A - Flux cored wire for welding stainless steel - Google Patents

Flux cored wire for welding stainless steel Download PDF

Info

Publication number
JP2017024055A
JP2017024055A JP2015147064A JP2015147064A JP2017024055A JP 2017024055 A JP2017024055 A JP 2017024055A JP 2015147064 A JP2015147064 A JP 2015147064A JP 2015147064 A JP2015147064 A JP 2015147064A JP 2017024055 A JP2017024055 A JP 2017024055A
Authority
JP
Japan
Prior art keywords
welding
stainless steel
total
flux
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015147064A
Other languages
Japanese (ja)
Other versions
JP6434381B2 (en
Inventor
竜太朗 千葉
Ryutaro Chiba
竜太朗 千葉
飛史 行方
Takashi Namekata
飛史 行方
貴之 大塚
Takayuki Otsuka
貴之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2015147064A priority Critical patent/JP6434381B2/en
Publication of JP2017024055A publication Critical patent/JP2017024055A/en
Application granted granted Critical
Publication of JP6434381B2 publication Critical patent/JP6434381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flux cored wire for welding stainless steel which can provide a welded metal excellent in high-temperature tensile strength and cracking resistance under high temperature environments and has preferable welding workability in a horizontal fillet welding and a vertical upward welding.SOLUTION: There is provided a flux cored wire for welding stainless steel which contains, by mass% based on the total mass of the wire, 0.005 to 0.10% of C, 0.2 to 1.0% of Si, 1.5 to 4.5% of Mn, 8 to 13% of Ni, 16 to 23% of Cr, 0.01 to 1.0% of Mo, 0.55 to 1.0% of Ti, 0.01 to 0.05% of N and 0.05% or less of Nb in the total of the stainless steel sheath and flux, and in flux, contains 5 to 8% of TiOconversion value, 0.1 to 1.5% of SiOconversion value, 0.01 to 0.1% of ZrOconversion value, 0.01 to 0.1% of AlOconversion value, 0.01 to 0.30% of the total of NaO conversion value and KO conversion value, 0.1 to 1.0% of F conversion value and 0.001% or less of Bi.SELECTED DRAWING: None

Description

本発明は、ステンレス鋼の溶接に適用され、特に高温環境下において、高温引張強さ及び耐割れ性に優れる溶接金属が得られ、かつ、水平すみ肉溶接及び立向上進溶接における溶接作業性が良好で高温用途に適したステンレス鋼溶接用フラックス入りワイヤに関する。   INDUSTRIAL APPLICABILITY The present invention is applied to welding of stainless steel, and can obtain a weld metal excellent in high-temperature tensile strength and crack resistance, particularly in a high-temperature environment, and has welding workability in horizontal fillet welding and vertical improvement welding. The present invention relates to a stainless steel welding flux cored wire suitable for high temperature applications.

1990年代初頭、石油精製装置の高温環境で使用されるオーステナイト系ステンレス鋼製機器の配管において、Biを含有したオーステナイト系ステンレス鋼溶接用フラックス入りワイヤにより溶接された溶接継手で割れの発生が相次いで報告されている。特に700℃付近の温度域では、使用を開始して1年に満たない短期間に溶接継手の割れが発生するトラブルが報告され、実用上の大きな問題となっている。この割れの原因として、一般的なステンレス鋼溶接用フラックス入りワイヤには、スラグ剥離性の改善のためBiが酸化物の形で添加されている。Biが添加された溶接継手は、700℃以上の温度域に曝された場合、オーステナイト粒界にBiが濃化し、再熱割れが発生するといった事例が報告されている。その結果、Biを添加した溶接継手は、再熱割れによって短時間で粒界強度が低下して延性が著しく低下することが従来から判明している。   In the early 1990s, in the piping of austenitic stainless steel equipment used in the high temperature environment of petroleum refining equipment, cracks occurred one after another in welded joints welded with a flux-cored wire for austenitic stainless steel welding containing Bi. It has been reported. In particular, in the temperature range around 700 ° C., troubles that cause cracks in welded joints have been reported within a short period of less than one year after the start of use, which is a serious problem in practical use. As a cause of this crack, Bi is added in the form of an oxide to a general stainless steel welding flux cored wire in order to improve the slag peelability. It has been reported that welded joints to which Bi is added are concentrated in the austenite grain boundaries and reheat cracking occurs when exposed to a temperature range of 700 ° C. or higher. As a result, it has been conventionally found that weld joints to which Bi is added have a significantly reduced ductility due to a decrease in grain boundary strength in a short time due to reheat cracking.

ステンレス鋼溶接用フラックス入りワイヤにより溶接された溶接金属の高温環境化での再熱割れを防止する手段として、Bi量を10ppm程度にすれば、溶接金属の高温延性に影響がなく、実用上問題ないことが提言されている。このため、JISではBi≦0.001質量%のワイヤが規定されており、米国石油学会(API)においても、550℃以上で使用される配管の溶接には、Bi≦0.002質量%のワイヤを使用することが推奨されている。   As a means to prevent reheat cracking of weld metal welded with a flux-cored wire for stainless steel welding in a high temperature environment, if the Bi content is about 10 ppm, there is no effect on the hot ductility of the weld metal, which is a practical problem. There is no recommendation. For this reason, JIS stipulates Bi ≦ 0.001% by mass of wire, and the American Petroleum Institute (API) also uses Bi ≦ 0.002% by mass for welding pipes used at 550 ° C. or higher. It is recommended to use wires.

このようなBiの含有量が限りなく0に近い、いわゆるBi無添加のステンレス鋼溶接用フラックス入りワイヤは、高温強度が高く、耐割れ性が優れることから、高温環境下で使用される化学プラントなどに適用されている。しかしながら、このようなBi無添加のステンレス鋼溶接用フラックス入りワイヤは、スラグ剥離性の改善効果を有するBiが低く抑えられているため、従来のステンレス鋼溶接用フラックス入りワイヤと比較すると、スラグ剥離性が悪く、溶接施工の高能率化の要求を満足できないといった問題点があった。したがって、Biを含有したステンレス鋼溶接用フラックス入りワイヤと同等の溶接作業性を有し、高温強度が高く、耐割れ性に優れるBi無添加のステンレス鋼溶接用フラックス入りワイヤの開発が望まれていた。   The so-called Bi-free stainless steel welding flux cored wire has a Bi content as close to 0 as possible, and has a high temperature strength and excellent crack resistance. Therefore, it is used in a high temperature environment. Has been applied. However, such a Bi-added stainless steel welding flux-cored wire has a low Bi content, which has an effect of improving the slag releasability. There is a problem that the performance is poor and the demand for higher efficiency in welding construction cannot be satisfied. Therefore, it is desired to develop a flux-free wire for stainless steel welding with no addition of Bi that has welding workability equivalent to that of Bi-containing stainless steel welding flux-cored wire, high strength at high temperatures, and excellent crack resistance. It was.

このように、高温用途に適したステンレス鋼溶接用フラックス入りワイヤの技術は、種々検討されており、例えば、特許文献1には、TiO2、SiO2、ZrO2、金属弗化物、Al23、Bi及びBi化合物を含有するオーステナイト系ステンレス鋼溶接用フラックス入りワイヤが開示されている。しかし、このステンレス鋼溶接用フラックス入りワイヤでは、ZrO2含有量が多く、溶接金属及び溶接スラグ間に窒化物を生成するため、スラグ剥離性が悪いという問題点があった。 As described above, various techniques for a stainless steel welding flux-cored wire suitable for high-temperature applications have been studied. For example, Patent Document 1 discloses TiO 2 , SiO 2 , ZrO 2 , metal fluoride, Al 2 O. 3. A flux cored wire for austenitic stainless steel welding containing Bi and Bi compounds is disclosed. However, this flux cored wire for welding stainless steel has a problem that the slag removability is poor because the ZrO 2 content is large and nitride is generated between the weld metal and the weld slag.

また、特許文献2には、O、Nb、V、C、N、Cr、TiO2、SiO2、Al23及び金属弗化物等を限定した高温用途用のステンレス鋼溶接用フラックス入りワイヤが開示されている。しかし、このステンレス鋼溶接用フラックス入りワイヤでは、溶接金属中のNb含有量が多くなり、スラグ剥離性が悪くなる。また、N含有量が少なくなるので、オーステナイトとフェライトの晶出量によって、安定した固溶強化が得られず、溶接金属の引張強さが低くなる。さらには、SUS304N2などのオーステナイト系ステンレス鋼に適用した場合、希釈の影響によって溶接金属中のN含有量が多くなり、スラグ剥離性が悪くなるという問題点があった。 Patent Document 2 discloses a flux-cored wire for welding stainless steel for high-temperature applications that includes O, Nb, V, C, N, Cr, TiO 2 , SiO 2 , Al 2 O 3 and metal fluoride. It is disclosed. However, in this stainless steel welding flux-cored wire, the Nb content in the weld metal is increased, and the slag peelability is deteriorated. Further, since the N content is reduced, stable solid solution strengthening cannot be obtained depending on the crystallization amounts of austenite and ferrite, and the tensile strength of the weld metal is lowered. Furthermore, when applied to austenitic stainless steels such as SUS304N2, there is a problem in that the N content in the weld metal increases due to the influence of dilution, resulting in poor slag removability.

特開平11−192586号公報JP 11-192586 A 特開平7−276085号公報Japanese Patent Laid-Open No. 7-276085

そこで本発明は、上述した問題点に鑑みて案出されたものであり、ステンレス鋼の溶接に適用され、特に高温環境下において、優れた高温引張強さ及び耐割れ性に優れる溶接金属が得られ、かつ、水平すみ肉溶接及び立向上進溶接における溶接作業性が良好なステンレス鋼溶接用フラックス入りワイヤを提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and is applied to welding of stainless steel, and a weld metal having excellent high-temperature tensile strength and crack resistance is obtained particularly in a high-temperature environment. Another object of the present invention is to provide a flux-cored wire for welding stainless steel with good welding workability in horizontal fillet welding and vertical welding.

本発明者らは、上述した課題を解決するために、各種成分組成のステンレス鋼溶接用フラックス入りワイヤを試作して詳細に検討した。その結果、ステンレス鋼溶接用フラックス入りワイヤ中の成分(金属成分、フラックス成分)を適正化することによって、溶接金属の高温での引張強さ、靭性及び耐割れ性が向上し、水平すみ肉溶接及び立向上進溶接で溶接作業性が良好となることを見出して、本発明を完成した。   In order to solve the above-described problems, the present inventors have made trials on stainless steel welding flux-cored wires having various component compositions and examined them in detail. As a result, by optimizing the components in the flux-cored wire for welding stainless steel (metal component, flux component), the tensile strength, toughness and crack resistance of the weld metal at high temperatures are improved, and horizontal fillet welding is performed. And it discovered that welding workability | operativity became favorable by standing improvement progress welding, and completed this invention.

本発明の要旨は、ステンレス鋼外皮にフラックスを充填してなるステンレス鋼溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、ステンレス鋼外皮とフラックスの合計で、C:0.005〜0.10%、Si:0.2〜1.0%、Mn:1.5〜4.5%、Ni:8〜13%、Cr:16〜23%、Mo:0.01〜1.0%、Ti:0.55〜1.0%、N:0.01〜0.05%を含有し、Nb:0.05%以下であり、さらにワイヤ全質量に対する質量%で、フラックス中に、Ti酸化物:TiO2換算値の合計で5〜8%、Si酸化物:SiO2換算値の合計で0.1〜1.5%、Zr酸化物:ZrO2換算値の合計で0.01〜0.1%、Al酸化物:Al23換算値の合計で0.01〜0.1%、Na化合物及びK化合物:Na2O換算値及びK2O換算値の合計で0.01〜0.30%、弗素化合物:F換算値の合計で0.1〜1.0%を含有し、Bi:0.001%以下であり、残部はステンレス鋼外皮のFe分、合金鉄中のFe分、鉄粉及び不可避不純物であることを特徴とするステンレス鋼溶接用フラックス入りワイヤである。 The gist of the present invention is, in a stainless steel welding flux-cored wire obtained by filling a stainless steel outer shell with flux, mass% with respect to the total mass of the wire, and the total of the stainless steel outer shell and the flux, C: 0.005 to 0.00. 10%, Si: 0.2 to 1.0%, Mn: 1.5 to 4.5%, Ni: 8 to 13%, Cr: 16 to 23%, Mo: 0.01 to 1.0%, Ti: 0.55 to 1.0%, N: 0.01 to 0.05%, Nb: 0.05% or less, and further, Ti oxidation in the flux in mass% with respect to the total mass of the wire. Material: 5 to 8% in total of TiO 2 conversion value, Si oxide: 0.1 to 1.5% in total of SiO 2 conversion value, Zr oxide: 0.01 to 0 in total of ZrO 2 conversion value .1%, Al oxides: 0.01% to 0.1% in total of terms of Al 2 O 3 value, Na compound And K compound: Na 2 O conversion value and 0.01 to 0.30% in total of K 2 O converted value, fluorine compounds: containing 0.1 to 1.0% in total in terms of F values, Bi: It is 0.001% or less, and the balance is a flux-cored wire for welding stainless steel, characterized by the Fe content of the stainless steel skin, the Fe content in the alloy iron, iron powder, and inevitable impurities.

本発明を適用したステンレス鋼溶接用フラックス入りワイヤによれば、特に高温環境下において、優れた高温引張強さ及び耐割れ性に優れる溶接金属が得られ、かつ、水平すみ肉溶接及び立向上進溶接における溶接作業性が良好なステンレス鋼溶接用フラックス入りワイヤを提供することができる。   According to the flux-cored wire for stainless steel welding to which the present invention is applied, a weld metal excellent in high-temperature tensile strength and crack resistance is obtained, particularly in a high-temperature environment, and horizontal fillet welding and vertical improvement are promoted. It is possible to provide a flux-cored wire for welding stainless steel with good welding workability in welding.

本発明者らは、上述した課題を解決するために、各種成分組成のステンレス鋼溶接用フラックス入りワイヤを試作して詳細に検討した。その結果、ステンレス鋼溶接用フラックス入りワイヤ中のC、Cr、Ni、Mo、Nb、Biの含有量を適性化することによって、高温での引張強さ、靭性及び耐割れ性が向上することを見出した。   In order to solve the above-described problems, the present inventors have made trials on stainless steel welding flux-cored wires having various component compositions and examined them in detail. As a result, by optimizing the content of C, Cr, Ni, Mo, Nb, Bi in the flux-cored wire for welding stainless steel, the tensile strength, toughness and crack resistance at high temperatures are improved. I found it.

また、高温で長時間保持した場合、フェライト/オーステナイト粒界へ炭化物やフェライト相中にσ相が析出してフェライト相内が脆化し、高温引張強さが低下するので、フェライト生成元素であるCrを適正化することによって、フェライト量を低く抑え、フェライト/オーステナイト粒界中の炭化物やσ相を低減できることを見出した。   In addition, when held at a high temperature for a long time, the σ phase precipitates in the carbide / ferrite phase at the ferrite / austenite grain boundary, the ferrite phase becomes brittle, and the high temperature tensile strength decreases. It has been found that by optimizing the amount of ferrite, the amount of ferrite can be kept low, and carbides and σ phases in the ferrite / austenite grain boundaries can be reduced.

また、C量の調整を行うことで、オーステナイト相に適正な炭化物を析出させ、引張強さを向上できることを突き止めたが、それに伴って、靭性が低下したため、さらなる検討を行った。その結果、Ti量を適正化することで、脱酸を促進させて溶接金属中の酸化物を低減し、靭性を改善できることを見出した。   Further, it was found that by adjusting the amount of C, appropriate carbides can be precipitated in the austenite phase and the tensile strength can be improved. However, since the toughness was reduced accordingly, further investigation was performed. As a result, it has been found that by optimizing the amount of Ti, deoxidation can be promoted to reduce oxides in the weld metal and improve toughness.

一方、フェライト量が低くなるとともに、耐割れ性が悪くなる傾向が認められたため、Mn添加量の適正化も行い、低融点化合物の偏析を低減させ、耐割れ性を改善できることを見出した。   On the other hand, since the ferrite content decreased and crack resistance tended to deteriorate, it was found that the amount of Mn added was optimized, segregation of the low melting point compound was reduced, and crack resistance could be improved.

水平すみ肉溶接及び立向上進溶接における溶接作業性については、従来のBiを含有したステンレス鋼溶接用フラックス入りワイヤと比較すると、スラグ剥離性が劣化し、溶接施工の高能率化を満足できないといった問題があり、種々検討した結果、TiO2量を適正化し、溶接スラグの熱膨張率を調整して溶接金属と溶接スラグの熱膨張差を増加させることにより、スラグ剥離性を向上できることを見出した。上記の効果は、Al23及び弗素化合物を適量併せて添加することにより良好できる。また、アークの安定性及びスパッタ量の低減は、TiO2、ZrO2、Na及びK化合物、弗素化合物を適量添加することで、また、ビード形状は、Si、SiO2、Al23、Na化合物及びK化合物を適量添加することで良好にできることを見出した。 As for welding workability in horizontal fillet welding and vertical improvement welding, compared to the conventional flux-cored wire for stainless steel welding containing Bi, the slag peelability deteriorates and the high efficiency of welding work cannot be satisfied. As a result of various investigations, it was found that slag peelability can be improved by optimizing the amount of TiO 2 and adjusting the thermal expansion coefficient of the weld slag to increase the difference in thermal expansion between the weld metal and the weld slag. . The above effect can be improved by adding appropriate amounts of Al 2 O 3 and a fluorine compound. Further, the stability of the arc and the reduction of the sputtering amount can be achieved by adding appropriate amounts of TiO 2 , ZrO 2 , Na and K compounds and fluorine compounds, and the bead shape can be Si, SiO 2 , Al 2 O 3 , Na. It has been found that it can be improved by adding appropriate amounts of the compound and the K compound.

さらに、TiO2及びTiを適正化することで、立向上進溶接におけるメタル垂れ性を抑え、ビード形状を良好にすることを見出した。 Furthermore, it has been found that by optimizing TiO 2 and Ti, the metal drooping property in standing improvement welding is suppressed and the bead shape is improved.

本発明のステンレス鋼溶接用フラックス入りワイヤは、ステンレス鋼外皮及びフラックス各成分組成それぞれの単独及び共存による相乗効果によりなし得たもので、以下にそれぞれの各成分組成の添加理由及び限定理由を述べる。なお、各成分組成の含有量は、ワイヤ全質量に対する質量%で示すこととし、その質量%を示すときには単に%と記載して示すこととする。   The flux-cored wire for stainless steel welding of the present invention can be obtained by the synergistic effect of the individual and coexistence of each component composition of the stainless steel outer shell and the flux, and the reason for addition and limitation of each component composition will be described below. . In addition, content of each component composition shall be shown by the mass% with respect to the total mass of a wire, and when showing the mass%, it shall show only by describing%.

まず、ステンレス鋼外皮とフラックスの合計で、以下の通りに限定する。   First, the total of the stainless steel skin and the flux is limited as follows.

[C:0.005〜0.10%]
Cは、ステンレス鋼外皮、フェロマンガン、フェロシリコンマンガン及びグラファイト等から添加され、Cr炭化物及びTi炭化物を生成して、溶接金属の高温引張強さを高める効果がある。Cが0.005%未満では、Cr炭化物及びTi炭化物の生成が不十分で高温での引張強さが低くなる。一方、Cが0.10%を超えると、Cr炭化物及びTi炭化物が粗大化し、高温に保持した後の靭性が低くなる。したがって、Cの含有量は0.005〜0.10%とする。
[C: 0.005-0.10%]
C is added from stainless steel skin, ferromanganese, ferrosilicon manganese, graphite, and the like, and has the effect of generating Cr carbide and Ti carbide to increase the high temperature tensile strength of the weld metal. If C is less than 0.005%, the formation of Cr carbide and Ti carbide is insufficient, and the tensile strength at high temperature is low. On the other hand, when C exceeds 0.10%, Cr carbide and Ti carbide are coarsened, and the toughness after being kept at a high temperature is lowered. Therefore, the C content is 0.005 to 0.10%.

[Si:0.2〜1.0%]
Siは、ステンレス鋼外皮、金属シリコン、フェロシリコン及びフェロシリコンマンガン等から添加され、ビード形状やスラグ被包性を改善する効果を有する。Siが0.2%未満では、溶接時の脱酸反応によって形成されるスラグ量が少なく、ビード形状が悪くなる。一方、Siが1.0%を超えると、スラグ量が過多となり、スラグ被包性が悪くなる。したがって、Siの含有量は0.2〜1.0%とする。
[Si: 0.2 to 1.0%]
Si is added from stainless steel skin, metallic silicon, ferrosilicon, ferrosilicon manganese, and the like, and has an effect of improving bead shape and slag encapsulation. If Si is less than 0.2%, the amount of slag formed by the deoxidation reaction during welding is small, and the bead shape becomes poor. On the other hand, if Si exceeds 1.0%, the amount of slag becomes excessive, and the slag encapsulation becomes worse. Therefore, the Si content is set to 0.2 to 1.0%.

[Mn:1.5〜4.5%]
Mnは、ステンレス鋼外皮、金属マンガン、フェロマンガン、フェロシリコンマンガン及び窒化Mn等から添加され、低融点化合物の偏析を低減して耐割れ性を改善する効果を有する。Mnが1.5%未満では、オーステナイト粒界に低融点化合物が偏析するため、耐割れ性が悪くなる。一方、Mnが4.5%を超えると、炭化物及び窒化物を生成して常温での靭性が低下する。したがって、Mnの含有量は1.5〜4.5%とする。
[Mn: 1.5 to 4.5%]
Mn is added from stainless steel skin, metallic manganese, ferromanganese, ferrosilicon manganese, Mn nitride, and the like, and has the effect of reducing segregation of low melting point compounds and improving crack resistance. If Mn is less than 1.5%, the low melting point compound is segregated at the austenite grain boundary, so that the crack resistance is deteriorated. On the other hand, if Mn exceeds 4.5%, carbides and nitrides are generated and the toughness at normal temperature is lowered. Therefore, the Mn content is 1.5 to 4.5%.

[Ni:8〜13%]
Niは、ステンレス鋼外皮、金属ニッケル及びフェロニッケル等から添加され、オーステナイト相を安定化させる元素であり、フェライト量の調整及び耐割れ性を改善する効果を有する。Niが8%未満では、オーステナイトの晶出量が減少してフェライト量が多くなり、常温での靭性が低下する。一方、Niが13%を超えると、フェライトの晶出量が少なくなり、低融点化合物の偏析が助長されて耐割れ性が悪くなる。したがって、Niの含有量は8〜13%とする。
[Ni: 8-13%]
Ni is an element that is added from a stainless steel shell, metallic nickel, ferronickel, or the like and stabilizes the austenite phase, and has the effect of adjusting the ferrite content and improving crack resistance. If Ni is less than 8%, the amount of crystallization of austenite decreases, the amount of ferrite increases, and the toughness at room temperature decreases. On the other hand, when Ni exceeds 13%, the amount of ferrite crystallized decreases, segregation of the low melting point compound is promoted, and the crack resistance deteriorates. Therefore, the Ni content is 8-13%.

[Cr:16〜23%]
Crは、ステンレス鋼外皮、金属クロム及びフェロクロム、窒化Cr等から添加され、フェライト相を安定化させる元素であり、溶接金属の引張強さを増加させる効果を有する。Crが16%未満では、フェライトの晶出量が減少してオーステナイト量が多くなり、常温での引張強さが低下する。一方、Crが23%を超えると、Cr炭化物の生成が多くなり、高温での引張強さが低下する。したがって、Crの含有量は16〜23%とする。
[Cr: 16-23%]
Cr is an element that is added from a stainless steel shell, metallic chromium and ferrochromium, Cr nitride, and the like and stabilizes the ferrite phase, and has the effect of increasing the tensile strength of the weld metal. If Cr is less than 16%, the amount of crystallization of ferrite decreases, the amount of austenite increases, and the tensile strength at room temperature decreases. On the other hand, when Cr exceeds 23%, the production of Cr carbide increases, and the tensile strength at high temperature decreases. Therefore, the Cr content is 16-23%.

[Mo:0.01〜1.0%]
Moは、ステンレス鋼外皮、金属モリブデン及びフェロモリブデン等から添加され、オーステナイト相中に固溶され、引張強さを改善する効果を有する。Moが0.01%未満では、固溶強化の効果は得られず、常温での引張強さが低下する。一方、Moが1.0%を超えると、フェライト中より極めて硬く脆いσ相が析出され、高温に保持したあとの靭性が低下する。したがって、Moの含有量は0.01〜1.0%とする。
[Mo: 0.01 to 1.0%]
Mo is added from a stainless steel shell, metallic molybdenum, ferromolybdenum, or the like, and is dissolved in the austenite phase, and has an effect of improving the tensile strength. If Mo is less than 0.01%, the effect of solid solution strengthening cannot be obtained, and the tensile strength at room temperature decreases. On the other hand, when Mo exceeds 1.0%, an extremely hard and brittle σ phase is precipitated from the ferrite, and the toughness after being kept at a high temperature is lowered. Therefore, the Mo content is set to 0.01 to 1.0%.

[Ti:0.55〜1.0%]
Tiは、ステンレス鋼外皮、金属チタン及びフェロチタン等から添加され、脱酸を促進させて溶接金属中の酸化物を低減し、靭性を改善するとともに、立向上進溶接での溶接作業性を良好にする効果を有する。Tiが0.55%未満では、脱酸が不十分で、常温での靭性が低下する。また、立向上進溶接において、メタル垂れが発生してビード形状が不良となる。一方、Tiが1.0%を超えると、溶接時に溶滴が粗大に成長し、大粒のスパッタが発生する。したがって、Tiの含有量は0.55〜1.0%とする。
[Ti: 0.55-1.0%]
Ti is added from stainless steel skin, metallic titanium, ferrotitanium, etc., promotes deoxidation, reduces oxides in the weld metal, improves toughness and improves welding workability in vertical welding. Has the effect of When Ti is less than 0.55%, deoxidation is insufficient and toughness at room temperature is lowered. Further, in vertical improvement welding, metal dripping occurs and the bead shape becomes defective. On the other hand, if Ti exceeds 1.0%, droplets grow coarsely during welding and large spatters are generated. Therefore, the Ti content is set to 0.55 to 1.0%.

[N:0.01〜0.05%]
Nは、ステンレス鋼外皮、窒化クロム及び窒化マンガン等から添加され、オーステナイト中に固溶され引張強さを向上する効果を有する。Nが0.01%未満では、その効果は得られず、常温での引張強さが低下する。一方、Nが0.05%を超えると、溶接時に溶融池に固溶しきれないNが発生して溶滴移行が円滑に行われず、スパッタ発生量が増加する。したがって、Nの含有量は0.01〜0.05%とする。
[N: 0.01 to 0.05%]
N is added from a stainless steel shell, chromium nitride, manganese nitride, or the like, and has the effect of improving the tensile strength by being dissolved in austenite. If N is less than 0.01%, the effect cannot be obtained, and the tensile strength at room temperature decreases. On the other hand, if N exceeds 0.05%, N that cannot be completely dissolved in the molten pool is generated at the time of welding, and droplet transfer is not performed smoothly, and the amount of spatter generated increases. Therefore, the N content is set to 0.01 to 0.05%.

[Nb:0.05%以下]
Nbは、ステンレス鋼外皮に含有されていて、不可避的にワイヤ中に含有される成分である。このNbの含有量が多くなると溶接金属とスラグ間で化合物を生成してスラグ剥離性を悪くする作用があるので、少ないほうが望ましく、0.05%以下であれば許容できる。Nbの含有量は、好ましくは0.02%以下である。
[Nb: 0.05% or less]
Nb is a component contained in the stainless steel skin and unavoidably contained in the wire. If the Nb content is increased, a compound is generated between the weld metal and the slag to deteriorate the slag removability. Therefore, a smaller content is desirable, and 0.05% or less is acceptable. The Nb content is preferably 0.02% or less.

次に、ワイヤ全質量に対する質量%で、フラックス中に含有する成分組成を、以下の通りに限定する。   Next, the component composition contained in the flux in mass% with respect to the total mass of the wire is limited as follows.

[Ti酸化物:TiO2換算値の合計で5〜8%]
TiO2は、ルチール、酸化チタン、チタン酸ソーダ、チタンスラグ、イルミナイト等から添加させる。これらは、溶接スラグの熱膨張率を調整し、溶接金属と溶接スラグの熱膨張差を増加させることによってスラグ剥離性を向上させるとともに、立向上進溶接での溶接作業性を良好にする効果を有する。Ti酸化物のTiO2換算値の合計が5%未満であると、溶接金属と溶接スラグの熱膨張差が少なくなり、スラグ剥離性が不良になる。また、立向上進溶接において、メタル垂れが発生してビード形状が不良となる。一方、Ti酸化物のTiO2換算値の合計が8%を超えると、スラグが溶滴を完全に被包して溶滴の移行が阻害されるため、アークが安定性になる。したがって、Ti酸化物のTiO2換算値の合計は5〜8%とする。
[Ti oxide: 5 to 8% in total of TiO 2 conversion values]
TiO 2 is added from rutile, titanium oxide, sodium titanate, titanium slag, illuminite or the like. These improve the slag peelability by adjusting the thermal expansion coefficient of the weld slag and increasing the difference in thermal expansion between the weld metal and the weld slag, and also have the effect of improving the welding workability in the vertical improvement welding. Have. When the total of the TiO 2 conversion values of the Ti oxide is less than 5%, the difference in thermal expansion between the weld metal and the weld slag decreases, and the slag peelability becomes poor. Further, in vertical improvement welding, metal dripping occurs and the bead shape becomes defective. On the other hand, if the total TiO 2 conversion value of the Ti oxide exceeds 8%, the slag completely encapsulates the droplets and hinders the migration of the droplets, so that the arc becomes stable. Therefore, the total of TiO 2 converted values of Ti oxide is 5 to 8%.

[Si酸化物:SiO2換算値の合計で0.1〜1.5%]
SiO2は、珪砂、ジルコンサンド等から添加され、スラグ形成剤として作用し、スラグの粘性を調整してスラグ被包性を良好にする効果がある。Si酸化物のSiO2換算値の合計が0.1%未満であると、スラグの粘性が低くなり、スラグ被包性が悪くなる。一方、Si酸化物のSiO2換算値の合計が1.5%を超えると、スラグ量が増加して溶接金属とスラグ量とのバランスが悪くなり、ビード形状が不良になる。したがって、Si酸化物のSiO2換算値の合計は0.1〜1.5%とする。
[Si oxide: 0.1 to 1.5% in total in terms of SiO 2 ]
SiO 2 is added from silica sand, zircon sand, etc., and acts as a slag forming agent, and has the effect of adjusting the viscosity of the slag to improve the slag encapsulation. When the total SiO 2 conversion value of the Si oxide is less than 0.1%, the viscosity of the slag is lowered and the slag encapsulation is deteriorated. On the other hand, when the total of SiO 2 conversion values of Si oxides exceeds 1.5%, the amount of slag increases, the balance between the weld metal and the amount of slag deteriorates, and the bead shape becomes poor. Therefore, the total of SiO 2 conversion values of Si oxide is 0.1 to 1.5%.

[Zr酸化物:ZrO2換算値の合計で0.01〜0.1%]
ZrO2は、ジルコンサンド及び酸化ジルコニウム等から添加され、スラグの粘性を調整し、溶滴移行の際に発生するスパッタ発生量を低減する効果を有する。Zr酸化物のZrO2換算値の合計が0.01%未満であると、スラグの粘性が低くなり、溶滴移行の際に小粒のスパッタが発生する。一方、Zr酸化物のZrO2換算値の合計が0.1%を超えると、スラグの粘性が高くなり、溶滴が大きく成長し、溶滴移行が円滑に行われず、アークが不安定になる。したがって、Zr酸化物のZrO2換算値の合計は0.01〜0.1%とする。
[Zr oxide: 0.01 to 0.1% in total in terms of ZrO 2 ]
ZrO 2 is added from zircon sand, zirconium oxide, or the like, and has the effect of adjusting the viscosity of the slag and reducing the amount of spatter generated during droplet transfer. When the total of the ZrO 2 conversion values of the Zr oxide is less than 0.01%, the viscosity of the slag becomes low, and small particles are sputtered during droplet transfer. On the other hand, if the total of ZrO 2 conversion values of the Zr oxide exceeds 0.1%, the viscosity of the slag increases, the droplets grow large, the droplet transfer is not smoothly performed, and the arc becomes unstable. . Therefore, the total of ZrO 2 converted values of the Zr oxide is set to 0.01 to 0.1%.

[Al酸化物:Al23換算値の合計で0.01〜0.1%]
Al23は、アルミナ、カリ長石、曹長石等から添加され、スラグの融点を調整してビード形状を向上させる効果を有する。Al酸化物のAl23換算値の合計が0.01%未満であると、スラグの融点が低くなるので、溶接金属とスラグの凝固が不均一となり、ビード形状が不良になる。一方、Al酸化物のAl23換算値の合計が0.1%を超えると、スラグの融点が高くなり、冷却速度の速いビード部にスラグが残ってスラグ剥離性が悪くなる、したがって、Al酸化物のAl23換算値の合計は0.01〜0.1%とする。
[Al oxide: 0.01 to 0.1% in total of converted value of Al 2 O 3 ]
Al 2 O 3 is added from alumina, potassium feldspar, feldspar, etc., and has the effect of adjusting the melting point of the slag and improving the bead shape. If the total Al 2 O 3 conversion value of the Al oxide is less than 0.01%, the melting point of the slag is lowered, so that the solidification of the weld metal and the slag becomes uneven and the bead shape becomes poor. On the other hand, if the total Al 2 O 3 conversion value of the Al oxide exceeds 0.1%, the melting point of the slag increases, and the slag remains in the bead portion where the cooling rate is fast, resulting in poor slag peelability. The total Al 2 O 3 conversion value of the Al oxide is 0.01 to 0.1%.

[Na化合物及びK化合物:Na2O換算値及びK2O換算値の合計で0.01〜0.30%]
Na化合物及びK化合物は、水ガラスのNa2O及びK2O、沸化ソーダや珪弗化カリ等の弗化物等から添加され、アークを安定にし、スパッタ発生量を低減する効果を有する。Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が0.01%未満では、アークが不安定となり、溶滴移行が短絡移行となってスパッタ発生量が増加する。一方、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が0.30%を超えると、スラグの凝固が早くなり、ビード形状が悪くなる。したがって、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計は0.01〜0.30%とする。
[Na compound and K compound: 0.01 to 0.30% in total of Na 2 O converted value and K 2 O converted value]
Na compound and K compound are added from Na 2 O and K 2 O of water glass, fluorides such as sodium fluoride and potassium silicofluoride, etc., and have the effect of stabilizing the arc and reducing the amount of spatter generated. If the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound is less than 0.01%, the arc becomes unstable, the droplet transfer becomes short-circuit transfer, and the amount of spatter generated increases. On the other hand, when the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound exceeds 0.30%, solidification of slag is accelerated and the bead shape is deteriorated. Therefore, the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound is 0.01 to 0.30%.

[弗素化合物:F換算値の合計で0.1〜1.0%]
弗素化合物は、弗化ソーダ、珪弗化カリ、ジルコンフッ化カリ、氷晶石、弗化アルミ、弗化リチウム及び蛍石などから添加され、アークの安定性を向上させる効果を有する。弗素化合物のF換算値の合計が0.1%未満では、上述の効果が不十分であり、アークが不安定になる。一方、弗素化合物のF換算値の合計が1.0%を超えると、スラグの融点が低下して溶接金属よりスラグの凝固が早くなり、ビード形状が不均一になる。したがって、弗素化合物のF換算値の合計は0.1〜1.0%とする。
[Fluorine compounds: 0.1 to 1.0% in total in terms of F]
The fluorine compound is added from sodium fluoride, potassium silicofluoride, potassium zircon fluoride, cryolite, aluminum fluoride, lithium fluoride, fluorite, and the like, and has an effect of improving arc stability. If the total F converted value of the fluorine compound is less than 0.1%, the above-mentioned effect is insufficient and the arc becomes unstable. On the other hand, when the total F converted value of the fluorine compound exceeds 1.0%, the melting point of the slag is lowered, the solidification of the slag is faster than the weld metal, and the bead shape is not uniform. Therefore, the total F converted value of the fluorine compound is 0.1 to 1.0%.

[Bi:0.001%以下]
Biは、溶接部が高温に長時間保持された場合、オーステナイト粒界にBiが濃化し易く、耐割れ性を悪くするので、フラックス中のBiは0.001%以下とする。
[Bi: 0.001% or less]
Bi tends to concentrate at austenite grain boundaries and deteriorates crack resistance when the weld is kept at a high temperature for a long time, so Bi in the flux is made 0.001% or less.

残部は、Fe分及び不可避不純物である。Fe分は、ステンレス鋼外皮のFe分、フラックスの鉄粉、鉄合金(フェロシリコン、フェロマンガン、フェロシリコンマンガン等のフェロアロイ)粉などからのFe分である。不可避不純物は、P、S、Biなどの不可避に混入される不純物をいい、0%であることが望ましいが、0%にすることは生産コストが高くなるという問題もあるために難しい。   The balance is Fe and inevitable impurities. The Fe content is the Fe content from the stainless steel outer shell, flux iron powder, iron alloy (ferroalloys such as ferrosilicon, ferromanganese, and ferrosilicon manganese) powder. Inevitable impurities refer to impurities inevitably mixed such as P, S, Bi, etc., and preferably 0%, but it is difficult to make 0% because there is a problem that production costs increase.

なお、耐割れ性の観点からPは0.040%以下、Sは0.020%以下であることが好ましい。   From the viewpoint of crack resistance, P is preferably 0.040% or less, and S is preferably 0.020% or less.

以上、本発明のステンレス鋼溶接用フラックス入りワイヤの成分組成の限定理由を述べたが、ステンレス鋼溶接用フラックス入りワイヤの製造方法に言及すると、例えば、ステンレス鋼外皮を帯鋼から管状に成形する場合、配合、混合・撹拌、乾燥した充填フラックスをU形に成形した溝に満たした後に丸型に成形し、所定のワイヤ径まで伸線する。この際、成形した外皮シームを溶接してシームレスタイプのステンレス鋼溶接用フラックス入りワイヤとすることもできる。また、ステンレス鋼外皮がパイプの場合、パイプを振動させてフラックスを充填、所定のワイヤ径まで伸線することができる。いずれの製造方法もワイヤ径は、0.8〜3.6mmまで製造が可能である。   As mentioned above, although the reason for limitation of the component composition of the flux-cored wire for stainless steel welding of the present invention was described, when referring to the method for producing the flux-cored wire for stainless steel welding, for example, the stainless steel sheath is formed from a strip steel into a tubular shape. In this case, the filled flux that has been blended, mixed, stirred, and dried is filled into a U-shaped groove, then formed into a round shape, and drawn to a predetermined wire diameter. At this time, the formed outer seam can be welded to form a seamless type stainless steel welding flux-cored wire. When the stainless steel skin is a pipe, the pipe can be vibrated, filled with flux, and drawn to a predetermined wire diameter. In any of the manufacturing methods, the wire diameter can be manufactured up to 0.8 to 3.6 mm.

フラックスは、供給及び充填が円滑に行えるように、固着剤(珪酸カリ及び珪酸ソーダの水ガラス)を添加して造粒して用いることもできる。   The flux can be granulated by adding a fixing agent (potassium silicate and sodium silicate water glass) so that the supply and filling can be performed smoothly.

以下、実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

表1に示す化学成分のステンレス鋼外皮を用い、表2に示す成分組成のステンレス鋼溶接用フラックス入りワイヤを作製した。このワイヤの作製においては、ステンレス鋼外皮にフラックスを充填し、端面同士を溶接してシームレス状にした後、縮径してステンレス鋼溶接用フラックス入りワイヤを試作した。なおワイヤ径は1.2mm、フラックス充填率は19〜24%とした。   Using the stainless steel skin of the chemical composition shown in Table 1, a stainless steel welding flux cored wire having the composition shown in Table 2 was prepared. In the production of this wire, a stainless steel outer shell was filled with a flux, the end faces were welded to make a seamless shape, and then the diameter was reduced to produce a stainless steel welding flux-cored wire. The wire diameter was 1.2 mm and the flux filling rate was 19 to 24%.

Figure 2017024055
Figure 2017024055

Figure 2017024055
Figure 2017024055

これら試作したワイヤにて、溶接作業性、溶着金属性能及び耐割れ性について調査を行った。   We investigated the welding workability, weld metal performance, and crack resistance of these prototyped wires.

溶接作業性評価は、表3に示す成分のSUS304L鋼板を用い、表4に示す溶接条件で水平すみ肉溶接及び立向上進すみ肉溶接を行い、アーク安定性、スパッタ発生量、スラグ被包性、スラグ剥離性、メタル垂れの有無(立向上進すみ肉溶接のみ)、ビード形状を調査した。   Welding workability evaluation is performed by using horizontal SUS304L steel plate of the components shown in Table 3 and horizontal fillet welding and stand-up improvement fillet welding under the welding conditions shown in Table 4. Arc stability, spatter generation amount, slag encapsulation , Slag peelability, presence or absence of metal sag (only in case of fillet welding progressed), and bead shape were investigated.

Figure 2017024055
Figure 2017024055

Figure 2017024055
Figure 2017024055

溶着金属試験は、板厚20mm、ベベル角度10°を設けたSM490A鋼板に2層バタリングを行い、ギャップ16mmの開先にて、JIS Z 3323に準拠し、表4に示す溶接条件にて多層盛溶接を行った。溶着金属部より、引張試験片及び衝撃試験片を採取し、室温及び650℃の高温で試験を行った。   In the weld metal test, two-layer buttering was performed on an SM490A steel plate with a plate thickness of 20 mm and a bevel angle of 10 °, and a multi-layered pile was formed under a gap of 16 mm according to JIS Z 3323 under the welding conditions shown in Table 4. Welding was performed. Tensile test pieces and impact test pieces were collected from the weld metal part and tested at room temperature and at a high temperature of 650 ° C.

常温試験は、室温にて引張試験、試験温度−20℃で衝撃試験を行い、引張強さが520MPa以上、吸収エネルギーが3本の平均値で60J以上を良好とした。   In the normal temperature test, a tensile test at room temperature and an impact test at a test temperature of −20 ° C. were performed, and a tensile strength of 520 MPa or more and an absorbed energy of 3 average values were determined to be 60 J or more.

高温試験は、引張試験片を650℃まで加熱した直後に引張試験を行い、引張強さが300MPa以上を良好とした。また、衝撃試験は衝撃試験片を650℃×2h保持し、室温まで空冷した後、試験温度−20℃で吸収エネルギーが3本の平均値で30J以上を良好とした。   In the high temperature test, a tensile test was performed immediately after heating the tensile test piece to 650 ° C., and the tensile strength was 300 MPa or more. In the impact test, the impact test piece was held at 650 ° C. × 2 h, air-cooled to room temperature, and the absorbed energy was 3 J or more at a test temperature of −20 ° C., which was 30 J or more.

耐割れ性の評価は、表3に示す成分の板厚20mmのSUS304L鋼板を用い、べべル角度10°、ギャップ16mmの開先にて、表4に示す溶接条件で多層盛溶接して溶接継手を作製し、JIS Z 3122に準拠して側曲げ試験片を採取して側曲げ試験を行い、疵が3mm以下を良好とした。それらの調査結果を表5にまとめて示す。   Evaluation of cracking resistance was performed by using a SUS304L steel plate having a thickness of 20 mm having the components shown in Table 3 and performing multi-layer welding under the welding conditions shown in Table 4 at a bevel angle of 10 ° and a gap of 16 mm. A side bend test piece was collected in accordance with JIS Z 3122 and a side bend test was performed. The survey results are summarized in Table 5.

Figure 2017024055
Figure 2017024055

表2及び表4中のワイヤ記号W1〜W8が本発明例、ワイヤ記号W9〜W19は比較例である。   The wire symbols W1 to W8 in Tables 2 and 4 are examples of the present invention, and the wire symbols W9 to W19 are comparative examples.

本発明例であるワイヤ記号W1〜W8は、ステンレス鋼外皮とフラックスとの合計のC、Si、Mn、Ni、Cr、Mo、Ti、N及びフラックスのTiO2換算値の合計、SiO2換算値の合計、ZrO2換算値の合計、Al23換算値の合計、Na2O換算値及びK2O換算値の合計、F換算値の合計、Biが適正であるので、常温試験及び高温試験での溶着金属の引張強さ及び吸収エネルギーが良好で、耐割れ性も良好であった。また、水平すみ肉溶接及び立向上進溶接におけるアーク安定性が良好でスパッタ発生量が少なく、ビード形状、スラグ被包性、スラグ剥離性が良好であった。 The wire symbols W1 to W8, which are examples of the present invention, are the sum of C, Si, Mn, Ni, Cr, Mo, Ti, N and the TiO 2 equivalent value of the flux, the SiO 2 equivalent value of the stainless steel sheath and the flux. , Total of ZrO 2 converted value, total of Al 2 O 3 converted value, total of Na 2 O converted value and K 2 O converted value, total of F converted value, Bi is appropriate, so normal temperature test and high temperature The tensile strength and absorbed energy of the weld metal in the test were good, and the crack resistance was also good. In addition, the arc stability in horizontal fillet welding and vertical improvement welding was good, the amount of spatter was small, and the bead shape, slag encapsulation, and slag peelability were good.

比較例におけるワイヤ記号W9は、Cが少ないので、高温試験での溶着金属の引張強さが低かった。また、Siが多いので、水平すみ肉溶接及び立向上進溶接でスラグ被包性が不良であった。   Since the wire symbol W9 in the comparative example has a small amount of C, the tensile strength of the weld metal in the high temperature test was low. Moreover, since there is much Si, the slag encapsulation was poor in horizontal fillet welding and vertical improvement welding.

ワイヤ記号W10は、Cが多いので、高温試験での溶着金属の吸収エネルギーが低かった。また、ZrO2換算値が少ないので、水平すみ肉溶接及び立向上進溶接でスパッタ発生量が多かった。さらに、Al23換算値が少ないので、ビード形状が不良であった。 Since the wire symbol W10 has a large amount of C, the absorbed energy of the weld metal in the high temperature test was low. Further, since the ZrO 2 conversion value is small, the amount of spatter generated was large in horizontal fillet welding and vertical improvement welding. Furthermore, since the Al 2 O 3 conversion value was small, the bead shape was poor.

ワイヤW記号11は、Siが少ないので、水平すみ肉溶接及び立向上進溶接でビード形状が不良であった。また、Mnが少ないので、側曲げ試験片に5.0mmの疵が発生した。さらに、TiO2換算値が多いので、水平すみ肉溶接及び立向上進溶接でアーク状態が不安定であった。 Since the wire W symbol 11 has a small amount of Si, the bead shape was poor in horizontal fillet welding and vertical improvement welding. Moreover, since there was little Mn, the wrinkle of 5.0 mm generate | occur | produced in the side bending test piece. Further, since TiO 2 converted value is large, the arc state was unstable in horizontal fillet welding and vertical upward proceeds welding.

ワイヤ記号W12は、Mnが多いので、常温試験での溶着金属の吸収エネルギーが低かった。また、Nが少ないので、常温試験での溶着金属の引張強さが低かった。さらに、Na2O換算値及びにK2O換算値の合計が少ないので、水平すみ肉溶接及び立向上進溶接でアーク状態が不安定でスパッタ発生量が多かった。 Since the wire symbol W12 has a large amount of Mn, the absorbed energy of the weld metal in the normal temperature test was low. Moreover, since N is small, the tensile strength of the weld metal in the normal temperature test was low. Further, since the total of Na 2 O converted value and K 2 O converted value is small, the arc state is unstable and the amount of spatter is large in horizontal fillet welding and vertical improvement welding.

ワイヤ記号W13は、Niが少ないので、常温試験での溶着金属の吸収エネルギーが低かった。また、SiO2換算値が少ないので、水平すみ肉溶接及び立向上進溶接でスラグ被包性が不良であった。さらに、F換算値が多いので、ビード形状が不良であった。 Since the wire symbol W13 has a small amount of Ni, the absorbed energy of the weld metal in the normal temperature test was low. Further, since the SiO 2 converted value is small, the slag encapsulated was poor in horizontal fillet welding and vertical upward proceeds welding. Furthermore, since there were many F conversion values, the bead shape was unsatisfactory.

ワイヤ記号W14は、Niが多いので、側曲げ試験片に4.0mmの疵が発生した。また、Crが少ないので、常温試験での溶着金属の引張強さが低かった。さらに、SiO2換算値が多いので、水平すみ肉溶接及び立向上進溶接でビード形状が不良であった。 Since the wire symbol W14 has a large amount of Ni, 4.0 mm wrinkles occurred on the side bend specimen. Moreover, since there was little Cr, the tensile strength of the weld metal in the normal temperature test was low. Further, since the SiO 2 converted value is large, the bead shape was poor in horizontal fillet welding and vertical upward proceeds welding.

ワイヤ記号W15は、Crが多いので、高温試験での溶着金属の引張強さが低かった。また、Tiが多いので、水平すみ肉溶接及び立向上進溶接でスパッタ発生量が多かった。さらに、ZrO2換算値が多いので、アーク状態が不安定であった。 Since the wire symbol W15 has a large amount of Cr, the tensile strength of the weld metal in the high temperature test was low. Moreover, since there was much Ti, there was much spatter generation amount by horizontal fillet welding and vertical improvement welding. Further, since the terms of ZrO 2 value is large, the arc state was unstable.

ワイヤ記号W16は、Moが少ないので、常温試験での溶着金属の引張強さが低かった。また、F換算値が少ないので、水平すみ肉溶接及び立向上進溶接でアークが不安定であった。さらに、TiO2換算値が少ないので、スラグ剥離性が不良で、特に立向上進溶接ではメタル垂れが発生し、ビード形状が不良であった。 Since the wire symbol W16 has a small amount of Mo, the tensile strength of the deposited metal in the normal temperature test was low. Further, since the F-converted value is small, the arc was unstable in horizontal fillet welding and vertical improvement welding. Further, since the TiO 2 conversion value is small, the slag peelability is poor, and metal dripping occurs particularly in the vertical improvement welding, and the bead shape is poor.

ワイヤ記号W17は、Moが多いので、高温試験での溶着金属の吸収エネルギーが低かった。また、Al23換算値が多いので、水平すみ肉溶接及び立向上進溶接でスラグ剥離性が不良であった。 Since the wire symbol W17 has a large amount of Mo, the absorbed energy of the weld metal in the high temperature test was low. Moreover, since there are many values converted to Al 2 O 3 , the slag peelability was poor in horizontal fillet welding and vertical improvement welding.

ワイヤ記号W18は、Tiが少ないので、常温試験での吸収エネルギーが低かった。また、立向上進溶接ではメタル垂れが発生し、ビード形状が不良であった。また、Nbが多いので、水平すみ肉溶接及び立向上進溶接でスラグ剥離性が不良であった。   Since the wire symbol W18 has a small amount of Ti, the absorbed energy in the normal temperature test was low. Further, in the vertical improvement welding, metal dripping occurred and the bead shape was poor. Moreover, since there is much Nb, slag peelability was inferior in horizontal fillet welding and vertical improvement welding.

ワイヤ記号W19は、Nが多いので、水平すみ肉溶接及び立向上進溶接でスパッタ発生量が多かった。また、Na2O換算値及びK2O換算値の合計が多いので、ビード形状が不良であった。さらに、Biが多いので、側曲げ試験片に4.5mmの疵が発生した。 Since the wire symbol W19 has a large amount of N, a large amount of spatter was generated in horizontal fillet welding and vertical improvement welding. Further, since the terms of Na 2 O values and K sum is often the 2 O converted value, the bead shape was poor. Furthermore, since there was much Bi, a wrinkle of 4.5 mm was generated on the side bending test piece.

Claims (1)

ステンレス鋼外皮にフラックスを充填してなるステンレス鋼溶接用フラックス入りワイヤにおいて、
ワイヤ全質量に対する質量%で、ステンレス鋼外皮とフラックスの合計で、
C:0.005〜0.10%、
Si:0.2〜1.0%、
Mn:1.5〜4.5%、
Ni:8〜13%、
Cr:16〜23%、
Mo:0.01〜1.0%、
Ti:0.55〜1.0%、
N:0.01〜0.05%を含有し、
Nb:0.05%以下であり、
さらにワイヤ全質量に対する質量%で、フラックス中に、
Ti酸化物:TiO2換算値の合計で5〜8%、
Si酸化物:SiO2換算値の合計で0.1〜1.5%、
Zr酸化物:ZrO2換算値の合計で0.01〜0.1%、
Al酸化物:Al23換算値の合計で0.01〜0.1%、
Na化合物及びK化合物:Na2O換算値及びK2O換算値の合計で0.01〜0.30%、
弗素化合物:F換算値の合計で0.1〜1.0%を含有し、
Bi:0.001%以下であり、
残部はステンレス鋼外皮のFe分、合金鉄中のFe分、鉄粉及び不可避不純物であることを特徴とするステンレス鋼溶接用フラックス入りワイヤ。
In the flux-cored wire for stainless steel welding formed by filling the stainless steel outer shell with flux,
It is the mass% with respect to the total mass of the wire.
C: 0.005-0.10%,
Si: 0.2 to 1.0%
Mn: 1.5 to 4.5%,
Ni: 8-13%,
Cr: 16-23%
Mo: 0.01 to 1.0%,
Ti: 0.55-1.0%,
N: 0.01 to 0.05% is contained,
Nb: 0.05% or less,
Furthermore, in mass% with respect to the total mass of the wire,
Ti oxide: 5 to 8% in total of TiO 2 conversion value,
Si oxide: 0.1 to 1.5% in total of SiO 2 conversion value,
Zr oxide: 0.01 to 0.1% in total in terms of ZrO 2 ,
Al oxide: 0.01 to 0.1% in total of Al 2 O 3 conversion value,
Na compound and K compound: 0.01 to 0.30% in total of Na 2 O converted value and K 2 O converted value,
Fluorine compound: Contains 0.1 to 1.0% in total in terms of F,
Bi: 0.001% or less,
The balance is the Fe content of the stainless steel sheath, the Fe content in the alloy iron, iron powder, and inevitable impurities, and a stainless steel welding flux cored wire.
JP2015147064A 2015-07-24 2015-07-24 Stainless steel flux cored wire Active JP6434381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015147064A JP6434381B2 (en) 2015-07-24 2015-07-24 Stainless steel flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147064A JP6434381B2 (en) 2015-07-24 2015-07-24 Stainless steel flux cored wire

Publications (2)

Publication Number Publication Date
JP2017024055A true JP2017024055A (en) 2017-02-02
JP6434381B2 JP6434381B2 (en) 2018-12-05

Family

ID=57945409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147064A Active JP6434381B2 (en) 2015-07-24 2015-07-24 Stainless steel flux cored wire

Country Status (1)

Country Link
JP (1) JP6434381B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335942A (en) * 2017-07-12 2017-11-10 西安理工大学 PH13 8Mo stainless steels Self-protecting welding wire and preparation method thereof
CN107350658A (en) * 2017-07-12 2017-11-17 西安理工大学 PH13 8Mo stainless steels metal mold welding wire and preparation method thereof
CN107414340A (en) * 2017-05-11 2017-12-01 安徽飞弧焊业股份有限公司 A kind of bridge flux-cored wire
CN111843289A (en) * 2020-07-29 2020-10-30 郑州大学 L415J steel welding matched flux-cored wire for coal slurry conveying pipe
WO2022050400A1 (en) * 2020-09-07 2022-03-10 株式会社神戸製鋼所 Flux-cored wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267282A (en) * 1995-03-31 1996-10-15 Kobe Steel Ltd Flux-cored wire for austenitic stainless steel
JPH11129093A (en) * 1997-10-30 1999-05-18 Kobe Steel Ltd Flux cored wire for welding austenitic stainless steel
JP2007160314A (en) * 2005-12-09 2007-06-28 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for welding high-strength stainless steel
JP2015120174A (en) * 2013-12-20 2015-07-02 日鐵住金溶接工業株式会社 Flux cored wire for welding stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267282A (en) * 1995-03-31 1996-10-15 Kobe Steel Ltd Flux-cored wire for austenitic stainless steel
JPH11129093A (en) * 1997-10-30 1999-05-18 Kobe Steel Ltd Flux cored wire for welding austenitic stainless steel
JP2007160314A (en) * 2005-12-09 2007-06-28 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for welding high-strength stainless steel
JP2015120174A (en) * 2013-12-20 2015-07-02 日鐵住金溶接工業株式会社 Flux cored wire for welding stainless steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107414340A (en) * 2017-05-11 2017-12-01 安徽飞弧焊业股份有限公司 A kind of bridge flux-cored wire
CN107335942A (en) * 2017-07-12 2017-11-10 西安理工大学 PH13 8Mo stainless steels Self-protecting welding wire and preparation method thereof
CN107350658A (en) * 2017-07-12 2017-11-17 西安理工大学 PH13 8Mo stainless steels metal mold welding wire and preparation method thereof
CN107335942B (en) * 2017-07-12 2019-09-27 西安理工大学 PH13-8Mo stainless steel Self-protecting welding wire and preparation method thereof
CN111843289A (en) * 2020-07-29 2020-10-30 郑州大学 L415J steel welding matched flux-cored wire for coal slurry conveying pipe
CN111843289B (en) * 2020-07-29 2022-04-12 郑州大学 L415J steel welding matched flux-cored wire for coal slurry conveying pipe
WO2022050400A1 (en) * 2020-09-07 2022-03-10 株式会社神戸製鋼所 Flux-cored wire
JP7323497B2 (en) 2020-09-07 2023-08-08 株式会社神戸製鋼所 flux cored wire

Also Published As

Publication number Publication date
JP6434381B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6434381B2 (en) Stainless steel flux cored wire
JP6566928B2 (en) Stainless steel flux cored wire
JP6382117B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP5345770B2 (en) Titanya flux cored wire
JP6599781B2 (en) Flux-cored wire for duplex stainless steel welding
JP5356142B2 (en) Gas shield arc welding method
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6110800B2 (en) Stainless steel flux cored wire
JP6140069B2 (en) Stainless steel flux cored wire
JP5706354B2 (en) Coated arc welding rod for duplex stainless steel
JP6786472B2 (en) Flux-cored wire for duplex stainless steel welding
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JP2017094360A (en) Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP2014034051A (en) Wire including flux for stainless steel welding
JP5409459B2 (en) Flux-cored wire for welding austenitic stainless steel
JP5899007B2 (en) Flux-cored wire for hardfacing arc welding
JP2016203179A (en) Flux-cored wire for gas-shielded arc welding
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
KR102456990B1 (en) Flux-cored wire for gas shielded arc welding of low temperature steel
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP5473371B2 (en) Coated arc welding rod for duplex stainless steel welding to refine solidified crystal grains
JP2015205304A (en) Flux-cored wire for gas shield arc welding
JP2012148298A (en) Wire including flux for two-phase stainless steel welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181108

R150 Certificate of patent or registration of utility model

Ref document number: 6434381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250